
Job Shop Scheduling with Setup Times: Exploring the
Applicability of a Constraint-based Iterative Sampling

Approach

Angelo Oddi1, Riccardo Rasconi1, Amedeo Cesta1, and Stephen F. Smith2

1 Institute of Cognitive Science and Technology, CNR, Rome, Italy
angelo.oddi,riccardo.rasconi,amedeo.cesta@istc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
sfs@cs.cmu.edu

Abstract

This paper presents a heuristic algorithm for solving a job-shop schedul-
ing problem with sequence dependent setup times (SDST-JSSP). The al-
gorithm relies on a core constraint-based search procedure, which gener-
ates a consistent ordering of activities requiring the sameresource by in-
crementally imposing precedence constraints on a temporally feasible so-
lution. Key to the effectiveness of the search procedure is aconflict sam-
pling method biased toward selection of most critical conflict and coupled
with a non-deterministic choice heuristic to guide the baseconflict resolu-
tion process. This constraint-based search is then embedded within a larger
iterative-sampling search framework to broaden search space coverage and
promote solution optimization. The efficacy of the overall heuristic algo-
rithm is demonstrated empirically on a set of previously studied job-shop
scheduling benchmark problems with sequence dependent setup times.

1 Introduction

This paper considers a variant of the job-shop scheduling problem with ready
times, deadlines andsequence dependentsetup times (SDST-JSSP). Similar prob-
lems are common in a semiconductor manufacturing environment [18, 19], and in
general, over the last ten years, there has been an increasing interest in solving
scheduling problems with setup times [2, 3]. This fact stemsmainly from the
observation that in various real-word industry or service environments there are
tremendous savings when setup times are explicitly considered in scheduling deci-
sions.

In this paper we propose an heuristic algorithm for solving this problem. At
the algorithm’s core is a constraint-based search procedure, which generates a con-
sistent ordering of activities requiring the same resourceby imposing precedence
constraints between pairs of such activities and incrementally extending a tempo-
rally feasible solution. The algorithm is an extension of the stochastic version
of the SP-PCP procedure proposed in [17] (which does not consider sequence-
dependent setups), and bases its solving capabilities on a general meta-heuristic

Proceedings of the 17th International RCRA workshop (RCRA 2010):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Bologna, Italy, June 10–11, 2010

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

that has proven to be quite effective in generating competitive results despite its
simplicity. The resulting procedure is then embedded within a largeriterative-
samplingsearch framework [9] to broaden search space coverage and promote so-
lution optimization.

We observe that within the current literature there are other examples of pro-
cedures for solving scheduling problems with setup times, which are extensions of
counterpart procedures targeted at solving the same (or similar) scheduling prob-
lem without setup times. This is the case in the work [8], which relies on the results
in [6]. It is also the case in the more recent work of [21, 13], which proposes effec-
tive heuristic procedures based on genetic algorithms and local search. These local
search procedures extend a procedure proposed in [16] for the classical job-shop
scheduling problem to the setup times case. Such neighborhood structure relies
upon a set of properties based on the concept of critical path, defined on top of a
disjunctive graph representation of the problem. We can also note the work of [5],
which extends the well-knowshifting bottleneckprocedure [1] to the SDST-JSSP
case. Finally, we mention the work of [5, 13] which presents the reference results
for a previously studied benchmark set of SDST-JSSP problems [18] that are used
for direct comparison in the experimental section of this paper.

The procedure we propose is not unique in its reliance on the constraint-solving
paradigm, another example is described in [12], which introduces a more elaborate
procedure based on the integration of two different extensions to the classic job
shop problem. A strength of our procedure is its simplicity in spite of its effective-
ness in solving a set of difficult instances of SDST-JSSPs.

The paper is organized as follows. An introductory section defines the refer-
ence SDST-JSSP problem and its representation. A central section describes the
core constraint-based procedure and the related iterativesampling search strategy.
An experimental section describes the performance of our algorithm and the most
interesting results are explained. Some conclusions and a discussion on the future
work end the paper.

2 The Scheduling Problem with Setup Times

The job-shop scheduling problem with sequence dependent setup times (SDST-
JSSP) involves synchronizing the use of a set of resourcesR = {r1, . . . , rm} to
perform a set ofn activitiesA = {a1, . . . , an} over time. The set of activities
is partitioned into the set ofmj jobs J = {J1, . . . , Jnj}. The processing of a
job Jk requires the execution of a strict sequence ofm activitiesai ∈ Jk, and the
execution of each activityai is subject to the following constraints: (1)resource
availability: each activityai requires the exclusive use of a single resourcerai for
its entire duration; nopreemptionis allowed and all the activities included in a job
Jk require distinct resources; (2)processing time constraints: eachai has a fixed
processing timepi such thatei − si = pi, where the variablessi andei represent
the start and end time ofai; (3) sequence dependent setup times: for each resource

2

r, the valuestrij represents the setup time between two generic activitiesai andaj
requiring the same resourcer, such thatei+strij ≤ sj. According to the most com-
mon approach in literature, we consider verified the so-called triangle inequality
[8, 4], that is, for any three activitiesai, aj , ak requiring the same resource, the
inequalitystrij ≤ strik + strkj holds; (4)job release and due dates: each JobJk has
a release daterdk, which specifies the earliest time that the any activity inJk can
be started, and a due datedk, which designates the time by which all activities in
Jk have to be completed. The due date is not a mandatory constraint and can be
violated (see below).

