
Towards a deterministic algorithm for the
International Timetabling Competition

Oscar Chávez Bosquez1, Pilar Pozos Parra1, and Florian Lengyel2

1 Department of Informatics and Systems
University of Tabasco

Carretera Cunduacán - Jalpa Km. 1, Tabasco, Mexico
{oscar.chavez,pilar.pozos}@dais.ujat.mx

2 Department of Computer Science
The Graduate Center, CUNY

365 Fifth Ave., New York, USA
flengyel@gc.cuny.edu

Abstract

The Course Timetabling Problem consists of the weekly scheduling
of lectures of a collection of university courses, subject to certain con-
straints. The International Timetabling Competitions, ITC-2002 and
ITC-2007, have been organized with the aim of creating a common
formulation for comparison of solution proposals. This paper discusses
the design and implementation of an extendable family of sorting-based
mechanisms, called Sort Then Fix (STF) algorithms. Only ITC-2002
problem instances were used in this study. The STF approach is de-
terministic, and does not require swapping or backtracking. Almost
all solutions run in less than 10% of the ITC-2002 benchmark time.

1 Introduction

The Course Timetabling Problem consists of assigning a sequence of events
(lectures) to a collection of university courses that meet within a num-
ber of rooms and time periods, usually weekly, satisfying some constraints.
Course timetabling problems vary from university to university, and many
researchers have shown that there is no single best solution for all situations.

Standards for comparing algorithms for solving the Course Timetabling
Problem have emerged in recent years. The International Timetabling Com-
petitions, ITC-2002 and ITC-2007, have been organized with the aim of cre-
ating a common formulation for comparing solutions, of which many have
been proposed [15, 7].

While the competition is open to stochastic and deterministic approaches,
virtually all the proposed solutions appearing in the competition web pages
are stochastic algorithms [5]; as far as we know there is no record of a com-
petitive and effective deterministic approach used in the contest.

The motivation of this work was to develop a deterministic algorithm
that solves the hard constraints of the 20 instances of the ITC-2002 in a

Proceedings of the 17th International RCRA workshop (RCRA 2010):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Bologna, Italy, June 10–11, 2010

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

timely manner, so we introduce a family of deterministic algorithms, Sort
Then Fix (STF) algorithms, for solving timetabling problems. The algo-
rithms were tested with the official instances of the ITC-2002.

The rest of the paper is organized as follows. We formalize the course
timetabling problem in the second section; the third section describes the
family of deterministic STF algorithms; the fourth section provides our re-
sults; and we conclude with some possible research directions.

2 Target Problem

We consider the problem of weekly scheduling a set of single events (or
lectures). The problem has been discussed in [1] and it was the topic of
ITC-2002 [2], where twenty artificial instances were proposed. The instances
are available from the ITC-2002 web page.

The problem consists of finding an optimal timetable within the following
framework: there is a set of events E = {E1, E2, ..., EnE} to be scheduled
in a set of rooms R = {R1, R2, ..., RnR}, where each room has 45 available
timeslots, nine for each day in a five day week. There is a set of students
S = {S1, S2, ..., SnS} who attend the events, and a set of features F =
{F1, F2, ..., FnF } satisfied by rooms and required by events. Each event is
attended by a number of students, and each room has a given size, which is
the maximum number of students the room can accommodate. A feasible
timetable is one in which all events have been assigned a timeslot and a
room so that the following hard constraints are satisfied:

(1) no student attends more than one event at the same time;

(2) the room is big enough for all the attending students and satisfies all
the features required by the event; and

(3) only one event is scheduled in each room at any timeslot.

In contest instance files there were typically 10-11 rooms, hence there are
450-495 available places. There were typically 350-400 events, 5-10 features
and 200-300 students.

The problem will penalize a timetable for each occurrence of some soft
constraint violation, which are the following:

(1) a student has to attend an event in the last timeslot on a day;

(2) a student has more than two classes in a row; and

(3) a student has to attend solely an event in a day.

