
Evaluation of user interface adaptation strategies in the
process of model-driven user interface development

Kai Breiner, Volkmar Gauckler
University of Kaiserslautern

Software Engineering Research
Group

Gottlieb-Daimler Str.
67663, Kaiserslautern, Germany

breiner@cs.uni-kl.de,
volkmar.gauckler@gmx.net

Marc Seissler
University of Kaiserslautern
Center for Human-Machine-

Interaction
Gottlieb-Daimler Str.

67663, Kaiserslautern, Germany
Marc.Seissler@mv.uni-kl.de

Gerrit Meixner
German Research Center for
Artificial Intelligence (DFKI)

Trippstadter Str. 122
67663, Kaiserslautern,

Germany
Gerrit.Meixner@dfki.de

ABSTRACT
In this paper, we describe the evaluation of our prototype
Universal Control Device (UCD), which enables the control
of various devices in modern dynamic production
environments, while being able to adapt itself to the current
configuration of the environment. While it is hard to apply
traditional user interface design heuristics in recent
paradigms – such as Ambient Intelligence – there is a
demand for suitable compensation strategies addressing
usage errors, which can be met by applying an adequate
adaptation strategy. In a pilot study, we gained experience
regarding differences in the performance of selected
adaptation strategies in the case of our demonstrator.

Author Keywords
Universal Control Device, Adaptation Strategies,
SmartFactory.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
Evaluation/methodologie, Prototyping, User-centered
design.

INTRODUCTION
The ongoing technological development of
microelectronics and communication technology is leading
to more pervasive communication between single devices
or entire pervasive networks of intelligent devices (smart
phone, PDA, netbook, etc.). Especially industrial devices
and applications can take advantage of modern smart
technologies, e.g., based on ad-hoc networks, dynamic
system collaboration, and context-adaptive human-machine
interaction systems. The vision of Mark Weiser [1]

concerning ubiquitous computing – also in production
environments – is becoming a reality [10].

In today’s production environments, technical devices often
stem from multiple vendors using heterogeneous user
interfaces that differ in terms of complexity, look&feel, and
interaction styles. Such highly complex and networked
technical devices or systems can provide any information at
any time and in any place. This advantage can turn out to be
a disadvantage when information is not presented properly
according to the users’ needs. This leads to problems,
especially concerning the usability of the user interface.
The level of acceptance of a user interface largely depends
on its ease and convenience of use. A user can work with a
technical device more efficiently if the user interface is
tailored to the users’ needs, on the one hand, and to their
abilities on the other hand. Therefore, providing
information in a context- and location-sensitive manner
(depending on user, situation, machine, environmental
conditions, etc.) has to be ensured.

Hence, in the following we will give a short introduction to
the SmartFactoryKL, which serves as a demonstration
environment for future intelligent production environments,
and a Universal Control Device (UCD), which provides
holistic control to various devices in such environments.
Further, we give a brief introduction to user interface
adaptation, usage errors, as well as to their compensation.
After presenting our idea of how to approach compensation
by using adaptation strategies, we describe the set-up of the
corresponding controlled experiment and the preliminary
results of the pilot study conducted. We conclude with the
interpretation of how the results contribute towards our
hypothesis.

SmartFactoryKL
Besides these aspects, modern production environments are
characterized by a modular layout. Entire modules can be
replaced or reorganized. Furthermore, these environments
are able to react to errors occurring in the production
process (e.g., device malfunction) and to dynamically
reorganize parts of the process in order to ensure the
production process. Thus, this also affects the user who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Pre-proceedings of the 5th International Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience
and UI Engineering, organized at the 28th ACM Conference on Human Factors in
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010.

Copyright © 2010 for the individual papers by the papers' authors. Copying
permitted for private and academic purposes. Re-publication of material from this
volume requires permission by the copyright owners. This volume is published by
its editors.

17

interacts with the individual devices – the user’s workflow
will change, or devices will not be available anymore.

Serving as a demonstration environment, the
SmartFactoryKL in Kaiserslautern, Germany is able to
simulate such a process. In previous work, we developed a
UCD, which is able to provide access to various devices of
the SmartFactoryKL [3][4].

