
Aspect-Oriented UI Modeling with State Machines

Gefei Zhang∗

Ludwig-Maximilians-Universität München

gefei.zhang@pst.ifi.lmu.de

ABSTRACT
Separated modeling of User Interface (UI) widgets is a very natu-
ral way to tackle the complexity of UI models. Due to interactions
between widgets, however, this is not always an easy task. We pro-
pose an aspect-oriented approach to widget-oriented UI modeling:
each widget’s behavior is modeled separately in a UML state ma-
chine; synchronization of the state machines is modeled in aspects
and is woven into the widget models automatically. The weaving
process is transparent to the modeler. This way, we can strongly
increase the degree of separation of concerns in UI modeling and
reduce the complexity of UI models.

Keywords
UI modeling, UML, State machine, Aspect-oriented Modeling

1. INTRODUCTION
Modern User Interfaces (UI) are mostly interactive: the widgets
are no longer supposed to be sheerly receiving input from the user
or presenting the data of the system, but may also have inner lives
themselves. They may have their own states, trigger events, and call
other widgets to execute certain behaviors. For instance, besides
acting as an input terminal for strings, a text field is more often
than not supposed to be able to automatically fill in its value, or
trigger database queries and fill in other widgets.

Separation of concerns in modeling such rich UI is challenging. On
the one hand, it is appealing to model the widgets separately from
each other, each in its own model. On the other, the synchroniza-
tion of the widgets’ behaviors obviously cross-cuts the widgets. An
example is the requirement that only one of the widgets in a win-
dow be focused at a given time. Modeling such requirements often
torpedos the natural, widget-based separation of concerns. As a re-
sult, the complexity of UI models may increase rapidly as soon as
the UI gets non-trivial.

We propose an aspect-oriented approach to rich-UI modeling. Our
approach enables separation of widget modeling. Each widget is

∗Partially supported by the DFG Project MAEWA (WI 841/7–2)

Proc. 5
th

Int. Wsh. Model-Driven Development of Advanced User Inter-
faces (MDDAUI’10).

modeled in its own UML state machine [11], separated from other
widgets. We call the state machines widget machines. Necessary
synchronization between widgets, if any, is left out of the widget
machines, which keeps them rather simple. The synchronization is
then modeled using aspect-oriented techniques: we define aspects,
separately from the widget machines, to define constraints on or
additional behaviors of the widgets. The overall behavior of the UI
is then obtained by the composition of the widget machines and the
aspects. We refer to the composition process as weaving.

In our approach, the complexity of widget synchronization is hid-
den behind weaving, which is transparent to the modeler. This fact
and the increased separation of concerns make our approach easy
to use and reduce the complexity of rich-UI models considerably.

The remainder of this paper is organized as follows: in the follow-
ing Sect. 2 we present our modeling approach, including separate
modeling of the widgets and aspect-oriented modeling of their syn-
chronization; in Sect. 3 a brief discussion is given on how the as-
pects are woven to the state machines. Related work is discussed
in Sect. 4, some concluding remarks, as well as an outline of our
future research, are given in Sect. 5.

2. MODELING APPROACH
Our modeling approach is very simple. It contains three steps:

1. Construct a top-level state machine to model the basic con-
trol flow of the application, and use submachine states as
place holders for widgets.

2. Model the behaviors of the widgets and complete the subma-
chines, without considering inter-widget synchronization.

3. Define necessary aspects to synchronize the widgets.

We demonstrate this approach by means of a simple address book
application. The application should provide two windows: the first
containing a list of the names of all contacts and a button to show
the second view, the second containing text fields for inputting data
of a new contact. The second window is supposed to have a rich
UI.

2.1 Top-level state machine
The first step is to model the top-level widgets, i.e., the two win-
dows, see Fig. 1. When the application is started, the list of all con-
tacts (ContactList, details ignored in this paper) is presented.
The user can select to add a new contact (newContact), and then
enter the contact details in NewContact. This window is sup-
posed to have nine widgets: four input fields, four labels of the
input fields, and an OK button to finish the input.

1

 
 
Pre-proceedings of the 5th International Workshop on Model Driven Development of 
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and 
UI Engineering, organized at the 28th ACM Conference on Human Factors in 
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010. 
 
Copyright © 2010 for the individual papers by the papers' authors. Copying permitted 
for private and academic purposes. Re-publication of material from this volume 
requires permission by the copyright owners. This volume is published by its editors.

45



ContactList

NameLabel NameInput

ZipLabel ZipInput

CityLabel CityInput

StreetInputStreetLabel

newContact

ok

quit

OK

NewContact

Figure 1: Top-level state machine

2.2 Widgets in Separation
The details of the widgets’ behaviors are modeled separately in the
sub-machines. In this step, synchronization of widgets is not con-
sidered, which simplifies the widget modeling considerably.

