
Ensuring Agent Properties under Arbitrary Sequences of
Incoming Events

Stefania Costantini1, Pierangelo Dell’Acqua2, Luı́s Moniz Pereira3, and
Arianna Tocchio1

1 Dip. di Informatica, Università di L’Aquila, Coppito 67010, L’Aquila, Italy
stefania.costantini@univaq.it

2 Dept. of Science and Technology - ITN, Linköping University, Norrköping, Sweden
pierangelo.dellacqua@itn.liu.se

3 Centro de Inteligência Artificial (CENTRIA), Departamento de Informática, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract

This paper deals with run-time detection and possible correction of er-
roneous and/or anomalous behavior in agents. We augment our previous
approaches by allowing an agent to explicitly observe and record its past be-
havior so as to be able to decide its best actions, and avoid errors performed
in previous similar situations.

1 Introduction

Agents are by definition software entities which interact with an environment, and
thus are subject to modify themselves and evolve according to both external and
internal stimuli, the latter due to the proactive and deliberative capabilities of the
agent themselves.

In previous work, we defined semantic frameworks for agent approaches based
on computational logic that account for: (i) the kind of evolution of reactive
and proactive agents due to directly dealing with stimuli, that are to be coped
with, recorded and possibly removed; and (ii) the kind of evolution related to
adding/removing rules from the agent knowledge base. These frameworks have
been integrated into an overall framework for logical evolving agents (cf. [7, 2]),
where every agent is seen as the composition of a base-level (or object-level) agent
program and one or more meta-levels. In this model, updates related to recod-
ing stimuli are performed in a standard way, while updates involving the addi-
tion/deletion of sets of rules, related to learning, belief revision, etc. are a conse-
quence of meta-level decisions. As agent systems are more widely used in real-
world applications, the issue of verification is becoming increasingly important
(see [9] and the many references therein).

The motivation of the work presented in the present paper is that the agent
behavior is affected by its interaction with the external world, i.e., by events per-
ceived by the agent and in which order. In most practical cases however, the actual

Proceedings of the 17th International RCRA workshop (RCRA 2010):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Bologna, Italy, June 10–11, 2010

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



arrival order of events is unforeseeable, and the set of possible events is so large
that computing all combinations would result in a combinatorial explosion, thus
making “a priori” verification techniques actually unpractical. Moreover, proper-
ties that one wants to verify often depend upon which events have been observed
by an agent up to a certain point, and which others are supposed to occur later.
Therefore, we augment our previous approaches by allowing an agent to explicitly
observe and record its past behavior so as to be able to decide the best actions to
do, and to avoid errors performed in previous similar situations. This motivates the
importance of recording the most relevant facts which happened in the past and of
recovering error and behavioral anomalies by means of appropriate strategies.

The definition of frameworks such as the one that we propose here, for check-
ing agent behavior during its life based on experience, has not been really treated up
to now. In fact, there has been an increasing quest for agent platforms whose com-
ponent entities would be capable of exhibiting a correct and rigorous behavior with
respect to expectations. However, developers have mostly applied model-checking
techniques that are based upon abstract models of an agent system, thus neglecting
the run-time verification of behavior during the agent life according to what hap-
pens in actual evolution of the system. On the one hand, due to the combinatorial
explosion, properties that can be statically verified are necessarily quite simple. On
the other hand, there is no way to reinstate a correct behavior at run-time, in case
unwanted situations should occur.

In this paper, we propose a method for checking the agent behavior correctness
during the agent activity, based on maintaining information on its past behavior.
This information is useful in that it records what has happened in the past to the
agent (events perceived, conclusions reached and actions performed) and thus en-
codes relevant aspects of an agent’s experience. If augmented by time-stamps,
these records (that we call past events) constitute in a way the history of the agent
activity. The set of past events evolves in time, and can be managed for instance
by distinguishing the most recent versions of each past event, that contribute to the
agent present perception of the state of the world.

