CEUR-WS.org/Vol-616/paperl7.pdf

C

CEUR
Workshop
Proceedings

Job Shop Scheduling with Setup Times: Exploring the
Applicability of a Constraint-based Iterative Sampling
Approach

Angelo Oddt, Riccardo Rascohj Amedeo Cestg and Stephen F. Smith

L Institute of Cognitive Science and Technology, CNR, Rortady |
angel o. oddi, ri ccardo. rasconi , anedeo. cesta@stc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittspiy PA, USA
sfs@s. cnmu. edu

Abstract

This paper presents a heuristic algorithm for solving aghbp schedul-
ing problem with sequence dependent setup times (SDSTJJ8P al-
gorithm relies on a core constraint-based search proceddnieh gener-
ates a consistent ordering of activities requiring the saeseurce by in-
crementally imposing precedence constraints on a tenmpdealsible so-
lution. Key to the effectiveness of the search proceduredsrdlict sam-
pling method biased toward selection of most critical cahind coupled
with a non-deterministic choice heuristic to guide the baweflict resolu-
tion process. This constraint-based search is then emdedttdn a larger
iterative-sampling search framework to broaden searcbespaverage and
promote solution optimization. The efficacy of the overalhstic algo-
rithm is demonstrated empirically on a set of previouslyd&d job-shop
scheduling benchmark problems with sequence dependepttigies.

1 Introduction

This paper considers a variant of the job-shop schedulimfplem with ready
times, deadlines argequence dependesgtup times (SDST-JSSP). Similar prob-
lems are common in a semiconductor manufacturing envirohfd8, 19], and in
general, over the last ten years, there has been an in@easamest in solving
scheduling problems with setup times [2, 3]. This fact stenanly from the
observation that in various real-word industry or serviogimnments there are
tremendous savings when setup times are explicitly coresida scheduling deci-
sions.

In this paper we propose an heuristic algorithm for solvinig problem. At
the algorithm’s core is a constraint-based search proeeddrich generates a con-
sistent ordering of activities requiring the same resolmcémposing precedence
constraints between pairs of such activities and increatigrextending a tempo-
rally feasible solution. The algorithm is an extension of #tochastic version
of the sp-PcP procedure proposed in [17] (which does not consider segdenc
dependent setups), and bases its solving capabilities amera@ meta-heuristic

Proceedings of the 17th International RCRA workshop (RCRAQ):
Experimental Evaluation of Algorithms for Solving Problemith Combinatorial Explosion
Bologna, Italy, June 10-11, 2010

that has proven to be quite effective in generating conipetiesults despite its
simplicity. The resulting procedure is then embedded withilargeriterative-
samplingsearch framework [9] to broaden search space coverage anthf so-
lution optimization.

We observe that within the current literature there arerotivamples of pro-
cedures for solving scheduling problems with setup timdgckvare extensions of
counterpart procedures targeted at solving the same (dasjrscheduling prob-
lem without setup times. This is the case in the work [8], Whiglies on the results
in [6]. Itis also the case in the more recent work of [21, 13}jak proposes effec-
tive heuristic procedures based on genetic algorithmsasal earch. These local
search procedures extend a procedure proposed in [16]darldissical job-shop
scheduling problem to the setup times case. Such neighbdrbioucture relies
upon a set of properties based on the concept of critical jpitimed on top of a
disjunctive graph representation of the problem. We cam ad¢e the work of [5],
which extends the well-knowhifting bottleneclprocedure [1] to the SDST-JSSP
case. Finally, we mention the work of [5, 13] which presehesreference results
for a previously studied benchmark set of SDST-JSSP prabj&8] that are used
for direct comparison in the experimental section of thiggra

The procedure we propose is not unigue in its reliance ondhstaint-solving
paradigm, another example is described in [12], which dhioes a more elaborate
procedure based on the integration of two different extarsio the classic job
shop problem. A strength of our procedure is its simpliaitgpite of its effective-
ness in solving a set of difficult instances of SDST-JSSPs.

The paper is organized as follows. An introductory sectiefings the refer-
ence SDST-JSSP problem and its representation. A centi@bseescribes the
core constraint-based procedure and the related itersdivipling search strategy.
An experimental section describes the performance of garithm and the most
interesting results are explained. Some conclusions atgtass$ion on the future
work end the paper.

2 The Scheduling Problem with Setup Times

The job-shop scheduling problem with sequence dependéam senes (SDST-
JSSP) involves synchronizing the use of a set of resoukces {ry,...,r,} to
perform a set of: activites A = {aq,...,a,} over time. The set of activities
is partitioned into the set afj jobs 7 = {Ji,...,Jn;}. The processing of a
job Jj requires the execution of a strict sequencencéctivitiesa; € J, and the
execution of each activity; is subject to the following constraints: (igsource
availability: each activitya; requires the exclusive use of a single resoutgdor
its entire duration; ngpreemptioris allowed and all the activities included in a job
Jy. require distinct resources; (Bjocessing time constraints. eacha; has a fixed
processing time; such thate; — s; = p;, where the variables; ande; represent
the start and end time af; (3) sequence dependent setup times: for each resource

r, the valuest]; represents the setup time between two generic activitiesda;
requiring the same resourgesuch that; + st;; < s;. According to the most com-
mon approach in literature, we consider verified the sceddtiangle inequality
[8, 4], that is, for any three activities;, a;, a;, requiring the same resource, the
inequalityst;; < st + St holds; (4)job release and due dates: each JobJ;, has

a release dated;,, which specifies the earliest time that the any activityjincan
be started, and a due datg, which designates the time by which all activities in
Ji have to be completed. The due date is not a mandatory coristrad can be
violated (see below).