In our address book example, the labels have a very simple be-
havior: they display some predefined text, and do not react to any
event. This behavior is modeled with a state machine given in
Fig. 2. It contains only one state Show, presenting the label show-
ing its caption.

Show

Figure 2: State machine for the label widgets

We ignore in this paper the state machine of OK, which is also very
simple. More interesting are the state machines of the text input
widgets. Figure 3 models the behavior of NameInput: it may be
either unfocused (NoFocus) or focused (WaitForInput). If it
is focused it is ready for user input (input(t)), and updates its
text (text = text + t) upon each input; otherwise it does not
react to any event.

NoFocus WaitFor
Input

gotfocus

lostfocus

input(t) / text = text + t;

Figure 3: State machine for NameInput

The state machines for the other three input widgets are slightly
more complex, see Fig. 4. Additionally to the behavior of Name-
Input, the other three input widgets also send the current text
(push(text)) to whomever it concerns, and are, focused or not,
ready to receive a call back (pull(newText) from whomever
and to update the text (text = newText). This additional fea-
ture models the capability of automatic completion of one widget
(e.g. CityInput) by another (e.g. ZipInput). Usually, getting
a Zip code is only possible from a combination of a city and a street.
We ignore such details here and assume they are implemented cor-
rectly in pull and push.

2.3 Synchronization by aspects
The state machines so far are simple because they do not include
synchronization with each other, which is usually necessary in a
rich UI. For example, the input widgets obviously are not supposed

NoFocus

pull(newText)
/ text = newText; / text = newText;

pull(newText)

WaitFor
Input

gotfocus

lostfocus

input(t) / text = text + t; push(text);

Figure 4: State machines for ZipInput, CityInput and
StreetInput

to be in state WaitForInput simultaneously. Modeling such
synchronization in the widget machines would break the separa-
tion of concerns, therefore we source them out and model them in
aspects.

An aspect is in our approach a first-class model element. It contains
a restriction to or an extension of the behavior defined in some wid-
get machine. For instance, we model the requirement that only one
widget is supposed to be in NoFocus by two aspects:

(aspect non-simultaneous
(mutual-exclusion

(transition NoFocus WaitForInput)))
(aspect send-others-away

(before WaitForInput)
(scope except-me (goto NoFocus)))

where the aspect non-simultaneous defines a restriction: only
one submachine (keyword mutual-exclusion) is allowed to
fire the transition from NoFocus to WaitForInput (keyword
transition) at a given time. This aspect prevents the widget
machines from transitioning from NoFocus to WaitForInput
at the same time. The aspect send-others-away defines an
additional behavior of the input widgets, to be executed just be-
fore (keyword before) state WaitForInput gets active: tell
the others (scope except-me) to go to state NoFocus (goto
NoFocus). These two aspects thus models the above synchroniza-
tion rule concisely and separately from the widget machines.

Note that using these two aspects is not the only way of preventing
the input widgets from being in WaitForInput simultaneously.
A direct definition of mutual exclusion of states is also possible.
Actually, such an aspect would be implemented as a combination
of the two above aspects. We decided to use the more detailed
aspects, since they are closer to the weaving (see below).

Another synchronization requirement in our sample application is
that when the window NewContact is shown, NameInput should
be the focused widget, i.e. in the state WaitForInput. We model
this with the following aspect has-focus, which tells the sub-
machine NameInput (by scope (NameInput)) to goto state
WaitForInput just after NewContact gets active (after
NewContext.enter).

(aspect has-focus
(after NewContact.enter)
(scope NameInput (goto WaitForInput)))

3. WEAVING
As simple as the aspects are, the implementation of the synchro-
nization requires rather complex modification to the widget models.

2

46



NameLabel

OK

ZipLabel

CityLabel

StreetLabel

entry f = 1;
NewContact

[else]

[f == 1]

NameInput

NoFocus
gotoN; gotoZ; gotoS;

gotfocusC /

lostfocus
gotoC Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

CityInput

NoFocus
gotoN; gotoC; gotoS;

gotfocusZ /

lostfocus
gotoZ Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

ZipInput

NoFocus
gotoZ; gotoC; gotoS;

gotfocusN /

lostfocus
gotoN Input

WaitFor

NoFocus
gotoN; gotoZ; gotoC;

gotfocusS /

lostfocus
gotoS Input

WaitFor

pull(newText)
/ text = newText;

pull(newText)
/ text = newText;

input(t) / text = text + t; push(text);

StreetInput

Figure 5: Partial weaving result of the sample application

This modification is taken care by an automatic weaving process,
which is still ongoing work. With the automatic weaving, the as-
pects will be composed with the base machine “off stage”, i.e., the
modeler is refrained from the cumbersome details. We explain our
weaving by means of the weaving result of the above aspects, see
Fig. 5.

