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Abstract

Aggregate constructs are one of the major linguistic exteissto logic
programming. In this paper, we focus on logic programminthwaono-
tone and antimonotone aggregate literals with the welhftmd semantics
defined in [1], which allows for aggregates occurring in rsoze definitions.
We formally show that computing this semantics is tractaivld present a
prototype system obtained by modifying DLV. To our knowledghis is
the only system supporting well-founded semantics fordggograms with
recursive aggregates. While aggregates yield an obviousegeptational im-
provement, we also present experiments involving our pypesystem and
XSB, showing that aggregates are also beneficial from a ctatipoal point
of view.

1 Introduction

Logic Programming (LP) is a formalism widely used in various areas. In LP,
problems are solved providing a declarative representation of the eeugts to

be achieved, instead of defining an ad-hoc algorithm. Several semaotic® f
have been proposed, the well-founded semantics [2] is one of thencjassp a
three-valued model to every logic program.

Even if LP is a declarative programming language, standard LP doeg$-not a
low for representing properties over sets of data in a natural way,\arglaspect
in several application domains. To overcome this lack, several syntaekitsi-
sions to LP have been proposed, the most important of which is the introdoftio
aggregate functions (1O [3, 4, 5, 6]. Among them, recursive definitions involv-
ing aggregate functions (i.e., aggregation in which aggregated datactepehe
evaluation of the aggregate itself) are particularly relevant [7].

In this paper we focus on the fragment of £ Rllowing for monotone and an-
timonotone aggregate literals (Iﬁﬁl) [1]. LPQ,G programs have many interesting
properties. Among them, we highlight similarities between monotone aggregate
literals and positive standard literals, and between antimonotone aggregats lite
and negative standard literals. In particular, this aspect is exploitedefaring
unfounded sets and well-founded semantics o;%Fprograms. Another interest-
ing property of LF,;‘;W programs is the tractability of literal evaluation w.r.t. partial
interpretations.
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The main contributions of the paper are as follows.

¢ We work with unfounded sets and the well-founded opergprfor LPﬁya
programs defined in [1], and formally prove that each fixpoint\f is a
(partial) model, thatVp admits a least fixpoint (the well-founded model),
that the well-founded model of a ground ﬁg program is polynomial-
time computable. For non-ground programs, the data-complexity remains
polynomial, while the program complexity rises frdfrto EXPTIME as for
aggregate-free programs.

e We implement a prototype system supporting the well-founded semantics
for LP;,“W programs. The prototype extends DLV and is the first system
implementing a well-founded semantics for unrestricteqﬁ;anrograms.

e We report on the results of the experimentation with the implemented pro-
totype. Specifically, we define a problem having a natural representation
LPﬁ’a: Attacks a variant of the classic&Vin-Loseproblem.

The sequel of the paper is organized as follows. In Section 2 we reedlRfi
language and its fragment l;i‘Pa for which in Section 3 we recall the well-founded
semantics and prove some of its properties, followed by a complexity analysis in
Section 4. In Section 5 we discuss how some particular aggregates cam piteci
away, which we used for some of the experiments reported in Section 6,j¢h wh
we also overview the implemented prototype system. In Section 7, we discuss the
literature, and draw our conclusions in Section 8.

2 TheLPA Language

In this section, we present the E¥RPanguage — an extension of Logic Programming
(LP) by set-oriented functions (also called aggregate functions). §ubsdy, we
introduce the Lﬁ,a fragment, the language analyzed in this paper. For further
background on LP, we refer to [8, 9].

2.1 Syntax, Instantiations, Interpretations, and Models

We assume sets ghriables constantsandpredicatego be given. Atermis either
a variable or a constant. standard atonis an expressiop(ty, . .., t,), wherep
is apredicateof arity n > 0 andty, ..., t, are terms.

