
Model-driven User Interface Development with the Eclipse
Modeling Project

Andreas Wolff
Institut für Informatik
Universität Rostock

Andreas.Wolff@uni-rostock.de

Peter Forbrig
Institut für Informatik
Universität Rostock

Peter.Forbrig@uni-rostock.de

ABSTRACT
Model-driven development nowadays often is done using the
tools from the Eclipse Modeling Project (EMP). We devel-
oped a number of meta-models and transformations to sup-
port a model-driven user interface development within EMP.
This paper presents our Swing and XUL meta-models and
demonstrates what they can be used for.

Author Keywords
UI Model Transformation, CUI Models, Reverse Engineer-
ing

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
Modeling user interfaces (UI) is a well investigated research
topic. For more than twenty years user interfaces are spec-
ified in terms of instances of meta-models. Available ap-
proaches differ in level-of-detail, some are tailored to a spe-
cific domain or interface modalities or target devices, oth-
ers try to cover general interfaces. A general consensus in
model-driven user interface design (MD-UID) exists to dis-
tinguish several levels of abstraction. As well as in general
model-driven software development, a distinction is made
between platform independent (PIM) and platform specific
models (PSM). A platform in MD-UID is often considered
to be a certain device, or rather the interface source code
for that device, itself. Platform independent UI models are
called abstract user interfaces (AUI) and platform specific
UI models concrete user interfaces (CUI). UI source code is
not necessarily source code of a certain programming lan-
guage, but may as well be an interface description written in
a markup language.

There exist numerous markup languages and often they are
derived from XML, common examples include XAML, XUL
or UsiXML. The main advantage of those languages is the

Submitted for review to CHI 2009.

task
model

user
model

business
object
model

domain
model

�

�

�

�
dialog
graph

abstract
UI

class
diagram

(analysis)

class
diagram
(design)

application
model

UI
model

�

�

�

�

relation

transformation

pattern based

Figure 1. MDD process overview

provision of a well-defined grammar and the inherent hier-
archical structure, i.e., they provide a suitable meta-model.
These characteristics makes them ideal candidates for a model-
driven UI development, but not necessarily ideal languages
for UI design.

Non-XML based user interface description languages are
even more numerous. They range from comparatively sim-
ple template languages to large frameworks as for example
Swing or SWT. Creating meta-models, for use within a MD-
UID process, of those languages is not as straightforward as
with XML-based languages, but we think it might be worth
the effort.

In general, we consider model-driven software development
as a sequence of transformations of models. We do not think
that those transformations can be performed in a fully au-
tomated way, but should be executed by humans using in-
teractive tools. We also think these persons, i.e., software
engineers and user interface designers; have to base their
work on the same models. Our work is especially focused on
methods and tools supporting transformations by patterns.
Figure 1 sketches all models we consider important within
this process and how they are interrelated.

In this paper we focus on the user interface part of the overall
process[6]. It is located in the lower right part of Figure 1.
UI creation starts off from the task model. A task model it-
self is not sufficient to express the dynamic relations within
an user interface. To capture these, an auxiliary model, the

1

 
 
Pre-proceedings of the 5th International Workshop on Model Driven Development of 
Advanced User Interfaces (MDDAUI 2010): Bridging between User Experience and 
UI Engineering, organized at the 28th ACM Conference on Human Factors in 
Computing Systems (CHI 2010), Atlanta, Georgia, USA, April 10, 2010. 
 
Copyright © 2010 for the individual papers by the papers' authors. Copying permitted 
for private and academic purposes. Re-publication of material from this volume 
requires permission by the copyright owners. This volume is published by its editors.

49



dialog graph, was introduced. The dialog graph model even-
tually is transformed into an abstract user interface, our PIM.

The idea presented in Figure 1 as such is a process model. In
the last years we created different implementations for it. A
common problem with these implementations was, that they
would only cover quite small portions of the overall problem.
We think this was mainly due to a scaling problem. With
increasing level of detail, the implementations became too
large and too complex to handle.

