

5th International Workshop on
Model Driven Development of
Advanced User Interfaces
(MDDAUI 2010)

Bridging between User Experience and UI Engineering

Proceedings

April 10, 2010
Atlanta, Georgia, USA

organized at the 28th ACM Conference on
Human Factors in Computing Systems (CHI 2010)

Editors:
Jan Van den Bergh (Hasselt University, Belgium)

Stefan Sauer (s-lab, University of Paderborn, Germany)

Kai Breiner (Fraunhofer IESE, TU Kaiserslautern, Germany)

Heinrich Hußmann (University of Munich, Germany)

Gerrit Meixner (German Research Center for Artificial Intelligence, Germany)

Andreas Pleuss (Lero, University of Limerick, Ireland)

Table of Contents

Preface

Accepted Workshop Papers

Self-Explanatory User Interfaces by Model-Driven Engineering 1
Alfonso García Frey, Gaëlle Calvary and Sophie Dupuy-Chessa

Multimodal User Interface Model for Runtime Distribution 5
Dirk Roscher, Marco Blumendorf and Sahin Albayrak

An Interactive Process Meta Model for Runtime User Interface Generation and Adaptation 9
Thomas Schlegel

Automated Optimization of UIs for Screens with Limited Resolution 13
Sevan Kavaldjian, David Raneburger, Roman Popp, Michael Leitner, Jürgen Falb and
Hermann Kaindl

Evaluation of User Interface Adaptation Strategies in the Process of Model-Driven User Interface 17
Development
Kai Breiner, Volkmar Gauckler, Marc Seissler and Gerrit Meixner

Model-Based Usability Evaluation and Analysis of Interactive Techniques 21
Jean-François Ladry, Philippe Palanque, David Navarre and Eric Barboni

A Saliency Model Predicts Fixations in Web Interfaces 25
Jeremiah Still and Chris Masciocchi

Embedding Requirements in Design Rationale to Deal Explicitly with User eXperience and 29
Usability in an “Intensive” Model-Based Development Approach
Célia Martinie, Jean-François Ladry, David Navarre, Philippe Palanque and Marco Winckler

A Global Process for Using Model-Driven Approaches in User Interface Design 33
Sybille Caffiau and Patrick Girard

E-Composer: Enabling the Composition of Mobile Assistants 37
Ilhan Aslan, Dyuti Menon, Robert Brauer, Kristin Albert and Christian Maugg

End-User Customization of Multi-Device Ubiquitous User Interfaces 41
Fabio Paternò and Giuseppe Zichitella

Aspect-Oriented UI Modeling with State Machines 45
Gefei Zhang

Model-Driven User Interface Development by Means of the Eclipse Modeling Project 49
Andreas Wolff and Peter Forbrig

Workshop Report and Poster

MDDAUI 2010 Workshop Report 53
Jan Van den Bergh, Gerrit Meixner and Stefan Sauer

MDDAUI 2010 Workshop Poster 57

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
Re-publication of material from this volume requires permission by the copyright owners. This volume is published by its editors.

Preface

In the history of software development, the abstraction level on which software is
described has been increasing all the time. The latest trend is to specify software using
(platform-independent) models, which are then gradually and (semi-) automatically
transformed into executable applications for different platforms and target devices. The
goal of the 5th Workshop on Model-Driven Development of Advanced User Interfaces
(MDDAUI 2010) is to discuss the use of (semi-) formal models in user interface
development. What is the right way of creative design and interaction design working
with user interface models? Can models help in coping with innovative interaction
techniques?

The workshop is a platform for discussing the modelling of advanced user interfaces,
such as interfaces supporting complex interactions, visualizations, multimedia
representations, multimodality, adaptability or customization. It is intended to contribute
to a better integration of knowledge from the Human-Computer Interaction community
and the Software Engineering community. We are striving for development methods
which support the model-driven development of user interfaces with great user
experience and optimal usability. Which kinds of models are required to achieve this
goal? How can different kinds of models be flexibly combined? How can individual and
informal design skills be integrated into the process? Can (and shall) we integrate the
tools designers are accustomed to use nowadays? Is it possible to do user-centred design
based on models?

The MDDAUI program committee has selected 13 high-quality papers from the
submitted contributions in a selective peer review process. These papers present novel,
innovative, and exciting work in this dynamic area of research and development. They
are intended to present the current state of the art, fuel discussions at the workshop, and
possibly raise new research directions.

We produced and included a workshop report in these proceedings that summarizes the
vivid discussions at the workshop. We also included the workshop poster that was
presented at the CHI 2010 conference.

We thank all workshop participants for their valuable contributions to an interesting
MDDAUI workshop at CHI 2010. We are looking forward to the next edition of our
workshop series.

Jan Van den Bergh
Stefan Sauer
Kai Breiner
Heinrich Hußmann
Gerrit Meixner
Andreas Pleuss

Workshop Organizers

Jan Van den Bergh (Hasselt University, Expertise Centre for Digital Media, Belgium).

Stefan Sauer (University of Paderborn, s-lab – Software Quality Lab, Germany)

Kai Breiner (Fraunhofer-Institute for Experimental Software Engineering (IESE) and TU
Kaiserslautern, Software Engineering Research Group, Germany)

Heinrich Hußmann (University of Munich, Media Informatics Group, Germany)

Gerrit Meixner (German Research Center for Artificial Intelligence, Center for Human-
Machine Interaction, Germany)

Andreas Pleuss (Lero, University of Limerick, Ireland)

Program Committee

Kai Breiner, Fraunhofer-Institute for Experimental Software Engineering, Germany
Gaelle Calvary, University Joseph Fourier, France
Peter Forbrig, University of Rostock, Germany
Phil Gray, University of Glasgow, GB
Heinrich Hußmann, University of Munich, Germany
Youn-kyung Lim, KAIST, South-Korea
Kris Luyten, Hasselt University, Belgium
Gerrit Meixner, German Research Center for Artificial Intelligence, Germany
Philippe Palanque, University Paul Sabatier, France
Fabio Paternò, C.N.R. Pisa, Italy
Andreas Pleuss, Lero, Ireland
Angel Puerta, RedWhale Corp., USA
Harald Reiterer, University of Konstanz, Germany
Stefan Sauer, University of Paderborn, Germany
Orit Shaer, Wellesley College, USA
Gerd Szwillus, University of Paderborn, Germany
Jan Van den Bergh, Hasselt University, Belgium
Jean Vanderdonckt, Université Catholique de Louvain, Belgium
Detlef Zuehlke, German Research Center for Artificial Intelligence, Germany

Additional Reviewers

Florian Geyer
David Navarre
Dawid Ostrowski
Marco Winckler

Self-Explanatory User Interfaces by Model-Driven
Engineering

Alfonso Garcı́a Frey, Gaëlle Calvary and Sophie Dupuy-Chessa
University of Grenoble, CNRS, LIG

385, avenue de la Bibliothèque, 38400, Saint-Martin d’Hères, France
{Alfonso.Garcia-Frey, Gaelle.Calvary, Sophie.Dupuy}@imag.fr

ABSTRACT
Modern User Interfaces (UI) must deal with the increasing
complexity of applications as well as new features such as
the capacity of UIs to be dynamically adapted to the con-
text of use. The complexity does not necessarily imply a
better quality. Thus, it becomes necessary to make users un-
derstand the UIs. This paper describes an on-going research
about Self-Explanatory User Interfaces (SE-UI) by Model-
Driven Engineering (MDE). Self-explanation makes refer-
ence to the capacity of a UI to provide the end-user with
information about its rationale (which is the purpose of the
UI), its design rationale (why is the UI structured into this
set of workspaces?, what’s the purpose of this button?), its
current state (why is the menu disabled?) as well as the evo-
lution of the state (how can I enable this feature?). Explana-
tions are provided by embedded models. We explore model-
driven engineering to understand why and how this approach
can lead us to overcome shortcomings of UI quality success-
fully.

Author Keywords
Self-Explanatory User Interfaces, UI quality, help, design ra-
tionale, model-driven engineering, model transformation.

ACM Classification Keywords
H.5.2 User Interfaces: Theory and method.

INTRODUCTION
Motivation
On the one hand, most software is too hard to use.“Modern
applications such as Microsft Word have many automatic
features and hidden dependencies that are frequently helpful
but can be mysterious to both novice and expert users” [15].
Users may require assistance while interacting with a User
Interface (UI). Ideally, the UI must guide the user in accom-
plishing a task the application was designed for. The user
can request help about functionality, features, or any infor-
mation about the process of the task that is being performed.
The UI must be able to provide the correct answer, giving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4 - 9, 2009, Boston, Massachusetts, USA.

Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

the necessary information to the user in an appropiate for-
mat. This can take place at any time in the whole interaction
process between both the user and the UI. However, modern
applications cover only a few questions the user may have, or
provide a general help instead of a clear and concise answer
to a given question. Furthermore, help is created ad-hoc, this
is, it has been previously generated and it’s not able to cover
new questions at run-time because they were not considered
by the designers. UI design problems are not covered at all
because the designers are not aware of them.

Moreover, the UI must deal with users having different levels
of expertise. Even many long-time users never master com-
mon procedures [6] and in other cases, users must work hard
to figure out each feature or screen [6].

The problem is greater for Plastic UIs [5, 19]. Plastic UIs
demand dynamic adaptation also for help systems because
from now on, developers can’t afford to consider all the dif-
ferent contexts of use one by one coding all possible ad-hoc
solutions by hand. This complicates the prediction of the re-
sult and the final quality, making difficult the design choices.

As a result, dynamic solutions are required also for help sys-
tems. These help systems must now be aware of the context
of use (user, platform and environment), the task, the struc-
ture and presentation of the UI.

MDE and MB-UIDE approaches
On the other hand, Model-Driven Engineering (MDE) exists
since long time ago and its recently applied to the engineer-
ing of UIs. It consists in describing different features of UIs
(e.g., task, domain, context of use) in models from which a
final UI is produced [18] according to a forward engineering
process. MDE of UI is assumed to be superior to the previ-
ous Model-Based User Interface Development Environment
versions since it makes the UI design knowledge explicit,
and external for instance as model-to-model transformations
and model-to-code compilation rules [2]. However, neither
Model-Based User Interface Development Environment au-
tomatic generated UIs nor final UIs produced by MDE have
enough quality, forcing designers to manually tweak the gen-
erated UI code [2]. Design knowledge can not be always ex-
plicitly represented into the models, but it has a potential to
help final users. Some models as for instance the task model
have this potential explicitly represented, and they can con-
tribute also to guide and help the user.

1

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

1

This research will study how Self-Explanatory User Inter-
faces (SE-UIs) can be built using the MDE. A SE-UI is a
UI with the capacity of understanding its own rationale and
consequently having the abilities of answer questions about
it. We aim to provide a method for creating SE-UIs analyz-
ing the relations between the different levels of abstraction
in our MDE-compliant approach for developing UIs as well
as the different models presented into the UsiXML specifi-
cation and their relations. Complementary views of the UI
are also considered into this research.

The rest of the paper presents the related work and our con-
tribution to the field.

RELATED WORK
The two major areas involved in our Self-Explanation ap-
proach are MDE and UI quality. The related works of the
next two sections allow us to set up the bases of our contri-
bution.

MDE
The Cameleon Reference Framework [4] presented a MDE-
compliant approach for developing UIs consisting of four
different levels of abstraction: Task Model, Abstract User
Interface, Concrete User Interface and Final User Interface.
These levels correspond, in terms of MDE, to Computing-
Independent Model (CIM), Platform-Independent Model
(PIM), Platform-Specific Model (PSM) and the code lev-
el respectively. In the Model-Driven Development (MDD)
many transformation engines for UI development have been
created. Several researches have addressed the mapping
problem for supporting MDD of UIs: Teresa [14], ATL [10],
oAW [10] and UsiXML [17] among others. A comparative
analysis can be found in [9]. Semantic Networks have been
also covered for UIs [8]. The Meta-UI concept was first-
ly proposed in [7] and deeply explored later in many other
works. In one of them [16], the concept of Mega-UI is stud-
ied introducing Extra-UIs, allowing a new degree of control
by the use of views over the (meta-)models. We will focus
on it later as these views are relevant for the explanation of
the UI and consequently for the end-user’s comprehension.

UIs Quality
Help systems have been extensively studied. One of the most
relevant works is the Crystal application framework [15]. In-
spired by the Whyline research [11], “Crystal” provides an
architecture and interaction techniques that allow program-
mers to create applications that let the user ask a wide va-
riety of questions about why things did and did not happen,
and how to use the related features of the application with-
out using natural language [15]. Even if this approach does
not cover the capacity of adaptation to different contexts of
use, it represents an important improvement in quality for
the end-user in terms of achieved value. Quality can be im-
proved regarding not only the achieved value, but also from
the perspectives of software features and interaction experi-
ences [12]. The integration of Usability Evaluation Methods
(UEM) [13] into a MDA process has been proved to be fea-
sible in [1]. In particular, the evaluation at the PIM or PSM
should be done in an interactive way until these models have

the required level of usability. Different UEMs (e.g., heuris-
tic evaluation, usability test, etc) can be applied iteratively
until the concerned models have the required level of usabil-
ity. A set of ergonomic criteria for the evaluation of Human-
Computer Interaction (HCI) can be found in [3].

This research improves quality of help systems allowing a
new range of questions. Adaptation to the context of use
is now considered since SE-UIs understand their own ratio-
nale.

CONTRIBUTION
End-User’s point of view
The goal of this work is to study how SE-UI can be built by
MDE. One of the ways to explore SE-UI involves the task
model and its rationale. A task model describes the user’s
task in terms of objectives and procedures. Procedures re-
cursively decompose tasks into subtasks until one or more
elementary tasks are reached, i.e., tasks which would be de-
composable into physical actions only (“press the button”).
A task model is well-defined then by the following terms:

Nodes Containing abstract tasks

Leaves Special nodes containing elementary tasks

Branches Expressing logical and temporal relations be-
tween tasks, subtasks and elementary tasks

The explicit information contained into the branches can
help and guide the end-user answering questions related to
different aspects of the UI. For instance, regarding the ra-
tionale of the UI questions like which is the purpose of the
UI? can be successfully answered; also, questions as why
is the UI structured into this set of workspaces? or what is
the purpose of this button? can be explained understanding
the relations of the design rationale. The current state of the
UI and consequently the state of the application, can trigger
a different kind of questions to the end-user as for instance
why is the menu disabled?, as well as questions related to
the overall progress of a task or questions about the evolu-
tion of the current state of the application as for example
how can I enable this feature? Answers for all of them can
be obtained exploring tasks and subtasks (nodes), elemen-
tary tasks (leaves) and relations between them (branches) in
the task model.

This work will study also how different views of the model
centered in extra-UIs, can help the end-user to understand
the UI. A extra-UI [16] is a UI which represents and gives
the control of a UI through a model. It is in a sense the UI of
the configuration of a UI. These views can improve the end-
user’s comprehension as they are relevant for the explanation
of the UI. Extra-UIs provide a new degree of control over the
(meta-)models of the UI; both designer and end-user can see
and understand how tasks are decomposed and how tasks
are represented in a specific UI. In other words, how the UI
is interfacing the interaction between the application and the
own user. Designers can express this interaction in the form
of relations between tasks and elements of the final UI with
the method explained in the next section.

2

2

Figure 1. Association between UI and a task model.

Designer’s point of view
This work will explore a method to provide designers with
a technique to add Self-Explanation to final UIs, specifying
how end-user’s tasks are directly related to the final UI level.
The method consists in four steps:

1. Specify the final UI of the model-compliant application
that it will be extended with SE functionality.

2. Define the task model of the application.

3. Specify the relations between both the task model and the
final UI.

4. A new final SE-UI will be generated from these relations,
adding SE functionality in real-time.

To support this method, we will supply designers with an
editor in which tasks models and final UIs can be created.
Both of them will coexist at the same time into the same
workspace inside this editor. Once the task model and the
final UI are represented, the designer will draw direct con-
nections between elements of the task model and elements
of the final UI, linking for instance, widgets with subtasks,
as we can see in figure 1. Here, the task called Specify iden-
tity is visually connected to a group of widgets, containing
two labels and two input fields. Then, the elementary task
Specify first name which is also a subtask, is connected to a
new subgroup of two widgets, one label and one input field.

Figure 2. Help message derived from connections in Figure 1.

The purpose of the method is to allow designers to speci-
fy direct relations between tasks and different elements of
the final UI. The main advantage for designers is that from
now on, there is no need of a deeply comprehension of
all the model-to-model and model-to-code transformations
between all the four levels of MDE. A visual representa-
tion gives direct information about these relations because
connections are explicitly represented in a visual render, in
which the final UI and the task model levels share the same
workspace.

To allow end-user questions this study will consider a help
button (figure 2) as a first approach. Other approaches can be
considered as well. By clicking this help button, the applica-
tion enters in a help mode where the end-user can ask about
different elements of the UI just by clicking on them. An-
swers will be generated in real-time in different ways. The
following section illustrates an example of this procedure.

Answering questions
This work will study also how different questions can be
answered. The first approach will associate a description to
each element (tasks, relations, widgets, etc.) of figure 1. Oth-
er approaches like semantic networks [8] can be considered
in the future. If the end-user asks himself, for instance, Why
is the OK button disabled?, by clicking on this button using
the special help mode, the system can say that the task is not
completed. In figure 2 the message is dynamically derived
from the relations of figure 1. For an edit box, the applica-
tion can say You must fill in + Description of the task, where
your personal information is the description. A more spe-
cific information can be generated exploring the task model.
For instance, we can travel all the subtasks of the uncomplet-
ed task. In the example before, we can answer also that the
user needs to fill in the first name and the last name, because
these subtasks are both uncompleted.

CONCLUSION
This research takes a significant step forward in the develop-
ment of high quality UIs. It explores MDE of UIs to provide
Self-Explanation at run-time, analysing the four levels of the
MDE-compliant approach for developing UIs and the dif-
ferent models presented into the UsiXML specification and
their relations. Complementary views of the UI are explored

3

3

in order to exploit these models, explaining the UI itself and
giving to the user a new dimension of control by these views.
This opens the work on End-User programming.

ACKNOWLEDGMENTS
This work is funded by the european ITEA UsiXML project.

REFERENCES
1. S. Abraho, E. Iborra, and J. Vanderdonckt. Maturing

Usability, chapter Usability Evaluation of User
Interfaces Generated with a Model-Driven Architecture
Tool, pages 3–32. Human-Computer Interaction Series.
Springer-Verlag, 2008.

2. N. Aquino. Adding flexibility in the model-driven
engineering of user interfaces. In EICS ’09: Proceedings
of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems, pages 329–332, New
York, NY, USA, 2009. ACM.

3. J. C. Bastien and D. L. Scapin. Ergonomic criteria for
the evaluation of human-computer interfaces. 0
RT-0156, INRIA, 06 1993.

4. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
L. Bouillon, and J. Vanderdonckt. A unifying reference
framework for multi-target user interfaces. Interacting
With Computers Vol. 15/3, pages 289–308, 2003.

5. B. Collignon, J. Vanderdonckt, and G. Calvary.
Model-driven engineering of multi-target plastic user
interfaces. In Proc. of 4th International Conference on
Autonomic and Autonomous Systems ICAS 2008, pages
7–14, 2008. D. Greenwood, M. Grottke, H. Lutfiyya, M.
Popescu (eds.), IEEE Computer Society Press, Los
Alamitos, Gosier, 16-21 March 2008.

6. M. Corporation. Microsoft inductive user interface
guidelines, 2001.
http://msdn.microsoft.com/en-us/library/ms997506.aspx.

7. J. Coutaz. Meta-user interfaces for ambient spaces. In
Tamodia’06, 2006. 8 pages.

8. A. Demeure, G. Calvary, J. Coutaz, and J. Vanderdonckt.
Towards run time plasticity control based on a semantic
network. In Fifth International Workshop on Task
Models and Diagrams for UI design (TAMODIA’06),
pages 324–338, 2006. Hasselt, Belgium, October 23-24,
2006.

9. J. González Calleros, A. Stanciulescu, J. Vanderdonckt,
D. J.P., and M. Winckler. A comparative analysis of
tranformation engines for user interface development. In
Proc. of the 4th International Workshop on
Model-Driven Web Engineering (MDWE 2008), pages
16–30, Tolouse, France, 2008. CEUR Workshop
Proceedings.

10. F. Jouault and I. Kurtev. Transforming models with atl.
In Satellite Events at the MoDELS 2005 Conference,
volume 3844 of Lecture Notes in Computer Science,
pages 128–138, Berlin, 2006. Springer Verlag.

11. A. J. Ko and B. A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 151–158, New York, NY, USA, 2004. ACM.

12. E. Lai-Chong Law, E. T. Hvannberg, and G. Cockton.
Maturing Usability. Quality in Software, Interaction and
Value. Human-Computer Interaction Series.
Springer-Verlag, 2008.

13. E. L. Law, E. T. Hvannberg, G. Cockton, P. Palanque,
D. Scapin, M. Springett, C. Stary, and J. Vanderdonckt.
Towards the maturation of IT usability evaluation
(MAUSE). In Human-Computer Interaction -
INTERACT 2005, pages 1134–1137. 2005.

14. G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw. Eng.,
30(8):507–520, 2004.

15. B. A. Myers, D. A. Weitzman, A. J. Ko, and D. H.
Chau. Answering why and why not questions in user
interfaces. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 397–406, New York, NY, USA, 2006. ACM.

16. J.-S. Sottet, G. Calvary, J.-M. Favre, and J. Coutaz.
Megamodeling and Metamodel-Driven Engineering for
Plastic User Interfaces: Mega-UI. 2007.

17. J. Vanderdonckt. A MDA-Compliant environment for
developing user interfaces of information systems. In
Advanced Information Systems Engineering, pages
16–31. 2005.

18. J. Vanderdonckt. Model-driven engineering of user
interfaces: Promises, successes, failures, and challenges.
In Proc. of 5th Annual Romanian Conf. on
Human–Computer Interaction ROCHI’2008, (Iasi,
18–19 September 2008), pp. 1—10. Matrix ROM,
Bucarest, 2008.

19. J. Vanderdonckt, J. Coutaz, G. Calvary, and
A. Stanciulescu. Multimodality for Plastic User
Interfaces: Models, Methods, and Principles, chapter 4,
pages 61–84. 2008. D. Tzovaras (ed.), Lecture Notes in
Electrical Engineering, Springer-Verlag, Berlin, 2007.

4

4

A Multimodal User Interface Model For Runtime
Distribution

Dirk Roscher, Marco Blumendorf, Sahin Albayrak
DAI-Labor, TU-Berlin

Ernst-Reuter-Platz 7, D-10587 Berlin, Germany
{Dirk.Roscher, Marco.Blumendorf, Sahin.Albayrak}@DAI-Labor.de

ABSTRACT
Smart environments provide numerous networked
interaction resources (IRs) allowing users to interact with
services in many different situations via many different
(combinations of) IRs. In such environments it is necessary
to adapt the user interface dynamically at runtime to each
new situation to allow an ongoing interaction in changing
contexts. Our approach allows to dynamically select the
combination of IRs that are suitable for the interaction in
the current context at any time. The decision is based on
information from a user interface model executed at
runtime and a context model gathering information about
the environment. The user interface model supports the
CARE properties to specify flexible multimodal interaction.

Author Keywords
User interface distribution, model-based development,
executable models

INTRODUCTION
Smart environments provide numerous networked
interaction resources (IRs) allowing users to interact with
services in many different situations via many different
(combinations of) IRs. In such environments user interfaces
(UIs) need to take a changing context of use into account
[6]. This makes the alteration of the used IRs and thus the
dynamic (re-) combination of the resources at runtime an
important aspect.

In this work, we first present the requirements to
dynamically adjust the used IRs at runtime (section 3).
Afterwards, our model-based approach targeting the
requirements is described. A UI model reflects the various
UI elements as well as the relations between them in terms
of CARE properties [7] to achieve multimodal interaction
(section 4). At runtime, the modeled UI description in
combination with information about the available IRs from
an additional context model is used to continuously adjust

the UI distribution according to the current situation
(section 5). Before we describe our approach, related work
is presented in the next section.

RELATED WORK
Model-based development is a promising approach in the
context of multimodal UIs. According to the classification
of the Cameleon Reference Framework proposed in [6] UI
models feature four levels of abstraction: Concepts and
Task Model, Abstract, Concrete and Final User Interface.
Based on this general framework, several User Interface
Description Languages (UIDLs) have been designed. The
most relevant with respect to the goals of this work are
UsiXML [11] and TERESA [2]. Their goal is to develop
multimodal UIs but they only support a fixed set of IRs,
whereas we aim to support sets of IRs changing at runtime.

The distribution of UIs has also been a topic of various
research activities, ranging from the characterization of
distributed UIs [8] to development support for specifying
distributed UIs [12]. The approach of Elting and
Hellenschmidt [9] supports simple conflict resolution
strategies when distributing output across graphical UIs,
speech syntheses and virtual characters. The main goal is
the semantic processing of input and output in distributed
systems. The dynamic redistribution and definition of
dynamic UI models has thus not been the focus of the
approach. The I-AM (Interaction Abstract Machine) system
[1] presents a software infrastructure for distributed
migratable UIs. It provides a middleware for the dynamic
coupling of IRs to form a unified interactive space. The
approach supports dynamic distribution across multiple
heterogeneous platforms but does not support the arbitrary
recombination of IRs and is limited to graphical output as
well as mouse and keyboard input.

Our approach utilizes the modeled design information at
runtime to dynamically adjust the combination of the used
IRs. In the following we first describe the requirements that
need to be fulfilled to allow the distribution of multimodal
UIs at runtime. Afterwards, we show how these
requirements are implemented by our approach.

DYNAMIC UI DISTRIBUTION
To support UI (re-) distribution at runtime several
requirements needs to be fulfilled, that are derivated from
the abstract architecture depicted in Figure 1:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Pre-proceedings of the 5th International Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience
and UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying
permitted for private and academic purposes. Re-publication of material from this
volume requires permission by the copyright owners. This volume is published by
its editors.

5

1. A user interface description is needed that supports
different variants of multimodal interaction and benefits
from the advantages of specific modalities and modality
combinations. Information about the supported modality
combinations need to be available at runtime.

2. To combine IRs from different platforms, the user
interface description needs to address single IRs.

3. Environment information must be gathered and kept up
to date (e.g. IRs, users and their positions).

4. An instance that incorporates information about the UI
and the environment is required which determines the most
appropriate combination of IRs at any time.

5. The combination of arbitrary IRs from different
platforms also requires a mechanism that allows to control
IRs independently from each other.
The first two requirements are fulfilled by our multimodal
UI model with different presentations and input possibilities
as described in the next subsection. Afterwards we show
how this model is used to create multimodal UIs by
selecting the most appropriate combination of IRs
(requirements 3 to 5).

Figure 1: Abstract architecture for distributing UIs.

MULTIMODAL EXECUTABLE UI MODEL
The distribution of UIs at runtime requires certain
information about the UI at runtime (part of requirement 1
and 2). To achieve this, our approach is based on the notion
of executable models that combine the static design
information, execution logic and runtime state information
of the UI [4]. This allows to execute and observe their
status at runtime as well as to access design information.