The problem may be precisely formulated as:

2

• let F = {F1, F2, ..., FnF } be a set of symbols representing the features;

• Ri = {F ′
1, F

′
2, ..., F

′
nRi
} where F

′
j ∈ F for j = 1, ..., nRi and nRi is the

number of features satisfied by room Ri;

• N = {N1, ..., NnR} be a set of integer numbers indicating the maximum
of students each room can accommodate;

• Ei = {F ′′
1 , F

′′
2 , ..., F

′′
nEi
} where F

′′
j ∈ F for j = 1, ..., nEi and nEi is the

number of features required by event Ei;

• Si = {E′
1, E

′
2, ..., E

′
nSi
} where E

′
j ∈ E for j = 1, ..., nSi and nSi is the

number of events student Si attends; and

• T = {T1, ..., T45} be a set of timeslots.

Find a feasible solution, i.e. a set of pairs {(T ′
1, R

′
1), ..., (T

′
nE

, R′
nE

)} such
that:

• T ′
i ∈ T and R′

i ∈ R

• (T ′
i 6= T ′

j) if Ei ∈ Sk and Ej ∈ Sk and (i 6= j)

• Ei ⊆ R′
i and |{Sj |j = 1, ..., nS and Ei ∈ Sj}| ≤ Nk where R′

i = Rk;

• ∀i∀j (i = j ∨ T ′
i 6= T ′

j ∨R′
i 6= R′

j).

The competition adds a constraint over execution time, i.e. given the
information about rooms, events, features, and students, find the best pos-
sible feasible solution within a given time limit. The time limit is given by
a benchmark tool provided by the organizer.

3 STF Algorithms

STF is a family of algorithms to solve timetabling problems, based on events
and rooms sorting. Its distinguishing property is that the k-th iterate yields
a schedule for the k most constrained events, where the notion of the most
constrained event depends on the particular STF algorithm.

The first step of an STF algorithm is to find a binary matrix that rep-
resents the available rooms for every event. The following actions are per-
formed:

• the number of students for each event is calculated and stored,
ni = |{Sj |j = 1, ..., nS and Ei ∈ Sj}|

• a list of available rooms is created for each event,
ei = {Rj |Ei ⊆ Rj and ni ≤ Nj}

3

This first step allows us to reduce the problem by eliminating the in-
formation concerning features and room capacity, defining a new event set
{e1, ..., enE}, that includes the eliminated information. The new event set
will be used for defining the most constrained event. The core strategy of the
algorithms is to assign the most constrained event to the least constrained
timeslot found for this event. In order to avoid strategies of movement that
require backtracking to recover from mistakes, our aim is not to make mis-
takes of selection of placement and event. The intuitive idea is as follows:
if there is at least one optimal solution where all soft and hard restrictions
are satisfied, then it is possible to sort the events and placements in such a
way that all the events are fixed satisfying all the constraints. The general
structure is as follows:

1. sort events from the most constrained to the least constrained one,

2. choose ei ∈ [e1, . . . , enE], the next most constrained event,

3. sort the rooms of ei from the least to the most constrained one,

4. choose r ∈ ei, the next least constrained room for event ei,

5. search s ∈ [1 . . . 45], such that:
∀j (i = j ∨ s 6= T ′

j ∨ r 6= R′
j) and if Ei, Ej ∈ Sk and i 6= j, s 6= T ′

j ,

6. if (s 6= null) then R′
i := r and T ′

i := s else go to step 4,

7. update data for the next iteration,

8. go to step 2 (or go to step 1, depending on the STF algorithm).

The different versions have particular criterions that are described in
Table 1. Multiple criteria take precedence, from highest to lowest, in order
of occurrence. For example, algorithm 3 has two criterions for ordering the
events, first by the number of rooms that can allocated to the event if there
are two or more events with the same number of rooms; second, by the
number of students attending the event.

We retain the idea of the early techniques for solving the timetabling
problem; our proposal is based on a simulation of the human way of solving
the problem with a successive augmentation. In [14], these techniques are
called direct heuristics. We start with an empty timetable that is extended
event by event, until all the events have been scheduled. The idea is to
schedule the most constrained event first, and then the second most con-
strained event, and so on until all the events are scheduled. Our approach
differs from direct heuristics, which usually fill up the complete timetable
with one event at a time as far as no conflicts arise, and until they begin
swapping to accommodate any remaining events.

