
MRC 2010

Sixth International Workshop on
Modeling and Reasoning in Context

Workshop at the
19th European Conference on Artificial Intelligence (ECAI 2010)

Lisbon, Portugal, 17 August 2010

Editors:
Jörg Cassens

Anders Kofod-Petersen
Marielba Zacarias

Rebekah K. Wegener

Preface

Ambient intelligent applications do not necessarily have the luxury afforded tra-
ditional software applications of “knowing” by design in which situations they
are to function. Because of the ever-changing nature of the world with which
these systems interact, they have to dynamically adapt their behaviour in run
time. To do this, they must be able to interpret the environment in which they
are situated and adapt their behaviour accordingly.

From an intelligent systems perspective, one of the challenges is to inte-
grate context with other types of knowledge as an additional major source for
reasoning, decision-making, and adaptation to form a coherent and versatile ar-
chitecture. There is a common understanding that achieving desired behaviour
from intelligent systems will depend on the ability to represent and manipulate
information about a rich range of contextual factors. These factors may include
not only physical characteristics of the task environment, but many other aspects
including cognitive factors such as the knowledge states (of both the application
and user) or emotions, and social factors such as networks, relations, roles, and
hierarchies. This representation and reasoning problem presents research chal-
lenges to which methodologies derived from areas such as artificial intelligence,
knowledge management, human-computer interaction, semiotics and psychology
can contribute solutions.

The Modelling and Reasoning in Context (MRC) workshop series aims to
provide a continuing forum for scientists and practitioners exploring modelling
and reasoning issues and approaches for systems using context in a broad range
of tasks, to share their problems and techniques across different research and
application areas. The series aim to facilitate both the presentation of state-of-
the-art research as well as interactions through formal and informal discussions.

This year’s workshop, the sixth in the MRC series, is being held in conjunc-
tion with the 19th European Conference on Artificial Intelligence (ECAI 2010) in
Lisbon, Portugal. We received eight submissions for the workshop, each of which
has been reviewed by at least three programme committee members. The com-
mittee decided to accept the following six papers for presentation and inclusion
in the proceedings.

Models of context are an important issue, both when conveying information
about situations and when systems are to reason about the current state of the
world. The context of a developer can be viewed as a rich and complex network of
elements across different dimensions that are not limited to the work developed
in an IDE. Bruno Antunes, Francisco Correia and Paulo Gomes propose the
definition of a software developer context model that takes all the dimensions
that characterise the work environment of the developer into account.

One of the basic problems in knowledge representation and knowledge en-
gineering is the impossibility of writing globally true statements about realistic
problem domains. Multi-context systems (MCS) are a formalisation of simulta-

II

neous reasoning in multiple contexts. Tarek R. Besold and Stefan Mandl propose
a multi-context system framework implementation, lining out the main functions
and working principles.

Detecting context features is an essential aspect of context reasoning but
has mostly focused on the quality of the detection rather than the benefits
of context-based applications for the user. Robert Lokaiczyk, Andreas Faatz,
Benedikt Schmidt, and Matthäus Martynus present the results of a case study
focusing on usability issues which evaluates algorithms to detect three subtypes
of user goals in knowledge work.

Movement recognition constitutes a central task in home-based assisted living
environments and in many application domains where activity recognition is cru-
cial. Well established movement recognition methods lack advanced knowledge
representation and reasoning capacities that may help understanding through
contextualisation. Alessandra Mileo, Stefano Pinardi, and Roberto Bisiani in-
vestigate how a lexical approach to multi-sensor analysis can be combined with
answer set programming to support movement recognition. A semantic notion
of contextual coherence is formalised and qualitative optimisation criteria are
introduced in the reasoning process.

Situation identification methodologies in pervasive computing aim to ab-
stract low level context data into more meaningful high level contexts for use by
context-aware application developers and users. However, it is not possible to ap-
ply a single technique to a wide range of applications. Olga Murdoch and Paddy
Nixon propose a unifying framework for existing situation identification methods
that will automatically select the best techniques for a given application.