A solution S = {5, 95,,...,5,} is an assignmen$; to the activities start-
timess; such that all the above constraints are satisfied(Lghe completion time
for the jobJ;,, themaximum lateness, .. is the valueL,, ., = mazi<i<n;{Ck—
dr}. An optimal solution S* is a solutionS with minimum valueL,,,,. The
proposed problem is strong®P-hard because it is an extension of the known
problem1|r;| Lyqz [7]-

3 A CSP Representation

There are different ways to formulate this problem aSamstraint Satisfaction
Problem(CSP) [15]. In analogous way to [10, 17], we treat the probisyone
of establishingorecedence constraintsetween pairs of activities that require the
same resource, so as to eliminate all possible conflictssimuree use. This repre-
sentation is close to the ideadikjunctive graphnitially used for the classical job
shop scheduling without setup times and also used in the@atecase of setup
times [8, 5, 21, 4].

LetG(Ag, J, X) be a graph where the set of verticég contains all the activ-
ities of the problem together with two dummy activitieg,anda,, 1, representing
respectively the beginning (reference) and the end (hoyiebthe scheduleJ is
a set of directed edgés;, a;) representing the precedence constraints among the
activities (job precedence constraints) and are weighttdtie processing timg;
of the origin activitya; of the edge. The set of undirected edgésepresents the
disjunctive constraintamong the activities requiring the same resoutahere is
an edge for each pair of activities anda; requiring the same resoureceand the
related label represents the set of possible ordering leetweanda;: a; < a; or
CL]' j ;.

Hence, in CSP terms, a decision variabjg. is defined for each pair of activ-
ities a; anda; requiring resource, which can take one of two values; < a; or
a; = a;. Itis worth noting that in the current case we have to takeiadcount
the presence of sequence dependent setup time, which mimstilbged when an
activity a; is executed on the same resoubegoreanother activitya ;.

For example, as we will see in the next sections, in case thp senes verify
the triangle inequality, previous decisions on g can be represented as the two
temporal constraints; + sti; < s; (a; < aj) ore; + st; < s; (a; = a;).

To support the search for a consistent assignment to thef sletcsion vari-
ablesz;j,, for any SDST-JSSP we define the directed grépfiV, £), called
distance graphThe set of node¥ represents time points, that is, the origin point
tpg (the reference point of the problem) together the start amtitene points,
s; ande;, of each activitya;). The set of edges’ represents all the imposed
temporal constraints, that is, precedences, durationsetog times. All the con-
straints have the form < tp; — tp; < b and for each constraint specified in
SDST-JSSP, there are two weighted edges in the gfagl, £'). The first one
is directed from¢p; to tp; with weightb and the second one is directed frapy
to tp; with weight —a. The graphG,(V, E) corresponds to &imple Temporal
Problemand its consistency can be efficiently determined via shbpiath compu-
tations onG, (see [11] for more details on the STP). Thus, a search foruisol
to SDST-JSSRan proceed by repeatedly adding new precedence constiiaiat
G4(V, E) and recomputing shortest path lengths to confirmhgl’, £') remains
consistent. Given a Simple Temporal Problem, the problenoisistent if and
only if no closed paths with negative length (or negativelegcare contained in
the graphGg. Let d(tp;,tp;) (d(tp;,tp;)) designate the shortest path length in
graphG,(V, E)) from nodetp; to nodetp; (nodetp; to nodetp;), the following
constraint—d(tp;,tp;) < tp; — tp; < d(tp;,tp;) holds [11]. Hence, thenini-
malallowed distance betweep; andtp; is —d(tp;, tp;) and the maximal distance
is d(tp;, tp;). In particular, any time pointp; is associated to a givefieasibility
interval [1b;, ub;], which determines the set of feasible valuestfgrwith respect
to the origin pointtpg. Given thatd;, is the length of the shortest path é#y
from the time pointtp; to the origin pointtpy anddy; is the length of the short-
est path from the origin pointp, to the time pointtp;, the interval[lb;, ub;] of
time values associated to the generic time variablds computed on the graph
G4 as the interval—d(tp;, tpo), d(tpo, tp;)] (see [11]). In particular, the two set
of assignment valueS;, = {—d(tp1,tpo), —d(tp2,tpo), ..., —d(tp,,tpo)} and
Sup = {d(tpo, tp1), d(tpo,tp2), ..., d(tpo, tp,)} to the variablesp; represent the
respectively, the so-calledarliest-time solutiorand latest-time solutiorfor the
given STP.