A solutionS = {S1, S2, . . . , Sn} is an assignmentSi to the activities start-
timessi such that all the above constraints are satisfied. LetCk the completion time
for the jobJk, themaximum latenessLmax is the valueLmax = max1≤k≤nj{Ck−
dk}. An optimal solution S∗ is a solutionS with minimum valueLmax. The
proposed problem is stronglyNP-hard, because it is an extension of the known
problem1|ri|Lmax [7].

3 A CSP Representation

There are different ways to formulate this problem as aConstraint Satisfaction
Problem(CSP) [15]. In analogous way to [10, 17], we treat the problemas one
of establishingprecedence constraintsbetween pairs of activities that require the
same resource, so as to eliminate all possible conflicts in resource use. This repre-
sentation is close to the idea ofdisjunctive graphinitially used for the classical job
shop scheduling without setup times and also used in the extended case of setup
times [8, 5, 21, 4].

LetG(AG, J,X) be a graph where the set of verticesAG contains all the activ-
ities of the problem together with two dummy activities,a0 andan+1, representing
respectively the beginning (reference) and the end (horizon) of the schedule.J is
a set of directed edges(ai, aj) representing the precedence constraints among the
activities (job precedence constraints) and are weighted with the processing timepi
of the origin activityai of the edge. The set of undirected edgesX represents the
disjunctive constraintsamong the activities requiring the same resourcer; there is
an edge for each pair of activitiesai andaj requiring the same resourcer and the
related label represents the set of possible ordering betweenai andaj : ai � aj or
aj � ai.

Hence, in CSP terms, a decision variablexijr is defined for each pair of activ-
ities ai andaj requiring resourcer, which can take one of two values:ai � aj or
aj � ai. It is worth noting that in the current case we have to take in to account
the presence of sequence dependent setup time, which must beincluded when an
activity ai is executed on the same resourcebeforeanother activityaj .

For example, as we will see in the next sections, in case the setup times verify
the triangle inequality, previous decisions on thexijr can be represented as the two
temporal constraints:ei + strij ≤ sj (ai � aj) or ej + strji ≤ si (aj � ai).

3

To support the search for a consistent assignment to the set of decision vari-
ablesxijr, for any SDST-JSSP we define the directed graphGd(V,E), called
distance graph. The set of nodesV represents time points, that is, the origin point
tp0 (the reference point of the problem) together the start and end time points,
si and ei, of each activityai). The set of edgesE represents all the imposed
temporal constraints, that is, precedences, durations andsetup times. All the con-
straints have the forma ≤ tpj − tpi ≤ b and for each constraint specified in
SDST-JSSP, there are two weighted edges in the graphGd(V,E). The first one
is directed fromtpi to tpj with weight b and the second one is directed fromtpj
to tpi with weight −a. The graphGd(V,E) corresponds to aSimple Temporal
Problemand its consistency can be efficiently determined via shortest path compu-
tations onGd (see [11] for more details on the STP). Thus, a search for a solution
to SDST-JSSPcan proceed by repeatedly adding new precedence constraints into
Gd(V,E) and recomputing shortest path lengths to confirm thatGd(V,E) remains
consistent. Given a Simple Temporal Problem, the problem isconsistent if and
only if no closed paths with negative length (or negative cycles) are contained in
the graphGd. Let d(tpi, tpj) (d(tpj , tpi)) designate the shortest path length in
graphGd(V,E) from nodetpi to nodetpj (nodetpj to nodetpi), the following
constraint−d(tpj , tpi) ≤ tpj − tpi ≤ d(tpi, tpj) holds [11]. Hence, themini-
malallowed distance betweentpj andtpi is−d(tpj , tpi) and the maximal distance
is d(tpi, tpj). In particular, any time pointtpi is associated to a givenfeasibility
interval [lbi, ubi], which determines the set of feasible values fortpi with respect
to the origin pointtp0. Given thatdi0 is the length of the shortest path onGd

from the time pointtpi to the origin pointtp0 andd0i is the length of the short-
est path from the origin pointtp0 to the time pointtpi, the interval[lbi, ubi] of
time values associated to the generic time variabletpi is computed on the graph
Gd as the interval[−d(tpi, tp0), d(tp0, tpi)] (see [11]). In particular, the two set
of assignment valuesSlb = {−d(tp1, tp0),−d(tp2, tp0), . . . ,−d(tpn, tp0)} and
Sub = {d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the variablestpi represent the
respectively, the so-calledearliest-time solutionand latest-time solutionfor the
given STP.