Disappearing computer systems is a notion comprising computer systems,
applications, and appliances related to ubiquitous, pervasive, or ambient com-
puting which blend more or less seamlessly into the user’s natural environment.
Such systems lack certain cues regarding their inner workings that could cause
defects and inaccuracies in the mental models built by their users. In order to
identify the nature of these defects, understand their effects on human-computer
interaction and develop means of avoiding them, Felix Schmitt, Jörg Cassens,
Martin C. Kindsmüller, and Michael Herczeg describe an ambient, context-aware
computing framework to generate and test hypotheses within an action research
paradigm.

We would like to thank all authors who submitted papers for MRC 2010 for
their interest in the series. Further on, we owe a big thank-you to all members
of the programme committee for their work on tight schedules. We would fur-
ther like to thank the organisers of the 19th European Conference on Artificial
Intelligence (ECAI 2010) and in particular the workshop chair, Ulle Endriss, for
their invaluable support. In addition, we would like to thank Andrei Voronkov
for his fantastic EasyChair reviewing system.

June 2010 Jörg Cassens
Anders Kofod-Petersen

Marielba Zacarias
Rebekah K. Wegener

Organization

Programme Chairs

Jörg Cassens, University of Lübeck, Germany
Anders Kofod-Petersen, SINTEF ICT, Trondheim, Norway
Marielba Zacarias, Algarve University, Portugal
Rebekah K. Wegener, Macquarie University, Sydney, Australia

Programme Committee

Agnar Aamodt, NTNU, Norway
Patrick Brézillon, University of Paris 6, France
Henning Christiansen, Roskilde University, Denmark
Adrian Clear, Orange Labs, France
Lorcan Coyle, University College Dublin, Ireland
Babak Farshchian, SINTEF ICT, Norway
Chiara Ghidini, FBK-irst, Italy
Eyke Hüllermeier, University of Marburg, Germany
Martin Christof Kindsmüller, University of Lübeck, Germany
Boicho Kokinov, New Bulgarian University, Bulgaria
David Leake, Indiana University, USA
Ana G. Maguitman, Universidad Nacional del Sur, Bah́ıa Blanca, Argentina
Sobah Abbas Petersen, NTNU, Norway
Enric Plaza, Spanish Council for Scientific Research, Spain
Thomas R. Roth-Berghofer, DFKI GmbH, Germany
Hedda Schmidtke, Karlsruhe Institute of Technology (KIT), Germany
Sven Schwarz, DFKI GmbH, Germany
Patŕıcia Tedesco, University of Pernambuco, Brazil
Santtu Toivonen, Idean, Finland
José Tribolet, Technical University of Lisbon, Portugal
Roy Turner, University of Maine, USA
Andreas Zimmermann, Fraunhofer FIT, Germany

IV

Table of Contents

Towards a Software Developer Context Model . 1
Bruno Antunes, Francisco Correia, Paulo Gomes

Towards an Implementation of a Multi-Context System Framework 13
Tarek R. Besold, Stefan Mandl

Useability versus Adaptation – Approaches to Higher Level Context
Detection . 25

Robert Lokaiczyk, Andreas Faatz, Benedikt Schmidt, and Matthäus
Martynus

Movement Recognition using Context: a Lexical Approach Based on
Coherence . 37

Alessandra Mileo, Stefano Pinardi, Roberto Bisiani

A Unifying Framework for Situation Identification Methodologies 49
Olga Murdoch, Paddy Nixon

Mental Models of Disappearing Systems: Challenges for a Better
Understanding . 61

Felix Schmitt, Jörg Cassens, Martin C. Kindsmüller, Michael
Herczeg

Author Index . 73

VI

Towards a Software Developer Context Model

Bruno Antunes?, Francisco Correia and Paulo Gomes

Knowledge and Intelligent Systems Laboratory
Cognitive and Media Systems Group

Centre for Informatics and Systems of the University of Coimbra
Coimbra, Portugal

{bema,fcorreia,pgomes}@dei.uc.pt

http://www.cisuc.uc.pt/

Abstract. The context of a developer can be viewed as a rich and com-
plex network of elements across different dimensions that are not limited
to the work developed on an IDE. We propose the definition of a software
developer context model that takes into account all the dimensions that
characterize the work environment of the developer. We are especially
focused on the project dimension and present a definition of what the
context model encompasses at this level. The experimental work done
on the context capture perspective show that useful contextual informa-
tion can be extracted from project management tools. The extraction,
analysis and availability of these contextual information can be used to
enrich the work environment of the developer with additional knowledge
that relate with the tasks being developed.