Past events can be exploited for the purpose of self-checking agent activities:
we propose in fact the introduction of specific constraints, defined as temporal-
logic-like formulae expressed upon past events and events that are supposed to
occur in the future. Alberti et al. in [1] have adopted a similar approach based
on social constraints in order to model the interactions among (possibly heteroge-
neous) agents that form an open society.

2 Defining agent experience

A rule-based agent consists of a knowledge base and of rules aimed at providing
the entity with rational, reactive, pro-active and communication capabilities. The
knowledge base constitutes a part of the agent’s “memory”, where rules define the
agent’s behavior. Through “memory”, the agent is potentially able to learn from

2



experiences and ground what it knows on these experiences [10]. The interaction
between the agent and the environment can play an important role in construct-
ing its memory and may affect its future behavior. Most methods to design agent
memorization mechanisms have been inspired by models of human memory as for
instance [11], [12]. Memory, experience and knowledge are in general strongly
related. Correlation between these elements can be obtained, e.g., via neural net-
works, via mathematical models or via logical deduction.

Some of the authors of this paper have proposed in [5],[6] a method of corre-
lating agent experience and knowledge by using a particular construct, the internal
events, that has been introduced in the DALI language (though it can be in prin-
ciple adopted in any computational logic setting). We have defined the “static”
agent memory in a very simple way as composed of the original knowledge base
augmented with past events that record the external stimuli perceived, the internal
conclusions reached and the actions performed.

Past events can play a role in reaching internal conclusions. These conclusions,
which are proactively pursued, take the role of “dynamic” memory that supports
decision-making and actions: in fact, the agent can inspect its own state and its
view of the present state of the world, so as to identify the better behavioral strat-
egy in that moment. More specifically, past events, in our approach, record external
events that have happened, internal events that have been raised and actions that
have been performed by the agent. Each past event is time-stamped to also record
when the event has happened. Past events have at least two relevant roles: describe
the agent experience; keep track of the state of the world and of its changes, pos-
sibly due to the agent intervention. With time, on the one hand past events can be
overridden by more recent ones of the same kind (take for example temperature
measurement: the last one is the “current” one) and on the other hand can also be
overridden also by more recent ones of different kinds, which are somehow related.

In this paper, we extend and refine the concepts that we had introduced in the
above-mentioned previous work. In particular, we introduce a set P of current
“valid” past events that describe the state of the world as perceived by the agent.
We also introduce a set PNV where we store all previous ones. Thus, the historyH
referred to in the definition of the evolutionary semantics is the tuple 〈P, PNV 〉.
Given history H , we introduce the notation H.P and H.PNV to refer to the two
components. In practice, H is dynamically augmented with new events that hap-
pen. Let E = (E ∪ I ∪ A) be the set of the events that may happen, in which as
already observed we include the sets of external (set E) and internal (set I) events
and the actions (set A) that the agent itself performs. Each event in X ∈ E may
occur none or several times in the agent’s life. Each occurrence is therefore indi-
cated as X : Ti where Ti is a time-stamp indicating when this specific occurrence
has happened (where the time-stamp can be omitted if irrelevant. Each X ∈ E is
a ground term, with the customary prolog-like syntax. If one is interested in iden-
tifying which kind of event is X , a postfix (that can be omitted if irrelevant) can
provide this indication. I.e., XE is an external event, XA is an action and XI an
internal event. As soon as X is perceived by the agent, it is recorded in P in the

3



form XP
Y : Ti where P is a postfix that syntactically indicates past events and Y

is a label indicating what is X , i.e., if it belongs to E, I or A. By abuse of notation
for the sake of conciseness we will often omit label Y if the specific kind of event
is irrelevant, and we will sometimes indicate XP

