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Abstract

Indoor position estimation constitutes a central task in home-based
assisted living environments. Such environments often rely on a hetero-
geneous collection of low-cost sensors whose diversity and lack of pre-
cision has to be compensated by advanced techniques for localization
and tracking. Although there are well established quantitative meth-
ods in robotics and neighboring fields for addressing these problems,
they lack advanced knowledge representation and reasoning capacities.
Such capabilities are not only useful in dealing with heterogeneous and
lacking information but moreover they allow for a better inclusion of
semantic information and more general homecare and patient-related
knowledge. We address this problem and investigate how state-of-the-
art localization and tracking methods can be combined with answer
set programming, as a popular knowledge representation and reason-
ing formalism. We report upon a case-study and provide a first exper-
imental evaluation of knowledge-based position estimation.

1 Introduction and Motivations

The continuous progress of computing and communication technology is
leading towards the realization of living environments pervaded by a high
number of invisible devices affecting and improving all aspects of our lives.
A crucial issue in these scenarios is to know the physical location of users,
since it represents the basis for context-aware and user-centered systems.
The problem of indoor position estimation includes two aspects: localization
and tracking.

Localization (also referred to as position estimation) is commonly ad-
dressed by acquiring the distance from three or more points of known po-
sitions and then applying trilateration. The distance can be computed by
measuring variations of signal intensity or by timing the latency from trans-
mission to reception. The precision of positioning systems varies from a few
meters in 2D to a few decimeters in 3D. Given the low cost of infrastructure
and their flexibility, localization system based on Wireless Sensor Networks
(WSN) are a good starting point for tackling the localization problem in
home environments. However, when data are noisy and incomplete due to
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delays, breakdowns, errors in transmission, and alike, their lack of precision
in position estimation needs to be supported and compensated.

Tracking is more concerned with how the position of moving objects
changes in time; it takes into account knowledge about previous positions
and a model of movement to estimate the expected (more plausible) position.

Different estimation methods can be used to tackle the problem of node
localization, such as Maximum Likelihood, Maximum A Posteriori, Least
Squares, Moving Average filter, Kalman filter, and Particle filter [7, 12, 11].
Although many of these algorithm give good results in terms of accuracy
and precision, only Particle Filters (PFs) can be easily extended to deal with
the problem of target tracking [8]. Therefore, PFs are the most popular
and commonly used methods for tackling the problem of tracking devising
motion models to update the particle statuses. For this reason, we consider
in our preliminary experimental evaluation results of PFs as representative
of a wider calss of similar but less effective techniques.

Particle Filters discretize the probability distribution function of the po-
sition of the mobile object instead of controlling the whole position space.
Unlike Kalman Filters, they do not approximate the probabilities using only
gaussian distributions, thus we have to impose less conditions to be able to
apply the algorithm. The possible positions of the mobile object are rep-
resented as a set of particles, each of which has an associated weight. The
distribution of these particles in space gives the most likely positions. Prob-
abilistic approaches to tracking such as PF strongly depend on the specific
sensors used and they are mainly based on quantitative cost functions for
computing weights. One of the main limitations of these methods is the dif-
ficulty to identify within the same model the right global cost function com-
bining heterogeneous sensor data with other criteria like movement, speed,
and alike. Another aspect is that the introduction of new sensor information
is not straightforward and requires a lot of customization to properly extend
the model.

In order to address these limitations, we propose an alternative and inno-
vative approach to support indoor localization and tracking. Our solution is
based on Answer Set Programming (ASP), a declarative logic programming
framework, combining a compact, flexible, and expressive modeling language
with high computational performance. The knowledge representation and
reasoning capacities of ASP provide us with the following advantages:

e a knowledge-based level of multi-sensor fusion for position estimation,

e definition of qualitative criteria to combine sensor data and common-
sense knowledge for tracking, and

e casy customization and extensibility of existing solutions in a more
flexible way whenever new technology or new sensor-data becomes
available.



The main advantage of using ASP is to deal with incomplete information,
stemming from faulty or diverging sensors, and thus to improve the scala-
bility of the whole system. ASP does not only deal with missing sensor data
but moreover it allows us to exploit semantic information for distinguishing
the most plausible among varied sensor data.

Our approach is based on a low-cost and energy-aware localization in-
frastructure. The data collected by each specific type of sensor is processed
by traditional algorithms for feature extraction and aggregation.