Our set of metamodels for specifying distributable
multimodal UIs follows the Cameleon reference
Framework [6] and thus we distinguish tasks and concepts,
abstract interface, concrete interface and final interface as
also done in TERESA and UsiXML (see Figure 2). To
show how to develop a UI with our set of models, we
explain the short example presented in Figure 2. The
example is an excerpt from our cooking assistant and
models a recipe selection scenario. The presentation of the
recipe is possible via different modality combinations and
can be confirmed via several input styles.

We first specify the workflow of the example with a task
model (we use an extended version of Concurrent Task
Trees for the definition [10]) and thus start with the
definition of the “ConfirmSelection”-task (T1:
ConfirmRecipe). Afterwards, the abstract interaction(s) for
each task is specified by choosing between OutputOnly,
FreeInput, Choice and Command (similiar to UsiXML and
TERESA) or ComplexInteractor to aggregate several
abstract interactions. So we choose one abstract interaction
object for the presentation of the selected recipe
(A1:OutputOnly) and one for the confirmation
(A2:Selection). The abstract interactors are connected via
mappings to the “ConfirmSelection”-task (see Figure 2).
This is one huge difference between transformational
approaches like UsiXML and the executable models
approach. Because of the parallel execution of all models
(task, abstract and concrete), the information from all
models is available and does not need to be transformed
from one model into another. Each model only contains the
information of its abstraction level and information from
different models is connected via mappings.

Figure 2: Model structure and interaction example.

In the next step the concrete interaction is specified by
using the concrete input and concrete output model. The
separation of input and output is another difference to other
approaches but allows the independent addressing of single
IRs (requirement 2). However, it requires to handle IRs
with combined input and output like touchscreens. By
utilizing the CARE properties, developers can specify their
intention on how to combine the different modalities
(requirement 1). Defining multimodal relations with the
CARE-properties is similar to the ICARE software
components [5]. In contrast to ICARE however, the
components and thus the multimodal relationships are not
statically related at design time but can be freely configured
between arbitrary modalities through the integration in the
interaction metamodel and evaluated at runtime.

To present the recipe (A1:OutputOnly) the developer
chooses two different presentation possibilities: one for
graphical output (Picture and Text) and one with additional
natural language output (Audio). Each possibility is
aggregated by a complex interactor and the
Complementarity-attribute means that the children
complement each other and must be presented together.

6

Both possibilities are also aggregated by a complex
interactor with an Equivalence-attribute, marking both
possibilities as equivalent. The confirmation of the recipe
(A2:Selection) has only a graphical presentation (Button)
which is directly mapped to the abstract interactor.

Figure 3: Overview of the runtime architecture.

Beneath the used possibilities, the concrete output model
supports SignalOutput-elements to include more limited
modalities like blinking lights or haptic feedback
(vibration) and DynamicOutput to create multiple output,
e.g. for a dynamically created number of elements.

To confirm the recipe, the developer provides three
possibilities (Gesture, Speech and Pointing), which are
aggregated by a complex interactor with an Equivalence-
attribute, defining that they all can be used to provide the
same input to the system (Figure 2). The next section
describes how the modeled description is used within a
runtime architecture to deliver flexible multimodal
interaction.

RUNTIME DISTRIBUTION
Based on the needed components and the requirements that
need to be fulfilled to realize the anticipated dynamic
distribution at runtime, we developed and implemented the
runtime architecture depicted in Figure 3. The different
components and their behavior are described next.

On the execution of the set of models, the central task
model calculates a set of active tasks. This triggers the
mappings that are connected with each task and results in
the activation of the mapped abstract interactors. The
mappings connected to the abstract interactors are in turn
triggered and the result is a set of active complex CUI
elements in the concrete input and output model provided to
the distribution component.

The second information provider is a context model that
includes different observers to get information about the
available IRs (requirement 3). IRs are connected to our
runtime system via so called channels [3]. One channel is
responsible for establishing and maintaining the connection
to one IR (if needed via a network). This includes not only
the registration within the context model but also the
capability to receive and send information to the IRs. This

concept allows the independent addressing of the IRs over
platform borders (requirement 4).

We have implemented different channels which connect
various interaction technologies, including browsers for
graphical output through an AJAX-based channel
implementation or connect automatic speech recognition
via Dragon Natural Speaking and Text-To-Speech engines
by implementing the Media Resource Control Protocol
(MRCP). All models (user interface and context) are
implemented with the Eclipse Modelling Framework
(EMF). The direct mapping of EMF to Java supports the
bridging of model and the distribution component on the
implementation level which allows the distribution
component to observe the models for state changes.

The distribution component is notified whenever a new set
of concrete interactors is activated, and matches the
supported modalities to the available modalities of the
available IRs by adhering to the following goals:

Input: support as many (equivalent) input resources as
possible while considering the specified CARE relations
between the input elements. This aims at leaving the control
about the used IRs to the user by supporting a wide range.

Output: find the most suitable combination of output
resources while considering the specified CARE relations
between the output elements. Distributed output thus aims
at utilizing the most suitable combination of IRs to convey
the UI. The selection of IRs depends on their capabilities
and context information like the resource location.

The algorithm first determines the IRs that can be utilized
by the user. Therefore the available IRs are queried from
the context model together with information about the
premises and localization and direction information. Based
on the type of the IRs, the algorithm calculates if the
resources are currently usable. E.g. displays are considered
usable when they are within the vicinity of a user and
haptical input IRs are considered usable when they are
within the range of the user. The resulting set of usable IRs
determines the usable modalities and thus the types of
concrete interactors that can be distributed.

In the next step the algorithm analyzes the CARE relations
of the active concrete interactors. The specified UI model
contains trees of complex interaction elements with simple
elements as leaf nodes. As only the leaf nodes have to be
distributed, the relations defined by their parent complex
interactors influence their distribution. The simple
interactors are automatically of type "assigned" and can
thus be directly distributed if a corresponding type of IR is
available. Interactors combined via complex elements of
type complementary or redundant must be distributed
together to reflect their meaning. This means that to make
an interaction, defined as redundant, available to the user,
all modalities addressed by the childs of the complex
interactor have to be available. The equivalence relation is
used to specify different (combinations of) interactors that

7

transport the same information in case of output or allow
the user to provide the same information in case of input.
This makes the system more reliable and reduces ambiguity
and inconsistency. With respect to the distribution goals
specified above, a different handling of the equivalency
relation for input and output has been realized. For input the
distribution of as many equivalent interactors as possible
results in more possibilities for the user to provide the
needed input. For output a selection of the most feasible
interactors avoids confusion and unwanted redundancy.

Based on these interpretations of the CARE relationships
the algorithm first calculates the distribution of the output
interactors. The algorithm decides between the different
equivalent interactor combinations by selecting the one
supporting the most modalities. This is based on the
assumption that the designer utilizes the advantages of each
modality, so that more modalities result in a better
presentation. More sophisticated extensions that consider
additional context information are currently evaluated.
Afterwards, the distribution of input interactors is
calculated. Thereby the algorithm distributes all elements
that are supported by the usable IRs to allow as many input
possibilities as possible. It is crucial that during the
distribution of the input interactors the algorithm pays
attention to coupled input and output as e.g. in case of a
touchscreen. The resulting distribution configuration
consists of tuples of concrete interactors and IR references.
Before sending the interactors to the channels, the
presentation of the output interactors is accomplished by a
layouting algorithm [11] which takes into account the
spatial and temporal relationships of the interactors as well
as the workflow model to not scatter related interactors.

In case of the little example, the algorithm would distribute
the interactors as follows: For input the algorithm tries to
support as many IRs as possible and thus determines at
maximum the gesture, voice input and pointing interactors
to support a keyboard, a microphone and a mouse
respectively. For output a screen is required and an optional
loudspeaker would be integrated if available. The algorithm
would adapt the distribution accordingly, when e.g. the user
is changing the position and the distribution component
determines that some IRs are no longer available to the user
and others just became available.

CONCLUSION
We presented an approach for dynamically selecting the IRs
at runtime. Based on the modeled modality relations
defined as CARE properties, which are available at runtime
due to the utilization of executable models, and information
about the actual context, a distribution algorithm calculates
the most appropriate set of IRs.

In the future we plan to develop a multimodal widget set to
ease the development of such multimodal and distributable
UIs. We also want to analyze further factors that influence
the distribution algorithm. Furthermore, automatic
calculation raises the problem of unsatisfactory results. To

overcome this issue for distribution of UIs, we started the
development of a meta user interface allowing users to
configure the distribution according to their needs.

REFERENCES
1. N. Barralon, J. Coutaz, and C. Lachenal. Coupling

interaction resources and technical support. In HCI
International 2007, Volume 4555 of LNCS, pages 13-
22, 2007.

2. S. Berti, F. Correani, G. Mori, F. Paternò, and C.
Santoro. Teresa: A transformation-based environment
for designing and developing multi-device interfaces. In
CHI 2004, volume II, pages 793-794, 2004.

3. M. Blumendorf, S. Feuerstack, and S. Albayrak.
Multimodal user interaction in smart environments:
Delivering distributed user interfaces. In Constructing
Ambient Intelligence, AmI 2007 Workshops Darmstadt.

4. M. Blumendorf, G. Lehmann, S. Feuerstack, and S.
Albayrak. Executable models for human-computer
interaction. In Proc. of the DSV-IS Workshop 2008,
pages 238-251, Berlin, Heidelberg, 2008.

5. J. Bouchet, L. Nigay, and T. Ganille. Icare software
components for rapidly developing multimodal
interfaces. In Proc. of ICMI 2004, pages 251-258, New
York, USA, 2004.

6. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
Laurent Bouillon, and Jean Vanderdonckt. A unifying
reference framework for multi-target user interfaces. In
Interacting with Computers, 15(3):289-308, 2003.

7. J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May,
and R. M. Young. Four easy pieces for assessing the
usability of multimodal interaction: The care properties.
In INTERACT 1995, pages 115-120, 1995.

8. A. Demeure, J.-S. Sottet, G. Calvary, J. Coutaz, V.
Ganneau and J. Vanderdonkt. The 4c reference model
for distributed user interfaces. In ICAS 2008. IEEE
Computer Society Press.

9. C. Elting and M. Hellenschmidt. Strategies for self-
organization and multimodal output coordination in
distributed device environments. In Workshop on
Artificial Intelligence in Mobile Systems 2004.

10.S. Feuerstack, M. Blumendorf, and S. Albayrak.
Prototyping of multimodal interactions for smart
environments based on task models. In Constructing
Ambient Intelligence, AmI 2007 Workshops.

11.Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon
and V. López-Jaquero. Usixml: A language supporting
multi-path development of user interfaces. In EHCI/DS-
VIS, Volume 3425 of LNCS, pages 200-220. 2004.

12.J.P. Molina, J. Vanderdonckt, P. González, A.
Fernández-Caballero and M.D. Lozano. Rapid
prototying of distributed user interfaces. In Proc. of
CADUI'2006, pages 151-166. Springer-Verlag, 2006.

8

1

An Interactive Process Meta Model for Runtime User
Interface Generation and Adaptation

Thomas Schlegel
University of Stuttgart

Universitätsstr. 38, Stuttgart, Germany
Thomas.Schlegel@vis.uni-stuttgart.de

+49 711 7816 209

ABSTRACT
Complex and distributed interactive systems today – in this
case mainly in production and supply chain management –
rely strongly on defined processes but as well on flexible
interaction and dynamic adaptation. We describe an
interactive process model that allows recognizing and
deriving interactions with users on runtime. The model can
be dynamically adapted to fit new requirements or offer
additional interactions in specific contexts.

Author Keywords
Interactive Processes, Process Model, Production Process
Control, Runtime User Interface Generation

ACM Classification Keywords
H.5.2 User interface management systems (UIMS), H.5.3
Theory and models, H.5.m Miscellaneous, C.3 process
control systems, H.4.1 workflow management

INTRODUCTION
Industry has experienced a strong development in the
direction of product customization (flexibility in production
and products) and globalization (flexibility in
organizational structures and local differences), leading to
instable processes and user interfaces with frequent
adaptations and necessary changes. Industrial systems, in
production and supply chain, are developing today from
monolithic systems towards a complex set of interconnected
systems like Service Oriented Architectures (SOA, [2]). On
the one hand, these complex industrial systems like
networked production systems or supply networks [13] rely
on defined processes to ensure proper and controlled
execution of business processes in production companies.
On the other hand, build-to-order, Mass Customization [1]
and rapid reconfiguration (e.g. [3]) of the factory require
flexibility and adaptability of processes that go beyond
what is possible today.

Therefore, we experience today interaction with a “system
of systems” [6], integrating different users and different
systems in a dynamic Multi-Stakeholder Multi-System
(MS2) System, which adds a new level of complexity and
necessary flexibility to today’s networked industrial
systems and their interaction layer. Interactions with such a
complex system occur at all levels of the processes. Hence,

processes changing dynamically on runtime lead to the
requirement of adapting or generating their adjacent user
interface even during their execution.

To achieve this flexibility in process modeling and
execution, we shortly motivate and present the concepts of
interaction in this field, explain the necessary interactive
process model integrating static and dynamic aspects in one
model and show a first user interface prototype for
executing, controlling, adapting and testing interactive
processes and interacting with the user based on this model.

INTERACTIVITY IN COMPLEX SYSTEMS
We studied e.g. the production of dishwashers at BSH,
where variability is expected to be low compared e.g. to
special machines. Even in this company, 1000 variants exist
and changes to the process have to be applied with high
frequency depending on product changes, location and
many other factors, like distributing formerly integrated
interaction tasks of the workers.

Users and even software developers working on such an
MS2 System normally only perceive and access some local
parts of the system – often without a detailed mental model
of the whole system, while the system itself may
additionally be changing and evolving without notification.
Full oversight and control over the processes for one
stakeholder or organization is often not possible, if the
system is spanning across organizational and technological
borders. E.g. an operator in a production cell executes some
steps of a complex production process for producing a car
part that is assembled by other workers in a different
factory of a different company, still participating in the
same overall process. This makes decentralization and
flexible interaction a key issue for these systems.

The need for integrating interaction with processes has been
recognized by the Workflow community, e.g. leading to
additional standards like BPEL4People [4] and WS-Human
Task [5], which emphasize the importance of the user in
process execution. But even these specifications do not
fully cover dynamically and decentrally changing
interactions in interactive processes. To overcome this
issue, interactions cannot be embedded or occur in
processes as pre-programmed or interaction-based user
interfaces with predefined dialogs and functions anymore.

Pre-proceedings of the 5th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and UI
Engineering, organized at the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners. This volume is published by its editors.

9

2

Flexibility is offered by model-based user interfaces (e.g.
[11] and especially for workflows [7]), which do not rely on
statically predefined functions and dialogs anymore. In an
MS2-System with dynamically changing processes, even
dynamic model-based user interfaces are needed, which
additionally allow changes to the underlying workflows and
interactions by users on runtime and offer automatable
creation of interactions and dialogs based on changing
contexts. Disadvantages of such a flexible system include
that usability tests of model-based and runtime-generated
systems are not fully possible and that the system and
models become complex and partially unpredictable and
make software development more expensive and complex.
Although, for decentralized and runtime-changing
infrastructures there is currently no second option available.

A SEMANTIC PROCESS MODEL
Model- and context-based generation means that the
underlying process model has to provide the semantics and
abilities for generating user interfaces and also mechanisms
for safely adapting the process model to new needs arising
while the system is already in production state. To achieve a
decentralized execution of interactive processes, the
underlying process model has to provide the semantics and
the dynamics of the processes and the adjacent interactions.

The Process Flow Model Aspect (horizontal aspects)
Common process models like Event-Driven Process Chains
(EPC) with BPEL [8] and UML Activity Diagrams [10]
focus on the flow aspect of the process. Process steps with
their sequence and dependencies are described in a
graphical or other language-based model. The Process
Flow Model contains these horizontal, dynamic aspects of
processes necessary for correct execution. It also provides
the dependencies between different elements to be able to
create interactions, e.g. dialogs which consider causality of
inputs. Flow relations determine where data, events and
activation have to flow (process definition) or currently
flow (process instance).

The Structural Model Aspect (vertical aspects)
While the flow aspect shows the sequencing, the Structural
Model defines the vertical, static aspects of a process. Data
type, activity types, event types and many other
classifications also form an integral part of an executable
and self-dependent process model.

Object-oriented inheritance mechanisms are used to create
specializations of existing types of actions and interactions
in order to provide rich semantics for every component in
the model, like process steps, data or dialog elements.
Aggregation allows for creating complex processes, data
types and semantic groups of interactions, determining their
meaning and integration. The inheritance mechanism allows
creating specializations of complex, aggregated processes
(activities) and their process steps. Figure 1 shows how the
concept works for such a process: Activity A consists of
Activities x, y and z. Activity B is created as a specialized

process (child) of A by inheritance. While x’ and z’ are
created by (sub-)inheritance, i.e. inherited without changes
from A (gray, dashed line), y’ is specialized from y as a full
component (black, continuous line). Through instantiation,
process instances are defined by and created from processes
(types) and then executed decentrally according to the
process specification, e.g. process instance c, which is an
object-oriented instance of Activity C, with its components
being instances of the Activities x’’, y’’ and z’’.

Activity A
Activity x Activity zActivity y

Activity B
Activity x’ Activity z’

sub-inheritance sub-inheritance

Activity C
Activity z’’Activity y’’

sub-inheritancesub-inheritance

Activity x’’

Activity y’

c: Instance-of
Activity C Instance x’’ Activity z’’Instance y’’

Instance-of Instance-of Instance-of

Figure 1. Specialization of aggregated activities by inheritance.

To execute interactive steps, dialog elements can be
instantiated from type-compatible interaction element types.
For such explicit interactions [12], the classification can be
used to determine the most specialized interaction element
available for the type of interaction requested. For implicit
interactions [12], it can be used to determine the correct
interaction elements to be used to gather the information
needed from the users for the current process execution.

Integrated Semantic Process Model
One significant contribution to flexible interactive process
systems is that we provide an integrated process and
interaction concept, which offers the advantages of object-
orientation like runtime behavior, type-safe extension and
generation also for interactive processes.

Input
�

Compo-
nent

Output
�

Type

Instances
/

Subtypes

Input
�

Compo-
nent

Output
�

Type

Instances
/

Subtypes

Figure 2. Integrated model containing the structural (vertical,
semantic) and dynamic (horizontal, flow) aspects of processes.

To execute interactive processes in a decentralized
environment, the integration of both aspects into one model
framework is vital. This is done using different component
and relation types for static aspects like inheritance /
classification and aggregation than for the dynamic aspects
like flow/activation, input and output. Figure 2 shows how
two components are connected horizontally via their Input

10

3

and Output interfaces. Inheritance and aggregation offer a
vertical connection.

Figure 3. Interface of the component.

For each complex/aggregated component the data needed or
produced can be determined semantically by identifying the
“interface” of the component. Figure 3 shows how the input
and output of every component (e.g. process step) can be
connected either internally (arrows between components) or
be aggregated as interface for the whole component (right),
showing input necessary and output delivered to the next
component in the process.

USER INTERFACE CREATION FROM THE MODEL
Once the elements required for execution of the process (or
sub-process) have been identified, for each element it can
be validated if the necessary data is available. If not, or if an
interaction is explicitly foreseen to gather the data from the
user [13], the contained User Information Model (UIM) is
used to determine the type of the element. With this
information, each peer in the system can check the User
Interface Element Model (UIEM) to determine if an
interpretation of the element is available for the defined
context of use. The Dashboard Model is then used to
integrate the elements correctly into the overall dialog set.

Figure 4. Example for the model-based execution of an

interactive shipping process using UIM, UIEM and DM for
model interpretation.

In the example in figure 4, we describe a partial view of a
typical shipping process in logistics. It requires the shipping
address and “Applicable Contracts” (insurance etc.) for the
adjacent order and transport. From the UIM, the type can be

derived. While for “Applicable Contracts” there is no
interaction specification available in the UIEM, it is a
specialization of MultiSelectionFromList for which the
UIEM provides an implementation.

For ShippingAddress, the UIM provides all elements of it
by resolving it from Address. For all partial elements like
LName an implementation is derived from the UIEM. The
semantic group ShippingAddress can be displayed together
with the MultiselectListbox implementation of “Applicable
Contracts”. MultiselectListbox has been determined to be a
valid implementation of MultiSelectionFromList, which in
turn is the (still) most specialized generalization of
“Applicable Contracts” in the UIM.

To create necessary dialogs for gathering missing
information, the type of a missing element (complex or
simple) is mapped via reference directly to a corresponding
element in the UIM. Each possible realization of an element
is listed in the UIEM and references its source element in
UIM. For a specific context (e.g. WinFormsApp), the
correct renderer in UIM can be identified.

PROTOTYPE FOR MODELING AND EXECUTION
When interactive processes are executed and adapted in a
decentralized system environment, it is necessary to provide
a modeling and control interface, which is context-oriented.
The challenges of this kind of process models are the size
and the connections of the model. Each process component
has sub-components like input and output and a type
hierarchy above and maybe also below as well as flow
connections to other components at the same level. A
graphical notation like BPMN[9], EPC[8] or UML [10]
needs a lot of space, has low content editing abilities and
already uses two dimensions without providing the static
(vertical) aspects of the model. Therefore we are using a
dialog based, navigational form of working with the process
model, including execution, editing and generation.

Figure 5 shows a prototype of a dialog-based interface for
process execution and editing using an object-oriented
process and interaction model. It offers runtime inspection,
editing and execution of the interactive process. In the
center, information about the currently focused component
is displayed and can be edited where possible. Each
component has a unique key (identity) and carries a payload
and comments with it. The left part contains all incoming
data and trigger relations with their types, components and
indication if data is missing. The right part contains all
results and triggers generated by the current component.

Where possible, elements of the current component can be
edited. Also, additional components can be connected using
all available relation types. New components can be created
directly as input, output or part of the current component in
focus.

Navigation is possible upwards to the type layer and along
the aggregation and inheritance relations, downwards to
the sub-elements via different relation types like

11

4

instantiation, inheritance, aggregation and others,
depending on the required aspect, leftwards to the
predecessors of the same and next sub-level along flow
relations of data and activation and rightwards to the
successors of the same and next sub-level along flow
relations of data and activation.

Additional interfaces e.g. serve for browsing the hierarchy
more easily in a tree-like view. The multi-relational
hierarchy of the components is that of a Directed Acyclic
Graph (DAG) for each relation type used, which requires
aspect-oriented (mainly relation type-oriented) navigation.

The prototype has been implemented in C# using
WinForms as generator target. An implementation for WPF
is currently created in addition. The screenshot also shows
how missing information in the process executed is added
interactively: “Applicable Contract” input is not filled by
the predecessors. Clicking on the button for this data
required to execute “Assembly Part 544001”, a dialog
opens that offers the user to interactively enter the contracts
to be used with this order / process instance.

CONCLUSION AND OUTLOOK
This article has presented a concept for an interactive
process model execution and modeling prototype for
distributed process execution and derivation of interaction
elements from the semantic structures in the model.

Further research will be carried out on model extension and
specification to allow for runtime user interface generation
also for complex types and extend the modeling capabilities
in addition to a better integration with existing standards
and concepts in an M2S System. This also includes user
interface generator components and extended process
modeling capabilities.

REFERENCES
1. Anderson, D.M. Build-to-Order & Mass Customization,

Cambria CIM Press (2003).

2. Erl, T. Service-Oriented Architecture – Concepts,
Technology, and Design. Prentice Hall (2005).

3. Harrison, R., Colombo, A. W. Collaborative automation
from rigid coupling toward dynamic reconfigurable
production systems, Proc. 16th IFAC World Congress
2005 (2006).

4. IBM et al. WS-BPEL Extension for People
(BPEL4People), Version 1.0, (June 2007).

5. IBM et al. Web Services Human Task (WS-HumanTask),
Version 1.0, (June 2007).

6. Jamshidi, M. System of systems engineering – New
challenges for the 21st century, IEEE Aerospace and
Electronic Systems Magazine, 23, 5 (2008), 4-19.

7. Guerrero García, J., Lemaigre, C., González Calleros,
J.M., Vanderdonckt, J. Model-Driven Approach to
Design User Interfaces for Workflow Information
Systems, Journal of Universal Computer Science, vol.
14, no. 19 (2008), 3160-3173

8. Kopp, O., Unger, T., Leymann, F. Nautilus Event-driven
Process Chains Syntax, Semantics, and their mapping to
BPEL, Proc. GI EPK (2006).

9. OMG Business Process Modeling Notation
Specification, OMG Final Adopted Specification,
dtc/06-02-01, (2006).

10. OMG Unified Modeling Language (UML)
Superstructure Version 2.1.1. formal/07-02-05, (2007).

11. Pinheiro da Silva, P., Griffiths, T., Paton, N. Generating
User Interface Code in a Model Based User Interface
Development Environment, Proc. Advanced Visual
Interfaces 2000 (2000), 155-160.

12. Schlegel, T. Object-oriented interactive processes in
decentralized production systems. Proc. HCI
International 2009 (2009).

13. Schlegel, T., Kirn, S. Interacting with the Supply Swarm
Towards an Interactive and Visual Management of
Supply Webs. Proc. IEEE INDIN (2009).

Figure 5. Integrated structural (vertical, semantic) and dynamic (horizontal, flow) model.

12

Automated Optimization of User Interfaces
for Screens with Limited Resolution

Sevan Kavaldjian, David Raneburger, Roman Popp, Michael Leitner, Jürgen Falb,
Hermann Kaindl

Institute of Computer Technology
Vienna University of Technology, Austria

{kavaldjian, raneburger, popp, leitner, falb, kaindl}@ict.tuwien.ac.at

ABSTRACT
More and more devices with different screen resolutions are
used to run the same application. In order to reduce usabil-
ity problems, user interfaces (UIs) specific to resolution are
needed, but it is time consuming and costly to implement
all the different UIs manually. Automated generation of UIs
has the potential to reduce time and costs in case of many
such devices. Still, model-driven generation of UIs may not
be flexible enough to include optimization for various reso-
lutions.

We extended the straight-forward approach to model-driven
generation by including optimization according to maximum
usage of available space for a given resolution, minimum
amount of clicks, and minimum scrolling. For these opti-
mizations, we also use automated layouting and calculate
the space needs of the possible variants. In effect, our new
approach generates UIs optimized for screens with limited
resolution, in order to reduce related usability problems.

INTRODUCTION
Automated generation of UIs has certainly advanced in re-
cent years, especially based on model-driven approaches.
Still, such generated UIs pose many usability problems. We
think that this is partly due to insufficient flexibility of the
current generation approaches.

In particular, straight-forward model-driven generation only
allows for matching a single transformation rule for each
source pattern. We extend this approach by taking up means
from rule-based programming, that have been around for
a long time. We allow matching of several transformation
rules for any source pattern, and we use so-called conflict
resolution to determine which rule to apply (fire). Based on
that, we implement a simple form of optimization in the con-
text of model-driven UI generation.

It allows us to maximize the amount of information to be

MDDAUI 2010.

Figure 1. A discourse model excerpt

displayed on a screen with limited resolution, to minimize
the number of navigation clicks, and to minimize scrolling.
All this is important for reducing usability problems. Since
more and more devices with different screen resolutions are
used to run the same application, we can automatically opti-
mize the generated UI for the given (limited) resolution.

BACKGROUND
The input for our UI generation approach is a discourse
model [2]. Such a discourse model serves as an interaction
design on a high level of abstraction based on concepts of
human language theories. A small excerpt of a larger dis-
course model for flight booking is shown in Figure 1. We
use this discourse model as a running example throughout
the remainder of this paper.