In our recent implementation we make use of the Eclipse
Modeling Project (EMP). EMP is ”a unified set of model-
ing frameworks, tooling and standards implementations”[1].
”Standards implementations” refers to OMG MDA standards
whose reference implementations are developed by EMP.

Figure 2 is a details view on the transformation from ”ab-
stract UI” to ”UI model” in Figure 1. The meaning of the
line styles is as follows: a solid line is a model-to-model
transformation. Dotted lines denote a model-to-text transfor-
mation. Reverse Engineering (RE) is marked using dashed
lines. Abstract and concrete user interface (AUI, CUIx) are
EMF models each.

Next to an arrow the applied technique for this transforma-
tion was annotated. QVTo[5] stands for OMG’s ”Query
View Transformation operational” standard. Acceleo[1] is
the EMP implementation of OMG’s ”Model to Text Lan-
guage” (MTL[4]) standard. PLML[2] itself is a pattern lan-
guage; we developed an EMF model for it. The PLML
model contains transformation specifications in either of EMP’s
model-to-model transformation engines. For details on PLML
and our usage of it see [9].

Forward engineering from task models typically only yields
quite simple user interfaces. To test our ideas against more
complex UIs, and for other reasons, we developed some mech-
anism to reverse engineer the GUI of existing legacy soft-
ware into instances of our own CUI meta-models. This re-
verse engineering is not a standard x-to-y transformation.

The rest of the paper is organized as follows: First, we present
the XUL EMF meta-model and some of its applications. Af-
terwards some details about our Swing meta-model and its
uses in reverse engineering are discussed.

CONCRETE USER INTERFACE MODELS
We consider meta-models for the platform-specific user in-
terface model to be the core models of a model-driven user
interface development. In continuation of our previous ex-
perience with MD-UID, we decided to develop CUI meta-
models for Mozilla’s XUL and Java Swing.

XUL Meta-Model
For a long time our work is focused around XUL. However,
most of the time we did not care about creating a complete
and correct meta-model of XUL. We adhered to a minimal

user interface

CUIn

AUI

CUIm

QVToQVTo

PLML

Acceleo RERE

Figure 2. Model relations and transformation techniques

Figure 3. Excerpt from the XUL meta-model

implementation that was only extended if absolutely neces-
sary. So, the XUL standard evolved over time, but our mini-
mal implementation did not. This started to create a number
of problems and errors.

A good starting point to create an EMF meta-model for XUL
is its grammar. Using freely available sources, it is possible
to build this grammar as XML schema definition (XSD) for
XUL.

Having a schema definition, a first Ecore model for XUL
was easily generated. This automatically generated model
had some disadvantages, e.g. anonymous types, multiple
types for the same purpose etc. Also, containment relations
were not transformed properly and had to be corrected and
inserted by hand.

Figure 3 visualizes the basic hierarchy within the XUL Ecore
model, many types were omitted. To give an idea about the
size: the model consists of 31 data types, 151 classes and
interfaces with 443 attributes in total.

XULElement is the root element of the type hierarchy; it
contains attributes which are valid for every XUL tag. Each
attribute is initialized with a sensible default value or it re-
mains unset if no value is required explicitly.

2
50



TemplateControl is the root type for any tag that controls
XUL’s template engine. InfoElement is the super type of
every tag that is not displayed but defines actions, key bind-
ings and such. Any type that implements ContainerChild
can be placed into a visual container. Most implementors
are concrete VisibleType objects, some are visual containers
themselves.

ContainerElement is a marker class for all elements which
are able or require to contain sub-elements. For example:
a menu-element requires that menu-items are defined. Sub-
types of GenericContainer object are a visual containers that
include children of type ContainerChild.

RadioType is a radio-button, ButtonType a plain button, La-
belType a label and TextboxType a textbox. Those four types
are the only concrete classes of Figure 3.

EMF provides a facility to generate editor plug-ins for Ecore
models. Using this standard mechanism unfortunately does
not yield a valuable XUL editor. Because the default seri-
alization mechanism of Ecore is XMI, the generated editor
would not be able to read or write valid XUL files. We had to
write our own implementation of the model de-/serialization.