4 A Precedence Constraint Posting Procedure

The proposed procedure for solving instances of SDST-JS 8éxtension of the
sk-pPcpPscheduling procedure (Shortest Path-based Precedense@oinPosting)
proposed in [17], which utilizes shortest path informatio;(V, E') for guiding
the search process. Similarly to the origisatPcpPprocedure, shortest path infor-
mation can be used in two ways to enhance the search prodesdtsitks possible
to define newdominance conditionsvith respect to [17] whictpropagateprob-
lem constraints and identify unconditional decisions fayrpoting early pruning
of alternatives in presence of setup times.

The concepts oflack(e;, sj) andco-slack(e;, sj) (complementary slack) play

€ co-slack | Si
f_/%"
> I lack
-d(s;e;)] /_SL
P Ll ® /1_
d(eilsj)

‘ s;- €, € [-d(s;,e), d(e,s)] |

Figure 1:slack(e;, s;) = d(e;, sj) — sti; Vs. co-slack(e;, s;) = —d(sj, ;) — stj;

a central role in the definition of the new dominance condgioGiven two ac-
tivities a;, a; and the related interval of distancésd(s;, e;),d(e;,s;)] 1 and
[—d(si,e;),d(ej, ;)] % in the graphG,, these two concepts are defined as follows
(see Figure 1):

o slack(e;,sj) = d(e;, sj) — stj; is the difference between the maximal dis-
tanced(e;, s;) and the setup timet;"j. Hence, it provides a measure of the
degree ofequencing flexibilithetweens; anda; 3 taking into account the
setup time constraird; + sti; < sj. If slack(e;, s;) < 0, then the ordering
a; = a; is not feasible.

o co-slack(e;, sj) = —d(sj,e;) — st;; is the difference between the minimum
possible distance between anda;, —d(si,e;), and the setup timet;;; if
co-slack(e;,s;) > 0 (in Figure 1 is representedreegativeco-slack), then
there is no need to separateanda;, as the setup time constraint+ st;; <
s; is already satisfied.

For any pair of activities:; anda; that are competing for the same resource
r, the new dominance conditions describing the four possiates of conflict are
defined as follows:

1. slack(e;, s;) < 0 A slack(e;j, s;) <
2. slack(e;, sj) < 0 A slack(ej,s;) > O A co-slack(ej, s;) < 0
3. slack(e;, s;) > 0 A slack(ej, s;) < O A co-slack(e;, s5) < 0
4. slack(e;, s5) > 0 A slack(ej, s;) >

Condition1 represents annresolvable conflictThere is no no way to order;
anda; taking into account the setup timet; andstﬂ, without inducing a negative
cycle in the graptG,(V, E). When Condltlonl is verified the search has reached
an inconsistent state.

'between the end-time of a; and the start-time; of a;

%petween the end-time; of a; and the start-time; of a;

3Intuitively, the higher is the degree skquencing flexibilitythe larger is the set of feasible
assignments to the start-timesafanda;

Conditions2, and 3, alternatively, distinguistuniquely resolvable conflicts
Here, there is only one feasible orderingagfanda; and the decision of which
constraint to post is thus unconditional. In the case of @mmd2, only a; =< a;
leavesG,(V, E) consistent. It is worth noting that the presence of the dardi
co-slack(e;, s;) < 0 means that the minimal distance between the end ¢inaad
the start times; is smaller than the minimal required setup tist§,. Hence, we
still need to impose the constraiaf + sth; < si. Condition3 is similar and only
a; = a; is feasible. Finally, Conditiod designates a class mfsolvable conflicts
In this case, both orderings of anda; remain feasible and it is necessary to make
achoice

The second way in which shortest path information is exptbis in the defini-
tion of variable andvalueordering heuristics for selecting and resolving conflicts
in the set characterized by Conditidn As indicated earliersiack(e;, s;) and
slack(e;, s;) provide measures of the degreesefjuencing flexibilitypetweena;
anda; in this context. Thevariable ordering heuristic attempts to focus first on
the conflict with the least amount of sequencing flexibilitg.(the conflict that
is closest to previous Conditiol). More precisely, the conflicta;, a;) with the
overall minimum value oV ar Eval(a;, aj) = min{bd;;, bd;;} is always selected
for resolution, wherk

and
_ min{slack(e;, sj), slack(e;, s;)}

~ maz{slack(e;, s;), slack(e;, s;)}

The value ordering heuristic used to resolve a selected confligta;) simply
chooses the precedence constraint that retains the mostrgsiag flexibility. Specif-
ically, a; = a; is selected ibd;; > bd;; anda; = a; otherwise.