4

Table 1: Details of STF
Algorithm Event sorting criterion Room sorting criterion Go to step

1 (a) (1) 2
2 (b) (1) 2
3 (a) (b) (1) 2
4 (b) (a) (1) 2
5 (a) (1) (2) 2
6 (b) (1) (2) 2
7 (a) (b) (1) (2) 2
8 (b) (a) (1) (2) 2
9 (c) (1) 1
10 (c) (d) (1) 1
11 (c) (1) (2) 1
12 (c) (d) (1) (2) 1
13 (c) (b) (1) 1
14 (b) (c) (1) 1
15 (c) (b) (1) (2) 1
16 (b) (c) (1) (2) 1
17 (c) (b) (d) (1) 1
18 (b) (c) (d) (1) 1
19 (c) (b) (d) (1) (2) 1
20 (b) (c) (d) (1) (2) 1
21 (c) (b) (f) (1) 1
22 (b) (c) (f) (1) 1
23 (c) (b) (f) (1) (3) 1
24 (b) (c) (f) (1) (3) 1
25 (b) (a) (e) (1) (3) 1
26 (e) (b) (a) (f) (1) (3) 1
27 (e) (b) (a) (4) 1
28 (g) (b) (a) (4) 1
29 (g) (b) (a) (4) (3) 1

5

The criteria of Table 1 are as follows:

(a) Number of rooms, in ascending order, where the event can be allocated.

(b) Number of students, in descending order, that attend the event.

(c) Number of free slots of all the event rooms in ascending order, where
a free slot is one which has no assigned event.

(d) Number of events, in ascending order, that can be allocated to the
event rooms, where the number of events includes assigned and unas-
signed events.

(e) Number of free slots of all the event rooms in ascending order, where
a free slot is one which has no associated student attending another
event assigned to the same slot and the slot has no assigned event in
at at least one event room.

(f) Number of unassigned events, in ascending order, that can be allocated
to the event rooms.

(g) Number of free slots of all the event rooms in ascending order, where a
free slot is one which has no assigned event and no attending student
has another event placed at the same slot.

(1) Number of free slots of the room in descending order, where a free slot
is a slot that has no assigned event.

(2) Number of events that can be allocated in the room in ascending order,
where the number of events includes assigned and unassigned events.

(3) Number of unassigned events that can be allocated to the room in
ascending order.

(4) Number of slots that are free for the room in descending order, where
a free slot has no assigned event and no attending student has another
event placed at the same slot.

Our approach avoids swapping; if an event cannot be scheduled then
the next most constrained event is scheduled, leaving the event in question
without a room and timeslot. Thus we careful to formulate the definition of
the “most constrained event” in the STF algorithms to avoid unscheduled
events.

6

4 Results

The STF algorithms were developed in GNU Octave 3.0 on a Toshiba Satel-
lite A105-S433 R©laptop computer, with a 1.60 GHz Centrino Duo proccesor
T5200, Mobile Intel R©945GM Express Chipset, 2 GB in RAM, 160 GB in
HDD and the Ubuntu Linux 9.10 operating system.

All tests were done on this computer, within the time allowed by the
benchmark tool provided by the organizers of the ITC-2002. This bench-
mark tool shows the time limit (in seconds) in which the algorithm must be
executed in a particular computer, so that everybody can participate in a
fair competition. In our box, the benchmark program allowed a maximum
execution time of 558 seconds, time in wich the STF algorithms must be
executed in order to find feasible solutions.

Tables 2 and 3 show the results obtained by the STF algorithms on
the 20 problem instances of the ITC-2002. The table displays the hard
constraints violated by the algorithms running under GNU Octave 3.0 and
under Matlab R©R2009b.

Tables 4 and 5 display the soft constraints violated by the algorithms
running on GNU Octave 3.0 and Matlab R©R2009b.