4 A Precedence Constraint Posting Procedure

The proposed procedure for solving instances of SDST-JSSP is an extension of the
SP-PCPscheduling procedure (Shortest Path-based Precedence Constraint Posting)
proposed in [17], which utilizes shortest path informationin Gd(V,E) for guiding
the search process. Similarly to the originalSP-PCPprocedure, shortest path infor-
mation can be used in two ways to enhance the search process. First, it is possible
to define newdominance conditionswith respect to [17] whichpropagateprob-
lem constraints and identify unconditional decisions for promoting early pruning
of alternatives in presence of setup times.

The concepts ofslack(ei, sj) andco-slack(ei, sj) (complementary slack) play

4

Figure 1:slack(ei, sj) = d(ei, sj)− strij Vs. co-slack(ei, sj) = −d(sj, ei)− strij

a central role in the definition of the new dominance conditions. Given two ac-
tivities ai, aj and the related interval of distances[−d(sj , ei), d(ei, sj)]

1 and
[−d(si, ej), d(ej , si)]

2 in the graphGd, these two concepts are defined as follows
(see Figure 1):

• slack(ei, sj) = d(ei, sj) − strij is the difference between the maximal dis-
tanced(ei, sj) and the setup timestrij. Hence, it provides a measure of the
degree ofsequencing flexibilitybetweenai andaj 3 taking into account the
setup time constraintei + strij ≤ sj . If slack(ei, sj) < 0, then the ordering
ai � aj is not feasible.

• co-slack(ei, sj) = −d(sj, ei)− strij is the difference between the minimum
possible distance betweenai andaj, −d(si, ej), and the setup timestrij; if
co-slack(ei, sj) ≥ 0 (in Figure 1 is represented anegativeco-slack), then
there is no need to separateai andaj , as the setup time constraintei+strij ≤
sj is already satisfied.

For any pair of activitiesai andaj that are competing for the same resource
r, the new dominance conditions describing the four possiblecases of conflict are
defined as follows:

1. slack(ei, sj) < 0 ∧ slack(ej , si) < 0
2. slack(ei, sj) < 0 ∧ slack(ej , si) ≥ 0 ∧ co-slack(ej , si) < 0
3. slack(ei, sj) ≥ 0 ∧ slack(ej , si) < 0 ∧ co-slack(ei, sj) < 0
4. slack(ei, sj) ≥ 0 ∧ slack(ej , si) ≥ 0

Condition1 represents anunresolvable conflict. There is no no way to orderai
andaj taking into account the setup timesstrij andstrji, without inducing a negative
cycle in the graphGd(V,E). When Condition1 is verified the search has reached
an inconsistent state.

1between the end-timeei of ai and the start-timesj of aj
2between the end-timeej of aj and the start-timesi of ai
3Intuitively, the higher is the degree ofsequencing flexibility, the larger is the set of feasible

assignments to the start-times ofai andaj

5

Conditions2, and 3, alternatively, distinguishuniquely resolvable conflicts.
Here, there is only one feasible ordering ofai andaj and the decision of which
constraint to post is thus unconditional. In the case of Condition 2, only aj � ai
leavesGd(V,E) consistent. It is worth noting that the presence of the condition
co-slack(ej , si) < 0 means that the minimal distance between the end timeej and
the start timesi is smaller than the minimal required setup timestrji. Hence, we
still need to impose the constraintej + strji ≤ si. Condition3 is similar and only
ai � aj is feasible. Finally, Condition4 designates a class ofresolvable conflicts.
In this case, both orderings ofai andaj remain feasible and it is necessary to make
achoice.

The second way in which shortest path information is exploited is in the defini-
tion of variable andvalueordering heuristics for selecting and resolving conflicts
in the set characterized by Condition4. As indicated earlier,slack(ei, sj) and
slack(ej , si) provide measures of the degree ofsequencing flexibilitybetweenai
andaj in this context. Thevariable ordering heuristic attempts to focus first on
the conflict with the least amount of sequencing flexibility (i.e., the conflict that
is closest to previous Condition1). More precisely, the conflict(ai, aj) with the
overall minimum value ofV arEval(ai, aj) = min{bdij , bdji} is always selected
for resolution, where4:

bdij =
slack(ei,sj)√

S
, bdji =

slack(ej ,si)√
S

and

S =
min{slack(ei, sj), slack(ej , si)}

max{slack(ei, sj), slack(ej , si)}

The value ordering heuristic used to resolve a selected conflict(ai, aj) simply
chooses the precedence constraint that retains the most sequencing flexibility. Specif-
ically, ai � aj is selected ifbdij > bdji andaj � ai otherwise.