Our Discourse Models
The main ingredients of our discourse models are commu-
nicative acts derived from speech acts [7]. A communicative
act is represented as a rounded rectangle and models an utter-
ance of one of the communication partners. In our example,
the application asks the customer closed questions, while the
customer provides answers to the questions. In our example,
the yellow (or light gray) communicative acts are uttered by
the application and the green (or dark gray) ones are uttered
by the customer.

1

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

13

Model2Model
Transformation

Model2Code
TransformationDiscourse

Model
Structural UI

Model
Final UI

(a) Our Basic Transformation Process

Model2Model
Transformation

Model2Code
TransformationDiscourse

Model
Structural UI

Model
Final UI

Check if UI fits
Screen Resolution

Further Transformation Possible

Fitting UI
or

No Further
Transformation

Possible

(b) Our Extended Transformation Process

Figure 2. Our Transformation Process

Additionally, some communicative acts, like Question and
Answer form a so-called adjacency pair which is represented
by a diamond in our discourse models and defines the turn-
taking and thus the sequence of utterances.

Adjacency pairs can be related with each other to build a
tree structure. In our example, two Question–Answer pairs
are related by a Joint relation. This Joint relation states that
the Question–Answer pairs in both nucleus branches are of
equal importance. Further, it does not imply a temporal or-
der per se. For instance, both pieces of information can be
presented in parallel if there is enough space on the screen.
Otherwise they can be uttered in sequence.

Our Basic Transformation Process
We have developed a user interface generation process [5]
that transforms such discourse models into WIMP-based
graphical user interfaces (Windows, Icons, Menu and Point-
ers). Our basic user interface generation process is illus-
trated in Figure 2(a) and consists of two steps.

The first step transforms a discourse model into a Struc-
tural UI Model [4] by applying transformation rules to dis-
course model elements. The resulting Structural UI Model
represents the user interface’s widgets and their structure,
but still abstracts from details of the final UI. We do not
use a common UI description language (e.g. UsiXML1) be-
cause our runtime environment is based on the exchange of
Communicative Acts. In our running example, the following
transformation rules are applied to elements of the discourse
model excerpt in Figure 1 for generating a model represent-
ing the structure of the final UI in Figure 3(a).

First, a Joint Rule gets applied that matches the Joint relation
and adds a panel to the Structural UI Model. This panel acts
as a container for the Radio Button lists in Figure 3(a), which
correspond to the two nucleus branches of the Joint relation.

Second, a Closed Question Rule gets applied twice that

1http://www.usixml.org

matches each of the two Question–Answer adjacency pairs.
For each adjacency pair a panel containing a label for a head-
ing, a list of radio buttons together with item labels, and a
submit button on the bottom is added to the Structural UI
Model.

In the second step this Structural UI Model is used to gen-
erate source code for a particular target platform, e.g., Java
Swing in our running example.

OPTIMIZED RENDERING FOR LIMITED RESOLUTIONS
The problem tackled by our extended approach is to fit a
given amount of information optimally (in the following
sense) into screens with limited resolution.

Optimization Objectives and Approach
We assume that the following optimization objectives im-
prove the usability of the generated user interfaces:

• maximum use of the available space for the given resolu-
tion,

• minimum amount of navigation clicks, and

• minimum scrolling (except list widgets).

Whenever the given information to be displayed does not fit
into a single screen with default widgets, we try to display
it with widgets that use less space. If it still does not fit
into a single screen, then we split its display to two or more
screens. Splitting increases the number of navigation clicks
but it minimizes scrolling. We exclude list widgets from this
last optimization objective because the number of list entries
can vary extremely at runtime and determines whether the
list is scrollable or not. This information is not known during
our rendering process.

Our Extended Transformation Process
Our basic transformation process looks like straight-forward
model-driven generation that only allows for matching a sin-
gle transformation rule for each source pattern. We are not

2

14

aware of any optimization strategy in such a context. There-
fore, we extend the straight-forward approach by allowing
that several transformation rules may match for each source
pattern, and by applying so-called conflict resolution to se-
lect which rule to apply (fire) in the next model-to-model
transformation. Our extended generation process shown in
Figure 2(b) illustrates the resulting possibility of trying out
several rules for optimization purposes. In this approach,
the rules need not to be specifically designed for a particular
screen resolution. It is rather the way the rules are applied
that achieves the given optimization objectives.

In order to implement such an optimization, the conflict res-
olution mechanism needs to select the rules in a certain de-
fined order. For achieving the optimization objectives given
above, this selection order is according to the space that the
widgets the rule creates occupy in the final UI. Therefore,
all rules matching the same discourse element for transfor-
mation have to be ranked by the designer according to this
space need.

Each target device we render for has an abstract device spec-
ification that contains all style data used by the transforma-
tion rules. These data specify default sizes for all input and
output widgets on the target device that can be overwritten
in a transformation rule. They are used to set the size for
each final UI element and allow us to calculate the exact size
of each container (e.g., panel). For example, we set the size
of the list widget explicitly. This makes it independent from
the number of entries. If the list widget is not able to display
all entries, it becomes scrollable.

After the size calculation we try to layout each generated
screen to fit into the given resolution. However, we mod-
ify only the arrangement of the widgets that has not been
fixed explicitly in a transformation rule. Therefore, we do
not change the layout specified by the Closed Question Rule
(i.e., the layout of the heading label, the radio button list
and the submit button in Figure 3(a)). In this example, we
modify the position of the complete radio button lists in the
panel created by the Joint relation, since the Joint Rule does
not contain any layout information.

Now let us explain how to apply this approach to automati-
cally generate user interfaces for three target resolutions. As
input we use the discourse model excerpt shown in Figure 1.

Our first GUI is rendered for the resolution 640×480. The
first cycle of the model-to-model transformation uses the
highest ranked rules (i.e., the ones with the highest space
need) for each discourse element. These are the same rules
that have been applied in our basic transformation process.
After the first transformation cycle we calculate the size for
each panel in the corresponding Structural UI model. We can
place them next to each other without exceeding the screen
resolution. So, this is a fitting UI and we trigger the model-
to-code transformation. The result is shown in Figure 3(a).

Next we generate a UI for the resolution 480×320. This
time, the UI resulting from application of the highest ranked

(a) 640×480

(b) 480×320

(c) 320×180

Figure 3. Generated User Interfaces

rules does not fit. As long as a lower ranked rule can be ap-
plied, we initiate another generation cycle. First, the Small
Closed Question Rule is used in our example. This rule
matches the same source element (Question–Answer adja-
cency pair) as the Closed Question Rule but it creates a UI
structure which occupies less space on the screen. A combo
box element presents the content of the Closed Question
communicative act to the user and a submit button is gen-
erated to confirm the selection of the user. The user inter-
face shown in Figure 3(b) is the result of two more cycles,
because in each cycle only one lower ranked rule is applied.
The resulting UI fits and still presents the same information,
but using widgets with less space needs (combo boxes in-
stead of radio buttons). However, the list widgets do not fit
next to each other and the layouter arranges them vertically.

In a third run, we generate a user interface for the resolution
320×180. Even after all rules for widget selection have been
tried out, the generated GUI still does not fit the given res-
olution. Therefore, we start using rules that split the screen
in order to increase the number of navigation clicks before

3

15

we make use of scrolling. In our example, this means that in
the next cycle the Small Joint Rule is applied instead of the
Joint Rule. The Small Joint Rule matches the same source
element (Joint relation) but creates a different UI structure (a
tabbed pane element instead of a panel). Figure 3(c) shows
the outcome for the resolution 320×180. The Small Joint
Rule and the Small Closed Question Rule have been applied
and a fitting UI has been generated after a third cycle of rule
application. This time no layout modifications are necessary
because each tab contains only one panel.

The worst case in our extended generation process occurs
if and when no more rules are available and the generated
screen still does not fit the given screen resolution. In this
case, we stop the optimization loop and rely on scrolling.

RELATED WORK
A transformation system that fits web pages automated and
on-the-fly to screens of small devices is presented in [8]. The
transformations are performed in order to minimize naviga-
tion and scrolling like in our approach. In contrast, however,
this process alters an already existing UI.

Declarative user interface specifications are used as input for
multi-target UI generation in [3]. The user interface adap-
tion is treated as an optimization problem based on a user-
and device-specific cost function. Compared to such user in-
terface specifications, our interaction models are on a higher
level of abstraction.

The model-driven approach for engineering multi-target UIs
presented in [1] supports switching between predefined pre-
sentations during runtime. Our approach, in contrast, is in-
tended to automatically generate presentations for different
resolutions from a single discourse model.

An advanced approach for generating multi-device UIs is
based on task models [6]. Such a Task Model specifies the
temporal relations among tasks and has to be adapted ac-
cording to the screen space available on the target device.
Therefore, any optimization and screen splitting has to be
done explicitly during the creation of the Task Model.

We are not aware of any other approach that performs op-
timization in the course of model transformations. Neither
are we aware of any model-driven GUI transformation pro-
cess that takes the resolution for transformation rule selec-
tion into account.

CONCLUSION
Our new and extended approach introduces an optimization
technique into model-driven generation of UIs to reduce us-
ability problems. However, we only deal with relatively sim-
ple usability aspects (minimum amount of clicks and mini-
mum scrolling). We do not (yet) optimize layout according
to, e.g., aesthetic criteria. Therefore, our optimization ap-
proach as presented above is not suitable for large screens
with high resolution.

Overall we introduce a UI generation process that allows the

same rule set to be used for generating UIs for devices with
different resolutions. Through the automatic calculation of
space need, it may even have an advantage in this respect as
compared to a human interface designer. We implemented
a simple optimization approach that allows us to optimize
generated UIs for devices with limited resolution in such a
way as to utilize the given space and to minimize naviga-
tion and scrolling. This should pave the way to optimized
multidevice UI generation.

ACKNOWLEDGMENTS
This research has been carried out in the CommRob project
(http://www.commrob.eu), partially funded by the
EU (contract number IST-045441 under the 6th framework
programme).

REFERENCES
1. B. Collignon, J. Vanderdonckt, and G. Calvary.

Model-driven engineering of multi-target plastic user
interfaces. In Proceedings of the Fourth International
Conference on Autonomic and Autonomous Systems
(ICAS 2008), pages 7–14, Washington, DC, USA, 2008.
IEEE Computer Society.

2. J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and
E. Arnautovic. A discourse model for interaction design
based on theories of human communication. In Extended
Abstracts on Human Factors in Computing Systems
(CHI ’06), pages 754–759, New York, NY, USA, 2006.
ACM Press.

3. K. Gajos and D. S. Weld. SUPPLE: Automatically
generating user interfaces. In Proceedings of the 9th
International Conference on Intelligent User Interface
(IUI ’04), pages 93–100, New York, NY, USA, 2004.
ACM Press.

4. S. Kavaldjian, C. Bogdan, J. Falb, and H. Kaindl.
Transforming discourse models to structural user
interface models. In Models in Software Engineering,
LNCS 5002, volume 5002/2008, pages 77–88. Springer,
Berlin / Heidelberg, 2008.

5. S. Kavaldjian, J. Falb, and H. Kaindl. Generating content
presentation according to purpose. In Proceedings of the
2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC2009), San Antonio, TX, USA,
Oct. 2009.

6. F. Paternò, C. Santoro, and L. D. Spano. Model-based
design of multi-device interactive applications based on
web services. In INTERACT (1), pages 892–905, 2009.

7. J. R. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, Cambridge,
England, 1969.

8. X. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W.-Y. Ma.
Browsing on small displays by transforming web pages
into hierarchically structured subpages. ACM
Transactions on the Web, 3(1):1–36, 2009.

4

16

Evaluation of user interface adaptation strategies in the
process of model-driven user interface development

Kai Breiner, Volkmar Gauckler
University of Kaiserslautern

Software Engineering Research
Group

Gottlieb-Daimler Str.
67663, Kaiserslautern, Germany

breiner@cs.uni-kl.de,
volkmar.gauckler@gmx.net

Marc Seissler
University of Kaiserslautern
Center for Human-Machine-

Interaction
Gottlieb-Daimler Str.

67663, Kaiserslautern, Germany
Marc.Seissler@mv.uni-kl.de

Gerrit Meixner
German Research Center for
Artificial Intelligence (DFKI)

Trippstadter Str. 122
67663, Kaiserslautern,

Germany
Gerrit.Meixner@dfki.de

ABSTRACT
In this paper, we describe the evaluation of our prototype
Universal Control Device (UCD), which enables the control
of various devices in modern dynamic production
environments, while being able to adapt itself to the current
configuration of the environment. While it is hard to apply
traditional user interface design heuristics in recent
paradigms – such as Ambient Intelligence – there is a
demand for suitable compensation strategies addressing
usage errors, which can be met by applying an adequate
adaptation strategy. In a pilot study, we gained experience
regarding differences in the performance of selected
adaptation strategies in the case of our demonstrator.

Author Keywords
Universal Control Device, Adaptation Strategies,
SmartFactory.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
Evaluation/methodologie, Prototyping, User-centered
design.

INTRODUCTION
The ongoing technological development of
microelectronics and communication technology is leading
to more pervasive communication between single devices
or entire pervasive networks of intelligent devices (smart
phone, PDA, netbook, etc.). Especially industrial devices
and applications can take advantage of modern smart
technologies, e.g., based on ad-hoc networks, dynamic
system collaboration, and context-adaptive human-machine
interaction systems. The vision of Mark Weiser [1]

concerning ubiquitous computing – also in production
environments – is becoming a reality [10].

In today’s production environments, technical devices often
stem from multiple vendors using heterogeneous user
interfaces that differ in terms of complexity, look&feel, and
interaction styles. Such highly complex and networked
technical devices or systems can provide any information at
any time and in any place. This advantage can turn out to be
a disadvantage when information is not presented properly
according to the users’ needs. This leads to problems,
especially concerning the usability of the user interface.
The level of acceptance of a user interface largely depends
on its ease and convenience of use. A user can work with a
technical device more efficiently if the user interface is
tailored to the users’ needs, on the one hand, and to their
abilities on the other hand. Therefore, providing
information in a context- and location-sensitive manner
(depending on user, situation, machine, environmental
conditions, etc.) has to be ensured.

Hence, in the following we will give a short introduction to
the SmartFactoryKL, which serves as a demonstration
environment for future intelligent production environments,
and a Universal Control Device (UCD), which provides
holistic control to various devices in such environments.
Further, we give a brief introduction to user interface
adaptation, usage errors, as well as to their compensation.
After presenting our idea of how to approach compensation
by using adaptation strategies, we describe the set-up of the
corresponding controlled experiment and the preliminary
results of the pilot study conducted. We conclude with the
interpretation of how the results contribute towards our
hypothesis.

SmartFactoryKL
Besides these aspects, modern production environments are
characterized by a modular layout. Entire modules can be
replaced or reorganized. Furthermore, these environments
are able to react to errors occurring in the production
process (e.g., device malfunction) and to dynamically
reorganize parts of the process in order to ensure the
production process. Thus, this also affects the user who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Pre-proceedings of the 5th International Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience
and UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying
permitted for private and academic purposes. Re-publication of material from this
volume requires permission by the copyright owners. This volume is published by
its editors.

17

interacts with the individual devices – the user’s workflow
will change, or devices will not be available anymore.

Serving as a demonstration environment, the
SmartFactoryKL in Kaiserslautern, Germany is able to
simulate such a process. In previous work, we developed a
UCD, which is able to provide access to various devices of
the SmartFactoryKL [3][4].

Universal Control Device (UCD)
As a result of a model-driven process, the user interface of
the UCD is being generated at run-time [2]. Starting with a
topological description of the environment, enriched with
user tasks on the single devices and information about how
to address the single devices, this information is sufficient
for generating a functional user interface [2][4]. In order to
remain functional to the user, this user interface has to
correspond to the current configuration of the environment
and is additionally restricted to the functionality as
specified in the underlying model. During field studies,
faced by the need to adapt the user interface, we
encountered the demand for a systematic strategy that
would support the user as much as possible [3]. This was
the trigger for a study on adaptation, which we will describe
in the following.

ADAPTATION
After giving a brief overview of different types of
adaptation – their properties as well as their impact on the
users’ workflow – we will elaborate types of usage errors
resulting from static user interfaces and how adaptive user
interfaces contribute to the compensation of such errors.

Static versus Dynamic User Interfaces
On the one hand, one important usability quality attribute is
memorizability. The ease to remember helps users to speed
up the process of interacting with the user interface [5][6].
Since humans have a very visual memory, the way a certain
user interface is structured is essential for finding items
faster. After a while, users form a coherent model of the
user interface and are able to recall how to execute their
workflow. If the system (and therefore the user interface)
changes frequently, the user will not be able to form such a
model [7][8]. On the other hand, there are user interface
heuristics demanding that the user interface matches the
real world [6]. In order to provide control over devices in
dynamic environments – such as the SmartFactoryKL – it is
extremely vital to match the user interface to the real world
in order to remain functional.

These simple rules about how to develop a user interface
appear to be contradictory for future information systems in
our application domain. Hence, there is a need for an
adaptation strategy that does not violate usability quality
attributes leading to usage errors.

Usage Errors
In general, for each kind of usage error, there is a basic
cause (see Figure 1). Using the right compensation
technique – such as adaptation of the user interface – the
users can be actively supported in preventing usage errors.

Basically, there are two kinds of operating errors that may
lead to a failure of the system.

In the first case, there are slips. Here, the user had the
correct intention but executed the task in the wrong way.
Most often this is caused by poor physical skills, or by the
user interface just being just inadequate for use (e.g.,
buttons too small). In the second case – which is more
interesting in our example – there are errors. Errors are
characterized by the user having the wrong intention while
executing the task. This is caused by a misunderstanding of
the user interface (e.g., if the user interface is offering
control over devices that are not available physically).

Compensation
Depending on the type of usage error, there are different
ways to compensate in order to minimize the effect. Slips,
which are caused by poor skills of the user, can be
prevented by adapting the user interface to the user. In case
of our application domain – intelligent production
environments – we are dealing with predefined user roles
and user groups and are therefore able to tailor the user
interface to the needs of these user groups.

In dynamic environments, errors can be prevented by
adhering to design heuristics as mentioned earlier. The
system has to represent the current configuration of the user
interface, while supporting the development of a mental
model. Hence, a method of adaptation needs to be chosen
that contributes to these heuristics.

Types of Adaptation
There are different methods of how an adaptation of the
user interface can be executed. These methods differ in
their way of execution as well as in their degree of intrusion
into the users’ workflow. In case of the UCD, a simple
adaptation scenario would be the appearance or
disappearance of devices in the device selection list. In the
following, we will refer to this example while giving details
about the individual methods.

The first method – which was implemented initially and led
to the investigation described in this paper – is ad-hoc
adaptation. Here, devices are added or removed from a
device list according to the physical status of the respective

Figure 1. Relationship between usage errors, their causes, and

compensation.

Usage Error Cause

Compensation

Slips

Error Misunder-
standing

SkillsAdapt to User

Adapt to
Environment

18

devices. Unless a regular user permanently observes the
device list, he or she will not notice any change.
Furthermore, this will be distracting for the user, because
the structure of the user interface changes without
notification.

Providing more information about the system state leads to
the second adaptation method – notification. Now, the user
interface provides information about the change and
therefore supports the user in adapting his or her mental
model. In case of the device list example, we implemented
this method by applying the so-called instant-messenger
metaphor [9]. This means that new or defective devices will
be emphasized graphically, which provides information for
the user to understand the current state of the system.
However, the user may just overlook the notifications if he
or she is distracted, and then the system cannot provide
further support.

Thus, we implemented a third adaptation strategy, which
aims at confirmation by the user. Here, the user has to
actively confirm the change to the user interface. Referring
to the device list of the example above, this strategy was
implemented in terms of a dialog box asking for
confirmation from the user that he or she has actually
noticed the adaptation of the system. Thus, the system can
be almost sure that the user is aware of the adaptation and is
supported in the presumably most adequate way. A
negative side-effect of this strategy is that the confirmation
dialog may distract the user during his/her regular
workflow.

Compensation
Each of the adaptation strategies differs as to how much it
contributes to the compensation of possible usage errors.

Ad-hoc adaptation ensures consistency between the
controllable environment and the corresponding user
interface in order to prevent usage errors with respect to
outdated user interfaces. But this approach provides no
active support to the user at all.

Besides consistency with the current configuration of the
environment, notification provides limited feedback to the
user (e.g., by visually emphasizing new devices). Due to the
fact that this communication with the user is unidirectional,
such notifications can be easily overlooked by the user.

Confirmation provides all the functionality of the first two
approaches on the one hand and demands confirmation by
the user on the other hand. Thus, the user interface is aware
of the fact that the user has recognized the new
configuration and can therefore proceed with the regular
functionality.

Hypothesis
According to the diverse properties of these strategies, we
wanted to investigate which is the most adequate one in the
case of our model-driven approach and therefore we
formulated hypotheses that we are going to verify or falsify
initially in a preliminary study described below. The

hypotheses are tailored to the specific set-up of the
controlled experiment.

H1. Effectiveness – completion rate
We assume that, on average, at least 85,6% of the test tasks
can be completed without help.

Explanation: This hypothesis assumes that test persons can
deal with the user interfaces and have understood their tasks
and therefore can complete at least 6 out of the 7 tasks.

H2. Effectiveness – assistance
100% of the given tasks can be completed (with help – if
needed).

Explanation: The user interface ensures consistency
between environment and visualization independent of the
adaptation strategy. Therefore, it should be possible to
complete each task.

H3. Efficiency – strategy performance
Confirmation outperforms notification, which outperforms
ad-hoc adaptation.

Explanation: On the basis of the different attributes
elaborated earlier, we assume this ranking according to the
performance of the different strategies.

EVALUATION – PILOT STUDY
To evaluate these hypotheses, we decided to conduct a
controlled experiment. We implemented three instances of
our model-driven process [2][3][4], including the
corresponding adaptation strategies. The test persons had to
complete seven tasks on the user interface, while the
simulated production environment always reconfigured
between task 2 and task 3. The idea was that the adaptation
should only affect task 4, which had to be executed in a
different way (as a result of the adaptation) than indicated at
first. The other tasks served as an indication that the test
persons perform in a similar way. We conducted a pilot
study with several computer science students. All six test
persons were between 21 and 34 years old.

After being asked for personal statistical information, the
test persons got a thorough introduction to the production
industry domain. They were provided with a detailed
explanation of the simulated production environment as
well as of our Universal Control Device. After execution of
task 2, we initiated the reconfiguration of the simulation
and, depending on the strategy used (of which the test
persons were not aware) the user interface adapted itself,
notified the user, or demanded confirmation. The strategies
were distributed equally between the tests. Due to the
adaptation of the environment, the user should not be able
to complete task 4 in the way the task description called for.
One of three redundant pumps was removed from the
system. Here, the user should conclude that (as displayed in
the documentation of the simulated environment) there are
various ways to complete this task and ask the moderator if
this is possible. The test was completed with a survey about
the subjective properties of the user interface.

19

Figure 2. The performance of the 7 tasks (median, max/min

and quantile).

Results
Figure 2 shows the results of the performance of the single
tasks. As we assumed before conducting the experiment, all
tasks (the control tasks) except task 4 were performed
similarly. Referring to the standard deviation, which is an
average of 16 seconds in case of the control tasks and 38
seconds in case of task 4, the difference in performance can
be easily identified. Thus, we conclude that the results of
this preliminary experiment are representative.

When executing task 4, the test persons recognized the
redundancy of the three pumps and asked if they could use
another pump, which was intended.

Discussion of the Results
All test persons were able to complete all tasks (with help
in case of task 4), which confirms hypothesis H1. Since all
of them needed help when executing task 4 and only during
task 4, the estimated 85,6% of hypothesis H2 was almost
exactly confirmed.

For ah-hoc adaptation, the execution of task 4 took an
average of 117 seconds, for notification 125 seconds, and
for confirmation 89 seconds. Hence, hypothesis H3 cannot
be entirely confirmed, as ad-hoc adaptation outperformed
notification, but still confirmation outperformed both of the
other strategies.

Threats to validity
Because all the test persons were only computer science
students, this may have had an effect on the result. But on
the other hand, those students were already familiar with
our previous work (without knowing the content of the
experiment), which could also be a good simulation of
domain knowledge. Nevertheless, the experiment needs to
be conducted (and will be) using production industry
domain experts. The most important threat to validity to
mention is the fact that this was only the pilot study for the
described experiment. This means that the sample was too
small and therefore has no real statistical evidence, but it
serves as a first indication as to whether an investigation
according our idea would make sense.

CONCLUSION
When dealing with user interfaces in highly dynamic
environments, such as intelligent production environments,

there are special requirements. According to a shown
dissonance in user interface design, when being applied in
these environments, we have shown there is a special need
for compensating usage errors. This can be achieved by
systematically integrating adaptation strategies into the
model-driven development process. Since multiple
strategies exist, which provide different user experience, the
performance with respect to our demonstrator was
evaluated in a pilot study of a controlled experiment. First
results show that there are differences in the performance
and therefore some of our hypotheses could be verified.

ACKNOWLEDGMENTS
Our work as well as the GaBi project is funded in part by
the German Research Foundation (DFG).

REFERENCES
1. Weiser, M. The computer for the 21st century. Scientific

American, 265, 3 (1991), 94-104.
2. Breiner, K., Görlich, D., Maschino, O., and Meixner, G.

Towards automatically interfacing application services
integrated in an automated model based user interface
generation process, Proc. of the 4th International
Workshop on Model-Driven Development of Advanced
User Interfaces (MDDAUI), CEUR Workshop
Proceedings Vol-439 (2009).

3. Breiner, K., Görlich, D., Maschino, O., Meixner, G., and
Zühlke, D. Run-Time Adaptation of a Universal User
Interface for Ambient Intelligent Production
Environments. Proc. of the 13th International
Conference on Human-Computer Interaction (HCII-09),
LNCS Vol. 5613 (2009), 663-672.

4. Breiner, K., Görlich, D., Maschino, O., and Meixner, G.
Automatische Generierung voll funktionsfähiger
mobiler Bediensoftware aus Benutzungs- und
Funktionsmodellen. Proc. of Informatik, LNI Vol. P-154
(2009), 2210-2215.

5. Gould, J. D. and Lewis, C. 1985. Designing for
usability: key principles and what designers think.
Communications of the ACM, 28, 3 (1985), 300-311.

6. Nielsen, J. Ten Usability Heuristics.
www.useit.com/papers/heuristic/heuristic_list.html.

7. Norcio, A. F., and Stanley, J. Adaptive Human -
Computer Interfaces. NRL Report 9148, Naval Research
Laboratory (1988).

8. Mitchell, J. and Shneiderman, B. Dynamic versus static
menus: an exploratory comparison. SIGCHI Bulletin,
20, 4 (1989), 33-37.

9. Lee, L. and Johnson T. URCousin: Universal Remote
Control User Interface. Proc. of the Human Interface
Technologies Conference (2006).

10. Zuehlke, D.: SmartFactory – From Vision to Reality in
Factory Technologies. Proc. of the 17th International
Federation of Automatic Control (IFAC) World
Congress (2008), 82-89.