Key words: Context, Software Development, Knowledge Management.

1 Introduction

The term context has an intuitive meaning for humans, but due to this intu-
itive connotation it remains vague and generalist. Furthermore, the interest in
the many roles of context comes from different fields such as literature, philos-
ophy, linguistics and computer science, with each field proposing its own view
of context [1]. The term context typically refers to the set of circumstances and
facts that surround the center of interest, providing additional information and
increasing understanding.

The context-aware computing concept was first introduced by Schilit and
Theimer [2], where they refer to context as “location of use, the collection of
nearby people and objects, as well as the changes to those objects over time”.
In a similar way, Brown et al. [3] define context as location, identities of the
people around the user, the time of day, season, temperature, etc. In a more
generic definition, Dey and Abowd [4] define context as “any information that
can be used to characterize the situation of an entity. An entity is a person,

? Supported by FCT grant SFRH/BD/43336/2008.

1

place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves”.

As stated by Mena et al. [5], it is clear the importance of context for modeling
human activities (reasoning, perception, language comprehension, etc), which is
true in social sciences as in computing. But a generic context definition is hard
to achieve, as context assumes different definitions and characteristics according
to the domain where it is used. Nevertheless, there are a set of invariant char-
acteristics in the different definitions of context: context always relates to an
entity; is used to solve a problem; depends on the domain of use and time; and
is evolutionary because it relates to a dynamic process in a dynamic environment.

Especially in software development, the context of a developer can be viewed
as a rich and complex network of elements across different dimensions that are
not limited to the work developed on an IDE (Integrated Development Envi-
ronment). Due to the difficulty on approaching such challenge, there is not a
unique notion of what it really covers and how it can be truly exploited. One
of the problems software developers face today is the increasing dimension of
software systems. Software development projects have grown in complexity and
size, as well as in the number of functionalities and technologies involved. During
their work, software developers need to cope with a large amount of contextual
information that is typically not captured and processed in order to enrich their
work environment.

Our aim is the definition of a software developer context model that takes
into account all the dimensions that characterize the work environment of the
developer. We propose that these dimensions can be represented as a layered
model with four main layers: personal, project, organization and domain. Also,
we believe that a context model needs to be analyzed from different perspectives,
starting with context capture, going through its modeling and representation
and ending up with its use and application. This way, each layer of the proposed
context model will be founded in a definition of what context capture, modeling,
representation and application should be for that layer.

This work is especially focused on the project layer the software developer
context model. We give a definition of what the context model encompasses at
the project layer and present some experimental work on the context capture
perspective.

The remaining of the paper starts with an overview of the software developer
context model we envision. In section 3 we describe the current work and some
preliminary experimentation is discussed in section 4. An overview of related
work is given in section 5. Finally, section 6 concludes the paper and point out
some directions for future work.

2 Software Developer Context Model

The software developer context model we propose take into account all the di-
mensions that comprise the software developer work environment. This way, we
have identified four main dimensions: personal, project, organization and do-

2 B. Antunes, F. Correia, P. Gomes

main. As shown in figure 1, these dimensions form a layered model and will
be described from four different perspectives: context capture, context model-
ing, context representation and context application. In the following sections the
context model layers and perspectives are described in more detail.

Fig. 1. The software developer context model layers and perspectives.

2.1 Context Model Layers

The developer context model we envision is based on a layered model made up
of four layers: personal layer, project layer, organization layer and domain layer.
Each one of these layers focus on different dimensions of the environment where
a typical developer works. In the following sections we describe what is perceived
as contextual information in each one of these dimensions.

Personal Layer. The personal layer represents the context of the work a de-
veloper has at hands at any point in time, which can be defined as a set of tasks.
In order to accomplish these tasks, the developer has to deal with various kinds
of resources at the same time, such as source code files, specification documents,
bug reports, etc. These resources are typically dispersed through different places
and systems, although being connected by a set of explicit and implicit relations
that exist between them. At this level the context model represents the resources
that are important for the tasks the developer is working on. For instance, when
the developer is working on a specific task, there are a set of resources that
are more relevant for that task than others and should be highlighted to the
developer to facilitate her/his work.