4.1 Thepcp Algorithm

Figure 2 gives the basic overaltpsolution procedure, which starts from an empty
solution (Step 1), where the grag¥y, is initialized according to Section 3 and for
each job.J,, an upper bound constraidl, + L. iS imposed on the completion
time Cy. The PCP algorithm shown in Figure 2 analyses all such gairs:;)
(i.e., thedecision variable®f the corresponding CSP problem), and decides their
valuesin terms of precedence ordering (i.e;,= a; ora; = a;, see Section 3), on
the basis of the response provided by doeinance conditions

In broad terms, the procedure in Figure 2 interleaves thécapijpn of dom-
inance conditions (Steps 4 and 7) with variable and valuerorg (Steps 10 and

“The v/S bias is introduced to take into account cases where a firdtictowith the overall
min{slack(es, s;), slack(e;, s;)} has a very largenax{slack(es, s;), slack(e;, s;)}, and a sec-
ond conflict has two shortest path values just slightly latgan this overall minimum. In such
situations, it is not clear which conflict has the least seqirg flexibility.

PCP(Problem,Lqz)

1. S « InitSolution(Problem L.,,q2)

2. loop

3. Propagate)

4. if UnresolvableConflict{)

5. then return(nil)

6. edse

7. if UniquelyResolvableConflicf)

8. then PostUnconditionalConstraintS)
9. elsebegin

10. C +ChooseResolvableConfli&)
11. if (C' = nail)

12. then return(S)

13. else begin

14. Prec < ChoosePrecConstraist(C)
15. PostConstrainf{, Prec)

16. end

17. end

18.end-loop

19.return(S)

Figure 2: Basic PCP algorithm

14 respectively) and updating of the solution graph (Steps 8 and 15) to con-
duct a single pass through the search tree. At each cycleypagation step is
performed (Step 3) by the functid®r opagat e(S), which propagates the effects
of posting a new solving decision (i.e., a constraint) ingrephG . In particular,
Pr opagat e(S) updates the shortest path distances on the giaphWe observe
that within the main loop of the procedupepPshown in Figure 2 new constraints
are added incrementally (one-by-oneXig, hence the complexity of this stégs
in the worst cas€(n?).

A solution is found when thecpralgorithm finds a feasible assignments to the
activities start times, such that all resource conflictsraselved (i.e., all the setup
timesst;; are satisfied), we introduce the following proposition.

Proposition 1. A solutionS is found when none of the four dominance conditions
is verified onS.

This fact can be proveoly contradiction Let us suppose that tirePprocedure
exits with success (none of the four dominance conditiongigied on.S) and
that at least two sequential activitiesanda;, requiring the same resourcedo
not satisfy the setup constraints + st;"j < sj ande; + st}fi < s;. Since the
triangle inequalityholds for the input problem, it is guaranteed that the lerth

®Let us suppose we have a consistéhy, in the case we add a new ed@&.,tp,) with
weight wey, if wzy + d(tpy,tp) > 0 (G4 remains consistent, because no negative cycles are
added, see Section 3), then the generic shortest path cistam be updated a&tp;,tp;) =
min{d(tpi, tp;), d(tpi, tpa) + way + d(tpy, tp;).}

7

the direct setup transition; < a; between two generic activitieg anda; is the
shortest possible (i.e., nindirect transitiona; ~ a;, ~ a; having a shorter overall
length can exist). This fact is relevant for thep approach, because the solving
algorithm proceeds by checking/imposing either the camte; + sti; < s; or
the constraint; + st7; < s; for each pair of activities. Let us suppose that at least
two activitiesa; anda; do not satisfy the setup constraimst- sti; < sj (a similar
proof is given fore; + sth; < 84)- Hencest;; > s; —e; and together the condition
sj—e; > —d(s}, e;) (which holds becaus@y is consistent, see Section 3) we have
sti; > —d(sj, e;), that isco-slack(e;, s;) < 0, which contradicts that none of the
four dominance conditions is verified ¢h

To wrap up, when none of the four dominance conditions idieerand theecp
procedure exits with success, thg graph represents a consistent Simple Tempo-
ral Problem and, as described in Section 3, one possibl¢i@olof the problem
is the so-calleckarliest-time solutionsuch thatS.s; = {S; = —d(tp;, tpo) : i =
1...n}.

5 An Iterative Sampling Procedure

ThepcPpresolution procedure, as defined above, is a determingsitiél) solution
procedure with no recourse in the event that an unresolvefliactds encountered.
To provide a capability for expanding the search in suchad@out incurring the
combinatorial overhead of a conventional backtrackingaean the following two
sections we define: (1) a random counterpart of our confllecten heuristic (in
the style of [17]), providing both stochastic variable amdlsxe ordering heuristics,
and (2) an iterative sampling search framework for optitwrathat embeds the
stochastic procedure.

This choice is motivated by the observation that in manysagstematic back-
tracking search can explore large sub-trees without findimgsolution. On the
other hand, if we compare the whole search tree created bgtansgtic search
algorithm with the non systematic tree explored by repdgatesstarting a ran-
domized search algorithm, we see that the randomized puoedsl able to reach
“different and distant” leaves in the search tree. Thelgtteperty could be an ad-
vantage when problem solutions are uniformly distributethivw the set of search
tree leaves interleaved with large sub-trees which do netago any problem so-
lution.