In Fig. 1, we can see markedly different patterns of hard constraints
violation. Some of them nearly find feasible solutions for all the instances.
For example, algorithm 28 and 29 violated only one hard constraint of one
instance. Some of them find feasible solutions only for a reduced number
of instances, such is the case of algorithm 1, which only finds 3 of the 20
feasible solutions. It is worth noting that more refined sorting criterions will
find a greater number of feasible solutions for all the instances. As we can
see in Fig. 2, the graphs of the number of soft constraints violated by the
29 STF algorithms share a common pattern.

The Fig. 3 displays the time in seconds taken by the algorithms running
on GNU Octave 3.0, and Fig. 4 shows the time taken by the algorithms
running Matlab R©R2009b. As we can see the both implementations of algo-
rithms terminate within the 558 second allowed benchmark time and almost
all the algorithms running on Matlab take less of the 10% of the allowed
benchmark time, but the run over Octave takes much more time that Mat-
lab. However, the purpose of Figs. 3 & 4 is to show the pattern that follows
the STF algorithms in matter of time, and to prove that STF algorithms
over different environments can compete in the ITC-2002 following the time
rule.

7

Table 2: Hard constraints violated by the STF algorithms

Version of the Sort-Then-Fix algorithm

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

01 4 0 1 0 3 0 1 0 0 1 0 1 0 0 0
02 0 7 0 0 0 5 0 0 1 3 0 4 1 0 0
03 2 0 0 0 1 0 0 0 1 0 3 4 0 0 0
04 15 3 7 7 11 3 8 3 15 7 16 12 7 4 8
05 10 1 2 3 10 2 2 2 8 7 8 6 7 3 7
06 4 0 6 0 6 2 5 1 8 10 6 9 10 0 5
07 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 4 0 3 0 4 0 2 0 1 1 0 3 1 0 0
09 3 0 2 0 4 0 3 0 2 3 2 1 1 0 1
10 3 2 0 0 3 0 0 0 4 4 4 4 0 0 0
11 2 9 2 4 2 9 2 5 2 2 4 1 2 4 2
12 4 0 5 2 4 0 5 1 6 3 6 3 3 2 3
13 6 0 3 0 5 0 4 0 4 3 5 3 4 0 7
14 0 0 0 0 2 0 1 0 4 0 3 1 0 0 0
15 3 0 0 0 4 0 1 0 3 0 3 0 0 0 0
16 1 8 0 3 2 8 0 3 1 0 1 0 1 3 1
17 10 1 1 1 10 2 1 1 13 10 13 10 10 3 10
18 0 2 1 0 0 1 0 0 0 1 1 0 0 0 0
19 3 0 3 0 5 0 3 0 2 2 2 2 0 0 1
20 1 0 2 0 1 0 0 0 1 0 1 1 0 0 0

* Problem instance

Table 3: Hard constraints violated by the STF algorithms

Version of the Sort-Then-Fix algorithm

* 16 17 18 19 20 21 22 23 24 25 26 27 28 29

01 0 1 0 0 0 1 0 0 0 0 0 2 0 0
02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 0 2 0 0
04 4 7 3 8 2 7 3 8 0 0 0 6 1 0
05 6 5 1 5 2 5 1 5 2 0 0 2 0 0
06 0 12 0 9 0 12 0 9 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08 0 2 0 1 0 2 0 1 0 0 0 0 0 0
09 0 2 0 1 0 2 0 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 4 1 5 1 4 1 5 0 4 4 2 3 0 0
12 3 4 1 4 2 4 1 4 2 0 0 0 0 0
13 1 4 1 3 0 4 1 4 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 1 0 0 0 0 0 0
16 6 2 3 1 6 2 3 2 5 3 0 1 0 0
17 3 4 3 4 4 4 3 4 5 0 0 4 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 1 0 0 0 2 0 0 0 0 0 0
20 0 0 0 1 0 0 0 2 0 0 0 0 0 0

* Problem instance

8

Table 4: Soft constraints violated by the STF algorithms
Version of the Sort-Then-Fix algorithm