4.1 The PCP Algorithm

Figure 2 gives the basic overallPCPsolution procedure, which starts from an empty
solution (Step 1), where the graphGd is initialized according to Section 3 and for
each jobJk an upper bound constraintdk + Lmax is imposed on the completion
time Ck. The PCP algorithm shown in Figure 2 analyses all such pairs(ai, aj)
(i.e., thedecision variablesof the corresponding CSP problem), and decides their
valuesin terms of precedence ordering (i.e.,ai � aj or aj � ai, see Section 3), on
the basis of the response provided by thedominance conditions.

In broad terms, the procedure in Figure 2 interleaves the application of dom-
inance conditions (Steps 4 and 7) with variable and value ordering (Steps 10 and

4The
√
S bias is introduced to take into account cases where a first conflict with the overall

min{slack(ei, sj), slack(ej , si)} has a very largemax{slack(ei, sj), slack(ej , si)}, and a sec-
ond conflict has two shortest path values just slightly larger than this overall minimum. In such
situations, it is not clear which conflict has the least sequencing flexibility.

6

PCP(Problem,Lmax)
1. S ← InitSolution(Problem, Lmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableConflict(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseResolvableConflict(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. Prec← ChoosePrecConstraint(S, C)
15. PostConstraint(S, Prec)
16. end
17. end
18.end-loop
19.return(S)

Figure 2: Basic PCP algorithm

14 respectively) and updating of the solution graphGd (Steps 8 and 15) to con-
duct a single pass through the search tree. At each cycle, a propagation step is
performed (Step 3) by the functionPropagate(S), which propagates the effects
of posting a new solving decision (i.e., a constraint) in thegraphGd. In particular,
Propagate(S) updates the shortest path distances on the graphGd. We observe
that within the main loop of the procedurePCPshown in Figure 2 new constraints
are added incrementally (one-by-one) toGd, hence the complexity of this step5 is
in the worst caseO(n2).

A solution is found when thePCPalgorithm finds a feasible assignments to the
activities start times, such that all resource conflicts areresolved (i.e., all the setup
timesstij are satisfied), we introduce the following proposition.

Proposition 1. A solutionS is found when none of the four dominance conditions
is verified onS.

This fact can be provedby contradiction. Let us suppose that thePCPprocedure
exits with success (none of the four dominance conditions isverified onS) and
that at least two sequential activitiesai andaj , requiring the same resourcer, do
not satisfy the setup constraintsei + strij ≤ sj and ej + strji ≤ si. Since the
triangle inequalityholds for the input problem, it is guaranteed that the lengthof

5Let us suppose we have a consistentGd, in the case we add a new edge(tpx, tpy) with
weight wxy, if wxy + d(tpy, tpx) ≥ 0 (Gd remains consistent, because no negative cycles are
added, see Section 3), then the generic shortest path distance can be updated asd(tpi, tpj) =
min{d(tpi, tpj), d(tpi, tpx) + wxy + d(tpy, tpj).}

7

thedirect setup transitionai � aj between two generic activitiesai andaj is the
shortest possible (i.e., noindirect transitionai ; ak ; aj having a shorter overall
length can exist). This fact is relevant for thePCP approach, because the solving
algorithm proceeds by checking/imposing either the constraint ei + strij ≤ sj or
the constraintej + strji ≤ si for each pair of activities. Let us suppose that at least
two activitiesai andaj do not satisfy the setup constraintsei+strij ≤ sj (a similar
proof is given forej + strji ≤ si). Hence,strij > sj − ei and together the condition
sj−ei ≥ −d(sj, ei) (which holds becauseGd is consistent, see Section 3) we have
strij > −d(sj, ei), that isco-slack(ei, sj) < 0, which contradicts that none of the
four dominance conditions is verified onS.

To wrap up, when none of the four dominance conditions is verified and thePCP

procedure exits with success, theGd graph represents a consistent Simple Tempo-
ral Problem and, as described in Section 3, one possible solution of the problem
is the so-calledearliest-time solution, such thatSest = {Si = −d(tpi, tp0) : i =
1 . . . n}.

5 An Iterative Sampling Procedure

ThePCPresolution procedure, as defined above, is a deterministic (partial) solution
procedure with no recourse in the event that an unresolved conflict is encountered.
To provide a capability for expanding the search in such cases without incurring the
combinatorial overhead of a conventional backtracking search, in the following two
sections we define: (1) a random counterpart of our conflict selection heuristic (in
the style of [17]), providing both stochastic variable and value ordering heuristics,
and (2) an iterative sampling search framework for optimization that embeds the
stochastic procedure.

This choice is motivated by the observation that in many cases systematic back-
tracking search can explore large sub-trees without findingany solution. On the
other hand, if we compare the whole search tree created by a systematic search
algorithm with the non systematic tree explored by repeatedly restarting a ran-
domized search algorithm, we see that the randomized procedure is able to reach
“different and distant” leaves in the search tree. The latter property could be an ad-
vantage when problem solutions are uniformly distributed within the set of search
tree leaves interleaved with large sub-trees which do not contain any problem so-
lution.