An attempt to use the XUL Ecore model as source to gen-
erate an GMF editor was aborted. The resulting generated
editor was hardly useful. While it was possible to do some
basic editing of labels or buttons, it became very complex to
implement a correct layout mechanism. Also, things like the
unlimited nesting of group- or tab-boxes proved to be a seri-
ous problem. Nevertheless, it would be interesting to build a
GMF XUL editor using the XUL Ecore model. We resorted
to continue to use our existing graphical XUL editor, but to
generate its internal model by customized JET transforma-
tions from the XUL Ecore model.

The complete XUL meta-model can be used as a descriptive
model for XUL user interfaces, it is freely available from 1.

Meta-Model for Swing
As mentioned earlier, we don’t think that XML-derived UI-
languages are the best choice for every problem. Also, we
acknowledge the fact that a large part of existing user in-
terfaces was not specified using a markup language, but by
other means.

The GUI framework Swing of the Java programming lan-
guage is one example of a user interface framework. It has
been included as part of Java since version 1.2. In contrast
to its competing GUI framework SWT, Swing is completely
platform-independent. For this reason we decided to build
a Swing CUI model instead of an SWT model, although the
latter is closer related to Eclipse.

Creating the Swing CUI meta-model means to create an Ecore
model of Swing. Such a model can be built using a number
of methods. EMF has so called model importers which are
able to construct Ecore models from XMI, XML Schema,
1http://wwwswt.informatik.uni-rostock.de/metamodels/

class models of Rational Rose or from annotated Java source
code.

So, to define a meta model for Swing there are several pos-
sibilities. For example, it is possible to define it manually;
nevertheless we dropped this possibility due to the foresee-
able large size of the resulting model.

Importing a rational rose model should work well, but it cer-
tainly requires to have such a model in the first place. Prepar-
ing an XML Schema definition (XSD) for transformation
into an Ecore model has its own challenges, as mentioned for
the XUL meta-model, but in the absence of such a schema
definition this also does not apply.

This leaves two sources for model creation, either using an-
other XMI model or annotated Java code. As most parts of
Java Swing are available in source code, it should be possi-
ble to create either of these thereof.

EMF’s model importer for Java source code requires that
each identifier, method, class or interface that is to be trans-
ferred into an Ecore model is marked using the annotation
@model. This is a highly flexible approach and very useful
if one extracts only small parts of existing source code into
a model. However, for Swing’s about 620 files this method
seemed to be almost as laborious, time-consuming and error-
prone as defining the model manually.

Many UML tools serialize their models using XMI. Also ex-
amining source code to derive a model thereof is a common
feature of these tools. In combination, EMF’s importer for
XMI and an external tool for source code to XMI transfor-
mation should provide the desired model of Swing. Unfor-
tunately it was not that simple. The XMI-output produced
by UML tools we tested could not be imported by EMF.
Looking back on a history of known problems [3] with XMI
incompatibilities we did not investigate why exactly the im-
port failed and if it could possibly be repaired by some XSL
transformation or the like.

Instead we were searching for a method to create Ecore from
Java sources in one transformation, without any intermediate
steps, tools or importers.

Developing yet another Java source code parser apparently
would not have been a good idea, because there already is
a number of parsers available as library or in source code.
After some research we developed a small tool which makes
use of Java’s own JavaDoc parser and is able to convert any
Java code into an Ecore model, for details and special con-
siderations see [8].

Swing’s source code, in Java version 1.6, has 620 files, and
since Swing makes heavy use of AWT, its 368 source code
files had to be included into the model as well. The compre-
hensive Ecore model now consists of more than 2000 types.
Additionally it references about 200 external types which are
not defined within the source code of AWT and Swing.

Working with such a huge model reveals some weaknesses

3
51



Figure 4. Calculator application and their model screenshot

of the tools of the Eclipse Modeling Project. For example
with code generation: The current implementation becomes
almost unusable with respect to generation time. Also, some
generated methods became larger than allowed by Java, i.e.
their compiled byte-code exceeded 64kByte.