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 912 982 984 977 936 882 980 855 894 959 904 970 902 941
2 908 923 854 949 885 915 853 945 839 845 855 840 821 920
3 876 985 944 940 872 981 955 932 892 889 867 859 927 912
4 1155 1296 1234 1280 1219 1321 1192 1286 1154 1162 1154 1108 1254 1293
5 1310 1461 1314 1432 1326 1434 1336 1430 1299 1381 1277 1354 1364 1234
6 1357 1318 1325 1355 1284 1331 1287 1453 1256 1266 1202 1310 1405 1493
7 1687 1944 1871 1927 1754 1944 1871 1919 1608 1668 1756 1727 1864 1932
8 1050 1260 1077 1197 1057 1179 1102 1207 1054 1124 1065 1084 1123 1186
9 936 1035 910 1031 931 1088 906 1088 985 858 954 864 935 1055
10 874 947 905 910 886 923 905 888 863 863 863 863 997 898
11 940 1055 996 1056 923 1013 996 1065 997 941 960 929 958 1049
12 892 947 871 886 893 952 871 891 853 853 853 856 907 944
13 1067 1226 1073 1154 1051 1206 1061 1221 993 1030 996 999 1144 1174
14 1538 1814 1704 1727 1537 1632 1696 1855 1553 1611 1576 1679 1682 1752
15 1324 1612 1495 1527 1299 1556 1512 1565 1411 1415 1411 1416 1536 1538
16 914 1100 1035 1035 923 993 1037 1065 963 946 903 923 1009 991
17 1317 1374 1418 1395 1317 1376 1418 1395 1308 1286 1308 1278 1429 1418
18 918 999 876 960 915 930 872 990 854 902 838 849 906 978
19 1252 1375 1262 1382 1303 1347 1257 1387 1309 1311 1291 1291 1286 1329
20 1259 1403 1362 1412 1234 1361 1401 1399 1318 1351 1310 1305 1346 1389

* Problem instance

Table 5: Soft constraints violated by the STF algorithms
Version of the Sort-Then-Fix algorithm

* 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 915 973 911 958 936 982 911 958 950 989 985 1098 931 904 945
2 826 943 884 960 871 958 884 943 839 940 978 1053 864 938 948
3 913 908 952 935 933 979 952 947 952 998 956 1147 917 920 960
4 1221 1354 1245 1306 1228 1327 1245 1306 1228 1321 1273 1367 1217 1238 1263
5 1368 1300 1423 1344 1407 1297 1423 1344 1423 1291 1379 1460 1310 1402 1376
6 1426 1393 1268 1404 1241 1445 1268 1404 1254 1390 1528 1536 1313 1407 1377
7 1850 1902 1864 1932 1850 1902 1864 1952 1851 1949 1903 1680 1497 1806 1761
8 1112 1220 1108 1186 1108 1219 1108 1186 1111 1219 1219 1399 1049 1092 1128
9 955 1074 945 946 942 992 945 946 916 1002 1023 1114 925 956 973
10 997 909 997 898 997 909 997 898 997 909 964 954 934 968 968
11 956 1008 975 1005 1010 1009 975 1005 1022 1021 1049 1144 929 1014 1008
12 909 930 933 975 933 976 993 975 933 976 932 954 838 920 923
13 1136 1255 1141 1173 1130 1211 1141 1173 1141 1215 1116 1208 1131 1102 1065
14 1794 1782 1680 1769 1681 1774 1680 1769 1667 1795 1744 1796 1580 1673 1704
15 1518 1512 1464 1631 1478 1620 1464 1631 1446 1620 1605 1495 1259 1529 1501
16 997 991 965 1065 936 991 965 1065 967 1102 1045 1325 1016 971 1051
17 1429 1433 1431 1507 1405 1500 1436 1507 1436 1496 1445 1565 1283 1450 1456
18 903 1018 925 933 905 988 925 933 888 967 993 1094 838 908 924
19 1266 1288 1286 1352 1266 1322 1286 1329 1273 1363 1325 1518 1354 1295 1312
20 1375 1316 1396 1452 1410 1404 1396 1452 1407 1426 1332 1452 1227 1372 1401

* Problem instance

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Ha
rd

co
ns

tra
int

s b
rok

en

Problem instances

Version 1
Version 2
Version 3
Version 4
Version 5
Version 6
Version 7
Version 8
Version 9