5.1 Stochastic Variable and Value Ordering

Let us consider first the case ofvariable ordering. As previously discussed,PCP’s
variable ordering heuristic selects the conflict(ai, aj) with the overall minimum
value ofV arEval(ai, aj) = min{bdij , bdji}. If V arEval(ai, aj) is << than
V arEval(ak, al) for all other pending conflicts(ak, al), then the selected con-
flict (ai, aj) is clearly distinguished. However, if otherV arEval(ak, al) values

8

are instead quite “close” toV arEval(ai, aj), then the preferred choice is not
clear and selection of any of these conflicts may be reasonable. We formalize
this notion by defining anacceptance bandβ associated with the set of pending
resolvable conflicts, and by expanding thePCP ChooseResolvable-Conflictrou-
tine in the following three steps: (1) calculate the overallminimum valueω =
min{V arEval(ai, aj)}; (2) determine the subset of resolvable conflictsSC,SC =
{(ai, aj) : ω ≤ V arEval((ai, aj)) ≤ ω(1 + β)}, and (3) randomly select a con-
flict (ai, aj) in the setSC. In other words,β defines a range around the minimum
heuristic evaluation within which any differences in evaluations are assumed to
be insignificant and non-informative. The smaller the valueof β, the higher the
assumed discriminatory power of the heuristic.

A similar approach can be taken forvalue orderingdecisions. Letpc(ai, aj)
be the deterministic value ordering heuristic used byPCP. As previously noted,
pc(ai, aj) = ai � aj whenbdij > bdji andaj � ai otherwise. Recalling the

definition of bd, in the cases whereS =
min{slack(ei,sj),slack(ej ,si)}
max{slack(ei,sj),slack(ej ,si)} is ≈ 1, and

hencebdij and bdji are≈ equal,pc(ai, aj) does not give clear guidance (both
choices appear equally good). Accordingly, we define the following randomized
version ofChoosePrecConstraint:

rpc(ai, aj) =

{

pc(ai, aj) : U [0, 1] + α < S
pc(ai, aj) : otherwise

whereα represents a threshold parameter,U [0, 1] represents a random value in
the interval[0, 1] with uniform distribution function andpc(ai, aj) is the comple-
ment of the choice advocated bypc(ai, aj). Under this random selection method, it
is simple to demonstrate that the probability of deviating from the choice of PCP’s
original value ordering heuristicpc is (S − α) whenS ≥ α and0 otherwise. If
α is set at0.5, then each ordering choice can be seen to be equally likely inthe
case whereS = 1 (i.e., the case where the heuristic yields the least significant
information).

5.2 The Optimization Algorithm

Figure 3 depicts the complete iterative sampling algorithmfor generating a near-
optimal solutions to SDST-JSSP instances. It is designed simply to invoke the
random version of thePCP resolution procedure a fixed number (MaxRestart)
of times, such that each restart provides a new opportunity to produce a different
feasible solution with lowerLmax. Similar to other CSP procedures for makespan
minimization (e.g., [9]), we adopt a multi-pass approach; the current best value
Lbest
max of the feasible solution generator is repeatedly applied tosolve problems

with increasingly tighter upper bound constraints (dk + Lbest
max) on the completion

timesCk of the jobs (Steps 5-13).

9

ISP(Problem,L(0)
max, MaxRestart)

1. S ← EmptySolution(Problem, L(0)
max)

2. Sbest ← S

3. Lbest
max ← L

(0)
max

4. count← 0
5. while (count ≤MaxRestart) do begin
6. S ← PCP(Problem,Lbest

max)
7. if (Lmax(S) < Lbest

max)
8. then begin
9. Sbest ← S

10. Lbest
max ← Lmax(S)

11. end
12. count← count + 1
13. end-while
14. return(Sbest)

Figure 3: Iterative sampling algorithm

6 Experimental Analysis

In this section we propose a set of empirical evaluations of thePCPalgorithm. The
benchmark we have tackled in our experiments are proposed in[18], and are avail-
able athttp://cobweb.ecn.purdue.edu/∼uzsoy/ResearchGroup.
In all benchmark instances, the setup timesstrij and the processing timespi at each
machine are values randomly computed in the interval[1, 200]. The job due dates
di are assumed to be uniformly distributed on an intervalI characterized by the
following two parameters: (1) the mean valueµ = (1 − τ)E[Cmax], whereτ
denotes the percentage of jobs that are expected to be tardy and E[Cmax] is the
expected makespan6, and (2) theR value, which determines the range ofI, whose
bounds are defined by:[µ(1 − R/2), µ(1 + R/2)]. All the benchmark instances
used in the present work are calculated usingτ values of0.3 and0.6, correspond-
ing to loose and tight due dates respectively, andR values of0.5, 1.5 and 2.5,
respectively modelling different due date variation levels. The particular combi-
nation of theτ andR values allows us to categorize all instances in six different
benchmarks, namely:i305, i315, i325, i605, i615, i625. Each benchmark con-
tains160 randomly generated problem instances, divided in subclasses determined
by the different combinations of the number of machines and jobs involved; more
precisely, all instances are synthesized by choosing10 or 20 jobs on5, 10, 15 or
20 machines, yielding a total of8 subclasses for each benchmark.