Aggregate Atoms. An aggregate functions of the form f(.S), where f is an
aggregate function symbol attlis a set term; a set term is a p&iferms: Conj },
where Terms is a list of terms (variables or constants) afidn;j is a conjunction
of standard atoms. Finally, aggregate atons a structure of the fornf(S) < T,
wheref(5) is an aggregate functior € {<, <,>, >} is a comparison operator,
andT is a term (variable or constant).



Literals. A literal is either (i) a standard atom, or (ii) a standard atom preceded
by thenegation as failuresymbolnot , or (iii) an aggregate atom. Two standard
literals are complementary if they are of the formrandnot «, for some standard
atoma. For a standard literdl we denote by-./ the complement of. Abusing of
notation, if L is a set of standard literals, thenZ denotes the sdt-.¢ | ¢ € L}.

Programs. A programis a set ofrulesr of the forma :— ¢4, ..., ¢,,., Wherea
is a standard atondy, ..., ¢, are literals, andn > 0. The atonmu is referred to
as theheadof r, denotedH (r), while the conjunctiorty, ..., ¢, is thebodyof

r, denotedB(r). A structure (atom, literal, rule, or program) without variables is
ground

Safety. A local variable of a ruler is a variable appearing solely in sets terms
of r; a variable ofr which is not local is calledjlobal. A rule r is safeif both
the following conditions hold: (i) each global variable appears in some pesiti
standard literal ofB(r); (ii) each local variable appearing in a set tefffierms :
Conj} also appears ionj. Finally, a program is safe if all its rules are safe.

Instantiation.  The universeof an LP* programP, denotedUp, is the set of
constants appearing fA. Thebaseof P, denotedBp, is the set of standard atoms
constructible from predicates @&f with constants irUp.

A substitutionis a mapping from a set of variableslia. Given a substitution
o and an LP' objectob; (literal, rule, etc.), we denote p; o the object obtained
by replacing each variabl& in obj by o(X). A ground instanceof a rule r
is obtained in two steps: First, a substitutierfor the global variables of is
applied, and then every set te$rin ro is replaced by its instantiatiomst(S) =
{{Terms o : Conj o) | o is alocal substitution fof'}. The set of all instances of
rules in a progran® is denoted=round(P).

Example 1. Consider the following prograr®;:
q(1) v p(2,2).  q(2) v p(2,1).  ¢{X):—q(X), #sun{Y : p(X,Y)} > 1.

The instantiatiorGround(P;) of P; is the following program:
a(1) v p(2,2). t(1) = q(1), #sum{(1: p(1,1)), (2:p(1,2))} > 1.
a(2) v p(2,1). t(2) = q(2), #sum{(1:p(2,1)), (2:p(2,2))} > L.

Interpretation.  An interpretationI for an LP* programP is a consistent set of
standard ground literals, that 5C Bp U —.Bp such thatf N —.I = (). The set of
all the interpretations dP is denoted byZp.

Given an interpretatior, a standard literad is either (i) true if¢ € I, or (ii)
false if —=.¢ € I, or (iii) undefined otherwise. We denote by and/~ the set of
standard positive and negative literals occurringd imespectively. An interpreta-
tion I is total if there are no undefined literals w.rkt, otherwisel is partial.

An interpretation also provides a meaning to set terms, aggregate funatidns a
aggregate literals, namely a multiset, a value, and a truth value, respectively.
first consider a total interpretatidn The evaluatior (S) of a set termS w.r.t. I is
the multiset/ (S) defined as follows: Le8! = {(t1,...,tn) | {t1,...,tn: Conj) €
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S and all the atoms iff'ony are true w.r.tl}, thenI(S) is the multiset obtained
as the projection of the tuples 6f on their first constant, that id(S) = [t1 |
(t1,...,tn) € ST]. The evaluation/(f(S)) of an aggregate functioffi(S) w.r.t.
I is the result of the application gf on I(.S). If the multisetI(S) is not in the
domain of f, I(f(S)) = L (where_L is a fixed symbol not occurring i®). A
ground aggregate atoif(S) < k is true w.r.t. if both (i) I(f(S)) # L, and (ii)
I(f(S)) < k holds; otherwisef (S) < k is false.