Y : Ti as Xi or simply X .
Clearly, as new “versions” of an event arrive, they should somehow “override”

the old versions that have to be transferred into PNV: for instance, P will contain
the most recent measure of the outside temperature, while previous measurements
will be recorded in PNV. Past events in PNV may still have a relevant role for
the entity decision process. In fact, an agent could be interested for instance in
knowing how often an action has been performed or a particular stimuli has been
received by the environment, or the first and last occurrences, etc. In the previous
example, measurements recorded in PNV might for instance be used for computing
the average temperature in a certain period of time. Clearly, PNV will have a
limited size and thus older or less relevant events will have to be canceled. We do
not cope with this issue in this paper, where instead we will cope with the issue
of how to keep P up-to-date. Consider for example to have an agent that opens
or respectively closes some kind of access. The action of opening the access can
be performed only if the access is closed, and vice versa for closing. Assume that
this very simple agent believes that no external interference may occur, and thus
the access is considered (by the agent) to be closed if the agent remembers to have
closed it, and vice versa it is considered to be open if the agent remembers to have
opened it. These “memories”, in our approaches, are past events in P. Therefore,
the agent will have previously closed the door (and thus it considers itself enabled
to open it) if a past event such as closeAP : t1 is in P. After performing the action
openA : t2, not only the past event openAP : t2 must be inserted into P , but for
avoiding possible mistakes the previous past event closeAP : t1 should be removed
from P and transferred into PNV. Past Constraints define which past events must be
eliminated and under which conditions. They should be automatically applied in
order to keep the agent memory consistent with the external world. More formally,
we define a Past Constraint as follows (where we overlook the label Y indicating
the kind of past event).

Definition 2.1 (Past Constraint). A Past Constraint has syntax:

XkP : Tk, ..., XmP : Tm EXsP : Ts, ..., XzP : Tz, {C1, ..., Cn}

whereXkP : Tk, ..., XmP : Tm are the past events which are no longer valid when-
ever past events XsP : Ts, ..., XzP : Tz become known and conditions C1, ..., Cn

are true, i.e., as we will say, whenever the constraint holds.

For the previous example, we would have the following past constraint.

closeAP : t1 E openAP : t2, t1 < t2

We define H ? X as the operation of adding the past-event version of event
X ∈ E to the history, that also implies transferring past events from P to PNV
according to the past constraints.

4



Definition 2.2. Let PC be the set of past constraints and S a set of past events.
By F = PC(S) we indicate the result of the application of the past constraints in
PC, i.e., F included the left-hand sides of all the constraints in PC which hold
given as known the past events in S.

Definition 2.3. Given history H = 〈P, PNV 〉, set of past constraints PC and
event X , the result of H ? X is an updated history H ′ = 〈P ′, PNV ′〉 where: (i)
P ′ = S \F with S = H.P ∪{XP } and F = PC(S); (i) PNV ′ = H.PNV ∪F ,
.

3 Checking the behavior of Evolving Agents

According to the evolutionary semantics defined in [4], time instants s0s1 . . . con-
cerning an agent’s “life” can be understood in terms of the events that happen. In
fact, at the i-th evolution step we have an history Hi, an agent program Pi and its
intended semanticsMi, determined by events E1, . . . , Ei occurred so far. The next
evolution step will take place in accordance to the perception of next event Ei+1.
Then, any property ϕ which holds w.r.t. εAg

i , i.e. w.r.t. the agent evolutionary se-
mantics up to step i, will keep holding until next event will determine a transition
to the next snapshot. In other words, the agent understands the world only in terms
of the event that it perceives. Therefore we can state the following.

Definition 3.1. Given agent Ag with evolutionary semantics εAg, we let si = εAg
i

= 〈Hi, Pi,Mi〉.

I.e., a state is taken to be the snapshot at stage i of the evolutionary semantics of
the agent.