Version 10
Version 11
Version 12
Version 13
Version 14
Version 15
Version 16
Version 17
Version 18
Version 19
Version 20
Version 21
Version 22
Version 23
Version 24
Version 25
Version 26
Version 27
Version 28
Version 29

Figure 1: Hard Constraints Broken

 800

 1000

 1200

 1400

 1600

 1800

 2000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

So
ft c

on
str

ain
ts

bro
ke

n

Problem instances

Version 1
Version 2
Version 3
Version 4
Version 5
Version 6
Version 7
Version 8
Version 9

Version 10
Version 11
Version 12
Version 13
Version 14
Version 15
Version 16
Version 17
Version 18
Version 19
Version 20
Version 21
Version 22
Version 23
Version 24
Version 25
Version 26
Version 27
Version 28
Version 29

Figure 2: Soft Constraints Broken

The criterions included in the algorithms deal only with hard constraints,
however it is possible to extend the algorithms to handle soft constraints.
Table 6 shows the results of modifying algorithm 29. In algorithm 29, the
search of the slots is in ascending order from 1 to 45; in the modified version
algorithm 29’, the search of slots is in ascending order from 1 to 8 then
from 10 to 17 then from 19 to 26 then from 28 to 35 then 37 to 44 and
finally in slots 9, 18, 27, 36 and 45. It is worth noticing that if a student
takes lectures at the end of the day, i.e. in slots 9, 18, 27, 36 or 45, a soft
constraint is violated. The number of violated hard constraints is the same
in both versions, however the number of soft constraint violations is clearly
reduced in the new version for all the instances.

In order to verify the results, the participants of the ITC-2002 provide
the executable file of their implementations.1

1The STF implementations in source code are available by request via e-mail.

10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Tim
e (

in
se

co
nd

s)

Problem instances

Version 1
Version 2
Version 3
Version 4
Version 5
Version 6
Version 7
Version 8
Version 9

Version 10
Version 11
Version 12
Version 13
Version 14
Version 15
Version 16
Version 17
Version 18
Version 19
Version 20
Version 21
Version 22
Version 23
Version 24
Version 25
Version 26
Version 27
Version 28
Version 29

Figure 3: Time using Octave

 0

 100

 200

 300

 400

 500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Tim
e (

in
se

co
nd

s)

Problem instances

Version 1
Version 2
Version 3
Version 4
Version 5
Version 6
Version 7
Version 8
Version 9

Version 10
Version 11
Version 12
Version 13
Version 14
Version 15
Version 16
Version 17
Version 18
Version 19
Version 20
Version 21
Version 22
Version 23
Version 24
Version 25
Version 26
Version 27
Version 28
Version 29

Figure 4: Time using Matlab

Table 6: Soft Restrictions Broken for algorithm 29’ and 29
Instance Algorithm 29’ Algorithm 29

1 700 945
2 633 948
3 628 960
4 1067 1263
5 1104 1376
6 949 1377
7 1167 1761
8 783 1128
9 715 973
10 603 968
11 696 1008
12 663 923
13 923 1065
14 1039 1704
15 911 1501
16 690 1051
17 1132 1456
18 611 924
19 1020 1312
20 908 1401

11

5 Conclusion

The family of STF algorithms, which appear to solve timetabling problems
in a natural way, has been proposed. STF algorithms define a notion of the
most constrained event, which is used to sort events before scheduling them.
Unlike other approaches to the ITC-2002 contest, STF is deterministic and
avoids swapping and backtraking.

We are confident that we will find an STF algorithm that will find feasible
solutions for the 20 instances respecting the benchmark time. In this paper
we focus on satisfying hard constraints only; soft constraints may be left
unsatisfied. Nevertheless, as we showed in algorithm 29’, with a slight mod-
ification we can considerably reduce the number of violated soft constraints
in each one of the problem instances. We intend to find an STF algorithm
that finds feasible solutions satisfying both hard and soft constraints for the
20 ITC-2002 instances.