5.1 Stochastic Variableand Value Ordering

Let us consider first the case wdiriable ordering As previously discusse®CPs
variable ordering heuristic selects the conflief, a;) with the overall minimum
value of VarEval(a;,a;) = min{bd;;,bd;;}. If VarEval(a;,a;) is << than
VarEwval(ag,a;) for all other pending conflict§ay, a;), then the selected con-
flict (a;,a;) is clearly distinguished. However, if oth&far Eval(ay, a;) values

are instead quite “close” t& ar Eval(a;,a;), then the preferred choice is not
clear and selection of any of these conflicts may be reasenallle formalize
this notion by defining amcceptance band associated with the set of pending
resolvable conflicts, and by expanding thep ChooseResolvable-Conflicbu-
tine in the following three steps: (1) calculate the overalhimum valuew =
min{VarEval(a;,a;)}; (2) determine the subset of resolvable confligfs, SC =
{(ai,a;j) : w < VarEval((ai,a;)) < w1+ F)}, and (3) randomly select a con-
flict (ai, a;) in the setSC. In other words defines a range around the minimum
heuristic evaluation within which any differences in ewdlans are assumed to
be insignificant and non-informative. The smaller the vadtig, the higher the
assumed discriminatory power of the heuristic.

A similar approach can be taken fealue orderingdecisions. Lepc(a;,a;)
be the deterministic value ordering heuristic usedrlay. As previously noted,
pc(a;,aj) = a; = a; whenbd;; > bdj; anda; < a; otherwise. Recalling the
definition of bd, in the cases wher8 = T’Zggll‘;i’;(é?%Z‘;ﬁ’;@iﬁ is ~ 1, and

i157)s JSi

hencebd;; andbd;; are~ equal,pc(a;,a;) does not give clear guidance (both
choices appear equally good). Accordingly, we define thieahg randomized
version ofChoosePrecConstraint

rpelas, a;) = { pc(ai, aj) Ulo,1] ta< S
pc(ai, a;) : otherwise

wherea represents a threshold parametéf), 1] represents a random value in
the interval[0, 1] with uniform distribution function angc(a;, a;) is the comple-
ment of the choice advocated py(a;, ;). Under this random selection method, it
is simple to demonstrate that the probability of deviatiranf the choice of PCP’s
original value ordering heuristigc is (S — «) whenS > « and0 otherwise. If
« is set at0.5, then each ordering choice can be seen to be equally liketlyein
case whereS = 1 (i.e., the case where the heuristic yields the least sigmific
information).

5.2 The Optimization Algorithm

Figure 3 depicts the complete iterative sampling algorifomgenerating a near-
optimal solutions to SDST-JSSP instances. It is designeglgito invoke the
random version of thecp resolution procedure a fixed numbe¥/ Gx Restart)

of times, such that each restart provides a new opportuaipraduce a different
feasible solution with loweE,,,.... Similar to other CSP procedures for makespan
minimization (e.g., [9]), we adopt a multi-pass approadte turrent best value
Lbest of the feasible solution generator is repeatedly appliedalwe problems

with increasingly tighter upper bound constrainds ¢- Lb¢5!) on the completion
timesC}, of the jobs (Steps 5-13).

ISP(Problem, L5,22n, MaxRestart)
S < EmptySolutionProblem L9,
Sbest — S
Liest « Liha
count < 0
while (count < MaxRestart) do begin
S« PCPProblem, Lbst)
if (Limas (S) < Losak)
then begin
Sbest — S
10. L2t < Limasz(S)
11. end
12. count < count + 1
13. end-while
14. return(Spest)

©CoNoOORr~WNE

Figure 3: Iterative sampling algorithm

6 Experimental Analysis

In this section we propose a set of empirical evaluationb@ptpralgorithm. The
benchmark we have tackled in our experiments are propogé8jinand are avail-
able atht t p: / / cobweb. ecn. pur due. edu/ ~uzsoy/ Resear chGr oup.
In all benchmark instances, the setup tirags and the processing times at each
machine are values randomly computed in the intefa@00]. The job due dates
d; are assumed to be uniformly distributed on an intelvaharacterized by the
following two parameters: (1) the mean valpe= (1 — 7)E[Cinqz), Wherer
denotes the percentage of jobs that are expected to be taddiZ[8),,..] is the
expected makesp&nand (2) ther value, which determines the rangelofwhose
bounds are defined byu(1 — R/2), u(1 + R/2)]. All the benchmark instances
used in the present work are calculated usingilues of0.3 and0.6, correspond-
ing to loose and tight due dates respectively, &hdalues of0.5, 1.5 and 2.5,
respectively modelling different due date variation lsvel'he particular combi-
nation of ther and R values allows us to categorize all instances in six differen
benchmarks, namelyi305, 315, i325, 1605, 1615, i625. Each benchmark con-
tains160 randomly generated problem instances, divided in subedadstermined
by the different combinations of the number of machines abd jnvolved; more
precisely, all instances are synthesized by choosingr 20 jobs on5, 10, 15 or
20 machines, yielding a total & subclasses for each benchmark.