00

43

86

130

173

216

1 2 3 4 5 6 7

tim
e

[s
]

Tasks

20

Model-Based Usability Evaluation and Analysis of
Interactive Techniques

Jeff Ladry, Philippe Palanque, Eric Barboni & David Navarre
IRIT - University Paul Sabatier

118, route de Narbonne, 31062 Toulouse Cedex 9, France
{ladry, palanque, barboni, navarre}@irit.fr

ABSTRACT
This position paper presents a model based approach
supporting development of advanced user interfaces for the
design, simulation, tuning and the assessment of interaction
techniques. It is based on a double concept: the introduction
of additional information in models to allow designer to
tune easily the interaction technique and the use of
simulation and logging facilities to assess perform
performance evaluation of the models. It proposes an
alternative to user testing which is very difficult to setup
and interpret when advanced interaction techniques are
concerned.

Author Keywords
Model-Based approaches, formal description techniques,
performance evaluation, multimodal interfaces, interactive
software engineering, tuning.

INTRODUCTION
Using models for the design of computer systems provide a
description of the system abstracted away from its
implementation. Nowadays, such approaches are prominent
in the area of software engineering via the Model Driven
Engineering [9] field that emerged from the UML standard
[11]. Indeed, as they provide a more abstract description of
the system than the implementation code they also provide
a unique opportunity for various stakeholders (users,
developers…) to comment and propose modifications.
In The HCI community many researchers have described
user interface elements by means of models. The interested
reader can find a complete state of art of model-based user
interface in [10] where the different modeling techniques
are categorized by criteria such as: Language, Interaction
Coverage, Scalability, Tool support and Expressiveness.
Beyond this descriptive aspect, models can also be used to
support the evaluation of the user interface for properties
(such as liveness and safety) or even for usability including:
Model Based Usability remote evaluation as in RemUsine
[13], EvaHelper [5], or in ReModEl [5]. Similar work can
also be found for the Web domain as in AWUSA [14].
Usability evaluation can also be found for more generic

purpose as in MeMo&MASP [6] or in [1] with MDA
(Model-driven architecture)-compliant methods to improve
software usability through model transformations.
Among these contributions, many have shown that HCI
concerns must be integrated within the development process
in order to design and develop usable systems. This is
known as the "too little too late" problem detailed in [8]
claiming that usability must be considered in the early
stages of the development process or it will be only
partially addressed.
Next section presents a model-based approach proposing an
emphasis on evolvability and modifiability of models to be
able to take into account usability concerns. The basic idea
is to prepare models for modification at design time in order
to be able to adjust them according to usability evaluation
results.

THE APPROACH
This position paper proposes a design process for the
design, simulation, tuning and assessment of interaction
techniques.

Figure 1 Process involving Interaction techniques, tasks
models and Analysis +Log

Figure 1 presents the process of this approach exemplified
for the comparison of two interaction techniques.

Modeling Interactions techniques
In the beginning of the process an abstract model (Abstract
Model IT) is constructed using the ICO formalism [10] to
accomplish the task represented in the Task model in CTT.
From abstract model, multiple detailed models can be
produced. These models refine the abstract model according

Fifth International Workshop on Model Driven Development of Advanced
User Interfaces - Bridging between User Experience and UI Engineering -
in conjunction with CHI 2010 Atlanta, Georgia, USA Saturday, April 10th
or Sunday, 11th, 2010, Atlanta, Georgia, USA.
Copyright remain with the authors

Pre-proceedings of the 5th International Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience
and UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying
permitted for private and academic purposes. Re-publication of material from this
volume requires permission by the copyright owners. This volume is published by
its editors.

21

for instance to properties we want the technique to fulfill or
according to the different modalities that have to be used.
From the task model in CTT, a test scenario is extracted for
each ICO model that the interaction technique must be able
to perform. The detailed model is then simulated in Petshop
according to the test scenario.

Simulation and Logging
During this simulation a log file is produced containing all
the information about the evolution of the model.

Figure 2 Excerpt of a Model-based log
The model-based log (presented in Figure 2) records all the
change which occurs in the model during the simulation
including firing of each transition, the removal and addition
of a token in every place. This data is then exploited to
assess the performance of each interaction technique in
absolute value as well as their relative performance. If the
performance does not fit the expectations, the log data can
be used to modify or tune the model that will be simulated
again. Such modification or tuning is made much easier as
the information in the log is already related to the structure
of the model.

Formal Analysis
Due to the Petri nets-based roots of the ICO formalism, we
are able to use Petri nets properties analysis techniques such
as place and transition invariant. These invariant allow us to
prove properties such as liveness of a transition in a model
for example. In the case of an interaction technique this
would make it possible to assess that the transition handling
mouse move events is always available (it is always
possible to produce such events by moving the device.)
According to the result of the analysis process, it can be
decided to modify the model.

Tuning of models (Evolvability and Modifiability)
According to the performance evaluation obtained with the
log analysis, some fine tuning can be applied in the model
to increase the performance of the interaction technique.
This fine tuning can either be done during or before the
simulation as in PetShop models can be modified while
executed.
Figure 3 presents the drag and drop interaction technique
modeled using the ICO formalism. In the initial state, the
interaction technique is Idle (there is a token in place Idle),
the position x,y of the mouse cursor is stored as a token in
place Currentxy, the reference to the graphical object frame
(where the cursor is moving) is stored as a token in place
Frame and the reference to the object trash is stored as a
token in place Trash. From that initial state two transitions
are available (represented in darker grey in the model:
mouseMove_t1 and mousePressed_t1. Transition

mouseMove-t1 is fired when the corresponding event is
triggered by a user action on the input device.

Figure 3 ICO model of basic Drag & Drop interaction
technique

When this occurs, the value of the token stored in place
Currentxy is changed to contain the new position of the
cursor. Transition mousePressed_t1 is triggered by a user
action on the button of the mouse. When this occurs, the
model tests (represented by transitions NotonIcon and Icon)
if the cursor is currently on an icon or not. If the cursor is
on an icon then the model will process mouse move events
(transition mouseMove_t3 which updates the cursor
position) and mouse released events. When a mouse
released event is received the model tests if the position of
the cursor is on the icon of the trash (transition Trash) or
not (transition Notrash). If yes, the file is deleted (this is
modeled in the code of transition Trash and not represented
here due to space constraints).
This model is not easily modified to integrate tunings that
are currently made on drag and drop techniques such as
acceleration and deceleration of the icon (according to the
proximity of the target icon or according to the rapidity of
the movement). However, it represents precisely and
without any ambiguity the desired behavior of the initial
interaction technique. According to our experience with
interaction technique modeling, we know that fine tuning of
the interaction technique is required.
Figure 4 presents and extended version of the model of
Figure 3 adding possibility for tuning the interaction
technique. Two new transitions have been added (in blue in
Figure 4) allowing the possibility to check if the pointer is
on the reactive object (here the trash) or not. With this
information we can easily change the speed of the pointer
when it is on the reactive object to “stick” it on the object
for example. Such modification corresponds to changes in
the motor space as introduced by [4].
To make it possible to tune this interaction, we have also
added Acceleration and Deceleration places (circled in red
in Figure 4) and linked them to MouseMove_t2 transition.

22

Figure 4 ICO model of tunable Drag & Drop interaction
technique

The Acceleration place contained a value used for the
acceleration of the mouse cursor when an object is dragged;
The principle of the approach is to run simulations of the
models to identify possible limitations and propose
modifications to be made in the models to improve the
efficiency of the interaction technique. After tuning a new
simulation is performed and the results are compared to the
desired properties.

Figure 5 User Interface of the case study
Next section sketches how this approach can be instantiated
on a case study, presenting the models, the transformations
and the results of the performance evaluation.

CASE STUDY
The objective of the case study is to present the various
phases of the approach on a simple but realistic application
(see Figure 5). In the application a set of icons are presented
in a window on a grid. The user’s goal is to remove all the
icons on the user interface by doing, iteratively in any
order, the selection of an icon and the triggering of a
deletion command the selection and deletion of icons. To
support this goal two different interaction techniques have
been modeled. Following the terminology of Figure 1,
Model IT1 (called Drag & Drop) features an interaction
technique of type Drag and Drop and behaved as described
in the previous section. Model IT2 (called Speak & Click)
features a multimodal interaction technique involving
speech recognition (for the deletion command) and gesture
(for icon selection). Systems and tasks models related to

these two interaction techniques are presented in the next
sections.

Modeling Interaction Technique 1
The behavior of IT 1 is presented in Figure 4. According to
the more detailed description of the interaction technique,
the abstract tasks to be refined as presented in Figure 6 in
order to produced test scenarios (as presented in the design
process of Figure 1). Selection is performed first by
deciding the icon to be deleted then by moving the mouse
cursor on the icon and by pressing the mouse button.
Deletion is performed by moving the selected icon over the
trash icon, verifying that trash icon is highlighted and
releasing mouse button.

Figure 6 Task model refined to be conformant with Drag &
Drop behavior

It is interesting to note that the temporal operator between
tasks Deletion and Selection is order independence. The
same imposed sequencing can be found in the ICO model
where the model TI 1 (in Figure 4) imposes to start
interaction with the selection (deletion is only available
later on).

Modeling Interaction technique 2
Similarly to what has been done for Interaction technique 1,
Interaction Technique 2 has been fully described using the
ICO formalism and is presented on Figure 7.

Figure 7 ICO model of system B (Speak & Click interaction
technique)

This model allows users to either start by a speech
command “delete” and then selecting an icon or selecting
first an icon to be deleted and then uttering the word
“delete”. The abstract tasks model has to be refined
similarly to the model in Figure 6.

Simulation
Simulation of the interaction technique models is done in
the case tool Petshop. Further information about the case

23

tool can be found in [4] and about the simulation in. We
don’t provide here more information about the simulation
as it has been introduced in [2] and is beyond the scope of
this position paper.

Logging
From log extracted from the simulation of IT1 we can
produce information such as the total time for a
Drag&Drop. We can also compute the number of time the
move change from OnTrash to notOntrash before the
releasing to represents the number of time the user has
missed the trash and exited the target without releasing on
the icon. All such information comes only from the places
and transitions that can thus easily be seen on the model
represented in Figure 4 and the relationship with the log as
presented in Figure 2 is immediate.

Figure 8 Result of Analysis of Log
After identifying where that information will be extracted
from the model extract, we can simulate several time the
model with different values and see if the total speed of the
interaction technique and the number of errors to execute
this task evolve. Such results can be gathered in a graph as
presented in Figure 8. That graph shows that for an increase
of acceleration of the mouse (Acceleration place in Figure
4), first the Drag&Drop is faster. But when the acceleration
is 5, the errors are too important and the time to make the
Drag&Drop increases and becomes worst than the standard
interaction technique without acceleration

CONCLUSION
In this paper we have presented an approach to test and
evaluate different interaction technique. This testing and
evaluation is driven by models. With these models we can
also tune finely different aspects of the interaction
technique. This approach has exemplified on a small
example where we show the interest of a model based
usability evaluation. The results show well known results in
HCI such as that acceleration improves efficiency of target
selection to a certain extend. The objective of the approach
is to apply it to novel and more sophisticated interaction
techniques (possibly multimodal ones) which are much
harder to assess especially through user testing.

REFERENCES
1. Abrahão S., Iborra E., and Vanderdonckt J. 2007. Usability

Evaluation of User Interfaces Generated with a Model-Driven
Architecture Tool. In Maturing Usability: Quality in Software,
Interaction and Value, Series: Springer Human-Computer
Interaction Series, Vol. 10, E. Law, E. Hvannberg, and G.
Cockton (Eds.), 610p., 2007, ISSN: 978-1-84628-940-8,
Springer.

2. Bastide, R., Navarre, D., and Palanque, P. 2002. A model-
based tool for interactive prototyping of highly interactive
applications. In CHI '02 Extended Abstracts on Human Factors
in Computing Systems (Minneapolis, Minnesota, USA, April
20 - 25, 2002). CHI '02. ACM, New York, NY, pp. 516-517.

3. Balagtas-Fernandez F., Hußmann H., A Methodology and
Framework to Simplify Usability Analysis of Mobile
Applications In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2009). Auckland New Zealand, November 2009, ISBN
1527-1366/09, pp. 520-524.

4. Blanch R., Guiard Y. and Beaudouin-Lafon M. Semantic
Pointing: Improving Target Acquisition with Control-Display
Ratio Adaptation. In Proceedings of CHI 2004, pages 519-526,
Vienna - Austria, April 2004.

5. Buchholz G, Engel J, Märtin C, Propp S. Model-based
usability evaluation - evaluation of tool support. HCII 2007,
Beijing, China, 2007. p. 1043-52. Springer-Verlag, Berlin,
Germany, 0302-9743

6. Feuerstack, S., Blumendorf, M., Kern, M., Kruppa, M., Quade,
M., Runge, M., and Albayrak, S. 2008. Automated Usability
Evaluation during Model-Based Interactive System
Development. In Proceedings of the 2nd Conference on
Human-Centered Software Engineering and 7th international
Workshop on Task Models and Diagrams (Pisa, Italy,
September 25 - 26, 2008). P. Forbrig and F. Paternò, Eds.
Lecture Notes In Computer Science, vol. 5247. Springer-
Verlag, Berlin, Heidelberg, 134-141.

7. Kristoffersen, S. 2009. A Preliminary Experiment of Checking
Usability Principles with Formal Methods. In Proceedings of
the 2009 Second international Conferences on Advances in
Computer-Human interactions (February 01 - 07, 2009).
ACHI. IEEE Computer Society, Washington, DC, 261-270

8. Lim, K. Y. and Long, J. (1994). The Muse Method for
Usability Engineering. Cambridge University Press.

9. Mellor S. and Balcer M. (2002). Executable UML: A
Foundation for Model-Driven Architectures. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

10. Navarre, D., Palanque, P., Ladry, J., and Barboni, E. 2009.
ICOs: A model-based user interface description technique
dedicated to interactive systems addressing usability,
reliability and scalability. ACM Trans. Comput.-Hum.
Interact. 16, 4 (Nov. 2009), 1-56.

11. Object Management Group (2003). Unified Modelling
Language (UML) 2.0 Superstructure Specification, August
2003. Ptc/03-08-02, pp. 455-510

12. Paternò F., Mancini C., Meniconi S. ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,
Proceedings of the IFIP TC13 International Conference on
Human-Computer Interaction, p.362-369, July 14-18, 1997

13. Paternò, F., Russino, A., Santoro, C. (2007) Remote evaluation
of Mobile Applications, Task Models and Diagrams for User
Interface Design 6th International Workshop, TAMODIA
2007, Toulouse, France, November 7-9, 2007, Lecture Notes
in Computer Science , Vol. 4849, Winckler, Marco; Johnson,
Hilary; Palanque, Philippe (Eds.) ISBN: 978-3-540-77221-7

14. T. Tiedtke, C. Märtin, N. Gerth. Awusa, A tool for automated
website usability analysis. 9th Int. Workshop DSVIS, 2002.

24

A Saliency Model Predicts Fixations in Web Interfaces
Jeremiah D. Still

Missouri Western State University
Department of Psychology

jstill2@missouriwestern.edu

Christopher M. Masciocchi
Iowa State University

Department of Psychology
cmascioc@iastate.edu

ABSTRACT
User interfaces are visually rich and complex.
Consequently, it is difficult for designers to predict which
locations will be attended to first within a display.
Designers currently depend on eye tracking data to
determine fixated locations, which are naturally associated
with the allocation of attention. A computational saliency
model can make predictions about where individuals are
likely to fixate. Thus, we propose that the saliency model
may facilitate successful interface development during the
iterative design process by providing information about an
interface’s stimulus-driven properties. To test its predictive
power, the saliency model was used to render 50 web page
screenshots; eye tracking data were gathered from
participants on the same images. We found that the saliency
model predicted fixated locations within web page
interfaces. Thus, using computational models to determine
regions high in visual saliency during web page
development may be a cost effective alternative to eye
tracking.

Author Keywords
Saliency, Interface Development, Design, Model

ACM Classification Keywords
H.1.2 User/Machine Systems; I.2.10 Vision and Scene
Understanding

INTRODUCTION

Saliency, Search and Design

Some visual designs guide users to the locations of
important information, while others mislead users. Visual
saliency, inherent in a complex interface, cues users to
certain spatial regions over others. If employed correctly by
designers, salient cues may reduce information search times
and facilitate task completion [cf. 18] by implicitly

communicating to users where they ought to start their
visual search [16]. In order to be considered salient, a
feature must be visually unique relative to its surroundings.
For example, text that is underlined amongst non-
underlined text “pulls” the reader’s attention to it. However,
many interfaces, like web pages, are rich with visual media,
such as text, pictures, logos and bullets, making the
determination of salient features a complicated task. Given
this complexity, designers are often left making best
guesses about which spatial regions are salient within an
interface. Previous research on visual search in web pages
defines entry points as regions within a page where users
typically begin their visual search. In this article, we will
argue that these entry points are heavily influenced by
visual saliency, that is, users will often begin searching web
pages at the location of highest saliency. In related research
examining cognitive processing these implicit and low level
cues that guide a viewer’s visual search are referred to as
stimulus-driven properties – certain characteristics of the
stimulus quickly “drive”, or direct attention to certain
locations over others. Currently, no consensus has been
reached as to which visual characteristics, or stimulus-
driven properties, make for effective entry points.

Measuring Overt Attention through Eye Tracking

Given the over abundance of visual information in our
environments and our working memory limitations,
attention must be selective, only allowing a limited amount
of information into consciousness, for our cognitive system
to function properly [8]. It has been suggested that the
programming of eye movements has a direct and natural
relationship with visual attention in that attention is often
directed to whichever item is fixated [10]. Only information
that falls directly on the fovea during a fixation is encoded
with high resolution and only a limited amount of this high
resolution information is processed, while the rest falls into
rapid decay [see 4]. Thus, it is critical that users fixate on
relevant visual information or that content will not reach
users' awareness.

It is no surprise then, that designers often monitor eye
movements to evaluate a web page’s saliency, or entry
points. Eye tracking systems allow designers to test whether
their web pages actually guide users' fixations to important
locations. However, eye tracking has a number of
recognized costs. Eye tracking systems are often expensive,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MDDAUI 2010, April 10, 2010, Atlanta, Georgia, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

25

not easily accessible, time consuming to employ and they
gradually lose calibration [1, 2, 7, 15].

Stimulus and Goal Driven Searches

In this article we investigate the influence of stimulus-
driven saliency on attention within the context of a web
page. Stimulus-driven saliency guides attention quickly and
without explicit intention, thus some might question its role
during a purposeful search on a web page. There is ample
evidence to suggest that goals do influence the guidance of
attention. For example, web page eye tracking research has
shown that changing the task (or goal) during a search, or
seeking navigational or informational indicators, changes
observers’ fixation patterns [3]. Additional research has
shown that, given enough time, expectations can cause a
consistent pattern of fixations – F-shaped pattern or reading
patterns (e.g., left-right/top-bottom) [14]. However, these
goal-driven effects interact with stimulus-driven effects,
making the stimulus-driven influences more difficult to
examine [cf. 11]. Also, it is often the case that only a few
seconds are spent on a web page (even with a goal in mind)
making the understanding of stimulus-driven processing,
which is believed to influence attention very rapidly,
critical. For instance, when searching for information
observers often only skim through approximately 18 words,
and spend 4 to 9 seconds, per web page [2, 12]. One way to
investigate the pure influence of stimulus-driven guidance
is to use a computational saliency model designed to make
predictions about what properties or features of a web page
attention ought to select within complex media, or scenes.

Predicting Fixations through a Saliency Model

Visually salient items often draw observers' attention. To
better understand the influences of saliency, or stimulus-
driven selection, on attention, Koch and Ullman (1985)
developed a model to compute an image's visual saliency
without any semantic input (i.e., meaning of objects). Their
model is based on the assumption that eye movement
programming is driven by local image contrast leading to
logical serial searches through complex spatial
environments. These serial searches are guided by low level
primitives extracted from a scene. The saliency model was
developed under the pretense that low level visual features
(i.e., color, light intensity, orientation) are processed pre-
attentively in humans and, in turn, rapidly influence overt
attention. Thus, the underlying assumption is that visual
saliency is used to guide the fovea to unique areas within a
scene that might provide the most efficient processing [5].

The computational model is implemented on a computer
using digital pictures as stimuli to produce a pre-attentional
or “saliency” map [9]. To create a saliency map, the model
receives input from pixels within a digital picture. Then, it
extracts three feature channels – color, intensity, orientation
– at eight different spatial scales. These three channels are
normalized and differences of center-surround are
calculated for each separate channel. The separate channels
are additively combined to form a single saliency map. An

image's saliency map provides predictions of where spatial
attention should be deployed [for detailed explanations
refer to 6, 13]. In essence, the model makes predictions
about which regions in an image have the most and least
likely chance to be attended based purely on stimulus-
driven properties. The saliency model is available for
download from <SaliencyToolbox.net> as a collection of
Matlab functions and scripts [17].

Testing a Saliency Model within Web Pages

Designers recognize the need to predict and identify where
users’ attention will be guided on a web page. For example,
it is well known that one should avoid using poor designs
that increase the likelihood of users missing important
interface features such as branding, navigational or
informational symbols. But, using an eye tracking system to
monitor guidance of attention – as is traditional – can be
expensive, difficult to employ and time consuming within
the context of a practical iterative design process. Thus, we
investigated the utility of a computational saliency model in
predicting the guidance of attention in web page
screenshots. This new method is benchmarked and
compared to another set of data in which participants’ eye
movements were tracked while they viewed the same web
page screenshots.

METHOD

Participants

The data from eight undergraduate participants are
examined. All participants reported extensive web site
experience.

Stimuli and Equipment

The images were 50 screenshots of various web pages.
Each participant saw each screenshot only once.

Participants' eye movements were recorded by an ASL eye
tracker with a sampling rate of 120 Hz. Screenshots were
shown on a Samsung LCD monitor, which had a viewing
area of approximately 38.0 cm × 30.0 cm. A chin rest
maintained a viewing distance of approximately 80 cm.
Images subtended approximately 26.70 x 21.20 visual angle.

Procedure

Participants first read and signed an informed consent
document, and were then seated in front of the monitor with
their chin in the chin rest. The experiment began and
concluded with a 9-point calibration sequence to calibrate
the eye tracker and estimate the amount of tracking error.

Participants were told that they would view a series of web
page screenshots, and that they should, "look around the
image like you normally would if you were surfing the
internet." A fixation cross was presented at the center of the
screen to signal the beginning of a trial. After a delay of
approximately 1 second, a randomly selected web page
screenshot was presented for 5 seconds. The fixation cross
then reappeared to signal the beginning of the next trial.

26

The experiment took approximately 15 minutes to
complete.

Figure 1. Two examples of web page screenshots and their
corresponding saliency maps.

Creation of saliency maps

Saliency maps were created using the algorithms developed
by Itti, Koch, and Niebur (1998). The model was run on
each image individually and the output was normalized by
dividing all values by the maximum value for that map, and
multiplying all values by 100. To simplify data analysis, the
size of the saliency maps was increased to be identical to
the size of the screenshots (1024 x 768 pixels). As
described in the Introduction, these saliency maps are 2-D
representations of areas in the screenshot that show the
relative saliency of locations in the image. Figure 1 shows
an example of two web page screenshots and their
corresponding saliency maps. Low values (dark areas in the
image) indicate regions of the image that are low in
saliency, while high values (light areas in the image)
indicate regions high in saliency.

RESULTS

We used a similar technique to Parkhurst, Law, and Niebur
(2002) to determine whether salient regions in web pages
were fixated more often than would be expected by chance.
Specifically, the values of the saliency map at the location
of each participant's first ten fixations were extracted. For
example, the x, y coordinates of the first fixation for each
participant was determined for every screenshot and the
value at the same location in the corresponding saliency
map was extracted. This process was repeated for fixations
two through ten. These values formed the Observed
Distribution of participant responses (Figure 2).

To determine the likelihood that salient regions would be
fixated by chance, we repeated the process used to find the
Observed Distribution after rearranging the fixations and
saliency maps for all screenshots. For example, the values
from the saliency map for screenshots 2 to 50 were

extracted at the fixated locations from screenshot 1. The
saliency values of all other screenshots were extracted at
the location of the first ten fixations for all subjects for each
screenshot. These values formed the Shuffled Distribution.
The method used to create this distribution controls for
spatial biases that may inflate correlations between
fixations and salient regions. If the values of the Shuffled
Distribution are larger than those of the Observed
Distribution, it would indicate that participants fixated on
regions that are lower in saliency than what is expected by
chance. If, however, the values of the Observed
Distribution are larger than those in the Shuffled
Distribution, it would indicate that participants fixated
regions that are higher in saliency than what is expected by
chance.

Figure 2 shows the means for the Observed and Shuffled
Distributions of the first ten fixations for each screenshot.
An analysis of variance was conducted with fixation
number (1-10) as a within-subjects variable and distribution
(observed, shuffled) as a between-subjects variable, to
determine whether any differences between the
distributions varied as a function of fixation number. The
main effect of fixation number was reliable, F(9, 882) =
6.39, MSE = 19.03, p < .001. Pairwise comparisons
revealed that the values for the first fixation were higher
than all other values, and that the values of the tenth
fixation were lower than all other values. This indicates that
early fixations tend to occur at regions of higher salience
than those of later fixations. More importantly, the main
effect of distribution was also reliable, F(1, 98) = 4.86,
MSE = 397.95, p < .05, indicating that the values of
Observed Distribution were larger than those of the
Shuffled Distribution. This difference confirms that
participants fixated regions higher in saliency than would
be expected by chance, showing that the saliency model is
effective at predicting fixations. Distribution x Fixation
number was not significant, F < 1.

Figure 2. Mean saliency values for the observed ('X') and
shuffled ('o') distributions for the first ten fixations.

27

DISCUSSION

Eye tracking is a commonly employed method for
examining the guidance of overt attention within interfaces
(e.g., web pages). However, it has several drawbacks. We
propose that a web page’s saliency, stimulus-driven
properties, may be revealed through the use of a
computational saliency model. Therefore, we compared the
performance of the model to eye tracking data collected
from human observers. We were able to demonstrate that,
indeed, the saliency model predicts the deployment of overt
attention within a web page interface.

Previous research has shown a modest correlation between
saliency and eye fixations in natural and artificial scenes
[13]. We have extended this research by showing that even
in web pages, which may contain more semantic
information (e.g., meaningful: text or images) than nature
scenes, fixations are correlated with saliency. Specifically,
participants were more likely to fixate on regions in the web
pages with a higher saliency value than predicted by
chance.

Our data suggest that saliency maps alone can provide
reasonable predictions of overt attention. In addition,
saliency maps can be generated quickly, and require no
additional equipment or participants. Even with these
positive attributes, one may be hesitant to abandon eye
tracking altogether. Our recommendation to designers is to
choose the method most appropriate for your project given
your constraints and needs. It is often the case that
developing effective interfaces requires many levels of
analysis. For example, during the early formative testing
process it would be appropriate to begin by using the
saliency model to ensure that regions identified as being
important are also visually salient. Then, during the ‘final’
prototype development stage, employ the eye tracking
method to verify that your participants are actually looking
at the critical elements in the design.

REFERENCES

1. Arroyo, E., Selker, T. & Wei, W. Usability tool for
analysis of web designs using mouse tracks. Computer-
Human Interaction extended abstracts on human
factors in computing systems (2006), 484-489.

2. Chen, M., Anderson, J. R. & Sohn, M. What can a
mouse cursor tell us more?: Correlation of eye/mouse
movements on web browsing. Computer-Human
Interactions extended abstracts on human factors in
computing systems (2001), 281-282.