From what precedes, it is clear that this benchmark does not satisfy the triangu-
lar inequality, as all setup times are computed in the interval [1, 200] at random. As
a consequence, the Iterative Sampling Algorithm (see Figure 3) may be prone to

6Calculated by estimating the total setup and processing time required by all jobs at all machines
and dividing the result by the number of available machines.

10

disregard a number of valid solutions due to constraint overcommitment. This fact
is relevant for thePCPapproach, because the solving algorithm proceeds by check-
ing/imposing either the constraintei+strij ≤ sj or the constraintej+strji ≤ si for
each pair of activities and hence, the non-verification of the triangular inequality
may induce the procedure to post constraints that are stronger than they have to
be during the solving process. For example, let us consider three activitiesa1, a2
anda3 requiring the same resource, with processing timesp1 = p2 = p3 = 1 and
setup timesst12 = st21 = 15, st13 = st31 = 3 andst23 = st32 = 3. Let us
also suppose that the available scheduling horizon is equalto 10. In this case, the
triangle inequality for the setup times is clearly not satisfied; under the previous
conditions ourPCPprocedure will surely fail (the firstdominance conditionis ver-
ified, detecting the presence of an unresolvable conflict) despite the fact that the
solutiona1 � a3 � a2 does exist. In fact, the algorithm imposes one of the two
setup constraintsst12 = st21 = 15 and15 > 10, the horizon constraint7. Given
the algorithm’s reliance on the triangular inequality assumption, it is susceptible
to two problems: (1) the probability of finding sub-optimal solutions increases,
and (2) some existing solutions may be disregarded. However, a straightforward
probabilistic computation allows easy determination of the probability to have the
triangular inequality unsatisfied. This value is as low as4.04%, which explains the
globally strong performance of the algorithm in practice (see below).

The above example clearly shows the main problem caused by the non verifi-
cation of the triangular inequality, and to partially compensate we opted to make
each new solution undergo a post-processing procedure similar to Chaining [20]
embedded in thePCPalgorithm (Figure 2, line6). This post-processing procedure
acts to eliminate any possible constraint overcommitmentsthat are present in the
final solution, and thus can improve the solution quality by left-shifting some of
the jobs. (See [20] for the details of theChainingprocedure.)

Table 1: Summary of the experimental results forα-randomization, the table shows
the values∆avg and among square brackets the number of improved solutions.

Set 200 (secs) 400 (secs) 800 (secs) Bests
i305 92.7 [38] 79.0 [35] 74.8 [32] 63.3 [45]
i315 24.7 [36] 1.5 [51] -7.0 [59] -9.0 [70]
i325 20.7 [24] 4.1 [37] 0.8 [53] 0.3 [55]
i605 24.5 [29] 15.3 [28] 11.07 [29] 10.0 [40]
i615 22.1 [33] 11.3 [37] 6.3 [38] 5.4 [48]
i625 19.1 [48] 6.1 [60] 1.2 [66] 0.7 [77]

The main results of the experiments conducted are shown in Table 1 and Ta-
ble 2, which respectively present the results of the random value-ordering heuris-

7Even if the horizon were long enough to accommodate all the activities, there can still be cases
where the triangular inequality issue steers the constraint posting mechanism towards bad decisions:
sequencinga1 directly beforea2 (and thus allowing a setup time of15) remains a bad choice.

11

tic (also calledα-randomization) and the random variable-ordering heuristic (also
calledβ-randomization). For every benchmark set (left column) three complete
runs were performed, with increasing CPU time limit -200, 400 and800 seconds -
this limit is the maximum CPU time that the scheduling procedure can use to find a
solution. In addition, a common large value forMaxRestart = 1000 is imposed
on all the runs. In each complete run, we measure (1) the average percentage devi-
ation8 from the results in [5]∆avg, considered as the best known results obtained
from this benchmark, and (2) the number of improved instances (in square brack-
ets). All runs have been performed using CMU Common Lisp version 20a on a
Dell Optiplex 740, 3.5 Ghz AMD Athlon CPU, under Linux Ubuntu8.0.