We now consider partial interpretation/ and defineextensiorof I an inter-
pretation such thatl C J. If a ground aggregate literdis true (resp. false) w.r.t.
each totalinterpretation/ extending/, then/ is true (resp. false) w.r.f,; otherwise
¢ is undefined.

Example 2. Let S; be the set term in the literdl = #sum{(1 : p(2,1)), (2 :
p(2,2))} > 1, and consider a partial interpretatidn = {p(2,2)}. Since each
total interpretation extending; contains eithep(2,1) or not p(2,1), we have
eitherl;(S1) = [2] or I;(S1) = [1, 2]. Thus, the application of-sum yields either
2>10r3>1,andsd] istrue w.r.t.Iy.

Remark 1. Observe that our definitions of interpretation and truth values preserve
“knowledge monotonicity”: If an interpretatiod extendsI (i.e., I C J), then
each literal which is true w.r.f. is true w.r.t.J, and each literal which is false w.r.t.

I is false w.r.t.J as well.

Model. Given an interpretatioif, a ruler is satisfied w.r.t1 if either (i) the head
atom is true w.r.t, or (ii) some body literal is false w.r.1,, or (iii) both the head
atom and some body literal are undefined wir.tAn interpretation)/ is amodel
of an LP* program? if all the rules inGround(P) are satisfied w.r.t\.

2.2 ThelPs , Language

In this section, we present the [P, fragment of LP*.

Monotonicity. Given two interpretationg and.J, we say thafl < Jif I* C J*
and/~ D J~. A ground literal/ is monotonef for all interpretations/, J, such
that/ < J, we have that: (iy true w.r.t.I implies/ true w.r.t..J, and (ii) ¢ false
w.r.t. J implies? false w.r.t.I. A ground literal? is antimonotonef the opposite
happens, that is, for all interpretatiofs.J, such thatl < J, we have that: (iy
true w.r.t.J implies/ true w.r.t.I, and (ii) ¢ false w.r.t.I implies/ false w.r.t.J. A
ground literal? is nonmonotoné ¢ is neither monotone nor antimonotone.

Positive standard literals are monotone, while negative standard literala-are
timonotone. Aggregate literals may be monotone, antimonotone or nonmonotone.

We denote by LEW the fragment allowing only monotone and antimonotone
aggregates. For an I;‘,Ea rule r, the set of its monotone and antimonotone body
literals are denoted b (r) and B*(r), respectively.



3 Unfounded Sets and Well-Founded Semantics

In this section, we recall the notion of unfounded set for,ﬁImPprograms defined
in [1]. We then exploit unfounded sets for extending the well-foundedasics
defined in [2] for aggregate-free programs to the,‘}jﬁramework. A complexity
analysis of the well-founded semantics herein defined will be presentedcin S
tion 4.

In the following we deal with ground programs, so we will usually denote
by P a ground program. We will also exploit the notatianJ —.L’ for the set
(L\ L')u—.L', whereL andL’ are sets of standard ground literals.

Definition 1 (Unfounded Set[1])A setX C Bp of ground atoms is an unfounded
set for an L%,a programP w.r.t. a (partial) interpretation if and only if, for each
ruler € P havingH(r) € X, either (1) some (antimonotone) literal Bf'(r) is
false w.r.t.7, or (2) some (monotone) literal iB™ (r) is false w.r.t.7 U —.X.

Intuitively, each rule having the head atom belonging to some unfoundésd se
either already satisfied w.rk.(in case condition (1) holds), or satisfiable by taking
as false all the atoms in the unfounded set (in case condition (2) holds).