In model-checking, the aim is to establish if some LTL formula (where LTL
stands for Linear-Time Temporal Logic: for a survey, the reader can refer to [8])
Opϕ or ϕOpψ (whereOp can be, for instance,N for “never”,E for “eventually”,
etc.) can be established to be true, given a description of the system at hand from
which the system evolution can be somehow elicited. In order to cope with the
many cases where this evolution cannot be fully foreseen, we propose a reformu-
lation of temporal logic operators so as to take into account the events that have
happened already and those that are expected to happen in the future and to be rel-
evant to the property that we intend to check. We do so because indeed checking
a property w.r.t. any possible sequence of events would determine a combinatorial
explosion of the checks that should be made. Moreover, many of the checks would
be useless, as they would concern combination of events that are irrelevant to the
property at hand.

Definition 3.2 (Evolutionary LTL Expressions). Let τ be a temporal logic expres-
sion of the form Opϕ if operator Op is unary or ϕOpψ if operator Op is binary.
The evolutionary version of τ , that we will call Evolutionary LTL Expression, is of
the form

{EP1 , . . . , EPn−1} τ : {F1, . . . , Fm}

5



where: n,m ≥ 0; {EP1 , . . . , EPn−1} ⊆ Hn.P denote the relevant events which
are supposed to have happened; sn = εAg

n is the state from which the property
is required to be checked; {F1, . . . , Fm} denote the events that are expected to
happen in the future; if k− 1 is the state in which Fm will happen, sn+k = εAg

n+k is
the state until which τ is required to be checked.

We may notice that we might adapt for this case the enhanced temporal logic
operators that we have discussed above, i.e., in τ , we might adopt Opn,n+k in-
stead of Op, except that in general we do not know k, i.e., we cannot foresee
at which state the last expected relevant event Fm will happen. We may also
notice that in many practical cases we are unable to provide a full sequence of
the expected events, and sometimes we will be interested only in some of them.
Thus, in the above definition, to be able to indicate the sets of past and future
events in a more flexible way we admit the syntax of regular expressions (see,
e.g., http : //en.wikipedia.org/wiki/Regular expression and the references
therein). We also extend this syntax as follows.

Definition 3.3. Let X be a wild-card standing for any event. The expression
X+(Y v1

1 , . . . , Y vm
m ), where m > 0 and for each of the vi’s, either vi > 0 or vi

= ’+’, stands for a non-empty sequence of X’s in which each event Yi occurs vi
times, and in particular any number of times if vi = ’+’.

Moreover, in Definition 3.2 we do not require the EPi’s and the Fi’s to be ground
terms. Instead, we admit each of them to contain variables if we are not inter-
ested in precisely specifying some of their parameters. For instance, the expres-
sion X+(consumeA

+(r,Q)) indicates a sequence of events where the action of
consuming (some resource r) occurs at least once. Each action will refer to a
quantity Q which is not specified. An evolutionary LTL expression could be for
instance (where N stands for the LTL operator “never”):

X+(supplyA(r, s))N(quantity(r, V ), V < th)X+(consumeA
+(r,Q))

stating that, after having provided a supply of resource r for a total quantity s, the
agent is expected to consume unknown quantities of the resource itself. Never-
theless, the expression states a constraint requiring that the available quantity of
resource r remains over a certain threshold th. Evolutionary LTL expressions are
in fact supposed to act as constraints to be verified at run-time whenever new events
are perceived. At any state between si and sn+k a violation may occur if the inner
LTL formula τ does not hold of that state. The proposition below formally allows
for dynamic run-time checking of evolutionary LTL expressions. In fact, it says
that if a given expression holds in a certain state and is supposed to keep holding
after the first expected event has happened, then checking this expression amounts
to checking the modified expression where the occurred event has become a past
event, and subsequent events are still expected.

6



Proposition 1. Given expressionF = {EP1 , . . . , EPn} τ : {F1, . . . , Fm}, assume
that F holds at state sn and that τ still holds after the occurrence of event F1.
Given FF1 = {EP1 , . . . , EPn , FP1} τ : {F2, . . . , Fm} we have F ≡ FF1 .