For validating our approach we collected a considerable amount of sen-
sor data by appeal to a simulation tool generating large sets of sensor data
reflecting entire days of a person’s household activities, matching real sen-
sors installed in our lab. On top of the aggregation phase, a further level
of knowledge-based sensor fusion is in charge of combining heterogeneous
sensor data to associate it to specific properties or semantic information.
The ASP based reasoning process follows the common generate and test
methodology in (i) generating the space of possible positions according to
semantic data aggregation criteria and (ii) exploring the search space by ap-
plying efficient solving techniques to compensate for the lack of information
and to enforce constraint satisfaction and optimization.

The simulation environment and properties of generated data are de-
scribed in Section 2. Section 3 introduces the ASP formalism and investi-
gates our modeling and reasoning strategies, while preliminary results are
presented in Section 4. A short discussion follows in Section 5.

2 Data Simulation

To position an object or a device, the basic step is to use a reference point
to determine the distance and angle between the device and the reference
point itself. To do so we use the Receiver Signal Strength Indicator (RSSI),
based on the degradation of radio signal while traveling in a space.

In addition to RSSI, we use Passive Infrared (PIR) and Range Finders
(RF). PIR is used to catch the movements of a person (or object) that has a
different temperature with respect to the surroundings while RF uses sonar
to provide the distance of an object from the sensor.

In order to generate RSSI, RF, PIR, and environmental sensor data,
we implemented an agent-based data-generation tool using the Recursive
Porous Agent Simulation Toolkit (Repast Simphony or Repast)?.

Following a taxonomy of selected Agent-Based Modeling Tools illus-
trated in [9], we choose to design and implement our data generation tool
using Repast because it turned out to be the best combination of ease of
model development and modeling power. Exploiting the Repast features,

"http:/ /repast.sourceforge.net/



we are able to efficiently generate large data sets simulating days of the
household activities of a person and corresponding sensor values.

The simulation scenario is represented by a Repast model that describes
three grid-based projections and one network-based projection. The three
N x M grid projections are used to define (i) the floor plan (walls, rooms
and areas), (ii) the position of localization sensors and (iii) the position of
environmental sensors together with the way they propagate to adjacent
cells. The network-based projection defines two undirected weighted graphs
having FloorCell agents as nodes. The first graph is mainly used for the
movement of the Person agent computed using Dijkstra’s shortest path al-
gorithm where weights are also used to avoid movements across wall cells.

The second grid projection is mainly used during the RSSI-data genera-
tion to verify if a direct line-of-sight between the person and the localization
sensors exists. This information is useful in order to better simulate the
RSSI propagation model. For this, the weights of graph in the second grid
projection are computed without considering walls. The line-of-sight infor-
mation is computed comparing the results of the shortest path algorithm
obtained using the two graphs. These results differ only if there is a wall
between the localization sensor and the person.

The simulation scenario is specified in an XML-based scenario-definition
file?. This scenario file is used to dynamically populate projections during
the initialization phase of the Repast simulator, and it defines the following
aspects of the simulation context:

environment: according to what specified in this file, a FloorCell agent
can be a wall, part of a room-area or a passage (a cell connecting two
areas of different rooms); the division of the environment into rooms
and areas is specified so that an area can be associated to one room
and a room can contain different (disjoint®) areas;

localization sensors: in addition to the sensor position on the grid and its
orientation, the definition specifies the behavior of the passive-infrared
and movement sensors in terms of cells covered;

environmental sensors: during the data-generation phase, these sensors
can read the temperature, humidity and brightness values;

light and heat sources: these elements define the properties of the ob-
jects that are used to manage and propagate the state of light and
heat throughout the simulation scenario using a controlled flooding
algorithm [6, 13]; the position and the initial status of windows and
light switches is also defined.

ZNote that Repast can load the required initialization data in several ways (e.g. using
agent definitions directly stored in a relational database or in text files).
3The spatial inclusion of areas Ai,..., A, in a room R is such that U?:l A; C R.



Figure 1: Repast S Displays for Simulation
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In addition, we provide an XML file containing a detailed list of actions
we want the agent Person to perform. The actual version of the simulation
tool include three types of elementary actions: going to a specific position in
the grid, changing the state of lights and opening/closing doors and windows.