Example 3. Consider an interpretatiol, = {a(1), a(2), a(3)} for the following
programpPs:

r1: a(l) :— Lo ro:  a(2). rg:  a(3) :— L.

where /s = #count{(1:a(1)),(2:a(2)), (3:a(3))} > 2. ThenX; = {a(1)} is an
unfounded set foPs w.r.t. I, since condition (2) of Definition 1 holds fey (the
only rule with headu(1)). Indeed, the (monotone) literal appearingBfi'(r,) is
false w.r.t.lo U =.X; = {not a(1),a(2),a(3)}. Similarly, we can check that
{a(3)} and{a(1),a(3)} are unfounded sets fd?, w.r.t. I, and clearly alsd is.
No other set of atoms is an unfounded setfarw.r.t. 5.

The union of all the unfounded sets for a progr&mv.r.t. an interpretatiod is
an unfounded set as well; it is called theeatest unfounded s&dr P w.r.t. I and
denoted7U Sp(I), cf. [1].

Definition 2 ([1]). Let P be an Ll?;‘l,a program. Themmediate logical conse-

quence operatoffp : Zp — 257 and thewell-founded operatoVy : Zp —
2BrU=-BP gre defined as follows:

Tp(I) = {{¢ € Bp | 3r € P such thatd (r) = ¢
and all the literals inB(r) are true w.r.t}
Wp(I) =Tp(I)U ~.GUSp(I).

Both 7p andGU Sp are monotone operators, and)dé is monotone as well.
Moreover, on aggregate-free programs, the well-founded opevaidefinition 2
exactly coincides with the well-founded operator defined in [2].

We next show that a fixpoint dfVp is a (partial) model.
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Theorem 1. LetP be anLwa program andM a (partial) interpretation. IfAM/
is a fixpoint ofWp, then)M is a (partial) model ofP.

Proof. Let assuméVp(M) = M and consider a rule € P. If all the literals
in B(r) are true w.r.tM, thenH (r) € Tp(M) C M. If H(r) is false w.r.t.)M,
thenH (r) € GUSp(M). SinceGUSp(M) is an unfounded set fdP w.r.t. M,
either some literal iB*(r) is false w.r.t.\M, or some literal inB™ () is false w.r.t.
M U~.GUSp(M) = M. We can then conclude thais satisfied by\/. O

We can then prove that the sequengg = (), W1 = Wp(W,,) is well-
defined, that is, each element of the sequence is an interpretation.

Theorem 2. Let P be an LI?;‘W program. The sequend®, = 0, W,41 =
Wp(W,,) is well-defined.

Proof. We use strong induction. The base case is trivial, sifige= (). In order to
prove the consistency &¥,,,1, we assume the consistency of evéry, such that
m < n. We have to show th&&U S»(W,,) "W,,.1 = (). To this end, we show that
if a setX of atomsis such thaX NW,,1 # (), thenX is not an unfounded set f@t
w.r.t. W,,. LetW,,. 1 be the first element of the sequence such #hatiV,,, | # ()
(note thatn < n). Consider any atom € X N W,,+1. By definition of 7p, there
is aruler € P havingH(r) = ¢ and such that all the literals iB(r) are true
w.r.t. W,,,. Note that no atom ifV/,,, can belong toX (for the wayW,, 1 has been
chosen). Thus, by Remark 1, all the literalsBr) are true w.r.t. botb¥,, and
W, U —.X (we recall thatW,, O W,, becauséVp is monotone). This ends the
proof, as neither condition (1) nor (2) of Definition 1 hold for O

The theorem above and the monotonicity®f imply thatWp admits a least
fixpoint W (0) (as a consequence of Tarski’s fixed point theorem [10]). The well-
founded semantics of an I;‘,Ea programP is exactly given by the least fixpoint of
Wp, called thewell-founded modedf P.

4 The Complexity of the Well-Founded Semantics

For the complexity analysis carried out in this section, we consider grotmd p
grams and polynomial-time computable aggregate functions (note that all sample
aggregate functions appearing in this paper fall into this class).

