
Automated Optimization of User Interfaces
for Screens with Limited Resolution

Sevan Kavaldjian, David Raneburger, Roman Popp, Michael Leitner, Jürgen Falb,
Hermann Kaindl

Institute of Computer Technology
Vienna University of Technology, Austria

{kavaldjian, raneburger, popp, leitner, falb, kaindl}@ict.tuwien.ac.at

ABSTRACT
More and more devices with different screen resolutions are
used to run the same application. In order to reduce usabil-
ity problems, user interfaces (UIs) specific to resolution are
needed, but it is time consuming and costly to implement
all the different UIs manually. Automated generation of UIs
has the potential to reduce time and costs in case of many
such devices. Still, model-driven generation of UIs may not
be flexible enough to include optimization for various reso-
lutions.

We extended the straight-forward approach to model-driven
generation by including optimization according to maximum
usage of available space for a given resolution, minimum
amount of clicks, and minimum scrolling. For these opti-
mizations, we also use automated layouting and calculate
the space needs of the possible variants. In effect, our new
approach generates UIs optimized for screens with limited
resolution, in order to reduce related usability problems.

INTRODUCTION
Automated generation of UIs has certainly advanced in re-
cent years, especially based on model-driven approaches.
Still, such generated UIs pose many usability problems. We
think that this is partly due to insufficient flexibility of the
current generation approaches.

In particular, straight-forward model-driven generation only
allows for matching a single transformation rule for each
source pattern. We extend this approach by taking up means
from rule-based programming, that have been around for
a long time. We allow matching of several transformation
rules for any source pattern, and we use so-called conflict
resolution to determine which rule to apply (fire). Based on
that, we implement a simple form of optimization in the con-
text of model-driven UI generation.

It allows us to maximize the amount of information to be

MDDAUI 2010.

Figure 1. A discourse model excerpt

displayed on a screen with limited resolution, to minimize
the number of navigation clicks, and to minimize scrolling.
All this is important for reducing usability problems. Since
more and more devices with different screen resolutions are
used to run the same application, we can automatically opti-
mize the generated UI for the given (limited) resolution.

BACKGROUND
The input for our UI generation approach is a discourse
model [2]. Such a discourse model serves as an interaction
design on a high level of abstraction based on concepts of
human language theories. A small excerpt of a larger dis-
course model for flight booking is shown in Figure 1. We
use this discourse model as a running example throughout
the remainder of this paper.

Our Discourse Models
The main ingredients of our discourse models are commu-
nicative acts derived from speech acts [7]. A communicative
act is represented as a rounded rectangle and models an utter-
ance of one of the communication partners. In our example,
the application asks the customer closed questions, while the
customer provides answers to the questions. In our example,
the yellow (or light gray) communicative acts are uttered by
the application and the green (or dark gray) ones are uttered
by the customer.

1

Pre-proceedings of the 5th International Workshop on Model Driven Development of 
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and 
UI Engineering, organized at the 28th ACM Conference on Human Factors in 
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010. 

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted 
for private and academic purposes. Re-publication of material from this volume 
requires permission by the copyright owners. This volume is published by its editors.

13



Model2Model
Transformation

Model2Code
TransformationDiscourse

Model
Structural UI

Model
Final UI

(a) Our Basic Transformation Process

Model2Model
Transformation

Model2Code
TransformationDiscourse

Model
Structural UI

Model
Final UI

Check if UI fits
Screen Resolution

Further Transformation Possible

Fitting UI
or

No Further
Transformation

Possible

(b) Our Extended Transformation Process

Figure 2. Our Transformation Process

Additionally, some communicative acts, like Question and
Answer form a so-called adjacency pair which is represented
by a diamond in our discourse models and defines the turn-
taking and thus the sequence of utterances.

Adjacency pairs can be related with each other to build a
tree structure. In our example, two Question–Answer pairs
are related by a Joint relation. This Joint relation states that
the Question–Answer pairs in both nucleus branches are of
equal importance. Further, it does not imply a temporal or-
der per se. For instance, both pieces of information can be
presented in parallel if there is enough space on the screen.
Otherwise they can be uttered in sequence.

Our Basic Transformation Process
We have developed a user interface generation process [5]
that transforms such discourse models into WIMP-based
graphical user interfaces (Windows, Icons, Menu and Point-
ers). Our basic user interface generation process is illus-
trated in Figure 2(a) and consists of two steps.

The first step transforms a discourse model into a Struc-
tural UI Model [4] by applying transformation rules to dis-
course model elements. The resulting Structural UI Model
represents the user interface’s widgets and their structure,
but still abstracts from details of the final UI. We do not
use a common UI description language (e.g. UsiXML1) be-
cause our runtime environment is based on the exchange of
Communicative Acts. In our running example, the following
transformation rules are applied to elements of the discourse
model excerpt in Figure 1 for generating a model represent-
ing the structure of the final UI in Figure 3(a).