The data-generation is driven by two different event schedulers that are
used to: (i) simulate the behaviour of the person and generate according
RSSI, PIR, and RF sensor data, (ii) simulate light, temperature, and hu-
midity evolution during the day.

During every simulation tick, the LocalizationSensor agents compute the
RSSI, PIR, and RF considering the position of the agent Person in the floor
plan. The measurement computation takes into account the model of every
sensor: the radio propagation model for RSSI values and the presence of
the person in a cell covered by the sensor for PIR and RF. Environmen-
talSensor agents generate temperature, humidity and light measurements
periodically examining the state of the associated EnvironmentCell agent.
All measurements are stored in a relational database.

The DayManager and HeatManager agents are used to manage the evo-
lution of daylight and external temperature and humidity during the data-
generation. Using the schedule we mentioned before, they modify the state
of LightSources and HeatSources objects, which in turn modify the state of
the associated LightCells and HeatCells objects.

Figure 1 shows the Repast toolkit executing different projection displays:
the left side shows the main projection, walls (squares) and the person (dot);
the right side gives the projection of sensor data, showing the light sources



(circles), environmental sensors (crosses) and floor cells (squares).

3 Supporting Localization and Tracking

All RSSI values produced in the simulation process are further processed
using PF algorithms and they represent a starting point for the subsequent
reasoning phase. Other (homogeneous) sensor values are aggregated with
ad-hoc algorithms for features analysis and used to support position estima-
tion. The knowledge-based support to localization and tracking tackles the
problem that data gathered by sensors may be noisy even after aggregation,
but their combination may yield a more reliable interpretation. The expres-
sive power of ASP is used to disambiguate unclear situations (e.g., where
the person is) by combining heterogeneous data sources and using defaults
and qualitative optimization to select the best candidates.

To do this, the simulation scenario and the generated data are first parsed
in form of logic predicates and qualitative criteria are specified and combined
to reason about localization and tracking.

3.1 ASP Basics

We assume the reader to be familiar with the terminology and basic defini-
tions of ASP (see [1] for details). In what follows, we rely on the language
supported by grounders lparse [10] and gringo [5], providing normal and
choice rules, cardinality and integrity constraints, as well as aggregates and
optimization statements. As usual, rules with variables are regarded as rep-
resentatives for all respective ground instances.

3.2 Modeling the Localization Scenario

The logical description of the localization scenario is provided in terms of
interesting properties of the sensed information. The space is a grid where
each cell (or location) is identified by coordinates X, Y. Each cell has some
static properties that are mapped into a set of logic predicates as detailed
in Table 1.

Locations are also associated to dynamic sensor information, according
to available sensor data at each time step T". Such information can be derived
by (i) processed RSSI values with associated percentage of likelihood P and
(ii) PIR or RF signals. Logic predicates representing dynamic sensor data
are listed in Table 2.

The available signals are treated differently in the definition of optimiza-
tion criteria: processed RSSI signals are used as a starting point, that is,
whenever a set of candidate positions is provided by the PF algorithm based
on RSSI, PIR and RF are used to validate the most plausible position(s).



Predicate Description

cell(X,Y,Room, Area) association of a cell to an area of a room
passage(X,Y,R1,A1,R2,A2) association of a cell to a passage

wall(X,Y) description of a cell as part of a wall
loc(X,Y) a location L is described by two coordinates
invalid(loc(X,Y)) specification of invalid cells

dataEzpected(pir,loc(X,Y)) locations covered by PIR sensors
dataExpected(rf,loc(X,Y))  locations covered by RF sensors

Table 1: Logic Predicates representing static properties of cells

Predicate Description

sensed(rssi,P,L,T) processed RSSI signal with likelihood P re-
ceived at time T for location L

sensed(pir,L,T) PIR signal received at time T for location L

sensed(rf,L,T) RF signal received at time T for location L

Table 2: Logic Predicates representing sensor data collected at each time
step

At any time step, a location becomes a candidate position when a pro-
cessed RSSI, PIR or RF signal has been received for that location and the
location is valid (e.g. it is not a wall). This allows us to immediately re-
duce the space of solutions to the positions for which at least one signal is
available. The corresponding ASP code is as follows:

location(L,T) :- sensed(rssi,P,L,T).
location(L,T) :- sensed(S,L,T).
location(L) :— location(L,T), not invalid(L).