We start by stating an important property of monotone and antimonotone ag-
gregates, from which the tractability of the evaluation of;‘,jﬂPIiterals w.r.t. partial
interpretations immediately follows.

Lemma 3. Let I be a partial interpretation for an I,{,!?a programP, A a ground
aggregate literal occurring iR, I,,,;» andl,,.. two total interpretations such that
Imin = IU—.(Bp \ I) andl, = I U (Bp \ —.I).

1. If Ais a monotone literal, theA is true (resp. false) w.r.f. if and only if A
is true w.r.t.l,,;, (resp. false w.r.tl,;,q..).
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2. If Ais an antimonotone literal, thefis true (resp. false) w.r.f. if and only
if Aistrue w.r.t.l,,,... (resp. false w.r.tl,;;,).

Proof. We start by noting that,.;,, (resp./,...) is a total interpretation extending
I and such that all the standard atoms which are undefined vare false w.r.t.
Iin (resp. true wW.rt. I,q.). Thus, we have) L, < I < Ipee. If As
monotone and true w.r.,,;, (resp. false w.r.tl,,,.), thenA is true (resp. false)
w.r.t. I because of«). If A is antimonotone and true w.rk,,,, (resp. false w.r.t.
I.in), then A is true (resp. false) w.r.tl because of«). We end the proof by
observing that ifA is true (resp. false) w.r.t, then A is true (resp. false) w.r.t.
Iin @and 1., by definition. O

We now define an operator which can be used for computipg, GU Sp (1),
and thusGU Sp(I) itself.

Definition 3. Let be a partial interpretation for ari_PnAw programP, andY C
Bp, let

¢1(Y)= {£ € Bp | 3r € P with H(r) = ¢ such that
no (antimonotone) literal iB“(r) is false w.r.t.Z, and
all the (monotone) literals iB™(r) are true w.r.t.Y \ —.1"}

Proposition 1. For a partial interpretation/ for an LPﬁw programP, the least
fixpoint¢y (0) coincides with the seBp \ GUSp(I).

We can now prove the tractability of the well-founded semantics.
Theorem 4. Given an L%,a programP, W5 (0) is polynomial-time computable.

Proof. Both¢¢ () andW(0) are obtainable by at mogBp| application ofy and
Wp, respectively. O

Well-founded semantics is also hard for polynomial-time. In particular, de-
ciding whether a (ground) atom is true w.r.t. the well-founded semanti€s is
complete, as this task B-hard even for aggregate-free programs [11].

5 Compilation into Standard Logic Programming

We now briefly present a strategy for representiagount, #sum and#times?®

with standard constructs. The compilation is in the spirit of the one introduced f
#min and#max in [12] and defines a subprogram computing the value of a (re-
cursive) aggregate exploiting monotone/antimonotone peculiarities of tdispe
aggregate function. For these reasons, the compilation is referrednmrms-
tone/antimonotone encodirfmaeencoding).

!Since we are considering only monotone and antimonotone aggregatts liteeadomains of
#sum and#times are assumed to & andN™, respectively.



The monotone/antimonotone encoding of ar@fprogramp is obtained by
replacing each aggregate litetdl = f(S) < T by a new predicate symbgl
whose definition is a compilation o into standard LP. In the compilation we
exploit a total orde on the elements of/p U { L}, where_L is a symbol not
occurring inP and such thatl < w« for eachu € Up. We further assume the
presence of a “built-in” relation< (Y,Y”), whereY = Yi,...,Y, andY’ =
Y{,..., Y, are lists of terms, defining those pairs of tupjeg’ such thag precedes
3/ in the lexicographical order induced ky.

For simplicity, we consider an aggregate litefa{Y : p(Y, Z)}) < k having
only local variables. We introduce a new predicate symyag}. of arity |Y| + 1.
Intuitively, an atomf,..(7, s) is intended for representing that there are at least
s tuplesy’ such thaty does not precedg’ andp(y/,z) is true, for some tuple.