Mutual exclusion of transitions is implemented by a static renaming
the events of the transitions, so that the transitions are no longer
enabled at the same time. In Fig. 5, aspect non-simultaneous
is therefore implemented by renaming the event gotfocus in the
widget models to gotfocusN, gotfocusZ, gotfocusI, and
getfocusS.

Generally, before X and after X are woven by intercepting
all transitions leading to and leaving state X, respectively; goto
X is woven by introducing a new transition to X and sending a
signal to the respective state machine to fire that transition. In
Fig. 5, aspect send-others-away is implemented as an addi-
tional transition in the widget machines from WaitForInput to
NoFocus, triggered by a uniquely named event (gotoN, gotoZ,
gotoC, gotoS), and an effect of the transition from NoFocus to
WaitForInput, firing the “right” events.

One of the (many) exceptions to the above general rule is after
X.enter. Obviously an interception to all transitions leaving
X does not help in this case. Therefore, we implement after
X.enter by introducing an entry action to X. In Fig. 5, aspect
has-focus is implemented by NewContact’s entry action, set-
ting f to 1, and splitting the transition leaving NameInput’s ini-
tial vertex to active WaitForInput immediately if f == 1.

A brief glance at Fig. 5 suggests how cumbersome modeling wid-
get synchronization may get. In comparison, modeling with our
aspects is simple and straight-forward. All the complexity of ac-
tually implementing the required synchronization is hidden behind
the weaving (once implemented) and invisible to the modeler.

4. RELATED WORK
Model driven development is a promising paradigm for UI devel-
opment. There are several proposals of UI modeling, see [1, 5, 6,
10, 12, 17]. In particular, state machines are also used in [14, 16],
where the former work describes a translation of Concurrent Task
Tree (CTT) models into UML state machines, and the latter defines
an extension of UML state machines to model navigation of web
applications. Compared with these approaches, the distinguish-
ing feature of our approach is its use of aspect-oriented modeling
(AOM) to model synchronization of state machines. This makes
the UI models of our approach easy to construct and easy to use,
since the cumbersome details of interaction between widgets are
hidden behind a (yet-to-implement) automatic weaving process.

AOM was also applied to reduce the complexity of design mod-
els in other application areas, such as adaptive systems [2, 13, 18]
or crisis management systems [7], see in [4] for a more general
overview of aspect-oriented techniques. Compared with other pro-
posals of aspect-oriented state machines, such as [15, 21], the as-
pect language used in this paper is high-level in the sense that it is
used to define modifications of behaviors on a more abstract level
than (syntactical) modifications of modeling elements, see [19, 20]
for a more thorough dicussion on the advantages of high-level as-
pect-oriented modeling.

5. CONCLUSIONS AND FUTURE WORK
We presented a widget-oriented modeling approach for interactive
user interfaces. Our approach uses UML state machines, a very
popular language for modeling software behaviors. By supporting
aspect-oriented modeling our approach achieves a high degree of
separation of concerns, and thus increases the feasibility of widget-
oriented UI modeling considerably.

We plan to integrate the aspect language into HiLA1, our general
approach to aspect-oriented state machines. Using state machines
as the modeling language, and in particular the definition the weav-
ing result in the form of a state machine, makes it possible to ver-
ify the weaving result by formal methods like model checking or
theorem proving. In particular, we plan to apply the UML model
checker Hugo/RT [8] to verify temporal logical properties of our
UI models.

6. REFERENCES
[1] Goetz Botterweck. A Model-Driven Approach to the

Engineering of Multiple User Interfaces. In Thomas Kühne,
editor, Reps. and Rev. Sel. Papers Wshs and Symp. at

1http://hila.pst.ifi.lmu.de

3

47



MoDELS’06, volume 4364 of Lect. Notes in Comp. Sci.,
pages 106–115. Springer, 2007.

[2] Sven Casteleyn, William Van Woensel, and Geert-Jan
Houben. A Semantics-based Aspect-oriented Approach to
Adaptation in Web Engineering. In Simon Harper, Helen
Ashman, Mark Bernstein, Alexandra I. Cristea, Hugh C.
Davis, Paul De Bra, Vicki L. Hanson, and David E. Millard,
editors, Proc. 18th ACM Conf. Hypertext and Hypermedia
(HYPERTEXT’07), pages 189–198. ACM, 2007.

[3] Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank
Weil, editors. Proc. 10th Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS’07), volume
4735 of Lect. Notes Comp. Sci. Springer, 2007.

[4] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet
Aksit, editors. Aspect-Oriented Software Development.
Addison-Wesley, 2004.