Besides the information about received sensor data at a given time step
T for a location L, we also describe two additional dynamic properties for a
localization and tracking problem: the distance measure between two con-
sequent admissible moves and the support for a location as a candidate
position at a give time step.

Distance between two locations I3 = loc(z1,y1) and ly = loc(xa, x2) is
represented by the propositional variable dist(l,l2, d) that is true for
where

d=|z1 — x2| + |y1 — Y2l

Support for a location L is the number of sensor data collected at location
L at a given time T and it is represented by predicate support(L, N, T')
where

N = |{sensed(S,L,T)}| where S € dataFEzxpected(S, L)



Discrete time is in seconds and sensor data are opportunely aggregated
and provided when values change beyond a given threshold.

Earlier in this section we mentioned that filtered candidate positions
obtained by PF by processing RSSI signals represent starting points to es-
timate the actual position. Our reasoning process is flexible enough to deal
with noisy and even missing sensor values. Since we reduce the set of pos-
sible solutions to the ones for which results of PF are availabe, when this
information is missing tracking the person on the grid becomes more diffi-
cult and the solution space can be huge, since the model of movement may
produce a higher number of possibilities. This happens not only in case
of malfunctioning sensors, but also when the PF cannot provide acceptable
candidate positions for several sequential time steps. In this case, the qual-
itative analysis of the available information can still help, as detailed in the
next subsection.

3.3 Multi-Criteria Optimization

The interpretation of heterogeneous sensor data used to support localization
and tracking is based on the definition of properties of sensed information
that can be meaningful according to available sensor data. In our solu-
tion, we identified three properties which combination can originate several
optimization criteria.

Best PF property considers positions with the highest likelihood P, that
are provided as a result of the PF algorithm; unfortunately it is not
always true that the higher the likelihood obtained by the PF, the
closer the candidate position is to the real one; for this reason we de-
fine additional criteria to validate positions; when results of PF are
not available, a different reward function is used, which is closely re-
lated to the notion of support for a location L defined in the previous
subsection: the higher the support for L, the better L is as a candidate
position.

Best Coherence maximizes the value of the coherence property, which
identifies a percentage indicating how many of the sensor signals ex-
pected from a given location L are effectively captured for that location
at time T'; this property is represented by predicate coherence(L,C,T);
if no additional sensor signals (excluded results of Particle Filter) are
expected for a location L, its coherence C will always be 100% for all
time step; in the same way, C' is 0 at time T if we expect at least one
additional sensor value for a location L and we do not have any of
them; otherwise, we have that, for a location L,

C = (100« M)/N
where M = |{dataExpected(S, L}| and N is the support.



Best Move property identifies the best location at any time step T as
the location L for which the distance between L and the location at
time step T'— 1 is minimum; the associated property is represented by
predicate bestMove(L,T).

When new sensor information is introduced, we can easily re-define or
extend the list of properties. An example can be the introduction of environ-
mental data in the definition of coherence: to take such data into account,
we just have to introduce it in the notion of support.

Once we have the list of properties, they can be combined into optimiza-
tion criteria. The preference relation between two criteria is defined by their
numbering such as C; is preferred to C;j (C; >prer Cj) when i > j.

In our prototype, we identified four criteria C;, i = 1..4, combining
properties on sensor information as follows:

(4 is satisfied for a location L at time T when L satisfies both the best
move and the best coherence property;

Cy 1is satisfied for a location L at time 7" when L verifies the best coherence
property;

(3 is satisfied for a location L at time T when L verifies the best move
property;

C, is satisfied for a location L at time T when at least one of the predicates
in Table 2 is true on L at time T', and L has the highest likelyhood or
the highest support; this is the weakest criterion and it is applied only
when no better solution can be found by applying the other criteria.

This ordering is motivated by the fact that we want to obtain the solution
satisfying all criteria as the best option, but if it does not exist, we prefer
to give up the movement model and consider coherence as more reliable?.
Alternative combinations are also possible and this can be useful to compare
them in order to understand which property seems to be stronger or which
sensor data appears to be more reliable.