For this purpose, we first evaluate the aggregate function on the empinsket,
then opportunely increase its evaluation for greater sets. For gudranteat
each element in the set term is never taken twice, we exploit the lexicogahphic
order induced by<. The two rules below encode this monotonically increasing
evaluation:

faux(I;a)~ a=0,=5+1, if f = #count
foue (Y, B) = fauz(Y,S), whered a=0, 8=S5+Y/, if f=+#sum
p(Y', Z), <(Y,Y"). a=1, =85xY/, if f=7Ftines

In case<e {>,>}, the aggregate is definitely true sbmef,.. (7, s) with
s < kistrue:

.fZ = faur(?;S)v Szk f> = faum(?,S)y S>k

For <€ {<, <}, to conclude the truth of the aggregate we have to be sure that
NO fouz (7, s) With s £ k is true. We can model this aspect by means of the follow-
ing rules:

f<i=mot fs. f< i=mnot f>.

Extending the technique to aggregate literals with global variables is quite sim-
ple: Global variables are added to the arguments of all the atoms used imthe co
pilation, and a new predicatg, ..., iS used for collecting their possible substi-
tutions.

6 Implementation and Experimental Results

The well-founded semantics for l;il?a programs has been implemented in the
DLV [13] system. In this section, we give a very rough description of the im-
plementation and discuss the results of our experimentation aimed at assessing
efficiency of the prototype.



6.1 System Architecture and Usage

We have developed a prototype system by implementing our well-founded ope
ator in the core of DLV. Both théntelligent groundingmodule and thenodel
generatormodule of DLV have been modified for the implementation of the well-
founded semantics for I;ﬁfa programs. In particular, in the grounding module, we
extended the technique for aggregate literal instantiation to correctly dkbechgy
gregate atoms occurring recursively, while in the model generator we imptethe

a polynomial time algorithm for computing the least fixpoint of the operator
introduced in Section 4.

In our prototype, the well-founded semantics is adopted when the usé&emvo
DLV with - wf or--wel | - f ounded. If none of these two options are specified,
then the stable model semantics is adopted as usual. In both cases, theesystem
ploits the well-founded operatdt’p introduced in Section 3. For the stable model
semantics, the well-founded model is profitably used for search spacmgrafter
each non-deterministic choice. For the well-founded semantics, insteadethe
founded model is yielded immediately after the least fixpoint of the well-fodnde
operator is computed; in this case, the system outputs two sets, represarding
and undefined (standard) atoms w.r.t. the well-founded model.

An executable of the DLV system supporting well-founded semantics fgm_P
programs is available &tt t p: / / www. dl vsyst em com dl vRecAggr/ .

6.2 Experimental Results

To our knowledge, the implemented prototype is currently the only system sup-
porting a well-founded semantics for logic programs with recursive agges. In
particular, one of the major systems supporting the well-founded seman8&;, X
has some support for aggregates, but (apart ftamn and#max) not when they
occur in recursive definitions. Therefore, our experiments have designed for
evidencing the computational advantages of aggregate constructs wivaleqt
encodings without aggregates.

The experiments have been performed on a 3GHz &hékor® processor
system with 4GB RAM under the Debian 4.0 operating system with GNU/Linux
2.6.23 kernel. The tested systems have been compiled with GCC 4.4.1. Fpr ever
instance, we have allowed a maximum running time of 600 seconds (10 minutes)
and a maximum memory usage of 3GB.

For the benchmark, we have defined titacksproblem, a problem similar
to the classidVin-Loseproblem often used as an example for the well-founded
semantics of standard logic programs (see for instance [9]). In the Atpoklem,

a set ofp players, each one attackimgother players, and a positive integerare
given. A player wins if no more tham winners attack it.