[5] Guillaume Gauffre, Emmanuel Dubois, and Rémi Bastide.
Domain-Specific Methods and Tools for the Design of
Advanced Interactive Techniques. In Holger Giese, editor,
Reps. and Rev. Sel. Papers Wshs and Symp. at MoDELS’07,
volume 5002 of Lect. Notes in Comp. Sci., pages 65–76.
Springer, 2008.

[6] Daniel Görlich and Kai Breiner. Useware Modeling for
Ambient Intelligent Production Environments. In Andreas
Pleuß, Jan Van den Bergh, Heinrich Hußmann, Stefan Sauer,
and Daniel Görlich, editors, Proc. Workshop Model Driven
Development of Advanced User Interfaces (MDDAUI’07),
volume 297 of CEUR Workshop Proceedings. CEUR, 2007.

[7] Matthias Hölzl, Alexander Knapp, and Gefei Zhang.
Modeling the Car Crash Crisis Management System with
HiLA. Trans. Aspect-Oriented Software Development
(TAOSD), 7, 2010. Accepted.

[8] Alexander Knapp, Stephan Merz, and Christopher Rauh.
Model Checking Timed UML State Machines and
Collaborations. In Werner Damm and Ernst Rüdiger
Olderog, editors, Proc. 7th Int. Symp. Formal Techniques in
Real-Time and Fault Tolerant Systems, volume 2469 of Lect.
Notes Comp. Sci., pages 395–416. Springer, 2002.

[9] Gerrit Meixner, Daniel Görlich, Kai Brainer, Heinrich
Hußmann, Andreas Pleuß, Stefan Sauer, and Jan Van den
Bergh, editors. Proc. 4th Wsh. Model Driven Development of
Advanced User Interfaces (MDDAUI’09), volume 439 of
CEUR Workshop Proceedings. CEUR, 2009.

[10] Gerrit Meixner, Marc Seissler, and Marcel Nahler. Udit—A
Graphical Editor for Task Models. In Meixner et al. [9].

[11] Object Management Group. OMG Unified Modeling
Language (OMG UML), Superstructure, Version 2.2. OMG
Available Specification, OMG, 2009. http://www.omg.
org/spec/UML/2.2/Superstructure.

[12] Andreas Pleuß, Arnd Vitzthum, and Heinrich Hußmann.
Integrating Heterogeneous Tools into Model-Centric
Development of Interactive Applications. In Engels et al. [3],
pages 241–255.

[13] Andrea Schauerhuber. aspectUWA: Applying
Aspect-Orientation to the Model-Driven Development of
Ubiquitous Web Applications. PhD thesis, Technische
Universität Wien, 2007.

[14] Jan Van den Bergh and Karin Coninx. From Task to Dialog
Model in the UML. In Marco Winckler, Hilary Johnson, and
Philippe A. Palanque, editors, Proc. 6th Int. Wsh. Task
Models and Diagrams for User Interface Design
(TAMODIA’07), volume 4849 of Lect. Notes Comp. Sci.,
pages 98–111. Springer, 2007.

[15] Jon Whittle, Ana Moreira, João Araújo, Praveen K.
Jayaraman, Ahmed M. Elkhodary, and Rasheed Rabbi. An
Expressive Aspect Composition Language for UML State
Diagrams. In Engels et al. [3], pages 514–528.

[16] Marco Winckler and Philippe A. Palanque. StateWebCharts:
A Formal Description Technique Dedicated to Navigation
Modelling of Web Applications. In Joaquim A. Jorge,
Nuno Jardim Nunes, and João Falcão e Cunha, editors, Proc.
10th Int. Wsh. Design Specification and Verification of
Interactive Systems (DSV-IS’03), volume 2844 of Lect. Notes
Comp. Sci., pages 61–76. Springer, 2003.

[17] Andreas Wolff and Peter Forbrig. Deriving User Interfaces
from Task Models. In Meixner et al. [9].

[18] Gefei Zhang. Aspect-Oriented Modeling of Adaptive Web
Applications with HiLA. In Gabriele Kotsis, David Taniar,
Eric Pardede, and Ismail Khalil, editors, Proc. 7th Int. Conf.
Advances in Mobile Computing & Multimedia (MoMM’09),
pages 331–335. ACM, 2009.

[19] Gefei Zhang and Matthias Hölzl. HiLA: High-Level Aspects
for UML State Machines. In 14th Int. Wsh. Aspect-Oriented
Modeling (AOM@MoDELS’09), Denver, 2009.

[20] Gefei Zhang, Matthias Hölzl, and Alexander Knapp.
Enhancing UML State Machines with Aspects. In Engels
et al. [3], pages 529–543.

[21] Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff
Gray. Aspect Composition in the Motorola Aspect-Oriented
Modeling Weaver. Journal of Object Technology,
6(7):89–108, 2007.

4

48