In prior work (see e.g., [2, 3]), we introduced temporal logic rules with im-
provement, where actions could be specified in order to cope with unwanted sit-
uations. We extend this approach to the present work. As discussed above, we
consider evolutionary LTL expressions as constraints that can hold or not at any
state. We enrich these constraints by means of the specification of which actions
to perform in order to try regain a suitable state of affairs. For lack of space, we
illustrate our proposal by means of the following example. The evolutionary LTL
expression with improvement listed below states that no more consumption can
take place if the available quantity of resource r is scarce (thus, in this case, the
improvement it is rather a repair).

X+(supplyA(r, s))N(quantity(r, V ), V < th)X+(consumeA
+(r,Q)) :

prevent(consumeA(r,Q))

We assume the distinguished predicate prevent to be implicitly added to the pre-
conditions of every action, that can take place only if not prevented. We might
as well add another constraint, that forces the agent to limit consumption to small
quantities (say th1) if it is approaching the threshold (say that the remaining quan-
tity is th + s, for some s). Again, the distinguished predicate allow should be a
precondition of every action, that should be performed only if not prevented and
allowed.

X+(supplyA(r, s))N(quantity(r, V ), V < th+ s)X+(consumeA
+(r,Q)) :

allow(consumeA(r,Q), Q < th1)

4 Concluding Remarks

In this paper, we have presented an approach to update agent memory and to detect
and correct behavioral anomalies by using dynamic constraints, based on intro-
ducing particular events, past events, that record what has happened. The runtime
observation of actual anomalous behavior with dynamic possible correction of de-
tected problems, as opposed to full prior classical program verification and vali-
dation on all inputs, can be a key to bringing down the well-known computational
complexity of the agent behavior assurance problem.

7



References
[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor. An ab-

ductive interpretation for open agent societies. In Proceedings of the 8th National
Congress on Artificial Intelligence, AI*IA 2003, number 2829 in LNAI, pages 287–
299. Springer-Verlag, 2003.

[2] S. Costantini, P. Dell’Acqua, and L. M. Pereira. A multi-layer framework for evolv-
ing and learning agents. In A. R. M. T. Cox, editor, Proceedings of Metareasoning:
Thinking about thinking workshop at AAAI 2008, Chicago, USA, 2008.

[3] S. Costantini, P. Dell’Acqua, L. M. Pereira, and P. Tsintza. Runtime verification of
agent properties. In Proc. of the Int. Conf. on Applications of Declarative Program-
ming and Knowledge Management (INAP09), 2009.

[4] S. Costantini and A. Tocchio. About declarative semantics of logic-based agent lan-
guages. In M. Baldoni and P. Torroni, editors, Declarative Agent Languages and
Technologies, LNAI 3904, pages 106–123.

[5] S. Costantini and A. Tocchio. A logic programming language for multi-agent sys-
tems. In Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002,
LNAI 2424. Springer-Verlag, Berlin, 2002.

[6] S. Costantini and A. Tocchio. The DALI logic programming agent-oriented language.
In Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004,
LNAI 3229. Springer-Verlag, Berlin, 2004.

[7] S. Costantini, A. Tocchio, F. Toni, and P. Tsintza. A multi-layered general agent
model. In AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th
Congress of the Italian Association for Artificial Intelligence, LNCS 4733. Springer-
Verlag, Berlin, 2007.

[8] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, vol. B. MIT Press, 1990.

[9] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computational logics and agents:
a road map of current technologies and future trends. Computational Intelligence
Journal, 23(1):61–91, 2007.

[10] J. S. Gero and W. Peng. Understanding behaviors of a constructive memory agent: A
markov chain analysis. Know.-Based Syst., 22(8):610–621, 2009.

[11] R. H. Logie. Visuo-Spatial Working Memory. Psychology Press, Essays in Cognitive
Psychology, 1994.

[12] D. Pearson and R. H. Logie. Effect of stimulus modality and working memory load
on menthal synthesis performance. Imagination, Cognition and Personality, 23(2-
3):183–191, 2004.

8