Universal Control Device (UCD)
As a result of a model-driven process, the user interface of
the UCD is being generated at run-time [2]. Starting with a
topological description of the environment, enriched with
user tasks on the single devices and information about how
to address the single devices, this information is sufficient
for generating a functional user interface [2][4]. In order to
remain functional to the user, this user interface has to
correspond to the current configuration of the environment
and is additionally restricted to the functionality as
specified in the underlying model. During field studies,
faced by the need to adapt the user interface, we
encountered the demand for a systematic strategy that
would support the user as much as possible [3]. This was
the trigger for a study on adaptation, which we will describe
in the following.

ADAPTATION
After giving a brief overview of different types of
adaptation – their properties as well as their impact on the
users’ workflow – we will elaborate types of usage errors
resulting from static user interfaces and how adaptive user
interfaces contribute to the compensation of such errors.

Static versus Dynamic User Interfaces
On the one hand, one important usability quality attribute is
memorizability. The ease to remember helps users to speed
up the process of interacting with the user interface [5][6].
Since humans have a very visual memory, the way a certain
user interface is structured is essential for finding items
faster. After a while, users form a coherent model of the
user interface and are able to recall how to execute their
workflow. If the system (and therefore the user interface)
changes frequently, the user will not be able to form such a
model [7][8]. On the other hand, there are user interface
heuristics demanding that the user interface matches the
real world [6]. In order to provide control over devices in
dynamic environments – such as the SmartFactoryKL – it is
extremely vital to match the user interface to the real world
in order to remain functional.

These simple rules about how to develop a user interface
appear to be contradictory for future information systems in
our application domain. Hence, there is a need for an
adaptation strategy that does not violate usability quality
attributes leading to usage errors.

Usage Errors
In general, for each kind of usage error, there is a basic
cause (see Figure 1). Using the right compensation
technique – such as adaptation of the user interface – the
users can be actively supported in preventing usage errors.

Basically, there are two kinds of operating errors that may
lead to a failure of the system.

In the first case, there are slips. Here, the user had the
correct intention but executed the task in the wrong way.
Most often this is caused by poor physical skills, or by the
user interface just being just inadequate for use (e.g.,
buttons too small). In the second case – which is more
interesting in our example – there are errors. Errors are
characterized by the user having the wrong intention while
executing the task. This is caused by a misunderstanding of
the user interface (e.g., if the user interface is offering
control over devices that are not available physically).

Compensation
Depending on the type of usage error, there are different
ways to compensate in order to minimize the effect. Slips,
which are caused by poor skills of the user, can be
prevented by adapting the user interface to the user. In case
of our application domain – intelligent production
environments – we are dealing with predefined user roles
and user groups and are therefore able to tailor the user
interface to the needs of these user groups.

In dynamic environments, errors can be prevented by
adhering to design heuristics as mentioned earlier. The
system has to represent the current configuration of the user
interface, while supporting the development of a mental
model. Hence, a method of adaptation needs to be chosen
that contributes to these heuristics.

Types of Adaptation
There are different methods of how an adaptation of the
user interface can be executed. These methods differ in
their way of execution as well as in their degree of intrusion
into the users’ workflow. In case of the UCD, a simple
adaptation scenario would be the appearance or
disappearance of devices in the device selection list. In the
following, we will refer to this example while giving details
about the individual methods.

The first method – which was implemented initially and led
to the investigation described in this paper – is ad-hoc
adaptation. Here, devices are added or removed from a
device list according to the physical status of the respective

Figure 1. Relationship between usage errors, their causes, and

compensation.

Usage Error Cause

Compensation

Slips

Error Misunder-
standing

SkillsAdapt to User

Adapt to
Environment

18

devices. Unless a regular user permanently observes the
device list, he or she will not notice any change.
Furthermore, this will be distracting for the user, because
the structure of the user interface changes without
notification.

Providing more information about the system state leads to
the second adaptation method – notification. Now, the user
interface provides information about the change and
therefore supports the user in adapting his or her mental
model. In case of the device list example, we implemented
this method by applying the so-called instant-messenger
metaphor [9]. This means that new or defective devices will
be emphasized graphically, which provides information for
the user to understand the current state of the system.
However, the user may just overlook the notifications if he
or she is distracted, and then the system cannot provide
further support.