3. Cutrell, E. & Guan, Z. What are you looking for? An
eye-tracking study of information usage in web search.

Proceedings of the SIGCHI conference on human
factors in computing systems (2007), 407-416.

4. Egeth, H. E. & Yantis, S. Visual attention: Control
representation and time course. Annual Review of
Psychology (1997), 48, 269-297.

5. Itti, L. & Koch, C. A saliency-based search mechanism
for overt and covert shifts of visual attention. Vision
Research, 40(10-12) (2000), 1489-1506.

6. Itti, L., Koch, C. & Niebur, E. A model of saliency-
based fast visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(11): 1254-1259, November 1998.

7. Johansen, S. A. & Hansen, J. P. Do we need eye
trackers to tell where people look? Proceedings of
Computer-Human Interaction extended abstracts on
human factors in computing systems (2006), 923-928.

8. Johnston, W. A. & Dark, V. J. Selective attention.
Annual Review of Psychology(1986), 37, 43-75.

9. Koch, C. & Ullman, S. Shifts in selective visual
attention: Towards the underlying neural circuitry.
Human Neurobiology (1985), 4, 219-227.

10. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The
role of attention in the programming of saccades.
Vision Research (1995), 35, 1897-1916.

11. McCarthy, J. D., Sasse, M. A. & Riegelsberger, J.
(2003). Can I have the menu please? An eyetracking
study of design conventions. Proceedings of Human-
Computer Interaction, 401-414.

12. Nielsen, J. (2008, May). How little do users read?
Retrieved May 12, 2009 from
http://www.useit.com/alertbox/percent-text-read.html.

13. Parkhurst, D., Law, K. & Niebur, E. Modeling the role
of salience in the allocation of overt visual attention.
Vision Research (2002), 42, 107-123.

14. Rayner, K. Eye movements in reading and information
processing: 20 years of research. Psychological
Bulletin (1998), 124(3), 372-422.

15. Tarasewich, P., Pomplun, M., Fillion, S. & Broberg, D.
The enhanced restricted focus viewer. International
Journal of Human-Computer Interaction (2005), 19(1),
35-54.

16. Treisman, A. M. Perceptual grouping and attention in
visual search for features and for objects. Journal of
Experimental Psychology: Human Perception and
Performance (1982), 8, 194-214.

17. Walther, D. & Koch, C. Modeling attention to salient
proto-objects. Neural Networks (2006), 19, 1395-1407.

18. Wolfe, J. M. Guided Search 4.0: Current Progress with
a model of visual search. In W. Gray (Ed.), Integrated
Models of Cognitive Systems (pp. 99-119). New York:
Oxford, 2007.

28

Embedding Requirements in Design Rationale to Deal
Explicitly with User eXperience and Usability in an “intensive”

Model-Based Development Approach
Célia Martinie, Jeff Ladry, David Navarre, Philippe Palanque & Marco Winckler

IRIT - University Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex 9, France

{martinie, ladry, navarre, palanque, winckler}@irit.fr

ABSTRACT
Requirements engineering for interactive systems remains a
cumbersome task still under-supported by development
processes. Indeed, in the field of HCI, currently the most
common practice is to perform user testing to assess the
compatibility between the designed system and its intended
user. Other approaches such as scenario-based design
[14,16], promote a design process based on the analysis of
the actual use of a technology in order to design new
technologies better supporting users’ tasks. However, these
approaches do not provide any support for a) the definition
of a set of requirements that have to be fulfilled by the
system under design and b) as a consequence for assessing
which of these requirements are embedded in the system
and which ones have been discarded. This position paper
proposes a notation and a tool for addressing precisely these
two challenges. These elements are integrated within a
more global approach aiming at providing notations and
tools for supporting a rationalized design of interactive
systems following a model-based approach.

Keywords
Model-based UI design, requirements, interaction
technique, design rationale, user experience, usability.

INTRODUCTION
Traceability of choices and systematic exploration of
options is a critical aspect of the development processes in
the field of safety critical systems. Some software standards
such as DO 178 B [15] (which is widely used in the
aeronautical domain) require the use of methods and
techniques for systematically exploring design options and
for increasing traceability of design decisions. However,
such standards only define what should be done and
provide no information on how such goals can be reached
by designers. Recent work in the field of software
engineering has been trying to provide solutions to that
problem and a collection of papers on that topic can be
found in [4]. One of the remaining problems pointed out by
many contributions, such as chapters 1, 19 and 20, is that
requirements are poorly or even not addressed. However,
Requirements Engineering (which is the first phase of the
development process) provides input to all the subsequent
phases and must be dealt with adequately. Indeed, ESARR
(Eurocontrol Safety Regulatory Requirement) on Software

in Air Traffic Management Systems [5] explicitly requires
traceability to be addressed in respect of all software
requirements (p. 11 edition 0.2).
This position paper addresses the problem of traceability of
requirements for model-based approaches. It tackles the
problem by providing an extension to a notation TEAM and
its associated tool DREAM which have previously been
presented in [9]. The current contribution makes it possible
to relate design options with functional and non functional
requirements. While other approaches such as SCRAM [16]
focus on requirements identification, our approach is
intended for supporting the traceability of such identified
requirements within interactive systems models. As an
example we show how two different interaction techniques
modeled using ICOs [11] satisfy different functional and
non-functional requirements. While the approach could
address any kind of requirements, we put the emphasis on
Usability and User eXperience.
Next section quickly presents the basic principles of the
TEAM notation and the extensions that have been made to
include information related to requirements. They will then
be used in the third section on a case study for comparing
the two interaction techniques with respect to requirements
providing ways of answering two fundamental questions: 1)
Which current design (among the many ones available
following a prototyping phase for instance) satisfies a given
requirement and 2) What is the exhaustive list of
requirements fulfilled by a particular design.

EXTENSION OF THE TEAM MODEL AND NOTATION
The TEAM notation (Traceability, Exploration and
Analysis Method) and its CASE tool DREAM (Design
Rationale Environment for Argumentation and Modeling)
has been proposed in [9] to support the exploration of
options and traceability of choices during the development
process of interactive safety critical systems.

TEAM notation
The TEAM notation is based on Question Option Criteria
Design Rationale notation introduced by MacLean and al.
[10]. QOC notation allows to list the available options for a
design interrogation and to trace the selection of an option
with regards to a list of relevant criteria. The TEAM
notation is an extension of QOC that enables the recording

Pre-proceedings of the 5th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and UI
Engineering, organized at the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners. This volume is published by its editors.

29

(in an exhaustive manner) of much information produced
during design meetings. Such information can be:
� The questions that have been raised,
� The design options that have been investigated and the

ones that have been selected,
� The evaluation performed for the different options,
� The collection of factors that have been taken into

account and how they relate to evaluation criteria,
� The task models corresponding to options
� The resulting scenarios
Besides this recording of information, an important feature
is to record design decisions and relate them to selected
factors.
This notation and associated tool can then leverage the
design rationale process for several interactive applications
and help engineers in deciding to reuse or not conception
choices when facing an already experienced issue.

Adding requirements to the TEAM notation
In the earlier version, the notation did not allow to express
the needs and requirement. But this is required from the
designers’ extensive work to trace back for the selected
options what were the requirements met. In addition, this
lack of relationship prevents designers from exploiting
requirements for the generation of options and/or to take
into account requirements aspects when designing an
option. We have thus added requirements as an explicit
entity in the TEAM notation and in the DREAM tool.
Several requirements are represented in Figure 1 (grey
rectangles with a folded corner on the top left hand side)
but the content of the figure will only be described in the
next section. As far as HCI aspects are concerned this
addition is very important as it makes it possible to
explicitly represent contributing factors to usability and
User eXperience (UX) and thus assess the relevance of
design options to them. The requested usability
requirements relate to the efficiency and effectiveness
factors of the system from an ISO 9241-11 perspective [8].
The requested user experience requirements relate to the
pragmatic quality and stimulation hedonic quality factors of
the system from a Hassenzahl perspective [6]. This specific
aspect will be detailed in the next section through a case
study.

CASE STUDY
The application we chose allows a user to remove a set of
icons on a computer screen. It has first been used and
presented by Maurice H. ter Beek and al. to evaluate the
“Resilience of interaction techniques to Interrupts” [17]. In
order to represent design choice and design rationale we
consider two different interaction techniques for performing
that task. The first interaction technique only uses a mouse-
based one while the second is multimodal as it uses speech
additionally. The first interaction technique is an enriched
drag and drop interaction, with which the user is able to

move an icon onto the trash icon. When the system detects
that the icon file has entered a 2 centimeters circle area
around the trash icon, the user has 2 seconds to drop the file
icon on the trash, or the trash icon will move to another
location on the display. More sophisticated techniques
could be easily modeled using our approach but this is
beyond the scope of the position paper. The second
interaction technique is a speech and click interaction where
the user utters “delete” and clicks on the icon to be deleted.
The Speech & Click and enriched Drag & Drop options,
among other design choices, are going to be evaluated
according to the initial requirements for the application.
One having an important impact is the one requiring the
interaction technique to be tolerant to interruptions (for
more details see [17]).

Presentation
An initial list of these requirements gathers functional needs
and non-functional ones (mainly Usability and User
eXperience). An extract of the set of usability requirements
for this user interface are (“u” stands for usability
requirement):
� Ru1-The application shall support one interruption

every 10 seconds
� Ru3-The application shall allow the user to clean the

desktop in less than 30 seconds
The set of user experience requirements for this user
interface are (“ux” stands for user experience):
� Rux1-80% of the users shall find the application easy

to use
� Rux2-80% of the users shall find that interacting with

this application is surprisingly different
Given this list of requirements, evaluation criteria are
defined and linked to appropriate factors. The different
questions, options and design paths with regards to elected
criteria are consigned within the DREAM design rationale
tool. Figure 1 gives an overview of the design options
linked to requirements and evaluation criteria. Due to space
constraints, the schema has been shrunk, but several display
techniques for the tool are currently being studied for big
and complex diagrams. Rectangles show the requirements,
rounded-shape squares contain the design questions that
have been asked, right-angle triangles on the right side
describe factors and the other triangles describe criteria.
Each question has several possible options to address the
issue. For instance, as far as the interruption is concerned
(“How to display interruptions?”), the interruption can be
displayed as a “pop-up window” or as a “small icon
blinking” on one side of the display. In the TEAM mode,
the connection between these options and the four criteria
“File deletion error rate”, “Time to clean desktop”,
“Perceived manipulability” and “Perceived originality”
represents the relative impact of the option. The strong link
between the option “small icon blinking” and the “time to
clean desktop” criterion shows that it favors that criterion.

30

Figure 1. Design Rationale overview from a design session output with DREAM
The right-hand side of the diagram makes explicit the
relationship between criteria and factors. Factors
correspond to desired characteristics of the system namely
“Usability” and “User eXperience”. They are in turn
decomposed into sub-factors; two out of the three
classical ones for usability i.e. “effectiveness” and
“efficiency” and two for “User eXperience” i.e.
“Pragmatic quality” and “Hedonic Quality Stimulation”.

Design options modeling
One of the issues that remain to be solved is how to assess
the options with respect to the connected criteria. For
instance, how to identify if the option “Mouse and
Speech” for the interaction technique is better than the
option “Enriched Drag and Drop” with respect to the
criterion “Time to clean desktop”. In order to address that
problem we propose to apply a model-based approach and
to define for each option a detailed behavioral description.
For that purpose we use the ICO notation [11], but other
ones such as [2 or 6] would also be applicable. ICO
notation stands for Interactive Cooperative Objects and is
a formal notation to describe interactive systems. It is
based on object-oriented design pattern and high-level
Petri nets. The PetShop associated tool [1 and 13] allows
editing the ICO model and prototyping the associated
interface at the same time (this aspect is detailed in [12]).
The DREAM diagram shows that a third design option,
speech only, had initially been suggested and that this
option does not fulfill all the non-functional requirements,
even before having prototyped or modeled it. The
modeling of an option has a cost indeed and the gain of

this approach is effective if the number of modeled and
prototyped options is balanced with the modeling and
prototyping cost. To help in comparing the two remaining
interaction techniques, models of these interactions have
been built and embedded in the DREAM diagram as
indicated by the paperclip symbol at the bottom-right of
each option. ICO models of the two interaction techniques
are built and assessed (Enriched Drag and Drop technique
ICO model detailed in Figure 2), with respect to both
“user experience” and “usability” factors. These models
are then verified and prototyped by means of PetShop
tool. Effectiveness can be verified and performance
evaluation technique can be used to assess time
performance for instance. Due to space constraints this is
not detailed here. Usability tests can be performed on the
prototypes with the building of the application while
performance evaluation can be done on the model only.
For the user experience aspects, using the prototyped
options, an evaluation has been performed with
AttrakDiff tool [7] to rate the selected criteria. Paperclip
symbols on “perceived manipulability” and “perceived
originality” criteria represent the fact that such results are
stored in the design rationale model. Furthermore, to help
in checking this coverage and to ensure that one or more
evaluation criteria are not missing, the tool allows linking
the requirements to criteria.

Interpretation and benefits
Once the design options have been assessed, DREAM
model makes it easy to perceive which one (if any) has
received the best evaluation.

31

Figure 2. ICO model of Enriched Drag & Drop
In addition it makes it explicit for this option which
requirements it fulfils. Coming back to the importance of
requirement engineering, DREAM diagram is a critical
help to argue about, to select an option as well as to trace
back the rationale underlying this selection. In our
example, we see at a glance that the “Mouse and Speech”
option is the best rated and that it fulfills the entire set of
non-functional requirements. The final choice then
belongs to the various stakeholders who have additionally
direct access to the related requirements which, in turn,
cannot be ignored. Furthermore, all the necessary
information about the designed interactive system can be
gathered and synthesized in one diagram. From a designer
perspective, it can help to share conception ideas and
materials. From another participant involved in the
implementation and/or deployment process, it can be seen
as an entry point to the designed system.

CONCLUSION
This position paper argues that various models are useful
for the design of interactive systems as they can
complement each other and correspond to the needs of
different stakeholders. We have presented a model-based
approach for description within and single diagram
requirements, design questions, design options, criteria
and factors. This structured set of information supports
different activities such as requirements traceability,
design choices decision support and the traceability of
design choices decisions. We have also presented how
detailed behavioral description of advanced interaction
techniques such as “Enriched drag and drop” or “speech
and click” can be integrated within that framework to
provide additional benefits. Of course such “intensive”
model-based approaches require tools to support model
construction, analysis, simulation, interpretation and
reuse. The CASE tools supporting TEAM and ICO
notation are publicly available [3 and 13] and are a corner
stone of the applicability of the approach.

REFERENCES
1. Bastide, R., Navarre, D., and Palanque, P. 2002. A model-based tool

for interactive prototyping of highly interactive applications. In CHI
'02 Extended Abstracts on Human Factors in Computing Systems
(Minneapolis, Minnesota, USA, April 20 - 25, 2002). CHI '02.
ACM, New York, NY, pp. 516-517.

2. Coninx, K., Cuppens, E., De Boeck, J. & Raymaekers, C., 2007,
Integrating Support for Usability Evaluation into High Level
Interaction Descriptions with NiMMiT . In: Interactive Systems:
Design, Specification, and Verification. 2007, Springr Verlag
LNCS, pp. 95-108.

3. DREAM web site: Internet Resource
http://ihcs.irit.fr/dream/index.html , accessed Jan 2010.

4. Dutoit, A.H., McCall, R., Mistrík, I., Paech, B., Rationale
Management in Software Engineering: Concepts and Techniques,
Rationale Management in Software Engineering, p. 1.

5. ESARR 6. EUROCONTROL Safety Regulatory Requirement.
Software in ATM Systems. Edition 1.0.
http://www.eurocontrol.int/src/public/standard_page/esarr6.html
(2003)

6. Hassenzahl, M. The thing and I: understanding the
relationship between user and product. In M.Blythe, C. Overbeeke,
AF Monk, & PC Wright (Eds.),
Funology: From Usability to Enjoy-ment. Dordrecht: Kluwer, 2003,
pp. 31-42.

7. Hassenzahl, M. - Internet Resource
http://www. attrakdiff.de, accessed Jan 2010.

8. ISO DIS 9241-11 (1996) Ergonomic requirements for office work
with visual display terminals (VDT) - Part 11 Guidance on usability.

9. Lacaze, X., Palanque, P., Barboni, E., Bastide, R., Navarre, D.,
From DREAM to Reality : Specificities of Interactive Systems
Development With Respect to Rationale Management, Rationale
Management in Software Engineering, pp.155-170.

10. MacLean, Allan; Young, Richard M.; Bellotti, Victoria M. E., and
Moran, Thomas P. Questions, Options, and Criteria: Elements of
Design Space Analysis. Lawrence Erlbaum Associates; 1991; 6, pp.
201-250.

11. Navarre, D., Palanque, P., Ladry, J., and Barboni, E. 2009. ICOs: A
model-based user interface description technique dedicated to
interactive systems addressing usability, reliability and scalability.
ACM Trans. Comput.-Hum. Interact. 16, 4 (Nov. 2009), pp. 1-56.

12. Palanque P., Ladry J., Navarre D. and Barboni E. High-Fidelity
Prototyping of Interactive Systems can be Formal too 13th
International Conference on Human-Computer Interaction (HCI
International 2009) San Diego, CA, USA.

13. PetShop web site: Internet Resource http://ihcs.irit.fr/petshop,
accessed Jan 2010.

14. Rosson, M.B. & Carroll, J.M. 2002. Usability Engineering:
Scenario-Based Development of Human-Computer Interaction. San
Francisco: Morgan Kaufmann.

15. RTCA. Software Considerations in Airborne Systems and
Equipment Certification, DO-178B RTCA, Washington D.C. 1992

16. Sutcliffe A. & Ryan M. Experience with SCRAM, a SCenario
Requirements Analysis Method, in Proceedings of the 3rd
International Conference on Requirements Engineering: Putting
Requirements Engineering to Practice, April 1998, pp. 164-173.

17. Ter Beek, M. H., Faconti G. P., Massink, M., Palanque P., Winckler
M. Resilience of interaction techniques to Interrupts: A Formal
Model-Based Approach. In proc. of Human-Computer Interaction
(INTERACT 2009), Uppsala, Sweeden, Vol. 1, Springer-Verlag,
LNCS 5726, p. 494-509.

32

A global process for using
model-driven approaches in user interface design

Sybille Caffiau, Patrick Girard
LISI / ENSMA

Site du Futurosope – Téléport 2
86961 Futuroscop Chasseneuil Cédex – France

{caffiaus, girard}@ensma.fr

ABSTRACT
In user interface design, model-driven approaches usually
use a generative solution, which has obvious limitations,
especially for advanced user interfaces. Based on strong
associations between task models and dialogue models,
we propose a global process, which facilitates the design
of interactive applications conform to their models, with
the including of a rule-checking step. This process permits
either to start from a task model or a user-defined
prototype. In any case, it allows an iterative development,
in line with user-centered design standards.

Author Keywords
Task Model, Dialogue Model, Metamodel, Design
Method, Model-Driven Approach.

ACM Classification Keywords
H5.2 [Information Interfaces and Presentation]: User
Interfaces, User-centered design; H.1.2 [Models and
Principles]: User/Machine Systems.

INTRODUCTION
Model-driven approaches have been promoted for years.
Despite their great interest, they remain hard to use in the
context of user-centered design, especially when novel
interaction techniques are expected. Thus, several
research works [1-3] used a generative approach to build
user interfaces – mainly skeletons to be completed – from
task models. Following the analysis we made in [4], we
can argue that this approach has several limitations:

• Generating requires the addition of information in order
to reach an operative stage of interfaces. This
information can be added to high-level models, which
then loose their original goal; so doing they become
hard to understand and to use, because of their multiple
semantics (for example, adding presentation
information to task models results in adding new
semantics to this model). The other way is to insert this
information during the generating process. This second
approach is for example used in TERESA [5] by the
way of heuristics, which are applied during the process.
This however results in a lack of understanding of such
transformations by users.

• All considered research issues are concerned with
classical WIMP1 applications. The hierarchical
structure of task models is used to build the interface
navigation scheme. We demonstrated in [4] that
introducing non menu-based interactions implies a non-
automatic transformation of the dialogue.

• Generating is not easy to include in iterative design
cycles such as HCI-adapted cycles. When changes are
required, it is necessary to modify the high-level
models, and to generate again a new skeleton, to be
improved again by hand-made add-ons. Some results
have been obtained around the definition of “round-trip
engineering” [6, 7], but were not applied to HCI. More,
this approach prevents the designers from starting from
the prototype, which method is often used in post-
WIMP design.

Our aim is to introduce a new way to use models in user
interface design. Leaning on meta-models of one task
model and one dialogue model, we wrote equivalence
rules between such models. Then, we defined a new
development cycle that can be used in a user-centered
iterative approach.

In this paper, the context of the used models is first
described. Then, an example of the meta-models is given,
and equivalence rules are presented. In the third part, the
proposed way to use these models in a development cycle
is outlined.

CONTEXT OF THE STUDY: THE MODELS
The starting point of our work is the analysis from [4].
Whilst the generation appears to be too limitative, links
between task models and user interfaces seem obvious.
So, we decided to explore the possibility to establish
strong links between task model and other models, and to
consider exploiting said links in software design methods.
For some reasons, which are external to our subject here,
we chose the K-MAD model [8] as our task model.

In our laboratory, we have been working for some time on
dialogue models and formal approaches in HCI. We
introduced a software architecture model, H4, which was

1 Windows, Icons, Menus and Pointers

Pre-proceedings of the 5th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and UI
Engineering, organized at the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners. This volume is published by its editors.

33

first dedicated to computer-aided systems. Coupled with
that architectural model, we proposed a dialogue model,
the hierarchical interactors [9], and developed tools to
apply it [10]. Because of its hierarchical structure, the
Hierarchical Interactor (HI) model appeared as
the most suitable for our purpose. A previous
study demonstrated the capacity to exploit these
two models (K-MAD and HI) in HCI design
[11].

Then, we defined the meta-model of these two
models, which is published in [12]. We chose to
use the EXPRESS language, an alternative to the
OMG approach for meta-modeling. EXPRESS is
a standard data modeling language for product
data. It is formalized in the ISO Standard for the
Exchange of Product model STEP (ISO 10303),
and standardized as ISO 10303-112. It is
supported by complete verification tools, and
allows a full expression of constraints [13].

PRINCIPLES
In this section, we give a short description of the
K-MAD and HI models, and provide some
examples of the meta-models.

The K-MAD model
The K-MAD model is a hierarchical model
where tasks are decomposed in sub-tasks, with
temporal operators describing the dynamics of the model.
The description can be enhanced by the definition of
objects and expressions (preconditions, post-conditions,
and actions) to control the model dynamics more
precisely. The semantics of these different elements is
defined in details.

Figure 1 illustrates a sample of the EXPRESS definition
of the central element of the model, the task.

The Hierarchical Interactor (HI) model
The HI model consists in a state machine model where the
dialogue of the application is split into independent
automata. Transitions are activated by tokens that
represent user inputs or automaton productions.

The hierarchical organization of the model allows the
automata to produce and consume tokens. The main
advantages of this system are two-fold:

• Automata are independent from each other. They can be
removed or added independently, without any change to
others.

• Tokens are the key elements of the model. As they can
refer to both user entries and automaton productions,
they break the binding between user inputs and

2 http://www.tc184-sc4.org/

transitions. This allows to consider the dialogue at the
level of abstract level one wants. This is particularly
important when post-WIMP interaction techniques are
used.

Figure 1: EXPRESS definition of the Task entity (partial)
Such as in advanced state machines, transitions may be
guarded by expressions, which involve variables. They
also can trigger actions. Figure 2 (next page) illustrates a
transition meta-model.

Associations between models
The general philosophy of our approach is to take
advantage of the hierarchical nature of the two models to
establish strong associations between them.

The task/transition association
The first obvious association can be made between tasks
from the task model and transitions from the dialogue
model. This link has been largely used in the previous
research works, but for us, the link is not a bijective link:
because of the need for interaction facilities in
applications, there can be more transitions than user tasks.

The compound-task/automaton association
The structure of the dialogue model encourages
considering each task decomposition as equivalent to a
specific automaton. The structure of the automaton must
then be compatible with the dynamics described through
the temporal operator of the compound task. Again, the
dialogue may be richer than the simple translation of the
temporal operator. Another consequence of this
association is the equivalence between tokens and

34

compound tasks: each compound task may be achieved by
the way of an automaton that produces a token that stands
for the task achievement.

Figure 2: EXPRESS definition of the Transition entity

The object/variable and expression associations
Both task model and dialogue model use expressions,
which manipulate objects/variables. This link is patent,
but was not described in the previous works because the
used task model did not formally consider objects and
expressions.

Rules between models
Two kinds of rules can be established between the models
[12], based on the previously defined associations.

The first kind of rules concerns the existence of logically
associated entities in both models. For example, are there
one token and one automaton for each compound task? Or
is there one transition in the dialogue model for each task
in the task model?

The second kind of rules relates to the semantics of the
models. Are the semantics of the expressions we can find
in each model equivalent? Is the navigation, which is
allowed by the automata, consistent with the temporal
decomposition of the tasks?

These rules can be exploited in two ways. They can be
used in initial design to generate a skeleton of the

dialogue, or they can be used in verification to state that
two models are compatible. In that way, our work might
be compared to [14]. We describe in the next section the

different usages of this duality.

THE GLOBAL PROCESS
In this section, we describe the global
process we propose to utilize the model-
driven approach we describe above.

As previously claimed in the
introduction, generating dialogue model
from task models suffers from
drawbacks; the most important of them
is related to the iterative nature of user-
centered approaches. When changes
must be made in response to new or
enhanced user needs, the generating
process must be run again, and all hand-
made changes in the interface are lost.
We argue that, if a generation phase
occurs, it must be restricted to a starting
point; then, the process must be able to
achieve without any further generation.
The scenario schema we propose is as
follows.

Assuming we are able to design, edit
and verify each of both task and
dialogue model. Each of these phases
will be called “X-editing phase”

thereafter. These phases may be realized independently
from each other. Our model-driven approach consists in
including these phases in a dynamic design process.

Optionally, one can start by a “task-editing phase”, from
which a starting skeleton for the dialogue model can be
derived (e.g. generated, but only once). Either kinds of
rules, existence rules and semantic rules, can be used to
produce this skeleton. Then, the next phase consists in
filling in the skeleton, in a “dialogue-editing phase”.
Adding specific dialogue elements, the dialogue model
can be completed.

During this step, the two models can be confronted for
detecting inconsistencies. By adding specific interaction
elements to the skeleton, the designer might have changed
the semantics of the model.

To reach this objective, the designer must associate the
two models: some added dialogue entities might be
related to task entities.

After analysis, depending on the result, different solutions
can be applied:

• Fail. The two models do not match. Some tasks are
missing in the dialogue model. The dialogue model

35

must be improved to take into account the whole task
model.

• Fail. The two models do not match. The dynamics of
the two models differ. The task model and/or the
dialogue model must be modified.

• Success. The two models match. The system is now
ready to being tested by users.

A user evaluation phase may result in new requirements,
which may lead us to coming back to either dialogue or
task modeling, and resuming the loop.