As a main contribution, the STF algorithms can be used as a preprocess-
ing step for other optimization algorithms. For example, it can be combined
with a non-deterministic approach, such as a metaheuristic, to build a hy-
brid algorithm that can be more robust and can find a solution faster than a
metaheuristic by itself. In fact, as far as we know all the references showing
a solution to the problem only describe the metaheuristic used, but not the
process to reach the initial feasible solution.

The metaheuristics used by the other participants of the contest do a
pre-processing of the problem data before starting the search process, so all
of the algorithms start with a different initial solution. To tackle this issue,
the timetables generated by the STF algorithms can be used as an initial
base solution to all of these metaheuristics, in order to measure the real
effectiveness of each metaheuristic with respect to the others.

The STF algorithm finds a timetable in much less than the benchmark
time available. We intend future versions of the algorithm to satisfy both
hard and soft constraints to find complete solutions to the 20 ITC-2002
contest problem instances, within the time set by the benchmark program.
Also, the STF algorithms will be extended and tested on the earlier instances
of the International Timetabling Competition 2007, in order to manage the
new constraints proposed in these instances.

Acknowledgments

We thank the Mexican Academy of Sciences (AMC) and the United States-
Mexico Foundation for Science (FUMEC) for the support granted in 2009
under the Stays Summer Program.

12

References

[1] Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo,
M., Gambardello, L.M., Knowles, J., Manfrin, M., Mastrolilli, M.,
Paechter, B., Paquette, L., Stutzle, T.: A comparison of the perfor-
mance of dfferent metaheuristics on the timetabling problem. PATAT
2002, LNCS, 2740 (2003) 329–351

[2] Paechter, B., Gambardella, L.M., Rossi-Doria, O.: International
Timetabling Competition Webpage (2003) (viewed January, 2010) (up-
dated July 10, 2003), http://www.idsia.ch/Files/ttcomp2002/

[3] McCollumn, B.: International Timetabling Competition Web-
page (2007) (viewed January, 2010) (updated October 1, 2008),
http://www.idsia.ch/Files/ttcomp2002/

[4] Barry McCollum, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd
Lewis, Andrew J. Parkes, Luca Di Gaspero, Rong Qu, and Edmund K.
Burke Setting the Research Agenda in Automated Timetabling: The
Second International Timetabling Competition INFORMS JOURNAL
ON COMPUTING 2010 22: 120-130, DOI: 10.1287/ijoc.1090.0320.

[5] di Gaspero, L., Schaerf, A.: Timetabling Competition TTComp 2002:
Solver Description, (viewed January, 2010) (updated July 10, 2003),
http://www.idsia.ch/Files/ttcomp2002/schaerf.pdf

[6] Socha, K., Knowles, J., Sampels, M.: A MAX −MIN Ant System
for the University Timetabling Problem. Algorithmic Number Theory.
LNCS, 2369 (2002)

[7] Kostuch, P: The university course timetabling problem with a three-
phase approach. PATAT 2004, LNCS, 3616 (2005)

[8] Frausto-Solis, J.F., Alonso-Pecina, F., Larre, M. Gonzalez-Segura, C.,
Gomez-Ramos, J.L.: Solving the timetabling problem with three heuris-
tics. WSEAS Transactions on Computers. 11-5 (2006)

[9] de Werra, D.: An introduction to timetabling, European Journal of Op-
erational Research, (1985)

[10] Gotlieb, H.: The construction of class-teacher timetables, IFIP
Congress, (1963)

[11] Kostuch, P. Socha, K.:, Hardness prediction for the University Course
Timetabling problem, Proceedings of the Evolutionary Computation in
Combinatorial Optimization EvoCOP, (2004)

13

[12] Rossi-Doria, O., Blum, C., Knowles, J., Sampels, M., Socha, K.,
Paechter, B.:, A local search for the timetabling problem, PATAT (2002)

[13] Socha, K.: Metaheuristics for the Timetabling Problem. DEA Thesis,
Universite Libre de Bruxelles, (2003)

[14] Andrea Schaerf. A survey of automated timetabling. Artificial Intelli-
gence Review, 13(2):87-127, (1999)

[15] Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective
hybrid approach for the university course timetabling problem. Journal
of Scheduling, 9 (2006) 403–432

14