The experiments results shown in Table 1 have been conductedby selecting
the following PCP parameters values:α = 0.5 andβ = 0. Though this analysis
is still preliminary, the results are interesting: the employed scheduling procedure
finds a considerable amount of improved solutions in all cases. As the table shows,
the best performance seems to involve the benchmarks where the values of theR
parameter, (i.e., the variation level of the due dates) is greater than or equal to1.5
(as explained in the first part of this section, the corresponding benchmarks are
i315, i325, i615 andi625). One possible explanation for this behavior is the fol-
lowing. As the value ofR increases, the jobs’ due dates are randomly chosen from
a wider set of uniformly distributed values; as far as thePCPscheduling procedure
is conceived (see Figure 2), each solution is found by imposing the deadlines of the
most “critical” jobs (i.e., the jobs characterized by the earliest deadlines)9; in other
words, our procedurenaturally proceeds by accommodating the most critical jobs
first, by imposing “hard” deadline constraints, and secondly proceeds towards the
“easier” task of accommodating the remaining jobs. On the contrary, when theR
values are lower, all the produced due dates tend to be critical, as all their values are
comparable. This circumstance may represent an obstacle togood performance in
the current version of the procedure, as it cannot always guarantee a low-lateness
scheduling for all the jobs by means of imposing hard constraints. Yet, since we
are running a random solving procedure, the overall resultscan be improved by
considering the best solutions over the set of the performedruns, as shown in the
column labelledBestsof Table 1.

Table 2 shows the results for random variable ordering (β-randomization) ob-
tained using the followingPCPparameters values:α = 0 andβ = 0.2. As in the
case ofα-randomization, the best performance seems to involve the benchmarks
associated to higher values of theR parameter (1.5 and2.5). However, the most ev-
ident results of Table 2 in some sense appear to be complementary with the results
of Table 1. In fact, Table 2 contains the best results obtained for the problems with

8The value∆avg is the average over the set of values100 × LISP
max

−LB
max

|LB
max

|
, whereLB

max is the

best results from [5] andLISP
max is the best results obtained with the algorith ISP shown in Figure 2.

In the particular case whereLB
max = 0, we consider the value100× LISP

max
9Due to the “most constrained first” approach used in thePCPprocedure on conflict selection,

line 9.

12

Table 2: Summary of the experimental results forβ-randomization the table shows
the values∆avg and among square brackets the number of improved solutions.

Set 200 (secs) 400 (secs) 800 (secs) Bests
i305 53.3 [34] 52.7 [45] 48.3 [46] 39.6 [53]
i315 26.2 [28] 10.7 [38] -2.8 [51] -8.3 [60]
i325 12.8 [21] 6.7 [25] 4.0 [39] 1.9 [44]
i605 8.4 [37] 8.3 [37] 7.0 [35] 5.9 [47]
i615 8.0 [36] 6.0 [42] 4.8 [43] 3.4 [52]
i625 8.6 [31] 5.8 [38] 2.6 [47] 1.3 [59]

the smallest value of theR parameter (R = 0.5, benchmarksi305 andi605), while
Table 1 contains the best results obtained with the other values of theR (which
represent the best improvements over the results proposed in [5]).

In Table 3 we report the best results obtained both for theα andβ randomiza-
tion procedures (the two columns with names Bests(α) and Bests(β)) and also the
best overall performance (the column with name BESTS). We observe a significant
improvement over the two partial results, in particular we are able to improve 396
of the 960 total instances in the benchmark set.

Table 3: Summary of the main best results.

Set Bests(α) Bests(β) BESTS
i305 63.3 [45] 39.6 [53] 38.5 [56]
i315 -9.0 [70] -8.3 [60] -12.9 [75]
i325 0.3 [55] 1.9 [44] -0.1 [61]
i605 10.0 [40] 5.9 [47] 5.6 [52]
i615 5.4 [48] 3.4 [52] 2.8 [64]
i625 0.7 [77] 1.3 [59] -0.2 [88]

As anticipated in Section 1, in order to fairly assess the efficacy of the meta-
heuristic used in this work, it is also of great interest to compare such results with
those obtained through recent and more specialized algorithms for the SDST-JSSP
problem. To the best of our knowledge, the most recent and best results can be of-
ficially found in [13], even though they are related to thei305 benchmark set only.
However, the authors of [13] have kindly provided us with theyet unreleased re-
sults extended to all the benchmark sets [14].According to these unreleased results,
thei305 set is solved down to−56.2[155], while thei315 set is solved with a score
of −25.9[134]. As for the remaining setsi325, i605, i615 and i625, the final
scores are close to−1.7[98], −7.8[154], −7.5[152] and−4.1[144], respectively.
Clearly, the previous results are very strong, especially on thei305 set, where our
procedure is outperformed. In the five remaining sets however, the difference be-
tween the performances are less evident, which demonstrates the overall validity of
our Precedence Constraint Posting meta-heuristic, especially when we consider the

13

fact that we are comparing a general solving procedure with an ad-hoc algorithm,
specifically devised to tackle SDST-JSSP instances.

7 Discussion, Conclusions and Future Work

In this paper we have investigated the use of iterative sampling as a means of effec-
tively solving scheduling problems with sequence dependent setup times. Building
from prior research [17, 9], the proposed iterative sampling algorithm uses an ex-
tended version of theSP-PCPprocedure proposed in [17] as its core procedure.

A set of experiments have been performed on a set of well-studied randomly
generated benchmarks, with the purpose of demonstrating the versatility of the
procedure, which is not tailored to the job-shop problem anddoes not require any
exploration and/or tuning of SDST-JSSP-specific parameters. We have shown that
adapting the original algorithm presented in [17] to the scheduling problem version
with setup times, preserving the generality of the originalalgorithm, was a rather
straightforward process.