Figure 3 is a Petri net diagram that represents the global
process. The process can start either from the Dialog-
Editing Phase or the Task-Editing Phase. After rule
checking, a failure results in redoing both Task and
Dialogue Editing Phases. If problems are detected with
usage or interaction during user evaluation, the process
must also be repeated.

Figure 3: The global process.

CONCLUSION
In this paper, we present a global process to use a model-
driven approach in user interface design. This process
uses rules that allow to check the validity of task models
and dialogue models. Moreover, this process is compliant
to user-centered approaches that promote iterative design.

REFERENCES
1. Mori, G., F. Paternò, and C. Santoro, Design and

Development of Multidevice User Interfaces through
Multiple Logical Descriptions. IEEE Transactions on
Software Engineering, 2004: p. 507-520.

2. Luyten, K., et al. Derivation of a Dialog Model from a
Task Model by Activity Chain Extraction. in DSV-
IS'2003. 2003. Funchal, Madeira Island, Portugal:
Springer-Verlag. p. 203-217.

3. Wolff, A. and P. Forbrig. Deriving User Interfaces
from Task Models. in MDDAUI'09. 2009. Sanibel
Island, USA: CEUR-WS. p. 4.

4. Caffiau, S., et al. Generating Interactive Applications
from Task Models: a Hard Challenge. in TAsk
MOdels and DIAgrams (TAMODIA). 2007. Toulouse,
France: Springer Berlin/Heidelberg. p. 267-272.

5. Berti, S., et al. TERESA: a transformation-based
environment for designing and development multi-
device interface. in Conference on Human Factors in
Computing Systems - CHI'04. 2004. Vienna, Austria:
ACM NY. p. 793-794.

6. Hettel, T., M. Lawley, and K. Raymond. Model
Synchronisation: Definitions for Round-Trip
Engineering. in Theory and Practice of Model
Transformations, ICMT 2008. 2008. Zürich,
Switzerland: Springer. p. 31-45.

7. Sendall, S. and J. Küster, Taming Model Round-Trip
Engineering, in OOPSLA Workshop on Best Practices
for Model Driven Software Development. 2004:
Vancouver, Canada.

8. Lucquiaud, V. Proposition d'un noyau et d'une
structure pour les modèles de tâches orientés
utilisateurs. in 17th French-speacking conference on
Human-computer interaction. 2005. Toulouse. p. 83-
90.

9. Depaulis, F., et al., Le modèle d'architecture logicielle
H4 : Principes, usages, outils et retours d'expérience
dans les applications de conception technique. Revue
d'Interaction Homme-Machine, 2006. 7(1): p. 93-129.

10. Depaulis, F., S. Maiano, and G. Texier. DTS-Edit : an
Interactive Development Environment for Structured
Dialog Applications. in CADUI'02. 2002.
Valenciennes (France): Kluwer Academics. p. 75-82.

11. Caffiau, S., et al., Hierarchical Structure: A Step for
Jointly Designing Interactive Software Dialog and
Task Model, in Human-Computer Interaction. Novel
Interaction Methods and Techniques, Springer, Editor.
2009, Springer: Berlin. p. 664-673.

12. Caffiau, S., Approche dirigée par les modèles pour la
conception et la validation des applications
interactives : une démarche basée sur la modélisation
des tâches, in LIIS/ENSMA. 2009, Poitiers: Poitiers.
p. 240.

13. Dehainsala, H., et al. Ingénierie dirigée par lesmodèles
en EXPRESS : un exemple d’application. in IDM.
2005.

14. Kavaldjian, S., et al. Transformations between
Specifications of Requirements and User Interfaces. in
MDDAUI'09. 2009. Sanibel Island, USA: CEUR-WS.
p. 4.

36

E-Composer: Enabling the Composition of Mobile
Assistants

Ilhan Aslan*, Dyuti Menon*, Robert Brauer*, Kristin Albert* and Christian Maugg*
Fraunhofer ESK, Germany*

name.lastname@esk.fraunhofer.de*

ABSTRACT
ELEPHANT (ELEments for Pervasive and Handheld AssistaNTs)
is a system that aims to integrate a broad range of users (e.g.
designers, domain experts and end users) with different
backgrounds in the process of developing personal mobile
assistants. In this paper we present a user study that we have
conducted for two reasons: First, to screen characteristics of
modeling mobile assistants by non-experts of mobile software
development; and second, to test a first prototype of the
ELEPHANT system’s graphical modeling tool (E-Composer).

1. INTRODUCTION
Today, the use of mobile phones is very wide spread. In addition,
the capabilities of mobile technology as also the underlying
infrastructure are increasing on a regular basis. This development
qualifies mobiles phones as digital companions in everyday life.
However, when it comes to modeling the interaction for a broad
spectrum of target users, target domains and context of use, the
modeling process becomes very cumbersome. On the one hand,
designing interaction and user interfaces is a profession in itself
and most software engineers do not have the required skills to
build user centered, attractive and usable interactions without
being guided or having a framework set for them. On the other
hand, general modeling languages (e.g. UML based) that are
being used by software engineers are either too low level or
foreign to most designers and domain experts. The ELEPHANT
(ELEments for Pervasive and Handheld AssistaNTs) system aims
to integrate non-software engineers (e.g. designers, domain
experts and end users) in the process of developing personal
mobile assistants. The ELEPHANT system’s modeling tool that
we refer to as the E-Composer allows a high level of modeling
based on components [1]. One of the reasons why users access
services while mobile is basically because they need assistance to
complete an activity (e.g. shopping, dining, driving or route
finding) or to proceed with an activity in the real world. Although
today's mobile phones have advanced interfaces and can handle
most websites that have been originally designed for the desktop
environment, single services that focus on content and
functionality are not sufficient in assisting mobile users during
their specific activities. Especially, if users are involved in real
world activities in which they are pressed for time, the assistance
provided through the capabilities of the mobile phones has to be
highly personalized and centered to the user's activity. The
requirements on personalization and adaptation to user activities
are very high. To fulfill these requirements, domain experts and
end users have to participate in the design process. Therefore, the
ELEPHANT system provides a browser based tool support for the
participative design of mobile assistants. The E-Composer is the

front-end of the ELEPHANT system that allows users to
graphically compose mobile assistants based on components. The
graphical presentation of a mobile assistant modeled with the E-
Composer has a tree-like structure (see figure 1). The backend of
the ELEPHANT system manages these components. Components
can be accessed and tagged with information by all users. Users
can search for components and they can set up a components
library. In [1] we described the component based development of
mobile assistants in more detail.
In order to derive essential feedback regarding the ELEPHANT’s
composer tool, its reception by users and its functionalities, we
describe in this paper usability tests that we conducted to measure
user satisfaction from working with the tool and the overall
performance of the tool. A small test scenario was setup, where
users were given the task of modeling a mobile assistant using the
ELEPHANT composer. Based on the user reactions and
suggestions during and after the tests, conclusions were drawn
regarding the performance and efficacy of the composer and how
it may be improved. In this paper we present a description about
the usability tests, the set-up and the data, what we intend to
deduce from these usability tests and what methods we used to
evaluate the data.

2. User Study
The usability tests were conducted with 11 participants in the age
group of 22 – 28 years. They came with different backgrounds in
the areas of computer expertise, authoring systems and system
modeling skills. The tests were conducted individually and in an
undisturbed setting with the test subject being initially instructed
as to the nature and goal of the test. The test subjects were advised
to complete the test within 1 hour and to keep in mind that this
test was composed of 2 separate tasks. Once the test subjects were
given all the instructions and provided with all the material to
proceed with the test, the members of our team left the premises
The goal of the tests was for the participants to create a mobile
assistant, which would assist a friend who would shortly be
travelling to the city of Barcelona. This mobile assistant would
aid the visitor with the Spanish language by helping them with the
translations of common phrases (to buy tickets, order food etc.),
be a guide for sightseeing in the city of Barcelona (by providing
background information on the interesting places to see) and
provide additional information such as suggestions about
interesting places to eat or things to do in Barcelona. Keeping the
generation of a Barcelona mobile assistant as the common goal,
two tasks were designed to differentiate between a known and an
unknown framework. The first task was to design a paper based
Barcelona mobile assistant (see figure 2). The second task was to
do the same, i.e. design a Barcelona mobile assistant, with the

Pre-proceedings of the 5th International Workshop on Model Driven Development of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and UI
Engineering, organized at the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners. This volume is published by its editors.

37

help of the ELEPHANT composer (see figure 1). For both the
tasks, the test subjects were provided with a list of content they
had at their disposal to create this assistant. The content included
text data, images, video clips and audio files, all connected to
Barcelona and the Spanish language.

Figure 1: Screenshot of one of the subject’s audio and video

data

Figure 2: Photo of a result of one of the subject’s paper based

model of a mobile assistant
Our aim in conducting these tests was to measure the system
performance, user satisfaction and the emotional response (in
terms of stress and cognitive load on the participant) due to using
the tool. System performance: Evaluating the operation and
efficiency of the tool is a key step in its development. Identifying
areas that require more attention or areas that we can build up on
help enrich the authoring tool and provide a solid basis to create
an advanced product. User satisfaction: Based on actual user
experience, this metric is a powerful indicator of how the product
might be received and how quickly it might be adopted by users.
The test subjects rate and rank different features and

functionalities of the tool and we as developers are able to
interpret this and change and improve the authoring tool
accordingly. Indication of stress and Cognitive Load: The term
cognitive load (CL) may be described as the amount of effort that
accompanies learning, thinking and reasoning [9] and hence has a
bearing on the overall evaluation of the tool.

System performance and user satisfaction: In our usability tests,
both these metrics were evaluated from user feedback in the form
of questionnaires, user comments and user reactions. Real-time
user reactions were also recorded by capturing the screen activity,
recording any comments made by the test subjects while doing the
tests and by using a webcam to record the activity of the test
subjects (see figure 1). Stress and Cognitive Load: As discussed
earlier, both stress and cognitive load introduce physiological
changes in body, they can be identified using biosensors that
monitor and record certain bio-signals. In our usability tests, we
monitored the heart rate, skin conductivity and skin temperature
of our test subjects.

3. Data Collection
Two questionnaires were administered to the users. The first was
used to understand the background of the user and his experience
with any of the authoring tools available in the market. This was
answered by the test subject before beginning the usability test.
The second questionnaire addressing issues related to the
ELEPHANT Composer was answered by the test participants after
the completion of both the tasks. This one was largely based on
the USE Questionnaire for User Interface satisfaction, designed
by Arnold Lund [6]. This particular questionnaire evaluates four
key factors, Usefulness, Ease of Use, Ease of Learning and
Satisfaction, through a series of questions, which are answered by
rating (from 1 to 7) between a strongly positive reaction (scored
as 7) to a strongly negative one (scored as 1). Test subjects were
also given the freedom to express their suggestions and ideas. The
test subjects were asked to think aloud and a continuous audio
and video recording was made, whereby we could register their
thoughts and reactions during the course of the task. In order to
correlate these audio comments with the task being performed, the
activity on the screen was also captured with the help of Camtasia
Studio 5, Screen Recording Software. Using Camtasia we were
also able to record the video feed from a webcam that was
monitoring the test subject (see figure 1). All these 3 inputs were
recorded to be part of the usability test analysis.

In our study, we intended to measure changes in 3 physiological
variables, namely heart rate (indicator of stress), skin conductivity
(or electrodermal activity [3] - an indicator of CL) and skin
temperature (indicator of stress). To carry out these measurements
we used two biosensors, the Alive Technologies Heart Monitor
and the SenseWear BMS from Body Media. We monitored the
bio-signals of the test subjects over both the tasks, allowing us to
compare levels of parameters such as CL or stress between the
paper-based and tool-based task.

4. Data Interpretation
An initial questionnaire was answered by the test subjects at the
start of the test to ascertain the level of computer knowledge and
experience with authoring tools and system modeling. Since the
test subjects’ profession ranged from computer scientists to
economists and electrical engineers, we have encountered
different levels of both computer knowledge and designing and

38

modeling experience. However, all participants estimated
themselves as being capable of operating personal computers,
while the self-assessment regarding the experience with software
modeling and authoring tools varied quite a lot between the test
subjects. We were expecting to see reduced cognitive load for
participants with a high level of knowledge regarding software
modeling and authoring tools. The second questionnaire (based
on the USE Questionnaire for User Interface) was administered
after the completion of both the tasks. The second questionnaire
was evaluated based on the guidelines as set by the author, and
gave us an insight into the levels of user satisfaction and ease of
use of the composer. The audio and video recording was
evaluated in conjunction with the task that was being performed at
that time. The comments made were interpreted along with the
activity occurring on the screen and the webcam feed recorded
within that time frame, to see what it was about our tool that
caused them to have a problem and to see if they had any
suggestions to change and improve the tool. As our aim was to
analyze the cognitive load (the evaluation of stress is a part of our
future work) on the test subjects and depending on the findings,
find ways to improve the tool, making it easier to use. To this
effect, we analyzed the Galvanic Skin Response (GSR) values
tracked by the SenseWear BMS biosensor. We performed a
simple statistical analysis, calculating the mean over the entire test
duration and over each of the tasks separately. Any task which
requires learning, thinking and/or reasoning, puts a certain
amount of load on the working memory, known as Cognitive
Load (CL) [8]. There are 3 types of CLs associated with learning
a task. The intrinsic CL is the inherent difficulty and complexity
associated with a task. The extraneous CL is produced based on
the manner in which the instruction or information is presented to
the student and must be minimized for optimum learning. Finally,
the germane CL also originates from the manner of instruction,
but contributes towards the learning process [8]. As the number
of issues that can be simultaneously handled by the working
memory is limited, the Cognitive Load Theory (CLT) provides a
basis for designing optimum instructional interfaces which
reduces the extraneous CL thereby ensuring more effective
learning [7]. A lot of work has been done on using CL to reduce
the difficulties associated with learning computer programming
which is a highly interactive task. More interaction increases the
CL on the working memory as multiple activates and skills are
being called upon simultaneously [10]. For tasks rich in
interactivity, it is particularly important to reduce the extraneous
CL [8]. As in [9] we use the GSR data obtained from our
biosensors in order to analyze the effect of CL on our participants,
as there is a directly proportional correlation between the GSR
values and CL (an increase in CL results in an increase in the
GSR [9] and vice versa). Out of the 11 participants, 9 were chosen
for the analysis of biosensor data (the data for the other 2
participants was not collected as planned due to problems with
improper skin contact).
For the analysis, the entire duration of the test was split up into 3
parts (see figure 3), namely:

� Listening to instructions: where the participants
received the initial instructions, including a brief
description of the test and the goals

� Paper Based task: where the participant carried out the
paper-based task (not time limited) to design a mobile
travel assistant on paper

� Computer Based task: where the participants used the
ELEPHANT composer to create the same travel
assistant

Figure 3: Rise of GSR in μS for participant Banner, opposed
for each of the three individual parts (instruction, paper based
and computer based)

Figure 4: Average GSR for paper based and computer based
tasks for each participant

The SenseWear BMS from Body Media provided us with a
moving average of GSR for every minute over the entire duration
of the test. As each participant spent variable amounts of time on
each of the tasks, we calculated the mean GSR for each of the
above time intervals for each participant, which allowed us to
compare these values.

avgGSRtask(i) = ����task(i) (1)
ttask(i)

where ttask is the duration of each task, i represents the participant
and GSRtask represents the recorded moving average GSR values
for the task being undertaken (listening to the instructions,
working on the paper-based, or using the composer). The mean
GSR values of the paper-based and computer-based tasks for each
of the participants were then compared. Based on these metrics,
we present our results in the next section.

5. Conclusion and Future Work
Using the composer people felt comfortable with the system and
recommended the quiet simple use of its interface. User-
friendliness and the ease of learning were also appreciated by
most of the participants. All participants succeeded in searching
for resources and arranging them to an expected final structure
with marginal variations based on the respective level of creativity
and effort put into the application. A limited scale of ELEPHANT

39

elements (E-elements) provided from the system within the testing
scenario delimitated freedom of choice. Participants felt restricted
of the predetermined set of E-elements. They desired a drilldown
of basic E-elements with the possibility to vary these items
according to their goals.
Once the mean GSR for each participant for each of the tasks was
calculated, we performed the following comparisons to deduce the
CL generated in our test subjects, due to using our tool. The
average GSR for the 3 tasks of the usability tests were as follows:
listening to instructions 0.18 μS, paperbased 0.24 μS and
computer based 0.28 μS. As expected, there was an increase in the
average GSR for the computer based task, indicating an increase
in the CL. This clearly supports the theory that moving from a
known environment (paper based) to an unknown environment
(the ELEPHANT Composer) which involves the usage of a new
computer tool causes a rise in the cognitive load on the memory.
The next step was to examine the average GSR for each of the
participants individually. As we are specifically interested in the
paper based and computer based tasks, figure 4 plots the average
GSR calculated for each participant in these 2 tasks. In order to
see the significance of the change (increase or decrease), we also
calculated the change in the average GSR in the computer based
task with respect to that of the paper based task and expressed it
as a percentage.
Change % = avgGSRcomputer(i) - avgGSRpaper(i) x 100 (2)

avgGSRpaper(i)
where i is represents each participant. While the general trend is
to have an increase in the GSR (and hence an increase in CL), we
observed that for 2 participants (Richards and Parker) there was a
decrease in the GSR recorded during the computer based test.
Comparing the GSR results with those of the questionnaires, we
saw that Richards and Parker, both hailing from background of IT
and with extensive computer expertise and experience in using
authoring systems found our tool easy to use and were able to
learn the use of it quickly. This was expected, as we have already
noticed the test subjects’ varying knowledge level in software
modeling and authoring, as pointed out above. The CL that was
exerted on their working memories reduced during the computer
based task.

Figure 5: Bundling of substructures in tree nodes

In [1] we defined an ELEPHANT element (E-element) as a
component with application logic. E-elements could only be
developed by software engineers or designers with scripting
abilities. We are planning to allow that new E-elements can also
be composed with the E-Composer (see figure 5). With this
improvement, the modeling based on components becomes more
flexible but still keeps the high level. Because of the flexibility we
gain, we also approach our long term goal of supporting activity-
based design. Activities are dynamic and hierarchical structures.
In activity theory, the objective of an activity can be realized
through different sets of actions [5], different people might need
different actions for the same activity and hence different ways to
model the assistance for the same activity. Same actions can
contribute to different activities, and may also have different
meanings for the people undertaking them [4].

6. ACKNOWLEDGMENTS
This work was funded in part by the Bavarian Ministry of
Economic Affairs, Infrastructure, Transport and Technology
within the project „Dynamische Plattformen für Verteilte
Systeme“.

7. REFERENCES

[1] I. Aslan and D. Menon. Component-based development of

mobile assistants with the elephant system. In Proceedings of
Mobility 2009, Nice, France, September 2-4, 2009.

[2] Elliot, S. N. et al., Cognitive load theory and universal
design principles: Applications to test item development,
Vanderbilt University, NASP Session, 2009

[3] Haag, A., Goronzy, S., Schaich, P., and Williams, J. Emotion
recognition using bio-sensors: First steps towards an
automatic system.2004, pp. 36-48.

[4] K. Kuutti. Activity theory as a potential framework for
human-computer interaction research. In Context and
Consciousness: Activity Theory and Human-computer
Interaction, pages 17–44, 1996.

[5] A. Leont’ev. Activity, Consciousness, and Personality.
Prentice Hall, New Jersey, 1978.

[6] Lund, A. Measuring usability with the use questionnaire, stc
usability sig newsletter, 8:2.

[7] Oviatt, S., Human-Centred Design meetns Cognitive Load
Theory: Designing interfaces that help people think,
Proceedings of the 14th annual ACM international
conference on Multimedia, 2006, pp. 871-880

[8] Richard E. M., The Cambridge handbook of multimedia
learning, Cambridge University Press, 2005

[9] Shi, Y., Ruiz, N., Taib, R., Choi, E., and Chen, F. Galvanic
skinresponse (gsr) as an index of cognitive load. In CHI '07:
CHI '07 extended abstracts on Human factors in computing
systems (New York, NY, USA, 2007), ACM, pp. 2651-2656.

[10] Yousoof, M., Sapiyan, M., and Kamaluddin, K., Reducing
cognitive load in learning computer programming, World
Academy of Science and Technology, Volume 12, 2006,
ISSN 1307-6

40

1

End-User Customization of Multi-Device Ubiquitous User
Interfaces

Fabio Paternò, Giuseppe Zichitella
HIIS Laboratory – CNR-ISTI

Via Moruzzi 1, 56124 Pisa, Italy
{fabio.paterno, giuseppe.zichitella}@isti.cnr.it

ABSTRACT
In this paper we discuss an approach to supporting end-
users in customizing multi-device ubiquitous user
interfaces. In particular, we show a tool allowing end-users
to customize desktop-to-mobile adaptation by exploiting
model-based descriptions in the MARIA language. Some
results are presented along with indications for future work.

Author Keywords
End-user Development, Ubiquitous Applications, Multi-
Device Environments, Adaptation.

ACM Classification Keywords
H.5.2 User Interfaces.

INTRODUCTION
One of the main issues in current technological settings is
how to design and develop interactive applications that can
be accessed through a wide variety of devices (ranging
from small watches to very large screens, including various
types of smartphones, PDAs and Digital TVs). This is
particularly important in Web application, which are the
most common applications.

One important research area in this context is the model-
based approach, in which declarative descriptions of the
user interface are used in order to avoid dealing with a
plethora of low-level implementation details associated
with the wide number of available devices and
implementation languages. Despite such potential benefits,
its adoption has mainly been limited to professional
designers, but new solutions are recently emerging that are
able to extend such approaches in order to achieve natural
development by enabling end-users to develop or modify
interactive applications still using conceptual models, but
with continuous support that facilitates their development,
analysis, and use [1].

End-User Development [3] (EUD) can be defined as a set
of methods, techniques, and tools that allow users of
software systems, who are acting as non-professional
software developers, at some point to create, modify or
extend a software artefact. End-users have already
difficulties with single device applications, thus it is easy to
understand how such difficulties increase when considering
applications for multi-device environments. This is one
further reason for providing better support for EUD in
ubiquitous applications.

The vision of ubiquitous computing [9] is that the users
operate in intelligent environments, which are aware of
users’ needs and able to assist, even proactively, the users
in performing their activities and reaching their goals. To
this end, one important aspect is the possibility for a user
surrounded by multiple devices to freely move about and
continue the interaction with the available applications
through a variety of interactive devices. Indeed, in such
environments one big potential source of frustration is that
people have to start their session over again from the
beginning at each interaction device change. Continuous
task performance implies that interactive applications be
able to follow users and adapt to the changing context of
use while preserving their state. Thus, migratory user
interfaces require integrated solutions able to address state
persistence and user interface adaptation when the user
changes the device.

Model-based languages are utilized at design time to help
the user interface designer cope with the increasing
complexity of today’s applications and contexts. The
underlying user interface models are mostly used to
generate a final user interface code, which is then executed
at run time. Nevertheless, approaches utilizing the models
at run time are receiving increasing attention. We agree
with Sottet et al. [8], who call for keeping the models alive
at run time to make the design rationale available and show
a solution for this purpose.

In the following we present some research work that
exploits model-based approaches for multi-device
ubiquitous applications. We show how we have enriched a
software model-based platform for migratory user
interfaces with a new tool for desktop-to-mobile adaptation,
called parametric bidimensional semantic redesign. One of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

41

its features is that it allows the end-users to customize the
adaptation process. We present some initial results and then
discuss how we plan to extend them.

MIGRATORY USER INTERFACES
Migration is the result of two main features: state
persistence across multiple devices and adaptation to the
device interaction resources. They have to be supported
while users interact with the applications made available by
the intelligent environment. For this purpose, we have
designed and developed a migration architecture [5], which
supports a number of reverse and forward transformations
that are able to transform existing desktop Web applications
for various interaction platforms and support task
continuity. The basic assumption is that there exists a huge
amount of easily accessible content for desktop Web
applications, which can be processed and transformed to
support migratory interfaces, even across non-Web
implementation languages. The advantage of this solution
with respect to others (e.g. [4]) is that it does not require
that the applications be implemented using a particular
toolkit in order to make them able to migrate.

In this environment the client devices subscribe to the
migration service by running a migration client that
provides the environment with information regarding the
device characteristics. The devices access Web applications
through the migration server, which includes proxy
functionalities. Migration can be triggered either by the user
or it can be automatically triggered by the smart
environment when some specific event (such as very low
battery or connectivity) is detected, or in a mixed solution
in which the environment suggests possible migrations and
the user decides whether or not to accept them.

When the user accesses the application through an
interaction platform other than the desktop, the server
transforms its user interface by building the corresponding
logical description and using it as a starting point for
creating the implementation adapted to the accessing
device. Figure 1 shows how adaptation is obtained. There
are three main phases: reverse engineering, semantics-based
adaptation, and generation. In the first phase, the tool
automatically builds the logical description of the accessed
page. It has rules able to handle HTML and CSS tags and
associate them with the corresponding logical elements. For
example, if DIV, or FIELDSET or IFRAME tags are used
then it recognises that there is a group of logically
connected elements in the page. We call the adaptation
module semantic redesign since its purpose is to change the
design still considering the interaction semantics of the
implementation elements that are specified in the
corresponding logical description. In addition to interface
adaptation, the environment supports task continuity. To
this aim, when a request for migration to another device is
triggered, the environment also takes the state of the user
interface, which depends on the user input (elements

selected, data entered, …) and identifies the last element
accessed in the source device. Thus, when a logical version
of the interface for the target device is generated, it also
contains the state detected in the source device version so
that the user inputs (selections performed, data entered, …)
are not lost. In the last phase, the user interface
implementation for the target device is generated and
activated remotely at the point corresponding to the last
basic task performed in the initial device.

Figure 1. The main phases of the adaptation process.

In the process of creating an interface version suitable for a
platform different from the desktop, we use a semantic
redesign module. This part of the migration environment
automatically transforms the logical description of the
desktop version into the logical description for the new
platform. Therefore, the goal of this transformation is to
provide a description of the user interface suitable for the
new platform. This means that intelligent rules are used for
adapting the description of the user interface to the new
platform taking into account its capabilities (e.g.: using
interface elements that are more suitable for the new
platform) but ensuring at the same time that the support for
the original set of tasks is maintained. This solution allows
the environment to exploit the semantic information
contained in the logical description. In this case the
semantic information is related to the basic tasks that the
user interface elements are expected to support.

This software architecture for migratory user interfaces
currently uses MARIA [7], a recent model-based language,
which allows designers to specify abstract and concrete user
interface languages according to the CAMELEON
Reference framework [2]. This language represents a step
forward in this area because it provides abstractions also for
describing modern Web 2.0 dynamic user interfaces and
Web service accesses. In its first version it provides an
abstract language independent of the interaction modalities
and concrete languages for graphical desktop and mobile
platforms. In general, concrete languages are dependent on
the typical interaction resources of the target platform but
independent of the implementation languages.

In MARIA an abstract user interface is composed of one or
multiple presentations, a data model, and a set of external
functions. Each presentation contains a number of user
interface elements (interactors) and interactor compositions
(indicating how to group or relate a set of interactors), a
dialogue model describing the dynamic behaviour of such
elements, and connections indicating when a change of
presentation should occur. The interactors are classified in
abstract terms: edit, selection, only_output, control,

42

3

interactive description, etc.. Each interactor can be
associated with a number of event handlers, which can
change properties of other interactors or activate external
functions.