From what precedes, it is clear that this benchmark doestisfysthe triangu-
lar inequality, as all setup times are computed in the irtidiy 200] at random As
a consequence, the lterative Sampling Algorithm (see Ei@)ymay be prone to

6Calculated by estimating the total setup and processing téquired by all jobs at all machines
and dividing the result by the number of available machines.

10

disregard a number of valid solutions due to constraint@amitment. This fact

is relevant for theecpapproach, because the solving algorithm proceeds by check-
ing/imposing either the constraiat+ st;; < s; or the constraing; + st7; < s; for
each pair of activities and hence, the non-verification efttiangular inequality
may induce the procedure to post constraints that are sirahgn they have to
be during the solving process. For example, let us considteetactivitiesay, as
andag requiring the same resource, with processing times p, = p3 = 1 and
setup timeSS’tlg = sto; = 15, sty3 = stz = 3 and stog = stzg = 3. Let us
also suppose that the available scheduling horizon is g¢qual. In this case, the
triangle inequality for the setup times is clearly not da&ts under the previous
conditions ourrcpprocedure will surely fail (the firalominance conditiois ver-
ified, detecting the presence of an unresolvable conflictpitee the fact that the
solutiona; < az =< as does exist. In fact, the algorithm imposes one of the two
setup constraintst;y = sty; = 15 and15 > 10, the horizon constraiht Given
the algorithm’s reliance on the triangular inequality asption, it is susceptible
to two problems: (1) the probability of finding sub-optimalligions increases,
and (2) some existing solutions may be disregarded. Howeavalraightforward
probabilistic computation allows easy determination @f pihobability to have the
triangular inequality unsatisfied. This value is as lowt @8 %, which explains the
globally strong performance of the algorithm in practioee(below).

The above example clearly shows the main problem causedelyaih verifi-
cation of the triangular inequality, and to partially compate we opted to make
each new solution undergo a post-processing proceduréasitniChaining [20]
embedded in thecpralgorithm (Figure 2, ling). This post-processing procedure
acts to eliminate any possible constraint overcommitmtrgsare present in the
final solution, and thus can improve the solution quality &fg-shifting some of
the jobs. (See [20] for the details of tlhainingprocedure.)

Table 1: Summary of the experimental resultsderandomization, the table shows
the valuesA*¥9 and among square brackets the number of improved solutions.

Set | 200 (secs)| 400 (secs)| 800 (secs) Bests

i305 | 92.7[38] | 79.0[35] | 74.8[32] || 63.3[45]
i315 | 24.7[36] | 1.5[51] -7.0[59] | -9.0[70]
i325 | 20.7[24] | 4.1[37] 0.8 [53] 0.3 [55]
i605 | 24.5[29] | 15.3[28] | 11.07[29] || 10.0 [40]
i615 | 22.1[33] | 11.3[37] 6.3 [38] 5.4 [48]
i625 | 19.1[48] | 6.1[60] 1.2[66] 0.7 [77]

The main results of the experiments conducted are shownlite Taand Ta-
ble 2, which respectively present the results of the randalwevordering heuris-

"Even if the horizon were long enough to accommodate all thigities, there can still be cases
where the triangular inequality issue steers the constpaisting mechanism towards bad decisions:
sequencing:; directly beforeas (and thus allowing a setup time %) remains a bad choice.

11

tic (also calledr-randomization) and the random variable-ordering hdar{giso
called g-randomization). For every benchmark set (left columnge¢hcomplete
runs were performed, with increasing CPU time lint06, 400 and800 seconds -
this limit is the maximum CPU time that the scheduling pragedcan use to find a
solution. In addition, a common large value fofax Restart = 1000 is imposed

on all the runs. In each complete run, we measure (1) the ge@ercentage devi-
atiorf from the results in [S]A*9, considered as the best known results obtained
from this benchmark, and (2) the number of improved instarfcesquare brack-
ets). All runs have been performed using CMU Common Lispigar@0a on a
Dell Optiplex 740, 3.5 Ghz AMD Athlon CPU, under Linux UburO.

The experiments results shown in Table 1 have been condbgtedlecting
the following PcpP parameters valuesy = 0.5 and3 = 0. Though this analysis
is still preliminary, the results are interesting: the eoyeld scheduling procedure
finds a considerable amount of improved solutions in all €a8s the table shows,
the best performance seems to involve the benchmarks wiherealues of thek?
parameter, (i.e., the variation level of the due dates)eastgr than or equal tb5
(as explained in the first part of this section, the corredpanbenchmarks are
1315, 1325, 1615 andi625). One possible explanation for this behavior is the fol-
lowing. As the value of? increases, the jobs’ due dates are randomly chosen from
a wider set of uniformly distributed values; as far as#la® scheduling procedure
is conceived (see Figure 2), each solution is found by inmgpie deadlines of the
most “critical” jobs (i.e., the jobs characterized by thelieat deadlines), in other
words, our procedureaturally proceeds by accommodating the most critical jobs
first, by imposing “hard” deadline constraints, and secpmidbceeds towards the
“easier” task of accommodating the remaining jobs. On thereoy, when theR
values are lower, all the produced due dates tend to beadriéis all their values are
comparable. This circumstance may represent an obstagtmotbperformance in
the current version of the procedure, as it cannot alwaysagtee a low-lateness
scheduling for all the jobs by means of imposing hard coimgga Yet, since we
are running a random solving procedure, the overall resaltsbe improved by
considering the best solutions over the set of the performaes, as shown in the
column labelledBestsof Table 1.