In order to implement optimization on ordered criteria, we introduce
the concept of best value B for a criterion C; at time T', B¢, (T'). The best
value is determined in two different ways according to the fact that (a) we
have L as a candidate position at time T as a result of Particle Filter or
(b) no candidate position is produced by Particle Filter at time 7' but we
have other sensed data supporting a location L as a candidate position. The
definition is as follows:

a) Bg,(T) = max{P : sensed(rssi, P,L,T),7 Bc,(T) with C; < C;}

“Note that this is one of the possible choices. We can change the ordering between
criteria to see how reliable our sensors are.



Table 3: Preliminary results: accuracy and fault tolerance of the ASP ap-
proach.

Size | Missing | MAE (ASP) | MAE (Particle)
(time) data | PF, PIR, RF RSSI Only

30 0% 5.55 6.17

30 5% 5.53 -

30 15% 5.09 -

50 0% 5.88 4.41

50 5% 5.69 -

50 15% 5.68 -

90 0% 5.00 4.87

90 5% 5.04 -

90 15% 5.02 -

180 0% 3.14 3.34
180 5% 3.11 -

180 15% 3.64 -

b) Bc,(T) = max{N : support(L,T,N),7 Bc,(T) with C; < C;}

The best location L represented by predicate best_location(L,T) can
now be identified by selecting the best value returned by the application of
the most preferred criterion. The actual implementation of this optimization
technique is evaluated using the Clasp solver [4] on grounded logic programs
obtained by using Gringo [4] as a grounder.

Our specification of the problem needs a way to generate the space of
solutions and then select the best one via optimization. This is done by
applying the generate and test approach: a cardinality constraint specifies
that for each time step 7', exactly one location is selected (generating phase)
and an integrity constraint specifies that a selected location L for a time step
T has to be the best location for T (testing phase) as follows:

1 { at(L,T) : location(L) } 1 :- time(T).
:— at(L,T), not best_location(L,T).

4 Preliminary Experiments

In this section, we provide a first experimental evaluation of our knowledge-
based approach to position estimation.

Our experiments are based on the generation of several test instances
of different size. Each instance has been generated using the agent-based
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simulation toolkit Repast Simphony. According to the size of the instance
we want to generate, we simulate movements of a person across one or
more rooms of the house through one or more midpoints. Repast applies
a simple shortest-path algorithm for simulation, based on the map of the
environment and realistic motion model. The instance size is determined by
the number of time steps which corresponds to the number of moves, given
that each move is associated to a new time step. In our analysis, we make
the assumption that the number of sensors (thus the amount of sensor data
received at each time step) is fixed according to a given sampling rate, and it
is linear in the number of rooms and doors in the environment (we consider
putting four to six sensors per room plus one sensor for each passage). For
this reason, we did not consider the amount of data produced by sensors at
each time step as a factor that may impact performance.
We focus our attention on the following aspects of our approach:

e the overall accuracy of results (Mean Absolute Error);

e the fault tolerance expressed as the impact of missing data on the
accuracy;

e the effectiveness of optimization criteria in filtering results.

We determine the overall accuracy of our results via the Mean Absolute
Error (MAE), proposed in [2] for measuring the accuracy of localization with
respect to the true ground position. MAE is very similar to the common
Root Mean Square and consists of computing the residual error between
the estimated and actual node positions for every node in the network, sum
them and average the result, as shown in the following equation:

n . 7.2 . 47.)2
MAE = Zi:l \/(.’Ez x’b) + (y’b yl)
n

where (Z;,9;) are the coordinates of the target’s estimated positions and
(z4,y;) the true ground ones. Note that in our simulation environment, the
dimension of each cell is 20cm, which means that an MAE of 5 indicates an
average error of one meter which is fully acceptable.

We compare the MAE indexes obtained through Particle Filters (PF)
based on the RSSI signals only, with the MAE index obtained by ASP
combining results of PF based on RSSI signals with Range Finder (RF) and
Passive Infrared (PIR) measurements.

If we observe the first row of each instance (with no missing data), we
see that the introduction of additional (noisy) sensor data gives us an MAE
that is slightly higher with the ASP-enhanced approach or very close (as
in the last instance). The only real exception is the MAE of the smallest
instance of size 30. This can be explained by the fact that the PF algorithm
re-allocates the particles used for position estimation at each time step; as
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a consequence, it is common that on small instances the particles are still a
bit sparse and the precision of the algorithm is lower.