END-USER ADAPTATION CUSTOMIZATION
In the research on migratory user interfaces, one issue that
we are considering is how to provide users with more
control on the migration process in order to improve its
usability. In this context more control can mean various
things. One important aspect is control on the rules that
drive adaptation to the various platforms (the most common
case is desktop-to-mobile adaptation). For example, the
adaptation engine is able to split the desktop pages when
they require considerable amount of interaction resources
but some users may like to have more control on the
splitting algorithm.

In particular, we have designed a new tool for adaptation:
Parametric Bidimensional Semantic Redesign. It supports
adaptation from desktop-to-mobile devices and overcomes
limitations of previous approaches in the area [6] because it
allows users to configure the adaptation process and
provides more control on costs calculation and the
adaptation results. For example, while previous solutions
calculated the screen space requested by the user interface
elements mainly in terms of its vertical use, the new
algorithm calculates both the horizontal and the vertical
consumption of screen space.

The adaptation tool takes as input the concrete description
of a desktop user interface in the MARIA language and
goes through a number of steps. For each step a number of
specific rules are applied. First, it performs some basic
transformations: if the user provides preferences regarding
the minimum and maximum fonts for the target device then
it transforms all the textual content in order to fit in the
given range. Next, it calculates the cost of all the interactors
and composition operators in the provided specification. If
the resulting total cost is sustainable for the target device
then the corresponding logical description is generated
otherwise it starts the process to reduce the cost in order to
make it sustainable. First, basic elements are adapted for the
target device: the images are reduced in space while
preserving their aspect ratio, some interactors are replaced
with others that are semantically equivalent but needs less
screen space, long texts are reduced in such a way that the
part exceeding a limit is shown only on request, image and
text in tables are reduced in size. After these basic
transformations the overall cost is calculated again and if it
is not yet sustainable by the target device then the part
related to page splitting is activated. The purpose of this
phase is to split the original desktop presentation into two
or more presentations, which are sustainable for the target
mobile device. For this purpose the algorithm considers the
interactor compositions, and associates some of them to
newly generated mobile presentations, removing them from
the current presentation in order to decrease its overall cost.

The elements that determine the cost of the interactors are:
the font attributes (size, style, type), the vertical and
horizontal space required by a text, image dimensions,
interline value, interactor type, and so on

Figure 2 shows the user interface that allows end users to
configure the adaptation process. The various parameters
are grouped according to the related user interface aspect
considered. For the fonts, it is possible to specify the
minimum and maximum font in the target device, and the
associated measure unit. For the radio buttons it is possible
to indicate whether they should be transformed into an
interactor that supports the same semantics but with using
less space screen. In this case, it is possible to specify the
threshold, in terms of number of choice options, which
should trigger the transformation and the type of interactor
to use for its replacement. Similar parameters are available
for the list boxes. Other parameters concern the maximum
number of characters for a text, maximum and minimum
dimensions for images. These parameters determine the
cost of rendering a presentation. This cost is compared with
the overall sustainable cost in the target device, which is
given by the screen resolution multiplied by horizontal and
vertical tolerance. The higher the tolerance coefficient
values are, the more scrollable the generated user interface
will be. This means that end users have the possibility to
specify to what extent the adapted content will be scrollable
in the target device. The table tolerance provides an
additional factor to consider when calculating the
sustainable cost. In practise, this means that when there are
tables, more scrolling will be acceptable before deciding to
split the presentation.

The customization interface also allows the user to indicate
two additional parameters: what type of scrolling
(horizontal or vertical) to avoid has the priority, and the
splitting algorithm version to apply. Indeed, the tool
supports two ways to determine how splitting should be
performed. In both cases it analyses the cost of the
composition operators (grouping or relation), which
includes those of the composed interactors, and the cost of
the tables (both data and layout tables). Then, the decision
of the set of elements to allocate to the newly generated
mobile presentation is given in one case by the most
expensive element. In the other case the algorithm first
calculates what elements are able to make the current
presentation sustainable by the target device if removed,
and then selects among them the one that has the lowest
cost. The rationale for this second option is that it allows
users to obtain a sustainable presentation by removing the
least amount of information possible, thus preserving as
much as possible the original design.

In terms of results of the adaptation process we have
conducted a study comparing our tool with two publicly
available tools for desktop-to-mobile adaptation: Mowser
(http://mowser.com) and Skweezer
(http://www.skweezer.com). The results were encouraging
because our tool has shown to be more flexible since it

43

allows end users to customize the adaptation parameters
and is able to adapt a higher number of types of interface
elements than the other two tools (e.g. tables and long texts
do not receive specific adaptation transformations with the
other two tools).

Figure 2. The customization user interface.

CONCLUSIONS
Ubiquitous environments call for adaptive systems in order
to adapt to the varying interaction resources. Model-based
approaches can provide useful support in this context.
However, there is a need for providing users with more
control on ubiquitous interfaces, according to the end-user
development paradigm.

In this paper we have presented first results that allow end-
users to customize desktop-to-mobile adaptation in order to
change the results that can be obtained by automatic user
interface generation.

We plan to further extend this work in various directions.
The customization user interface can be improved in order
to make the effects of the various customization parameters
more understandable. In addition, in this work we have
considered only desktop-to-mobile adaptation but other
types of transformations can benefit from the approach
proposed, e.g. graphical-to-vocal adaptation.

ACKNOWLEDGMENTS
This work has been supported by the EU project OPEN
(http://www.ict-open.eu/)

REFERENCES
1. Berti, S., Paternò, F., Santoro C., “Natural Development

of Ubiquitous Interfaces”, Communications of the
ACM, September 2004, pp.63-64, ACM Press.

2. Calvary, G., Coutaz, J., Bouillon, L., Florins, M.,
Limbourg, Q., Marucci, L., Paternò, F., Santoro, C.,
Souchon, N., Thevenin, D., and Vanderdonckt, J. 2002.
The CAMELEON reference framework. CAMELEON
Project. Deliverable 1.1

3. Lieberman, H., Paternò, F., Wulf W. (eds), End-User
Development, Springer Verlag, ISBN-10 1-4020-4220-
5, 2006.

4. Melchior, J., Grolaux, D.,Vanderdonckt, J.,Van Roy, P.,
A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications, pp. 69.78,
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania,
USA.

5. Paternò, F., Santoro, C., Scorcia, A., Ambient
Intelligence for Supporting Task Continuity across
Multiple Devices and Implementation Languages, the
Computer Journal, the British Computer Society, 2009.

6. Paternò, F., Santoro, C., Scorcia A Automatically
Adapting Web Sites for Mobile Access through Logical
Descriptions and Dynamic Analysis of Interaction
Resources. AVI 2008, Naples, May 2008, ACM Press,
pp. 260-267.

7. Paternò F., Santoro C., Spano L.D., "MARIA: A
Universal Language for Service-Oriented Applications
in Ubiquitous Environment", ACM Transactions on
Computer-Human Interaction, Vol.16, N.4, November
2009, pp.19:1-19:30.

8. Sottet J., Ganneau V., Calvary G., Coutaz J., Demeure
A., Favre J., Demumieux R.: Model-Driven Adaptation
for Plastic User Interfaces. INTERACT (1) 2007: 397-
410.

9. Weiser M., "The Computer for the 21st Century" -
Scientific American Special Issue on Communications,
Computers, and Networks, September, 1991.

44

Aspect-Oriented UI Modeling with State Machines

Gefei Zhang∗

Ludwig-Maximilians-Universität München

gefei.zhang@pst.ifi.lmu.de

ABSTRACT
Separated modeling of User Interface (UI) widgets is a very natu-
ral way to tackle the complexity of UI models. Due to interactions
between widgets, however, this is not always an easy task. We pro-
pose an aspect-oriented approach to widget-oriented UI modeling:
each widget’s behavior is modeled separately in a UML state ma-
chine; synchronization of the state machines is modeled in aspects
and is woven into the widget models automatically. The weaving
process is transparent to the modeler. This way, we can strongly
increase the degree of separation of concerns in UI modeling and
reduce the complexity of UI models.

Keywords
UI modeling, UML, State machine, Aspect-oriented Modeling

1. INTRODUCTION
Modern User Interfaces (UI) are mostly interactive: the widgets
are no longer supposed to be sheerly receiving input from the user
or presenting the data of the system, but may also have inner lives
themselves. They may have their own states, trigger events, and call
other widgets to execute certain behaviors. For instance, besides
acting as an input terminal for strings, a text field is more often
than not supposed to be able to automatically fill in its value, or
trigger database queries and fill in other widgets.

Separation of concerns in modeling such rich UI is challenging. On
the one hand, it is appealing to model the widgets separately from
each other, each in its own model. On the other, the synchroniza-
tion of the widgets’ behaviors obviously cross-cuts the widgets. An
example is the requirement that only one of the widgets in a win-
dow be focused at a given time. Modeling such requirements often
torpedos the natural, widget-based separation of concerns. As a re-
sult, the complexity of UI models may increase rapidly as soon as
the UI gets non-trivial.

We propose an aspect-oriented approach to rich-UI modeling. Our
approach enables separation of widget modeling. Each widget is

∗Partially supported by the DFG Project MAEWA (WI 841/7–2)

Proc. 5
th

Int. Wsh. Model-Driven Development of Advanced User Inter-
faces (MDDAUI’10).

modeled in its own UML state machine [11], separated from other
widgets. We call the state machines widget machines. Necessary
synchronization between widgets, if any, is left out of the widget
machines, which keeps them rather simple. The synchronization is
then modeled using aspect-oriented techniques: we define aspects,
separately from the widget machines, to define constraints on or
additional behaviors of the widgets. The overall behavior of the UI
is then obtained by the composition of the widget machines and the
aspects. We refer to the composition process as weaving.

In our approach, the complexity of widget synchronization is hid-
den behind weaving, which is transparent to the modeler. This fact
and the increased separation of concerns make our approach easy
to use and reduce the complexity of rich-UI models considerably.

The remainder of this paper is organized as follows: in the follow-
ing Sect. 2 we present our modeling approach, including separate
modeling of the widgets and aspect-oriented modeling of their syn-
chronization; in Sect. 3 a brief discussion is given on how the as-
pects are woven to the state machines. Related work is discussed
in Sect. 4, some concluding remarks, as well as an outline of our
future research, are given in Sect. 5.

2. MODELING APPROACH
Our modeling approach is very simple. It contains three steps:

1. Construct a top-level state machine to model the basic con-
trol flow of the application, and use submachine states as
place holders for widgets.

2. Model the behaviors of the widgets and complete the subma-
chines, without considering inter-widget synchronization.

3. Define necessary aspects to synchronize the widgets.

We demonstrate this approach by means of a simple address book
application. The application should provide two windows: the first
containing a list of the names of all contacts and a button to show
the second view, the second containing text fields for inputting data
of a new contact. The second window is supposed to have a rich
UI.

2.1 Top-level state machine
The first step is to model the top-level widgets, i.e., the two win-
dows, see Fig. 1. When the application is started, the list of all con-
tacts (ContactList, details ignored in this paper) is presented.
The user can select to add a new contact (newContact), and then
enter the contact details in NewContact. This window is sup-
posed to have nine widgets: four input fields, four labels of the
input fields, and an OK button to finish the input.

1

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

45

ContactList

NameLabel NameInput

ZipLabel ZipInput

CityLabel CityInput

StreetInputStreetLabel

newContact

ok

quit

OK

NewContact

Figure 1: Top-level state machine

2.2 Widgets in Separation
The details of the widgets’ behaviors are modeled separately in the
sub-machines. In this step, synchronization of widgets is not con-
sidered, which simplifies the widget modeling considerably.

In our address book example, the labels have a very simple be-
havior: they display some predefined text, and do not react to any
event. This behavior is modeled with a state machine given in
Fig. 2. It contains only one state Show, presenting the label show-
ing its caption.

Show

Figure 2: State machine for the label widgets

We ignore in this paper the state machine of OK, which is also very
simple. More interesting are the state machines of the text input
widgets. Figure 3 models the behavior of NameInput: it may be
either unfocused (NoFocus) or focused (WaitForInput). If it
is focused it is ready for user input (input(t)), and updates its
text (text = text + t) upon each input; otherwise it does not
react to any event.

NoFocus WaitFor
Input

gotfocus

lostfocus

input(t) / text = text + t;

Figure 3: State machine for NameInput

The state machines for the other three input widgets are slightly
more complex, see Fig. 4. Additionally to the behavior of Name-
Input, the other three input widgets also send the current text
(push(text)) to whomever it concerns, and are, focused or not,
ready to receive a call back (pull(newText) from whomever
and to update the text (text = newText). This additional fea-
ture models the capability of automatic completion of one widget
(e.g. CityInput) by another (e.g. ZipInput). Usually, getting
a Zip code is only possible from a combination of a city and a street.
We ignore such details here and assume they are implemented cor-
rectly in pull and push.

2.3 Synchronization by aspects
The state machines so far are simple because they do not include
synchronization with each other, which is usually necessary in a
rich UI. For example, the input widgets obviously are not supposed

NoFocus

pull(newText)
/ text = newText; / text = newText;

pull(newText)

WaitFor
Input

gotfocus

lostfocus

input(t) / text = text + t; push(text);

Figure 4: State machines for ZipInput, CityInput and
StreetInput

to be in state WaitForInput simultaneously. Modeling such
synchronization in the widget machines would break the separa-
tion of concerns, therefore we source them out and model them in
aspects.

An aspect is in our approach a first-class model element. It contains
a restriction to or an extension of the behavior defined in some wid-
get machine. For instance, we model the requirement that only one
widget is supposed to be in NoFocus by two aspects:

(aspect non-simultaneous
(mutual-exclusion

(transition NoFocus WaitForInput)))
(aspect send-others-away

(before WaitForInput)
(scope except-me (goto NoFocus)))

where the aspect non-simultaneous defines a restriction: only
one submachine (keyword mutual-exclusion) is allowed to
fire the transition from NoFocus to WaitForInput (keyword
transition) at a given time. This aspect prevents the widget
machines from transitioning from NoFocus to WaitForInput
at the same time. The aspect send-others-away defines an
additional behavior of the input widgets, to be executed just be-
fore (keyword before) state WaitForInput gets active: tell
the others (scope except-me) to go to state NoFocus (goto
NoFocus). These two aspects thus models the above synchroniza-
tion rule concisely and separately from the widget machines.

Note that using these two aspects is not the only way of preventing
the input widgets from being in WaitForInput simultaneously.
A direct definition of mutual exclusion of states is also possible.
Actually, such an aspect would be implemented as a combination
of the two above aspects. We decided to use the more detailed
aspects, since they are closer to the weaving (see below).

Another synchronization requirement in our sample application is
that when the window NewContact is shown, NameInput should
be the focused widget, i.e. in the state WaitForInput. We model
this with the following aspect has-focus, which tells the sub-
machine NameInput (by scope (NameInput)) to goto state
WaitForInput just after NewContact gets active (after
NewContext.enter).

(aspect has-focus
(after NewContact.enter)
(scope NameInput (goto WaitForInput)))

3. WEAVING
As simple as the aspects are, the implementation of the synchro-
nization requires rather complex modification to the widget models.

2

46

NameLabel

OK

ZipLabel

CityLabel

StreetLabel

entry f = 1;
NewContact

[else]

[f == 1]

NameInput

NoFocus
gotoN; gotoZ; gotoS;

gotfocusC /

lostfocus
gotoC Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

CityInput

NoFocus
gotoN; gotoC; gotoS;

gotfocusZ /

lostfocus
gotoZ Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

ZipInput

NoFocus
gotoZ; gotoC; gotoS;

gotfocusN /

lostfocus
gotoN Input

WaitFor

NoFocus
gotoN; gotoZ; gotoC;

gotfocusS /

lostfocus
gotoS Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

StreetInput

Figure 5: Partial weaving result of the sample application

This modification is taken care by an automatic weaving process,
which is still ongoing work. With the automatic weaving, the as-
pects will be composed with the base machine “off stage”, i.e., the
modeler is refrained from the cumbersome details. We explain our
weaving by means of the weaving result of the above aspects, see
Fig. 5.

Mutual exclusion of transitions is implemented by a static renaming
the events of the transitions, so that the transitions are no longer
enabled at the same time. In Fig. 5, aspect non-simultaneous
is therefore implemented by renaming the event gotfocus in the
widget models to gotfocusN, gotfocusZ, gotfocusI, and
getfocusS.

Generally, before X and after X are woven by intercepting
all transitions leading to and leaving state X, respectively; goto
X is woven by introducing a new transition to X and sending a
signal to the respective state machine to fire that transition. In
Fig. 5, aspect send-others-away is implemented as an addi-
tional transition in the widget machines from WaitForInput to
NoFocus, triggered by a uniquely named event (gotoN, gotoZ,
gotoC, gotoS), and an effect of the transition from NoFocus to
WaitForInput, firing the “right” events.

One of the (many) exceptions to the above general rule is after
X.enter. Obviously an interception to all transitions leaving
X does not help in this case. Therefore, we implement after
X.enter by introducing an entry action to X. In Fig. 5, aspect
has-focus is implemented by NewContact’s entry action, set-
ting f to 1, and splitting the transition leaving NameInput’s ini-
tial vertex to active WaitForInput immediately if f == 1.

A brief glance at Fig. 5 suggests how cumbersome modeling wid-
get synchronization may get. In comparison, modeling with our
aspects is simple and straight-forward. All the complexity of ac-
tually implementing the required synchronization is hidden behind
the weaving (once implemented) and invisible to the modeler.

4. RELATED WORK
Model driven development is a promising paradigm for UI devel-
opment. There are several proposals of UI modeling, see [1, 5, 6,
10, 12, 17]. In particular, state machines are also used in [14, 16],
where the former work describes a translation of Concurrent Task
Tree (CTT) models into UML state machines, and the latter defines
an extension of UML state machines to model navigation of web
applications. Compared with these approaches, the distinguish-
ing feature of our approach is its use of aspect-oriented modeling
(AOM) to model synchronization of state machines. This makes
the UI models of our approach easy to construct and easy to use,
since the cumbersome details of interaction between widgets are
hidden behind a (yet-to-implement) automatic weaving process.

AOM was also applied to reduce the complexity of design mod-
els in other application areas, such as adaptive systems [2, 13, 18]
or crisis management systems [7], see in [4] for a more general
overview of aspect-oriented techniques. Compared with other pro-
posals of aspect-oriented state machines, such as [15, 21], the as-
pect language used in this paper is high-level in the sense that it is
used to define modifications of behaviors on a more abstract level
than (syntactical) modifications of modeling elements, see [19, 20]
for a more thorough dicussion on the advantages of high-level as-
pect-oriented modeling.

5. CONCLUSIONS AND FUTURE WORK
We presented a widget-oriented modeling approach for interactive
user interfaces. Our approach uses UML state machines, a very
popular language for modeling software behaviors. By supporting
aspect-oriented modeling our approach achieves a high degree of
separation of concerns, and thus increases the feasibility of widget-
oriented UI modeling considerably.

We plan to integrate the aspect language into HiLA1, our general
approach to aspect-oriented state machines. Using state machines
as the modeling language, and in particular the definition the weav-
ing result in the form of a state machine, makes it possible to ver-
ify the weaving result by formal methods like model checking or
theorem proving. In particular, we plan to apply the UML model
checker Hugo/RT [8] to verify temporal logical properties of our
UI models.

6. REFERENCES
[1] Goetz Botterweck. A Model-Driven Approach to the

Engineering of Multiple User Interfaces. In Thomas Kühne,
editor, Reps. and Rev. Sel. Papers Wshs and Symp. at

1http://hila.pst.ifi.lmu.de

3

47

MoDELS’06, volume 4364 of Lect. Notes in Comp. Sci.,
pages 106–115. Springer, 2007.

[2] Sven Casteleyn, William Van Woensel, and Geert-Jan
Houben. A Semantics-based Aspect-oriented Approach to
Adaptation in Web Engineering. In Simon Harper, Helen
Ashman, Mark Bernstein, Alexandra I. Cristea, Hugh C.
Davis, Paul De Bra, Vicki L. Hanson, and David E. Millard,
editors, Proc. 18th ACM Conf. Hypertext and Hypermedia
(HYPERTEXT’07), pages 189–198. ACM, 2007.

[3] Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank
Weil, editors. Proc. 10th Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS’07), volume
4735 of Lect. Notes Comp. Sci. Springer, 2007.

[4] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Aksit, editors. Aspect-Oriented Software Development.
Addison-Wesley, 2004.

[5] Guillaume Gauffre, Emmanuel Dubois, and Rémi Bastide.
Domain-Specific Methods and Tools for the Design of
Advanced Interactive Techniques. In Holger Giese, editor,
Reps. and Rev. Sel. Papers Wshs and Symp. at MoDELS’07,
volume 5002 of Lect. Notes in Comp. Sci., pages 65–76.
Springer, 2008.

[6] Daniel Görlich and Kai Breiner. Useware Modeling for
Ambient Intelligent Production Environments. In Andreas
Pleuß, Jan Van den Bergh, Heinrich Hußmann, Stefan Sauer,
and Daniel Görlich, editors, Proc. Workshop Model Driven
Development of Advanced User Interfaces (MDDAUI’07),
volume 297 of CEUR Workshop Proceedings. CEUR, 2007.

[7] Matthias Hölzl, Alexander Knapp, and Gefei Zhang.
Modeling the Car Crash Crisis Management System with
HiLA. Trans. Aspect-Oriented Software Development
(TAOSD), 7, 2010. Accepted.

[8] Alexander Knapp, Stephan Merz, and Christopher Rauh.
Model Checking Timed UML State Machines and
Collaborations. In Werner Damm and Ernst Rüdiger
Olderog, editors, Proc. 7th Int. Symp. Formal Techniques in
Real-Time and Fault Tolerant Systems, volume 2469 of Lect.
Notes Comp. Sci., pages 395–416. Springer, 2002.

[9] Gerrit Meixner, Daniel Görlich, Kai Brainer, Heinrich
Hußmann, Andreas Pleuß, Stefan Sauer, and Jan Van den
Bergh, editors. Proc. 4th Wsh. Model Driven Development of
Advanced User Interfaces (MDDAUI’09), volume 439 of
CEUR Workshop Proceedings. CEUR, 2009.

[10] Gerrit Meixner, Marc Seissler, and Marcel Nahler. Udit—A
Graphical Editor for Task Models. In Meixner et al. [9].

[11] Object Management Group. OMG Unified Modeling
Language (OMG UML), Superstructure, Version 2.2. OMG
Available Specification, OMG, 2009. http://www.omg.
org/spec/UML/2.2/Superstructure.

[12] Andreas Pleuß, Arnd Vitzthum, and Heinrich Hußmann.
Integrating Heterogeneous Tools into Model-Centric
Development of Interactive Applications. In Engels et al. [3],
pages 241–255.

[13] Andrea Schauerhuber. aspectUWA: Applying
Aspect-Orientation to the Model-Driven Development of
Ubiquitous Web Applications. PhD thesis, Technische
Universität Wien, 2007.

[14] Jan Van den Bergh and Karin Coninx. From Task to Dialog
Model in the UML. In Marco Winckler, Hilary Johnson, and
Philippe A. Palanque, editors, Proc. 6th Int. Wsh. Task
Models and Diagrams for User Interface Design
(TAMODIA’07), volume 4849 of Lect. Notes Comp. Sci.,
pages 98–111. Springer, 2007.

[15] Jon Whittle, Ana Moreira, João Araújo, Praveen K.
Jayaraman, Ahmed M. Elkhodary, and Rasheed Rabbi. An
Expressive Aspect Composition Language for UML State
Diagrams. In Engels et al. [3], pages 514–528.

[16] Marco Winckler and Philippe A. Palanque. StateWebCharts:
A Formal Description Technique Dedicated to Navigation
Modelling of Web Applications. In Joaquim A. Jorge,
Nuno Jardim Nunes, and João Falcão e Cunha, editors, Proc.
10th Int. Wsh. Design Specification and Verification of
Interactive Systems (DSV-IS’03), volume 2844 of Lect. Notes
Comp. Sci., pages 61–76. Springer, 2003.

[17] Andreas Wolff and Peter Forbrig. Deriving User Interfaces
from Task Models. In Meixner et al. [9].

[18] Gefei Zhang. Aspect-Oriented Modeling of Adaptive Web
Applications with HiLA. In Gabriele Kotsis, David Taniar,
Eric Pardede, and Ismail Khalil, editors, Proc. 7th Int. Conf.
Advances in Mobile Computing & Multimedia (MoMM’09),
pages 331–335. ACM, 2009.

[19] Gefei Zhang and Matthias Hölzl. HiLA: High-Level Aspects
for UML State Machines. In 14th Int. Wsh. Aspect-Oriented
Modeling (AOM@MoDELS’09), Denver, 2009.

[20] Gefei Zhang, Matthias Hölzl, and Alexander Knapp.
Enhancing UML State Machines with Aspects. In Engels
et al. [3], pages 529–543.

[21] Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff
Gray. Aspect Composition in the Motorola Aspect-Oriented
Modeling Weaver. Journal of Object Technology,
6(7):89–108, 2007.

4

48

Model-driven User Interface Development with the Eclipse
Modeling Project

Andreas Wolff
Institut für Informatik
Universität Rostock

Andreas.Wolff@uni-rostock.de

Peter Forbrig
Institut für Informatik
Universität Rostock

Peter.Forbrig@uni-rostock.de

ABSTRACT
Model-driven development nowadays often is done using the
tools from the Eclipse Modeling Project (EMP). We devel-
oped a number of meta-models and transformations to sup-
port a model-driven user interface development within EMP.
This paper presents our Swing and XUL meta-models and
demonstrates what they can be used for.

Author Keywords
UI Model Transformation, CUI Models, Reverse Engineer-
ing

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
Modeling user interfaces (UI) is a well investigated research
topic. For more than twenty years user interfaces are spec-
ified in terms of instances of meta-models. Available ap-
proaches differ in level-of-detail, some are tailored to a spe-
cific domain or interface modalities or target devices, oth-
ers try to cover general interfaces. A general consensus in
model-driven user interface design (MD-UID) exists to dis-
tinguish several levels of abstraction. As well as in general
model-driven software development, a distinction is made
between platform independent (PIM) and platform specific
models (PSM). A platform in MD-UID is often considered
to be a certain device, or rather the interface source code
for that device, itself. Platform independent UI models are
called abstract user interfaces (AUI) and platform specific
UI models concrete user interfaces (CUI). UI source code is
not necessarily source code of a certain programming lan-
guage, but may as well be an interface description written in
a markup language.

There exist numerous markup languages and often they are
derived from XML, common examples include XAML, XUL
or UsiXML. The main advantage of those languages is the

Submitted for review to CHI 2009.

task
model

user
model

business
object
model

domain
model

�

�

�

�
dialog
graph

abstract
UI

class
diagram

(analysis)

class
diagram
(design)

application
model

UI
model

�

�

�

�

relation

transformation

pattern based

Figure 1. MDD process overview

provision of a well-defined grammar and the inherent hier-
archical structure, i.e., they provide a suitable meta-model.
These characteristics makes them ideal candidates for a model-
driven UI development, but not necessarily ideal languages
for UI design.

Non-XML based user interface description languages are
even more numerous. They range from comparatively sim-
ple template languages to large frameworks as for example
Swing or SWT. Creating meta-models, for use within a MD-
UID process, of those languages is not as straightforward as
with XML-based languages, but we think it might be worth
the effort.