Table 2 shows the results for random variable orderifwgahdomization) ob-
tained using the followingeCcpP parameters valuesi = 0 and = 0.2. As in the
case ofa-randomization, the best performance seems to involve ¢nehmarks
associated to higher values of tRgparameteri.5 and2.5). However, the most ev-
ident results of Table 2 in some sense appear to be complarpenith the results
of Table 1. In fact, Table 2 contains the best results obtbfaethe problems with

LIspP _ 1B

®The valueA®*? is the average over the set of valu¥) x —mas—maz whereL,, is the

ILRaz!]
best results from [5] and’>Z is the best results obtained with the algorith ISP shown guig 2.

In the particular case whete?,,,, = 0, we consider the valug00 x L.
®Due to the “most constrained first” approach used inrtbe procedure on conflict selection,
line 9.

12

Table 2: Summary of the experimental resultsfarandomization the table shows
the valuesA?9 and among square brackets the number of improved solutions.

Set | 200 (secs)| 400 (secs)| 800 (secs)|| Bests

i305 | 53.3[34] | 52.7[45] | 48.3[46] || 39.6 [53]
i315 | 26.2[28] | 10.7[38] | -2.8[51] || -8.3[60]
i325 | 12.8[21] | 6.7[25] | 4.0[39] | 1.9[44]
i605 | 8.4[37] 8.3 [37] 7.0 [35] 5.9 [47]
i615 | 8.0[36] | 6.0[42] | 4.8[43] || 3.4[52]
i625 | 8.6 [31] 5.8 [38] 2.6 [47] 1.3[59]

the smallest value of thR parameter R = 0.5, benchmark$305 andi605), while
Table 1 contains the best results obtained with the otheregabf theR (which
represent the best improvements over the results propng8).i

In Table 3 we report the best results obtained both fortlaead S randomiza-
tion procedures (the two columns with names Begtafd Bestsf)) and also the
best overall performance (the column with name BESTS). Vede a significant
improvement over the two partial results, in particular we @ble to improve 396
of the 960 total instances in the benchmark set.

Table 3: Summary of the main best results.

Set | Bestsfy) | Bestsp) BESTS
i305 | 63.3[45] | 39.6 [53] || 38.5[56]
i315 | -9.0[70] | -8.3[60] || -12.9[75]
i325 | 0.3[55] | 1.9[44] -0.1[61]
i605 | 10.0[40] | 5.9[47] 5.6 [52]
i615 | 5.4[48] | 3.4[52] || 2.8[64]
i625 | 0.7[77] | 1.3[59] -0.2[88]

As anticipated in Section 1, in order to fairly assess theatfii of the meta-
heuristic used in this work, it is also of great interest tsmpare such results with
those obtained through recent and more specialized digwsifor the SDST-JSSP
problem. To the best of our knowledge, the most recent andrésslts can be of-
ficially found in [13], even though they are related to tB85 benchmark set only.
However, the authors of [13] have kindly provided us with yte¢ unreleased re-
sults extended to all the benchmark sets [14].Accordingasé unreleased results,
the:305 set is solved down te-56.2[155], while thei315 set is solved with a score
of —25.9[134]. As for the remaining set$325, i605, i615 and 625, the final
scores are close te1.7[98], —7.8[154], —7.5[152] and —4.1[144], respectively.
Clearly, the previous results are very strong, especiailyhe:305 set, where our
procedure is outperformed. In the five remaining sets howdéve difference be-
tween the performances are less evident, which demorstre®verall validity of
our Precedence Constraint Posting meta-heuristic, edfyashen we consider the

13

fact that we are comparing a general solving procedure withdahoc algorithm,
specifically devised to tackle SDST-JSSP instances.

7 Discussion, Conclusions and Future Work

In this paper we have investigated the use of iterative sagpk a means of effec-
tively solving scheduling problems with sequence depensietup times. Building
from prior research [17, 9], the proposed iterative sangpityorithm uses an ex-
tended version of ther-PcPprocedure proposed in [17] as its core procedure.

A set of experiments have been performed on a set of wellestudindomly
generated benchmarks, with the purpose of demonstratmyelsatility of the
procedure, which is not tailored to the job-shop problem doeks not require any
exploration and/or tuning of SDST-JSSP-specific pararmeWe have shown that
adapting the original algorithm presented in [17] to thesstting problem version
with setup times, preserving the generality of the origedgbrithm, was a rather
straightforward process.