Example 4. An instance of the Attacks problem in whiph= 6,n = 2andm =1
could be the one represented by the following directed graph:



@47@\ Sinced is attacked only byf, we can con-

\ clude thatd is a winner. Similarly fore.
Therefore,f is a loser becausg is attacked

by d ande, which are winners. For the other
\ players, namely, b andc, it is not possible to
determine whether they are winners or losers.
The encodlngs used in our experiments are reported below, whearelayer

andattacks are EDB predicates representing the parametethe set of players
and the attacks done by the players, respectively.

Aggregate-Based Encoding:

win(X) :— max(M), player(X), #count{Y : attacks(Y, X), win(Y)} < M.
This encoding exploits aggregate constructs and is a natural represeotfathe
Attacks problem.

Join-Based Encoding:
win(X) :— player(X), not lose(X).

lose(X) :— max(1), attacks(Yr,X), win(Y1),
attacks(Ya, X), win(Ys), Y1 < Ya.

lose(X) :— max(2), attacks(Y1,X), win(Y?),
attacks(Yz, X), win(Ysz), Y1 < Ya,
attacks(Ys, X), win(Ys), Y1 < Ys, Yo < Ys.

lose(X) :— max(3), ...
In this encoding there is a rule for each possible value ofithearameter. How-
ever, the presence of the predicatez in the body of these rules assures that the
solvers considered in our experiments automatically disregard rule insttrate
do not match the givemaz.

Mae-Based Encodingfrom monotone/antimonotone encoding):

win(X) :— player(X), not lose(X).

lose(X) :— count(X,Y, S), max(M), S > M.

count(X,Y,1) :— auz(X,Y).

count(X,Y’, S+ 1) :— count(X,Y, 5), auz(X,Y’), Y <Y

auz(X,Y) — attacks(Y, X), win(Y).
This is an encoding in the spirit of [12] substantially obtained by applying the
compilation presented in Section 5 (with some minor simplifications). Intuitively,
an atomcount(z, y, s) stands for “there are at leastonstantg,’ such that/ < y
and attacks(y’, x), win(y’) is true”. The definition ofcount exploits the natural
order of integers for guaranteeing thatyios counted twice.

Example 5. The EDB representing the instance in Example 4 is the following:
player(a). player(d). attacks(a,b). attacks(c,a). attacks(e,c).
player(b). player(e). attacks(a,c). attacks(c,b). attacks(e, f).
player(c). player(f). attacks(b,a). attacks(d,b). attacks(f,d).

maz(1). attacks(b,c). attacks(d, ). attacks(f,e).

For all the encodings, the well-founded model restricted tadepredicate is

{win(d), win(e), not win(f)}. Note thatwin(a), win(b) andwin(c) are undefined.

7
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Figure 1: Attacks: Average execution time of DLV running the aggregate-based
encoding and DLV running the join-based encoding.

We performed an intensive experimentation for Ateacksproblem, varying
the parameters, m andn. For each combination of these parameters, we measured
the average execution time of DLV and XSB on 3 randomly generated instance
The results of our experimentation are reported in figures 1-4. In thghgra
DLVA is the implemented prototype with the aggregate-based encoding, DLV-
join and DLV-mae the implemented prototype with the aggregate-free encodings
XSB-join and XSB-mae the XSB system with the aggregate-free encoditsgs (
mentioned earlier, XSB does not support recursive aggregates)hé-XSB sys-
tem, we explicitly set indexes and tabled predicates for optimizing its computation.

For each graph, the number of players is fixed, while paramet€xsaxis) and
n (y-axis) vary. Therefore, the size of the instances grows moving feftrto right
along the y-axis, while is invariant w.r.t. the x-axis. However, the numbgrio$
required by the join-based encoding depends on the parametas a matter of
fact, we can observe in the graphs in figures 1-2 that the averaggtiexetime of
the join-based encoding increases along both the x- and y-axis (foCidthand
XSB). Instead, for the encoding exploiting aggregates, and for the naeling,
the average execution time depends only on instance size, as shown iaghs gr
in Figures 3—4.