In general, we consider model-driven software development
as a sequence of transformations of models. We do not think
that those transformations can be performed in a fully au-
tomated way, but should be executed by humans using in-
teractive tools. We also think these persons, i.e., software
engineers and user interface designers; have to base their
work on the same models. Our work is especially focused on
methods and tools supporting transformations by patterns.
Figure 1 sketches all models we consider important within
this process and how they are interrelated.

In this paper we focus on the user interface part of the overall
process[6]. It is located in the lower right part of Figure 1.
UI creation starts off from the task model. A task model it-
self is not sufficient to express the dynamic relations within
an user interface. To capture these, an auxiliary model, the

1

Pre-proceedings of the 5th International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and
UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners. This volume is published by its editors.

49

dialog graph, was introduced. The dialog graph model even-
tually is transformed into an abstract user interface, our PIM.

The idea presented in Figure 1 as such is a process model. In
the last years we created different implementations for it. A
common problem with these implementations was, that they
would only cover quite small portions of the overall problem.
We think this was mainly due to a scaling problem. With
increasing level of detail, the implementations became too
large and too complex to handle.

In our recent implementation we make use of the Eclipse
Modeling Project (EMP). EMP is ”a unified set of model-
ing frameworks, tooling and standards implementations”[1].
”Standards implementations” refers to OMG MDA standards
whose reference implementations are developed by EMP.

Figure 2 is a details view on the transformation from ”ab-
stract UI” to ”UI model” in Figure 1. The meaning of the
line styles is as follows: a solid line is a model-to-model
transformation. Dotted lines denote a model-to-text transfor-
mation. Reverse Engineering (RE) is marked using dashed
lines. Abstract and concrete user interface (AUI, CUIx) are
EMF models each.

Next to an arrow the applied technique for this transforma-
tion was annotated. QVTo[5] stands for OMG’s ”Query
View Transformation operational” standard. Acceleo[1] is
the EMP implementation of OMG’s ”Model to Text Lan-
guage” (MTL[4]) standard. PLML[2] itself is a pattern lan-
guage; we developed an EMF model for it. The PLML
model contains transformation specifications in either of EMP’s
model-to-model transformation engines. For details on PLML
and our usage of it see [9].

Forward engineering from task models typically only yields
quite simple user interfaces. To test our ideas against more
complex UIs, and for other reasons, we developed some mech-
anism to reverse engineer the GUI of existing legacy soft-
ware into instances of our own CUI meta-models. This re-
verse engineering is not a standard x-to-y transformation.

The rest of the paper is organized as follows: First, we present
the XUL EMF meta-model and some of its applications. Af-
terwards some details about our Swing meta-model and its
uses in reverse engineering are discussed.

CONCRETE USER INTERFACE MODELS
We consider meta-models for the platform-specific user in-
terface model to be the core models of a model-driven user
interface development. In continuation of our previous ex-
perience with MD-UID, we decided to develop CUI meta-
models for Mozilla’s XUL and Java Swing.

XUL Meta-Model
For a long time our work is focused around XUL. However,
most of the time we did not care about creating a complete
and correct meta-model of XUL. We adhered to a minimal

user interface

CUIn

AUI

CUIm

QVToQVTo

PLML

Acceleo RERE

Figure 2. Model relations and transformation techniques

Figure 3. Excerpt from the XUL meta-model

implementation that was only extended if absolutely neces-
sary. So, the XUL standard evolved over time, but our mini-
mal implementation did not. This started to create a number
of problems and errors.

A good starting point to create an EMF meta-model for XUL
is its grammar. Using freely available sources, it is possible
to build this grammar as XML schema definition (XSD) for
XUL.

Having a schema definition, a first Ecore model for XUL
was easily generated. This automatically generated model
had some disadvantages, e.g. anonymous types, multiple
types for the same purpose etc. Also, containment relations
were not transformed properly and had to be corrected and
inserted by hand.

Figure 3 visualizes the basic hierarchy within the XUL Ecore
model, many types were omitted. To give an idea about the
size: the model consists of 31 data types, 151 classes and
interfaces with 443 attributes in total.

XULElement is the root element of the type hierarchy; it
contains attributes which are valid for every XUL tag. Each
attribute is initialized with a sensible default value or it re-
mains unset if no value is required explicitly.

2
50

TemplateControl is the root type for any tag that controls
XUL’s template engine. InfoElement is the super type of
every tag that is not displayed but defines actions, key bind-
ings and such. Any type that implements ContainerChild
can be placed into a visual container. Most implementors
are concrete VisibleType objects, some are visual containers
themselves.

ContainerElement is a marker class for all elements which
are able or require to contain sub-elements. For example:
a menu-element requires that menu-items are defined. Sub-
types of GenericContainer object are a visual containers that
include children of type ContainerChild.

RadioType is a radio-button, ButtonType a plain button, La-
belType a label and TextboxType a textbox. Those four types
are the only concrete classes of Figure 3.

EMF provides a facility to generate editor plug-ins for Ecore
models. Using this standard mechanism unfortunately does
not yield a valuable XUL editor. Because the default seri-
alization mechanism of Ecore is XMI, the generated editor
would not be able to read or write valid XUL files. We had to
write our own implementation of the model de-/serialization.

An attempt to use the XUL Ecore model as source to gen-
erate an GMF editor was aborted. The resulting generated
editor was hardly useful. While it was possible to do some
basic editing of labels or buttons, it became very complex to
implement a correct layout mechanism. Also, things like the
unlimited nesting of group- or tab-boxes proved to be a seri-
ous problem. Nevertheless, it would be interesting to build a
GMF XUL editor using the XUL Ecore model. We resorted
to continue to use our existing graphical XUL editor, but to
generate its internal model by customized JET transforma-
tions from the XUL Ecore model.

The complete XUL meta-model can be used as a descriptive
model for XUL user interfaces, it is freely available from 1.

Meta-Model for Swing
As mentioned earlier, we don’t think that XML-derived UI-
languages are the best choice for every problem. Also, we
acknowledge the fact that a large part of existing user in-
terfaces was not specified using a markup language, but by
other means.

The GUI framework Swing of the Java programming lan-
guage is one example of a user interface framework. It has
been included as part of Java since version 1.2. In contrast
to its competing GUI framework SWT, Swing is completely
platform-independent. For this reason we decided to build
a Swing CUI model instead of an SWT model, although the
latter is closer related to Eclipse.

Creating the Swing CUI meta-model means to create an Ecore
model of Swing. Such a model can be built using a number
of methods. EMF has so called model importers which are
able to construct Ecore models from XMI, XML Schema,
1http://wwwswt.informatik.uni-rostock.de/metamodels/

class models of Rational Rose or from annotated Java source
code.

So, to define a meta model for Swing there are several pos-
sibilities. For example, it is possible to define it manually;
nevertheless we dropped this possibility due to the foresee-
able large size of the resulting model.

Importing a rational rose model should work well, but it cer-
tainly requires to have such a model in the first place. Prepar-
ing an XML Schema definition (XSD) for transformation
into an Ecore model has its own challenges, as mentioned for
the XUL meta-model, but in the absence of such a schema
definition this also does not apply.

This leaves two sources for model creation, either using an-
other XMI model or annotated Java code. As most parts of
Java Swing are available in source code, it should be possi-
ble to create either of these thereof.

EMF’s model importer for Java source code requires that
each identifier, method, class or interface that is to be trans-
ferred into an Ecore model is marked using the annotation
@model. This is a highly flexible approach and very useful
if one extracts only small parts of existing source code into
a model. However, for Swing’s about 620 files this method
seemed to be almost as laborious, time-consuming and error-
prone as defining the model manually.

Many UML tools serialize their models using XMI. Also ex-
amining source code to derive a model thereof is a common
feature of these tools. In combination, EMF’s importer for
XMI and an external tool for source code to XMI transfor-
mation should provide the desired model of Swing. Unfor-
tunately it was not that simple. The XMI-output produced
by UML tools we tested could not be imported by EMF.
Looking back on a history of known problems [3] with XMI
incompatibilities we did not investigate why exactly the im-
port failed and if it could possibly be repaired by some XSL
transformation or the like.

Instead we were searching for a method to create Ecore from
Java sources in one transformation, without any intermediate
steps, tools or importers.

Developing yet another Java source code parser apparently
would not have been a good idea, because there already is
a number of parsers available as library or in source code.
After some research we developed a small tool which makes
use of Java’s own JavaDoc parser and is able to convert any
Java code into an Ecore model, for details and special con-
siderations see [8].

Swing’s source code, in Java version 1.6, has 620 files, and
since Swing makes heavy use of AWT, its 368 source code
files had to be included into the model as well. The compre-
hensive Ecore model now consists of more than 2000 types.
Additionally it references about 200 external types which are
not defined within the source code of AWT and Swing.

Working with such a huge model reveals some weaknesses

3
51

Figure 4. Calculator application and their model screenshot

of the tools of the Eclipse Modeling Project. For example
with code generation: The current implementation becomes
almost unusable with respect to generation time. Also, some
generated methods became larger than allowed by Java, i.e.
their compiled byte-code exceeded 64kByte.

To reduce size and complexity the meta-model was pruned
using the approach of Sen et al.[7]. Roughly, their idea
is as follows: they start with a minimal pruned model that
only contains a selection of desired must-have features and
classes from the source model. Then their start model is
extended step-by-step with features from the source model
until their pruned model is valid and is a subset of the source
model.

Running this pruning process on the Swing CUI meta-model
greatly reduces its size. Size reduction is of course depen-
dent on the selected must-have features, but nevertheless we
found that more than 90 percent of the types can be safely
eliminated from the CUI model without loosing much ex-
pressiveness. This fairly high percentage can be explained
by the generation process of the source model. Obviously a
lot of implementation-specific types had been generated into
the model that were not directly related to properties of UI
elements. The complete Swing meta-model, as well as the
pruned meta-model, can be obtained from [10].

Populating a Swing model
One use of the Swing meta-model is in reverse engineering.
We developed an application which uses the meta-model to
capture the static layout of a frame in a Swing application
into a meta-model instance. Such a meta-model instance
might be considered as a screenshot.

The principle is to traverse the hierarchy of Swing objects
within a certain screen and to create the corresponding meta-
model instance for each Swing object. Since the meta-model
now is a true reflection of Swing itself, no special mappings
or other tricks are required. However, some technical prob-
lems did arise, because all of the mapping is done at runtime

and relies on reflection.

Figure 4 is a combined screenshot of a sample application
and its user interface as an Ecore model instance. Beside
layout properties, the Swing CUI model does also cover dy-
namic aspects, like action listener and action command. By
a sequence of transformations, we can now edit the user in-
terface in a GUI editor and afterwards re-generate a calcu-
lator which would feature another GUI, but uses the same
business logic.

CONCLUSION
In this paper we presented our approach to model-driven user
interface development using the tools from the Eclipse Mod-
eling Project. We introduced Ecore models for XUL and
Swing user interfaces and explained how we derived, build
and refined those models. It was also shown that those mod-
els can be used for a number of different purposes. These us-
ages include reverse engineering, generating internal models
for other tools and also direct editing of user interfaces.

In the future we may resume our attempt to create a GMF-
based XUL editor. Beside that, there is a lot of work to do to
improve and extend the existing transformations, model-to-
model and model-to-text.

REFERENCES
1. Eclipse modeling project (last visited on 22-02-2010).

http://www.eclipse.org/modeling/.
2. S. Fincher. Perspectives on hci patterns: concepts and

tools (introducing plml). In Workshop at CHI 2003,
2003.

3. B. Lundell, B. Lings, A. Persson, and A. Mattsson.
Uml model interchange in heterogeneous tool
environments: An analysis of adoptions of xmi 2. In
Proc. of MoDELS 2006, pages 619–630, 2006.

4. Omg standard: Model to text (last visited on
22-02-2010). http://www.omg.org/spec/MOFM2T/1.0/.

5. Omg standard: Query view transformation (last visited
on 22-02-2010).
http://http://www.omg.org/spec/QVT/1.0/.

6. D. Reichart, P. Forbrig, and A. Dittmar. Task models as
basis for requirements engineering and software
execution. In Proc. of Tamodia 2004, pages 51–58,
2004.

7. S. Sen, N. Moha, B. Baudry, and J.-M. Jezequel.
Meta-model pruning. In Proc. of MoDELS 2009, pages
32–46, 2009.

8. A. Wolff and P. Forbrig. Deriving emf models from
java source code. In Proc. of Reverse Engineering
Models from Artifacts 2009, 2009.

9. A. Wolff and P. Forbrig. Pattern catalogs using the
pattern language meta language. In Proc. of Visual
Formalisms for Patterns 2009, 2009.

10. Meta-model download (last visited on 22-02-2010).
http://wwwswt.informatik.uni-rostock.de/metamodels/.

4
52

MDDAUI 2010 Workshop Report
Jan Van den Bergh

Hasselt University - tUL - IBBT
Expertise Centre for Digital Media

Jan.VandenBergh@uhasselt.be

Gerrit Meixner
DFKI

Gerrit.Meixner@dfki.de

Stefan Sauer
University of Paderborn

s-lab – Software Quality Lab
sauer@s-lab.upb.de

ABSTRACT
The workshop on Model-Driven Development of Advanced
User Interfaces is a forum of multidisciplinary discussion
on how to integrate model-driven development with the
more informal methods of user-centered design and
development of user interfaces. Starting point of the
discussion were the tools, models, methods and experiences
of the workshop participants. This report presents the
overall aims of the workshop and presents the results of the
discussion groups.

Author Keywords
Model-driven development, user-centered design, models,
workshop report.

ACM Classification Keywords
D.2.2. Design Tools and Techniques (User Interfaces),
H5.2. User Interfaces (User-centered design).

INTRODUCTION
The workshop on Model-Driven Development of Advanced
User Interfaces (MDDAUI) was the fifth edition of this
workshop series, organized for the first time together with
the CHI conference. Previous editions were organized at
MODELS and IUI conferences. More information on the
background and motivation for this workshop can be found
in the CHI 2010 Extended Abstracts [5].

MDDAUI 2010 focused on challenges, opportunities,
practical problems, and proposed solutions to increase the
usability and user experience of user interfaces created with
a model-driven development approach. A highly interactive
format was used to foster discussion between participants.
All participants, except the organizers, were selected based
on papers, which were reviewed by the program committee.

After a short introduction, the thirteen accepted papers were
presented in three blocks. Each block consisted of four or
five seven-minute presentations followed by a short

discussion to identify potential points for more elaborate
discussions. The resulting set of potential discussion points
were grouped in a collaborative effort by all participants
into three discussion topics, which were later discussed in
three separate discussion groups. Thus, the identified topics
reflect important issues in this field from the viewpoints of
the workshop participants.

Discussion Topic Discussion Points

Integrate knowledge from
other fields

� HCI patterns

� Cognitive models

� HCI and usability
guidelines and
standards on know-
ledge representation

� User experience and
usability

Multi-device and multi-
modal interaction
generation

� New common
reference framework?

� Different abstractions?

� Cost versus usability

� Dynamic distribution

Development processes � End-user development

� Customization

� Iteration and
prototyping

� ISO 13407 [3]

� Standards about
development processes

Table 1 Discussion topics and discussion points
Proceedings of the 5th International Workshop on Model Driven
Development of Advanced User Interfaces (MDDAUI 2010): Bridging
between User Experience and UI Engineering, organized at the 28th ACM
Conference on Human Factors in Computing Systems (CHI 2010),
Atlanta, Georgia, USA, April 10, 2010.
Copyright © 2010 for the individual papers by the papers' authors.
Copying permitted for private and academic purposes. Re-publication of
material from this volume requires permission by the copyright owners.
This volume is published by its editors

Table 1 shows an overview of the discussion topics and the
individual discussion points that were identified. Some of
the points evolved as a result of merging several initial
discussion points raised during the presentation blocks.

In the remainder of this workshop report, the results of the
different discussion groups are summarized, followed by a
discussion on how we created and presented the workshop

53

poster, which was also created in a collaborative effort of
several workshop participants.

GROUP DISCUSSIONS
The group discussions formed a major part of the
workshop. They started before lunch and ended just before
the end of the workshop, leaving enough room for the
plenary presentation of the results of the group discussions
and a few short closing remarks.

Integrate knowledge from other fields
Out of practical considerations the discussion in this
discussion group focused on the integration of knowledge
from cognitive sciences to complement the knowledge
already available from the engineering disciplines. The
central goal of integrating this knowledge is to improve
usability of user interfaces that are generated by a model-
driven development approach.

Starting point of the discussion were the models and
abstraction levels of the (revised) reference framework for
plastic user interfaces [2] (Cameleon reference framework).
Different contributions to these models from the cognitive
sciences community were proposed for specific abstraction
levels. The saliency model could e.g. be used to test final
user interfaces (as presented by Jeremiah Still in the
workshop) and provide feedback to the concrete user
interface model. It was however indicated that a significant
amount of research is still necessary to establish this
capability. Cognitive workload models were identified as a
potential candidate to enable transition from concrete user
interfaces to abstract user interfaces. The participants of the
discussion group believed that the latter could also benefit
from an inclusion of the (relative) importance of its
components in the model. Finally, the concepts and tasks
layer of the Cameleon reference framework could include
knowledge from the GOMS model (Goals, Operators
Methods Selection rules) [1] for task analysis. Support for
indicating task frequency was also considered important.

Besides the models, HCI patterns, guidelines and standards
were identified as important containers of knowledge to
support transitions between the different abstraction levels.
Patterns (also discussed in the presentation of Andreas
Wolff) could assist in transitioning between all abstraction
levels, while standards (including guidelines) were mostly
considered beneficial in the transition between final and
concrete user interfaces.

HCI patterns promise to solve the shortcomings of
standards and guidelines by representing the design
knowledge in a machine-readable and reusable form. By
specifying “when, how and why” they enable automatic
processing of the represented design information and are
therefore suitable for the model-based generation of user
interfaces. For using HCI patterns in a model-based
development process several problems should be addressed
in the future e.g. lack of formalization, lack of organization
and the lack of effective tool support.

Multi-device and multi-modal interaction generation
This discussion group focused on how to create good user
experience for user interfaces that can (semi-) automatically
adapt to multiple devices and support multi-modal
interaction at runtime. Consistency was identified to be an
important factor for good user experience (or rather
usability, as argued by some participants?). Consistency has
different aspects that need to be balanced: consistency
within the user interface of a single application on a single
device, consistency with user interfaces of other
applications on the same device and consistency between
the user interfaces of the same application on different
devices. Depending on the kind of applications and the
desired user experience, different kinds of consistency may
be more important.

Another discussion point was centered upon the question:
"How to ensure consistency?". Different approaches were
discussed which would be suitable for different kinds of
consistency. Guidelines were considered important,
especially to ensure consistency between user interfaces of
different applications on the same device, but they could
also support consistency within an application's user
interface. The usage of one or more common models (e.g.
at the concepts and task level in the Cameleon reference
framework [2]) for the user interfaces of an application on
multiple platforms was raised as another potential means to
ensure consistency. Device-specific models were, however,
considered necessary to generate usable user interfaces.

In order to benefit from common models for ensuring
consistency, the existence of both mappings and automated
transformations was considered important. Mappings are
important for logging and explaining links between the
different models, while transformations support automation
in the generation of models (and mappings). A last thing
that was prevalent during the discussion was the importance
of explaining why certain guidelines and/or transformations
are present. Guidelines and transformations should become
transparent to other stakeholders and be accomplished, e.g.,
by descriptions of the rationale.

Development processes
A large part of the discussion in the third discussion group
was centered on the role of models in software engineering
and user-centered design processes. First, a set of models
and sub-models was gathered (see Table 2). The discussion
then moved to different properties of these models within
the development process. Three central questions were
examined: "How are models used?", "At which level of
abstraction are they?" and “How are the models related?”

The former question led to the distinction between design
time models and runtime models. For design time models,
tool support (user interface and languages) was considered
a major area for future work, while models at runtime could
be used for simulation (interpreting and executing) and
analysis, and could play a major role in reverse engineering
of UI models from interactive systems. The discussion

54

group members agreed: "Design-time models can ideally be
used or instrumented as runtime models (or they should at
least be related)."

The discussion about abstraction levels started off with the
observation that there are different views of abstractions.
Among them, the Cameleon reference framework [2] and
the Model-Driven Architecture [4] (MDA) were considered
the most relevant. A mapping between their respective
levels of abstraction was documented, while remarking the
different notions of platform: Platform for the Cameleon
reference framework refers to "a class of devices with
similar interaction resources"; for MDA it refers to a certain
combination of software and hardware. When reviewing the
models, it was observed that most of the models did not fit
completely in neither the Cameleon reference framework
nor MDA; some extensions are required to either of them.
The user activity model only fitted the concepts and tasks
level of the Cameleon reference framework.

Finally, end-user development was also discussed. First,
domain experts were considered as end-users of models,
further distinguishing models for them from (user) models
of them. Models for end-users were considered to support
the active participation of end-users in the development of

the user interface. The activities for which models are
suitable were listed as design, program and customize.

In order to establish these goals, several requirements were
listed: The models should be understandable, have the
"right" level of abstraction and show the correspondence of
concepts. Furthermore, tool support on different levels as
well as domain-specific languages are also required for end-
user development.

The last discussion group also touched the topic of
guidelines and standards in user interface development. To
ensure consistency and a high degree of usability across
several user interfaces, standards and guidelines should be
used during the user interface development process. For
automatically considering standards (e.g. ISO 9241,
VDI/VDE 3850) during the user interface generation
process, e.g. for automatic verification in the concrete user
interface layer, standards and guidelines have to be
available in a formal notation. One possible solution could
be the integration of the knowledge of standards and
guidelines in knowledge bases. To reach this goal, much
work still has to be done.

Figure 1 The "interactive" workshop poster

WORKSHOP POSTER
After the workshop, a poster was prepared in cooperation
with several workshop participants. It was designed as an
“interactive poster” inviting the viewers of the poster at the
CHI conference to add artifacts. The poster consists of three
major parts, as can be seen in Figure 1. The top part
documents the goals and the format of the workshop, the
middle part consists of a mind map that illustrates the topics

Model Sub-models

User model � Preference, knowledge

� Perception, cognition,
(motor) action

� Behavior, learning

User activity model � Task

� Scenario

� Role

� Workflow (procedures,
cooperation)

Collaboration model � Social behavior

User interface model � Guidelines (e.g.
ergonomic rules)

� Dialogue model

� Presentation model
(input, output)

� Platform model (CPU,
description of device)

� Interaction model
(interaction techniques,
widgets, gadgets,
UI components,
modalities)

Table 2 Models and sub-models

55

that were discussed in the workshop, and the bottom part
gives an overview of the different models and information
artifacts that were considered from the different disciplines
in the creation of user interfaces. The models were
represented in a way similar to yellow post-it notes, while
pink post-its invited viewers of the poster to contribute
other models and information artifacts. In this way some
more information artifacts were collected during CHI 2010.

Figure 2 gives a detailed view of the elaborated mind map
that structures the area of model-driven user interface
development. The main aspects identified around the
central concept “models” are relationships (transformations
and mappings), the main characteristics of the development
methods (model-driven, iterative, or user-centered), the
software development phase when models are applied
(analysis, design, or runtime), the different scopes of tools
(creation, evaluation, simulation, end-user, or domain
expert), and the models’ types and abstraction levels. The
latter were elaborated further in the bottom part of the
poster, based on the models in Table 2, but also including a
set of other models as discussed in the previous section.

DISCUSSION
The fifth edition of MDDAUI, organized the first time at
the CHI conference, shifts the workshop further towards a
better integration with user interface design and HCI.
According to the conference guidelines, the number of
participants was restricted and emphasis was put on the
discussions. Thus, paper presentations were kept really
short, giving us much time for comprehensive and fruitful
discussions, including both highly respected and well
established experts and novices to the field and/or the
scientific community.

The workshop also highlighted a number of challenges for
the community and the workshop organizers:

� Development of a reference framework that better
captures the needs of model-driven development
of user interfaces providing good user experience.

� Incorporation of often relatively informal
knowledge (such as HCI patterns, guidelines and
standards) from non-engineering fields into

models, mappings and transformations to support
better user experience.

Figure 2 Mind map of the topics discussed during the workshop

� Convince domain experts � both horizontal, (such
as designers, information architects and usability
experts) and vertical (such as health, finance and
transportation) � of the benefits of participating in
the MDDAUI community.

ACKNOWLEDGMENTS
We thank the CHI organizers for providing the opportunity
to organize MDDAUI 2010 together with CHI 2010 as well
as the student volunteers and other people from the CHI
organization and program committees. Special thanks also
go to the institutes and organizations supporting the
participants and organizers to attend and organize the
workshop. Last but not least, many thanks to all MDDAUI
2010 participants who helped to make this workshop a
success.

REFERENCES
1. S.K. Card, T. P. Moran, and A. Newell. The psychology

of human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1983.

2. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, N.
Souchon, L. Bouillon, and J. Vanderdonckt. Plasticity of
user interfaces: a revised reference framework. In: First
International Workshop on Task Models and Diagrams
for User Interface Design TAMODIA2002, pages 127–
134, July 18–19, 2002.

3. International Standards Organization. ISO 13407 –
Human-centred design processes for interactive systems.
Geneva, Switzerland 1999.

4. J. Miller and J. Mukerji. MDA guide version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

5. J. Van den Bergh, G. Meixner, K. Breiner, A. Pleuss, S.
Sauer, and H. Hussmann. Model-driven development of
advanced user interfaces. In: CHI 2010 Extended
Abstracts, pages 4429–4432, 2010.

56

Organization

Main contact: jan.vandenbergh@uhasselt.be http://www.lero.ie/mddaui2010

HCI

Cognitive scienceEngineering

GOMS

Cognitive
workload

model

Saliency
model

Task model

Cameleon
reference

framework

Guidelines

Standards

Scenario

User
preference

User
knowledge

Physical
abilities

Perception

user
behaviour

model

Learning
model

User roles

Dialog model

Presentation
model

Platform
model

Interaction
model

Interaction
techniques

User Interface
component

Social
behavior

UI
architecture

System
behaviour

model

5th International Workshop on Model-driven development of Advanced User Interfaces

MDDAUI 2010
Bridging between User Experience and UI Engineering

Abstract
The workshop on Model-Driven Development of Advanced User Interfaces
(MDDAUI 2010) is a forum of multi-disciplinary discussion on how to integrate
model-driven development with the often more informal methodologies used in
user-centered design. Starting point of the discussion are the tools, models,
methods and experiences of the workshop participants.

Format
The workshop takes one full day during the CHI 2010 conference.
The workshop will consist of short presentations by all workshop
participants followed by in-depth group discussions on selected
topics. The results of this group work will be presented and
discussed in a closing plenary session.

Advanced User Interfaces?
Multiple devices/interaction techniques, safety critical (e.g. airplane cockpit), context-sensitive (e.g. unified mobile industrial operator display) ,
cooperative, collaborative, post-wimp, ...

MODELS
Tools

Methods

Domain expertEnd-user

Simulation
Evaluation

User-centered

Model-driven

Relations
Mappings

Transformations

When?

Design

Runtime
Analysis

Creation

Iterative

Types/Abstractions

pert

When?h ?

57

	MDDAUI2010_TOC_rev01.pdf
	Table of Contents
	Preface
	Accepted Workshop Papers
	Workshop Report and Poster

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