This procedure is to the best of our knowledge the only one that exploits a
Precedence Constraint Posting approach, as opposed to the constructive search
which entails the synthesis of each solution systematically from origin to horizon.
Besides its versatility, key to the effectiveness of the core procedure are the newly
extendeddominance conditionsfor pruning the search space and the new variable
and value ordering heuristics.

In the experiments conducted, the stochastic procedure wasfound to signifi-
cantly improve the reference results in a significant set of cases. We have proposed
a first interpretation of the obtained results and we think that the proposed search
framework, despite its simplicity in comparison to other state-of-the-art strategies,
deserves further study and development. As first steps for our future work we will
explore the use of a larger set of parameters for our procedure and solve other in-
teresting and difficult benchmarks available in the currentliterature. The problems
proposed in [8] provide one such challenge, where the current best results can be
found in the recent work of [5, 21, 4]. A second step for futurework will be the
development of extended iterative sampling strategies. One strategy of interest is
an extension of our current core search procedure that wouldincorporate a limited
amount of backtracking.

Acknowledgments
CNR authors are partially supported by CNR under project RSTL (funds 2007), ESA (European
Space Agency) under the APSI initiative and by EU project ULISSE (Call “SPA.2007.2.1.01 Space
Science”. Contract FP7.218815). Stephen F. Smith is supported in part by the US Air Force Research
Laboratory under contract #FA8750-10-1-0132 and CarnegieMellon University Robotics Institute.

14

References
[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop scheduling.

Management Science, 34(3):391–401, 1988.

[2] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov.A survey of scheduling problems
with setup times or costs.European Journal of Operational Research, 187(3):985–1032, 2008.

[3] A. Allahverdi and H. Soroush. The significance of reducing setup times/setup costs.European
Journal of Operational Research, 187(3):978–984, 2008.

[4] C. Artigues and D. Feillet. A branch and bound method for the job-shop problem with
sequence-dependent setup times.Annals OR, 159(1):135–159, 2008.

[5] E. Balas, N. Simonetti, and A. Vazacopoulos. Job shop scheduling with setup times, deadlines
and precedence constraints.Journal of Scheduling, 11(4):253–262, 2008.

[6] P. Brucker, B. Jurisch, and B. Sievers. A branch and boundalgorithm for the job-shop sched-
uling problem.Discrete Applied Mathematics, 49(1-3):107–127, 1994.

[7] P. Brucker, J. Lenstra, and A. R. Kan. Complexity of machine scheduling problems.Ann.
Discrete Math, 1:343–362, 1977.

[8] P. Brucker and O. Thiele. A branch & bound method for the general-shop problem with se-
quence dependent setup-times.OR Spectrum, 18(3):145–161, 1996.

[9] A. Cesta, A. Oddi, and S. F. Smith. A constraint-based method for project scheduling with time
windows.J. Heuristics, 8(1):109–136, 2002.

[10] C. Cheng and S. Smith. Generating Feasible Schedules under Complex Metric Constraints. In
Proceedings 12th National Conference on AI (AAAI-94), 1994.

[11] R. Dechter, I. Meiri, and J. Pearl. Temporal constraintnetworks.Artificial Intelligence, 49:61–
95, 1991.

[12] F. Focacci, P. Laborie, and W. Nuijten. Solving scheduling problems with setup times and
alternative resources. InAIPS, pages 92–111, 2000.

[13] M. A. González, C. R. Vela, and R. Varela. A Tabu Search Algorithm to Minimize Lateness
in Scheduling Problems with Setup Times. InProceedings of the CAEPIA-TTIA 2009 13th
Conference of the Spanish Association on Artificial Intelligence, 2009.

[14] M. A. González, C. R. Vela, and R. Varela. Private Communication. 2009.

[15] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to Picture
Processing.Information Sciences, 7:95–132, 1974.

[16] E. Nowicki and C. Smutnicki. An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling, 8(2):145–159, 2005.

[17] A. Oddi and S. Smith. Stochastic Procedures for Generating Feasible Schedules. InProceed-
ings 14th National Conference on AI (AAAI-97), pages 308–314, 1997.

[18] I. Ovacik and R. Uzsoy. Exploiting shop floor status information to schedule complex job
shops.Journal of Manufacturing Systems, 13(2):73–84, 1994.

[19] I. Ovacik and R. Uzsoy.Decomposition Methods for Complex Factory Scheduling Problems.
Kluwer Academic Publishers, 1997.

[20] N. Policella, A. Cesta, A. Oddi, and S. Smith. From Precedence Constraint Posting to Partial
Order Schedules.AI Communications, 20(3):163–180, 2007.

[21] C. R. Vela, R. Varela, and M. A. González. Local search and genetic algorithm for the job shop
scheduling problem with sequence dependent setup times.Journal of Heuristics, 2009.

15