To reduce size and complexity the meta-model was pruned
using the approach of Sen et al.[7]. Roughly, their idea
is as follows: they start with a minimal pruned model that
only contains a selection of desired must-have features and
classes from the source model. Then their start model is
extended step-by-step with features from the source model
until their pruned model is valid and is a subset of the source
model.

Running this pruning process on the Swing CUI meta-model
greatly reduces its size. Size reduction is of course depen-
dent on the selected must-have features, but nevertheless we
found that more than 90 percent of the types can be safely
eliminated from the CUI model without loosing much ex-
pressiveness. This fairly high percentage can be explained
by the generation process of the source model. Obviously a
lot of implementation-specific types had been generated into
the model that were not directly related to properties of UI
elements. The complete Swing meta-model, as well as the
pruned meta-model, can be obtained from [10].

Populating a Swing model
One use of the Swing meta-model is in reverse engineering.
We developed an application which uses the meta-model to
capture the static layout of a frame in a Swing application
into a meta-model instance. Such a meta-model instance
might be considered as a screenshot.

The principle is to traverse the hierarchy of Swing objects
within a certain screen and to create the corresponding meta-
model instance for each Swing object. Since the meta-model
now is a true reflection of Swing itself, no special mappings
or other tricks are required. However, some technical prob-
lems did arise, because all of the mapping is done at runtime

and relies on reflection.

Figure 4 is a combined screenshot of a sample application
and its user interface as an Ecore model instance. Beside
layout properties, the Swing CUI model does also cover dy-
namic aspects, like action listener and action command. By
a sequence of transformations, we can now edit the user in-
terface in a GUI editor and afterwards re-generate a calcu-
lator which would feature another GUI, but uses the same
business logic.

CONCLUSION
In this paper we presented our approach to model-driven user
interface development using the tools from the Eclipse Mod-
eling Project. We introduced Ecore models for XUL and
Swing user interfaces and explained how we derived, build
and refined those models. It was also shown that those mod-
els can be used for a number of different purposes. These us-
ages include reverse engineering, generating internal models
for other tools and also direct editing of user interfaces.

In the future we may resume our attempt to create a GMF-
based XUL editor. Beside that, there is a lot of work to do to
improve and extend the existing transformations, model-to-
model and model-to-text.

REFERENCES
1. Eclipse modeling project (last visited on 22-02-2010).

http://www.eclipse.org/modeling/.
2. S. Fincher. Perspectives on hci patterns: concepts and

tools (introducing plml). In Workshop at CHI 2003,
2003.

3. B. Lundell, B. Lings, A. Persson, and A. Mattsson.
Uml model interchange in heterogeneous tool
environments: An analysis of adoptions of xmi 2. In
Proc. of MoDELS 2006, pages 619–630, 2006.

4. Omg standard: Model to text (last visited on
22-02-2010). http://www.omg.org/spec/MOFM2T/1.0/.

5. Omg standard: Query view transformation (last visited
on 22-02-2010).
http://http://www.omg.org/spec/QVT/1.0/.

6. D. Reichart, P. Forbrig, and A. Dittmar. Task models as
basis for requirements engineering and software
execution. In Proc. of Tamodia 2004, pages 51–58,
2004.

7. S. Sen, N. Moha, B. Baudry, and J.-M. Jezequel.
Meta-model pruning. In Proc. of MoDELS 2009, pages
32–46, 2009.

8. A. Wolff and P. Forbrig. Deriving emf models from
java source code. In Proc. of Reverse Engineering
Models from Artifacts 2009, 2009.

9. A. Wolff and P. Forbrig. Pattern catalogs using the
pattern language meta language. In Proc. of Visual
Formalisms for Patterns 2009, 2009.

10. Meta-model download (last visited on 22-02-2010).
http://wwwswt.informatik.uni-rostock.de/metamodels/.

4
52