Thus, we implemented a third adaptation strategy, which
aims at confirmation by the user. Here, the user has to
actively confirm the change to the user interface. Referring
to the device list of the example above, this strategy was
implemented in terms of a dialog box asking for
confirmation from the user that he or she has actually
noticed the adaptation of the system. Thus, the system can
be almost sure that the user is aware of the adaptation and is
supported in the presumably most adequate way. A
negative side-effect of this strategy is that the confirmation
dialog may distract the user during his/her regular
workflow.

Compensation
Each of the adaptation strategies differs as to how much it
contributes to the compensation of possible usage errors.

Ad-hoc adaptation ensures consistency between the
controllable environment and the corresponding user
interface in order to prevent usage errors with respect to
outdated user interfaces. But this approach provides no
active support to the user at all.

Besides consistency with the current configuration of the
environment, notification provides limited feedback to the
user (e.g., by visually emphasizing new devices). Due to the
fact that this communication with the user is unidirectional,
such notifications can be easily overlooked by the user.

Confirmation provides all the functionality of the first two
approaches on the one hand and demands confirmation by
the user on the other hand. Thus, the user interface is aware
of the fact that the user has recognized the new
configuration and can therefore proceed with the regular
functionality.

Hypothesis
According to the diverse properties of these strategies, we
wanted to investigate which is the most adequate one in the
case of our model-driven approach and therefore we
formulated hypotheses that we are going to verify or falsify
initially in a preliminary study described below. The

hypotheses are tailored to the specific set-up of the
controlled experiment.

H1. Effectiveness – completion rate
We assume that, on average, at least 85,6% of the test tasks
can be completed without help.

Explanation: This hypothesis assumes that test persons can
deal with the user interfaces and have understood their tasks
and therefore can complete at least 6 out of the 7 tasks.

H2. Effectiveness – assistance
100% of the given tasks can be completed (with help – if
needed).

Explanation: The user interface ensures consistency
between environment and visualization independent of the
adaptation strategy. Therefore, it should be possible to
complete each task.

H3. Efficiency – strategy performance
Confirmation outperforms notification, which outperforms
ad-hoc adaptation.

Explanation: On the basis of the different attributes
elaborated earlier, we assume this ranking according to the
performance of the different strategies.

EVALUATION – PILOT STUDY
To evaluate these hypotheses, we decided to conduct a
controlled experiment. We implemented three instances of
our model-driven process [2][3][4], including the
corresponding adaptation strategies. The test persons had to
complete seven tasks on the user interface, while the
simulated production environment always reconfigured
between task 2 and task 3. The idea was that the adaptation
should only affect task 4, which had to be executed in a
different way (as a result of the adaptation) than indicated at
first. The other tasks served as an indication that the test
persons perform in a similar way. We conducted a pilot
study with several computer science students. All six test
persons were between 21 and 34 years old.

After being asked for personal statistical information, the
test persons got a thorough introduction to the production
industry domain. They were provided with a detailed
explanation of the simulated production environment as
well as of our Universal Control Device. After execution of
task 2, we initiated the reconfiguration of the simulation
and, depending on the strategy used (of which the test
persons were not aware) the user interface adapted itself,
notified the user, or demanded confirmation. The strategies
were distributed equally between the tests. Due to the
adaptation of the environment, the user should not be able
to complete task 4 in the way the task description called for.
One of three redundant pumps was removed from the
system. Here, the user should conclude that (as displayed in
the documentation of the simulated environment) there are
various ways to complete this task and ask the moderator if
this is possible. The test was completed with a survey about
the subjective properties of the user interface.

19

Figure 2. The performance of the 7 tasks (median, max/min

and quantile).

Results
Figure 2 shows the results of the performance of the single
tasks. As we assumed before conducting the experiment, all
tasks (the control tasks) except task 4 were performed
similarly. Referring to the standard deviation, which is an
average of 16 seconds in case of the control tasks and 38
seconds in case of task 4, the difference in performance can
be easily identified. Thus, we conclude that the results of
this preliminary experiment are representative.