For the join-based encoding, XSB is generally faster than DLV, butwoers
much more memory. Indeed, in Figure 2, we can observe that XSB terminates
its computation in a few seconds for the smaller instances, but rapidly rdmg ou
memory on slightly larger instances.

11
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Figure 2: Attacks: Average execution time of DLV running the aggregate-based
encoding and XSB running the join-based encoding.

Considering the mae-based encoding, we can observe significaotrparice
gains for both DLV and XSB (see figures 3—4). Indeed, both systemplete
their computation in the allowed time and memory on larger instances. Compu-
tational advantages of the mae-based encoding w.r.t. the join-basedrenacs
particularly evident for XSB, which can solve all instances of the benckmuih
this encoding. However, also XSB with the mae-based encoding is outpedo
by DLV with native support for aggregate constructs (see Figure 4).

In sum, the experimental results highlight that the presence of aggregate c
structs can significantly speed-up the computation. Indeed, the encoglilogieg
recursive aggregates outperforms the aggregate-free encodmgthiminstances.

7 Related Work

The definition of well-founded semantics for £fhas been a challenge of major
interest in the last years. The first attempts, not relying on a notion ofindfd
set, have been defined on a limited framework. Some of these are discug3jed

A first attempt to define a well-founded semantics forL.\®ithout restriction
has been done in [3]. Even if the semantics defined in [3] has the adeanfthging
based on a notion of unfounded set, it often leaves too many undefinadsliter

Our work is particularly related to [14], whet@-well-founded semantics has
been definedD-well-founded semantics is based on approximating operators, not
on unfounded sets, and the semantics depends on the adopted appragxagatin

12



(k) 6400 players (I) 12800 players
Figure 3: Attacks: Average execution time of DLV running the aggregate-based
encoding and DLV running theaebased encoding.

gregate relation; the authors disctidgial, boundandultimateapproximating ag-
gregate relations. Semantics relying toivial approximating aggregates is very
imprecise, but it is still suitable for the class of stratified aggregate progmatls
trivial andboundapproximations have polynomial complexity, whilkimatehas
been proved to be intractable for nonmonotone aggregate function‘so[rzu]_Péﬂ
programs, theD-well-founded semantics undeitimate and bound approxima-
tions coincide with the well-founded semantics presented in this paper.

Other works attempted to define stronger notions of well-founded semantics
(also for programs with aggregates), like the Ultimate Well-Founded Semalhtics o
[5], or WFS' and WFS$ of [6]. Whether a characterization in terms of unfounded
sets exists for these semantics is an open problem.

Programs with aggregates are relatedlstract constraint programid 5], for
which no well-founded semantics has been defined to our knowledgedefime
tions in this paper can be easily adapted to cover abstract constraints.

8 Conclusion
In this paper we analyzed I;ﬁ[?a programs under well-founded semantics. We

showed that computing this semantics is a tractable problem. Indeed, the semantic
is given by the least fixpoint of the well-founded operap. The fixpoint is

13
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Figure 4: Attacks: Average execution time of DLV running the aggregate-based
encoding and XSB running thmaebased encoding.

reached in a polynomial number of applications/gp (w.r.t. the size of the input
program), each of them requiring polynomial time. For showing that an apialic
of Wp is polynomial-time feasible, we have proved that evaluating monotone and
antimonotone aggregate literals remains polynomial-time doable also for partial
interpretations, since in this case only one of the possibly exponentials@xtsn
must be checked. For a monotone aggregate literal, this extension is oligined
falsifying each undefined literal, while for an antimonotone aggregate litzaah
undefined literal is taken as true in the extension.

Motivated by these positive theoretical results, we have implemented the first
system supporting a well-founded semantics for unrestricte@j,(;_mllowing for
using monotone and antimonotone aggregate literals, the implemented prototype is
ready for experimenting with the L;an framework. The experiments conducted
on the Attacks benchmark highlight the computational gains of a native implemen-
tation of aggregate constructs w.r.t. equivalent encodings in standard LP
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