For a similar reason, MAE index slightly decreases as size rises: on
bigger instances, particles tends to converge on the more plausible positions,
resulting in higher accuracy. This increased accuracy propagates on ASP
results, since the ASP approach itself uses PF results as a starting point,
and it is not furher affected by the size of the instance in terms of MAE.

Another aspect we took into account is how the accuracy can be affected
by missing data. A lack of data can either be caused by sensors not properly
transmitting or by a too sparse set of particles, so that the PF algorithm
cannot provide candidate positions. Considering missing data scenarios is
interesting in view of the fact that we want our approach to be robust and
able to provide candidate solutions even in case of malfunctioning sensors
or weak PF results.

The second column in Table 3 indicates the amount of sensor data we
removed from the input given to ASP. We observe that in general we ob-
tain lower MAE values by removing data, probably due to the fact that our
knowledge-based approach makes it possible to estimate a position by using
the model of movement or additional domain-related knowledge to reduce
the search space and propose plausible estimations even when the PF algo-
rithm is not able to provide some. Another consideration is that removing
data could also remove noise, thus giving better global results.

If we consider the last instance in Table 3, we notice that removing 5% of
PF data gives us an initial reduction of MAE, which then increases when we
get to removing 15% of PF data. In further analysis it would be interesting
to estimate a threshold telling us how far we can go in removing data before
MAE starts to increase. Intuitively, it depends on how many different kinds
of sensor signals we have, and how noisy are the data they produce: the
higher the number of sensors or the noise, the higher the threshold, while
if we have lots of reliable sensor data, we would expect this threshold to be
lower.

Although we need more tests to validate our intuitions, the main idea
is that if we have a higher number of sensors, missing data can be better
compensated by the knowledge-based approach, as long as the noisiness of
data does not grow significantly with the number of sensors. Time steps
with no data do not determine a redistribution of the particles as in the
PF algorithm: in our approach, the position in a time step for which no
data have been collected, are guessed according to the knowledge-based
optimization criteria applied to tracking in previous and following time steps.
Preliminary tests show that this approach makes accuracy robust against
incomplete information, but we need more accurate tests to support this
statement. One may argue that if data are not available for several time
steps, the combinatorial explosion of possible solutions can make the search
process inefficient. Even in this case, optimization criteria can help selecting
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the best candidate positions in the search space.

The effectiveness of our approach can be validated by observing that
changing the order of criteria could help evaluating the reliability of sensor
data or the soundness of the properties we defined according to commonsense
knowledge. As an example, we found out that values provided by PIR and
RF sensors are very reliable, thus if we switch criteria Co and Cs giving
higher preference to the movement model than the coherence property, the
MAE increases.

In addition, our approach makes it easier to add new domain-knowledge
in form of constraints or optimization measures, which can be used to
strengthen the choice of some candidate positions over others going beyond
what sensor data tells us.

A more general, though very important issue, is the trade-off between
flexibility and accuracy of the model. In order to investigate this aspect, we
should make further experiments on how additional sensor data as well as
new criteria or different optimizations may affect accuracy.

5 Discussion

We presented a hybrid approach to indoor position estimation by combining
and extending quasi-standard quantitative methods in a knowledge-based
yet qualitative framework. To this end, we took advantage of the knowledge
representation and reasoning capacities of ASP for providing a rich model
combining various disconnected sensor models with further semantic infor-
mation, like a movement model and sensor dependencies. The resulting ASP
encoding combines the available heterogeneous sensor data in a transparent
and easily modifiable way and offers an impressive robustness in dealing
with noisy and (partially) absent sensor data, as indicated by our prelimi-
nary experiments. Although we have not discussed the encoding in detail,
it allows for easy customization and extensibility. All in all, the elaboration
tolerance of the high-level ASP specification makes the major difference of
our approach to potential alternatives, and it seems hard to envisage in a
purely quantitative settings.

This preliminary work is only a starting point. Future work will have
to address more extensive and systematic experiments in various simulated
as well as real scenarios. More sensor and semantic information needs to be
taken into account in order to evaluate the true scalability of our approach.
Finally, our current implementation accumulates data in hourly intervals.
We plan to refine this to use the incremental ASP solver iClingo [3] in order
to provide a much more fine-grained approach to localization and tracking,
eventually aiming at real-time conditions.
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