First, a Joint Rule gets applied that matches the Joint relation
and adds a panel to the Structural UI Model. This panel acts
as a container for the Radio Button lists in Figure 3(a), which
correspond to the two nucleus branches of the Joint relation.

Second, a Closed Question Rule gets applied twice that

1http://www.usixml.org

matches each of the two Question–Answer adjacency pairs.
For each adjacency pair a panel containing a label for a head-
ing, a list of radio buttons together with item labels, and a
submit button on the bottom is added to the Structural UI
Model.

In the second step this Structural UI Model is used to gen-
erate source code for a particular target platform, e.g., Java
Swing in our running example.

OPTIMIZED RENDERING FOR LIMITED RESOLUTIONS
The problem tackled by our extended approach is to fit a
given amount of information optimally (in the following
sense) into screens with limited resolution.

Optimization Objectives and Approach
We assume that the following optimization objectives im-
prove the usability of the generated user interfaces:

• maximum use of the available space for the given resolu-
tion,

• minimum amount of navigation clicks, and

• minimum scrolling (except list widgets).

Whenever the given information to be displayed does not fit
into a single screen with default widgets, we try to display
it with widgets that use less space. If it still does not fit
into a single screen, then we split its display to two or more
screens. Splitting increases the number of navigation clicks
but it minimizes scrolling. We exclude list widgets from this
last optimization objective because the number of list entries
can vary extremely at runtime and determines whether the
list is scrollable or not. This information is not known during
our rendering process.

Our Extended Transformation Process
Our basic transformation process looks like straight-forward
model-driven generation that only allows for matching a sin-
gle transformation rule for each source pattern. We are not

2

14



aware of any optimization strategy in such a context. There-
fore, we extend the straight-forward approach by allowing
that several transformation rules may match for each source
pattern, and by applying so-called conflict resolution to se-
lect which rule to apply (fire) in the next model-to-model
transformation. Our extended generation process shown in
Figure 2(b) illustrates the resulting possibility of trying out
several rules for optimization purposes. In this approach,
the rules need not to be specifically designed for a particular
screen resolution. It is rather the way the rules are applied
that achieves the given optimization objectives.

In order to implement such an optimization, the conflict res-
olution mechanism needs to select the rules in a certain de-
fined order. For achieving the optimization objectives given
above, this selection order is according to the space that the
widgets the rule creates occupy in the final UI. Therefore,
all rules matching the same discourse element for transfor-
mation have to be ranked by the designer according to this
space need.

Each target device we render for has an abstract device spec-
ification that contains all style data used by the transforma-
tion rules. These data specify default sizes for all input and
output widgets on the target device that can be overwritten
in a transformation rule. They are used to set the size for
each final UI element and allow us to calculate the exact size
of each container (e.g., panel). For example, we set the size
of the list widget explicitly. This makes it independent from
the number of entries. If the list widget is not able to display
all entries, it becomes scrollable.

After the size calculation we try to layout each generated
screen to fit into the given resolution. However, we mod-
ify only the arrangement of the widgets that has not been
fixed explicitly in a transformation rule. Therefore, we do
not change the layout specified by the Closed Question Rule
(i.e., the layout of the heading label, the radio button list
and the submit button in Figure 3(a)). In this example, we
modify the position of the complete radio button lists in the
panel created by the Joint relation, since the Joint Rule does
not contain any layout information.

Now let us explain how to apply this approach to automati-
cally generate user interfaces for three target resolutions. As
input we use the discourse model excerpt shown in Figure 1.

Our first GUI is rendered for the resolution 640×480. The
first cycle of the model-to-model transformation uses the
highest ranked rules (i.e., the ones with the highest space
need) for each discourse element. These are the same rules
that have been applied in our basic transformation process.
After the first transformation cycle we calculate the size for
each panel in the corresponding Structural UI model. We can
place them next to each other without exceeding the screen
resolution. So, this is a fitting UI and we trigger the model-
to-code transformation. The result is shown in Figure 3(a).

Next we generate a UI for the resolution 480×320. This
time, the UI resulting from application of the highest ranked

(a) 640×480

(b) 480×320

(c) 320×180

Figure 3. Generated User Interfaces

rules does not fit. As long as a lower ranked rule can be ap-
plied, we initiate another generation cycle. First, the Small
Closed Question Rule is used in our example. This rule
matches the same source element (Question–Answer adja-
cency pair) as the Closed Question Rule but it creates a UI
structure which occupies less space on the screen. A combo
box element presents the content of the Closed Question
communicative act to the user and a submit button is gen-
erated to confirm the selection of the user. The user inter-
face shown in Figure 3(b) is the result of two more cycles,
because in each cycle only one lower ranked rule is applied.
The resulting UI fits and still presents the same information,
but using widgets with less space needs (combo boxes in-
stead of radio buttons). However, the list widgets do not fit
next to each other and the layouter arranges them vertically.