When executing task 4, the test persons recognized the
redundancy of the three pumps and asked if they could use
another pump, which was intended.

Discussion of the Results
All test persons were able to complete all tasks (with help
in case of task 4), which confirms hypothesis H1. Since all
of them needed help when executing task 4 and only during
task 4, the estimated 85,6% of hypothesis H2 was almost
exactly confirmed.

For ah-hoc adaptation, the execution of task 4 took an
average of 117 seconds, for notification 125 seconds, and
for confirmation 89 seconds. Hence, hypothesis H3 cannot
be entirely confirmed, as ad-hoc adaptation outperformed
notification, but still confirmation outperformed both of the
other strategies.

Threats to validity
Because all the test persons were only computer science
students, this may have had an effect on the result. But on
the other hand, those students were already familiar with
our previous work (without knowing the content of the
experiment), which could also be a good simulation of
domain knowledge. Nevertheless, the experiment needs to
be conducted (and will be) using production industry
domain experts. The most important threat to validity to
mention is the fact that this was only the pilot study for the
described experiment. This means that the sample was too
small and therefore has no real statistical evidence, but it
serves as a first indication as to whether an investigation
according our idea would make sense.

CONCLUSION
When dealing with user interfaces in highly dynamic
environments, such as intelligent production environments,

there are special requirements. According to a shown
dissonance in user interface design, when being applied in
these environments, we have shown there is a special need
for compensating usage errors. This can be achieved by
systematically integrating adaptation strategies into the
model-driven development process. Since multiple
strategies exist, which provide different user experience, the
performance with respect to our demonstrator was
evaluated in a pilot study of a controlled experiment. First
results show that there are differences in the performance
and therefore some of our hypotheses could be verified.

ACKNOWLEDGMENTS
Our work as well as the GaBi project is funded in part by
the German Research Foundation (DFG).

REFERENCES
1. Weiser, M. The computer for the 21st century. Scientific

American, 265, 3 (1991), 94-104.
2. Breiner, K., Görlich, D., Maschino, O., and Meixner, G.

Towards automatically interfacing application services
integrated in an automated model based user interface
generation process, Proc. of the 4th International
Workshop on Model-Driven Development of Advanced
User Interfaces (MDDAUI), CEUR Workshop
Proceedings Vol-439 (2009).

3. Breiner, K., Görlich, D., Maschino, O., Meixner, G., and
Zühlke, D. Run-Time Adaptation of a Universal User
Interface for Ambient Intelligent Production
Environments. Proc. of the 13th International
Conference on Human-Computer Interaction (HCII-09),
LNCS Vol. 5613 (2009), 663-672.

4. Breiner, K., Görlich, D., Maschino, O., and Meixner, G.
Automatische Generierung voll funktionsfähiger
mobiler Bediensoftware aus Benutzungs- und
Funktionsmodellen. Proc. of Informatik, LNI Vol. P-154
(2009), 2210-2215.

5. Gould, J. D. and Lewis, C. 1985. Designing for
usability: key principles and what designers think.
Communications of the ACM, 28, 3 (1985), 300-311.

6. Nielsen, J. Ten Usability Heuristics.
www.useit.com/papers/heuristic/heuristic_list.html.

7. Norcio, A. F., and Stanley, J. Adaptive Human -
Computer Interfaces. NRL Report 9148, Naval Research
Laboratory (1988).

8. Mitchell, J. and Shneiderman, B. Dynamic versus static
menus: an exploratory comparison. SIGCHI Bulletin,
20, 4 (1989), 33-37.

9. Lee, L. and Johnson T. URCousin: Universal Remote
Control User Interface. Proc. of the Human Interface
Technologies Conference (2006).

10. Zuehlke, D.: SmartFactory – From Vision to Reality in
Factory Technologies. Proc. of the 17th International
Federation of Automatic Control (IFAC) World
Congress (2008), 82-89.

00

43

86

130

173

216

1 2 3 4 5 6 7

tim
e

[s
]

Tasks

20