This procedure is to the best of our knowledge the only one @kploits a
Precedence Constraint Posting approach, as opposed tmrik&uctive search
which entails the synthesis of each solution systemajid¢adim origin to horizon.
Besides its versatility, key to the effectiveness of theeqmocedure are the newly
extendeddominance conditionfor pruning the search space and the new variable
and value ordering heuristics.

In the experiments conducted, the stochastic procedurefovasl to signifi-
cantly improve the reference results in a significant setsés. We have proposed
a first interpretation of the obtained results and we thirgt the proposed search
framework, despite its simplicity in comparison to othetstof-the-art strategies,
deserves further study and development. As first steps foiutwre work we will
explore the use of a larger set of parameters for our proeeaiud solve other in-
teresting and difficult benchmarks available in the curligertature. The problems
proposed in [8] provide one such challenge, where the cubest results can be
found in the recent work of [5, 21, 4]. A second step for futwark will be the
development of extended iterative sampling strategies $hrategy of interest is
an extension of our current core search procedure that viectdporate a limited
amount of backtracking.

Acknowledgments

CNR authors are partially supported by CNR under project IR8linds 2007), ESA (European
Space Agency) under the APSI initiative and by EU project 8&E (Call “SPA.2007.2.1.01 Space
Science”. Contract FP7.218815). Stephen F. Smith is stgxgbor part by the US Air Force Research
Laboratory under contract #FA8750-10-1-0132 and Carnldgiéon University Robotics Institute.

14

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Adams, E. Balas, and D. Zawack. The shifting bottl&m@ocedure for job shop scheduling.
Management Sciencd4(3):391-401, 1988.

A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyok survey of scheduling problems
with setup times or cost&uropean Journal of Operational Researd87(3):985-1032, 2008.

A. Allahverdi and H. Soroush. The significance of redgcsetup times/setup costSuropean
Journal of Operational Researcth87(3):978-984, 2008.

C. Artigues and D. Feillet. A branch and bound method foe fob-shop problem with
sequence-dependent setup timésnals OR159(1):135-159, 2008.

E. Balas, N. Simonetti, and A. Vazacopoulos. Job shogdaling with setup times, deadlines
and precedence constrainfeurnal of Schedulingl1(4):253-262, 2008.

P. Brucker, B. Jurisch, and B. Sievers. A branch and balgdrithm for the job-shop sched-
uling problem.Discrete Applied Mathematicd9(1-3):107-127, 1994.

P. Brucker, J. Lenstra, and A. R. Kan. Complexity of maehscheduling problemsAnn.
Discrete Math 1:343-362, 1977.

P. Brucker and O. Thiele. A branch & bound method for theagal-shop problem with se-
guence dependent setup-tim&R Spectruml8(3):145-161, 1996.

A. Cesta, A. Oddi, and S. F. Smith. A constraint-basedroeétfor project scheduling with time
windows. J. Heuristics 8(1):109-136, 2002.

C. Cheng and S. Smith. Generating Feasible Schedubier @omplex Metric Constraints. In
Proceedings 12th National Conference on Al (AAAI;:949P4.

R. Dechter, |. Meiri, and J. Pearl. Temporal constraietiworks.Atrtificial Intelligence 49:61—
95, 1991.

F. Focacci, P. Laborie, and W. Nuijten. Solving schéaaylproblems with setup times and
alternative resources. WIPS pages 92-111, 2000.

M. A. Gonzalez, C. R. Vela, and R. Varela. A Tabu Seardgofithm to Minimize Lateness
in Scheduling Problems with Setup Times. Rroceedings of the CAEPIA-TTIA 2009 13th
Conference of the Spanish Association on Atrtificial Ingelfice 2009.

M. A. Gonzalez, C. R. Vela, and R. Varela. Private Comination. 2009.

U. Montanari. Networks of Constraints: Fundamentalgerties and Applications to Picture
ProcessingInformation Sciences:95-132, 1974.

E. Nowicki and C. Smutnicki. An advanced tabu searctoailgm for the job shop problem.
Journal of SchedulingB(2):145-159, 2005.

A. Oddi and S. Smith. Stochastic Procedures for Gemgydieasible Schedules. Rroceed-
ings 14th National Conference on Al (AAAI-9@ages 308—-314, 1997.

I. Ovacik and R. Uzsoy. Exploiting shop floor status imi@tion to schedule complex job
shops.Journal of Manufacturing Systemt3(2):73-84, 1994.

I. Ovacik and R. UzsoyDecomposition Methods for Complex Factory Scheduling Rrob
Kluwer Academic Publishers, 1997.

N. Policella, A. Cesta, A. Oddi, and S. Smith. From Pdmsee Constraint Posting to Partial
Order SchedulesAl Communications20(3):163-180, 2007.

C.R. Vela, R. Varela, and M. A. Gonzalez. Local seancti genetic algorithm for the job shop
scheduling problem with sequence dependent setup tidoesnal of Heuristics2009.

15