In a third run, we generate a user interface for the resolution
320×180. Even after all rules for widget selection have been
tried out, the generated GUI still does not fit the given res-
olution. Therefore, we start using rules that split the screen
in order to increase the number of navigation clicks before

3

15



we make use of scrolling. In our example, this means that in
the next cycle the Small Joint Rule is applied instead of the
Joint Rule. The Small Joint Rule matches the same source
element (Joint relation) but creates a different UI structure (a
tabbed pane element instead of a panel). Figure 3(c) shows
the outcome for the resolution 320×180. The Small Joint
Rule and the Small Closed Question Rule have been applied
and a fitting UI has been generated after a third cycle of rule
application. This time no layout modifications are necessary
because each tab contains only one panel.

The worst case in our extended generation process occurs
if and when no more rules are available and the generated
screen still does not fit the given screen resolution. In this
case, we stop the optimization loop and rely on scrolling.

RELATED WORK
A transformation system that fits web pages automated and
on-the-fly to screens of small devices is presented in [8]. The
transformations are performed in order to minimize naviga-
tion and scrolling like in our approach. In contrast, however,
this process alters an already existing UI.

Declarative user interface specifications are used as input for
multi-target UI generation in [3]. The user interface adap-
tion is treated as an optimization problem based on a user-
and device-specific cost function. Compared to such user in-
terface specifications, our interaction models are on a higher
level of abstraction.

The model-driven approach for engineering multi-target UIs
presented in [1] supports switching between predefined pre-
sentations during runtime. Our approach, in contrast, is in-
tended to automatically generate presentations for different
resolutions from a single discourse model.

An advanced approach for generating multi-device UIs is
based on task models [6]. Such a Task Model specifies the
temporal relations among tasks and has to be adapted ac-
cording to the screen space available on the target device.
Therefore, any optimization and screen splitting has to be
done explicitly during the creation of the Task Model.

We are not aware of any other approach that performs op-
timization in the course of model transformations. Neither
are we aware of any model-driven GUI transformation pro-
cess that takes the resolution for transformation rule selec-
tion into account.

CONCLUSION
Our new and extended approach introduces an optimization
technique into model-driven generation of UIs to reduce us-
ability problems. However, we only deal with relatively sim-
ple usability aspects (minimum amount of clicks and mini-
mum scrolling). We do not (yet) optimize layout according
to, e.g., aesthetic criteria. Therefore, our optimization ap-
proach as presented above is not suitable for large screens
with high resolution.

Overall we introduce a UI generation process that allows the

same rule set to be used for generating UIs for devices with
different resolutions. Through the automatic calculation of
space need, it may even have an advantage in this respect as
compared to a human interface designer. We implemented
a simple optimization approach that allows us to optimize
generated UIs for devices with limited resolution in such a
way as to utilize the given space and to minimize naviga-
tion and scrolling. This should pave the way to optimized
multidevice UI generation.

ACKNOWLEDGMENTS
This research has been carried out in the CommRob project
(http://www.commrob.eu), partially funded by the
EU (contract number IST-045441 under the 6th framework
programme).

REFERENCES
1. B. Collignon, J. Vanderdonckt, and G. Calvary.

Model-driven engineering of multi-target plastic user
interfaces. In Proceedings of the Fourth International
Conference on Autonomic and Autonomous Systems
(ICAS 2008), pages 7–14, Washington, DC, USA, 2008.
IEEE Computer Society.

2. J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and
E. Arnautovic. A discourse model for interaction design
based on theories of human communication. In Extended
Abstracts on Human Factors in Computing Systems
(CHI ’06), pages 754–759, New York, NY, USA, 2006.
ACM Press.

3. K. Gajos and D. S. Weld. SUPPLE: Automatically
generating user interfaces. In Proceedings of the 9th
International Conference on Intelligent User Interface
(IUI ’04), pages 93–100, New York, NY, USA, 2004.
ACM Press.

4. S. Kavaldjian, C. Bogdan, J. Falb, and H. Kaindl.
Transforming discourse models to structural user
interface models. In Models in Software Engineering,
LNCS 5002, volume 5002/2008, pages 77–88. Springer,
Berlin / Heidelberg, 2008.

5. S. Kavaldjian, J. Falb, and H. Kaindl. Generating content
presentation according to purpose. In Proceedings of the
2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC2009), San Antonio, TX, USA,
Oct. 2009.

6. F. Paternò, C. Santoro, and L. D. Spano. Model-based
design of multi-device interactive applications based on
web services. In INTERACT (1), pages 892–905, 2009.

7. J. R. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, Cambridge,
England, 1969.

8. X. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W.-Y. Ma.
Browsing on small displays by transforming web pages
into hierarchically structured subpages. ACM
Transactions on the Web, 3(1):1–36, 2009.

4

16