Towards a Software Developer Context Model 3

Project Layer. The project layer focuses on the context of the project, or
projects, in which the developer is somehow involved. A software development
project is an aggregation of a team, a set of resources and a combination of
explicit and implicit knowledge that keeps the project running. The team is
responsible for accomplishing tasks, which end up consuming and producing
resources. The relations that exist between people and resources are the glue that
makes everything work. The project layer represents the people and resources, as
well as their relations, of the software development projects where the developer
is included. For instance, when fixing a specific bug it is important to know what
other bugs might be related, which files are likely to be affected and which other
developers working on the project may be of help to solve the bug.

Organization Layer. The organization layer takes into account the organi-
zation context to which the developer belongs. Similarly to a project, an or-
ganization is made up of people, resources and their relations, but in a much
more complex network. While in a project the people and resources are neces-
sarily connected due to the requisites of their work, in a software development
organization these projects easily become separate islands. The knowledge and
competences developed in each project may be of interest in other projects and
valuable synergies can be created when this information is available. The orga-
nization layer represents the organizational context that surrounds a developer.
For instance, when a developer needs to apply a specific technology with which
no one of the project team is comfortable, there may be other colleagues, or even
resources, in the same organization which can help.

Domain Layer. The domain layer takes into account the knowledge domain, or
domains, in which the developer works. This layer goes beyond the project and
organization levels and includes a set of knowledge sources that stand out of these
spheres. Nowdays, a typical developer uses the Internet to search information
and to keep informed of the advances in the technologies s/he works with. These
actions are based on services and communities, such as source code repositories,
development foruns, news websites, blogs, etc. These knowledge sources cannot
be detached from the developer context and are integrated in the domain layer
of our context model. For instance, due to the dynamic nature of the software
development field, the developer must be able to gather knowledge from sources
that go beyond the limits of the organization, either to follow the technological
evolution or to search for help whenever needed.

2.2 Context Model Perspectives

In the following sections, we present a set of different perspectives that apply
to each one of the context model dimensions discussed before: context capture,
which represents the sources of context information and the way this information
is gathered, in order to build the context model; context modeling, which rep-
resents the different dimensions, entities and aspects of the context information

4 B. Antunes, F. Correia, P. Gomes

(conceptual model); context representation, which represents the technologies
and data structures used to represent the context model (implementation); and
context application, which represents how the context model is used and the
objectives behind its use.

Context Capture. The context capture process is in the basis of any context-
aware process. The quantity, quality and coverage of the context information
available influences the definition of the context model at a first stage and the
quality of the results in a second phase. Depending on the approach followed, this
process can also be influenced by a predefined context model, which ultimately
determines the context information needed. Also, the context gathering process
is highly dependent on the domain and strongly limited by the environment
where the user develops her/his activities.

In this work, we are concerned with the context information available in
the work environment of a developer and how it can be retrieved. Most of the
working time of a developer is spent in an IDE, this is the scenario where most of
the action takes place, thus it is where a great amount of contextual information
is available. But, the work of a developer is not limited to the use of an IDE, s/he
typically needs to deal with information that is provided by different applications
and systems, interact with other developers, search for information in sources
inside and outside the organization scope, etc. While most of the approaches
studied focus on the IDE as the only way to observe and get feedback from the
developer, we believe that although the IDE represents the privileged way to get
in touch with the developer, there are other paths that should not be ignored.

Context Modeling. The context model represents a definition of what context
is in a specific domain. This definition must take into account the different di-
mensions on which context is present, as well as the various elements that pertain
to each dimension. Again, the definition of a context model is highly dependent
on the domain where it applies and may be very different from one application
to another. It does not only depend on the characteristics of the domain, but
also on the level of complexity needed in order to achieve the objectives of the
application. Furthermore, it is somehow subjective, in the sense that it repre-
sents a specific perspective of what context is in a specific domain and may not
be the only perspective available.

The definition of a context model for the software development domain is
one of the main objectives of this work. Although some of the works studied
already define some kind of context model, they commonly focus on what we
consider to be a small portion of a bigger picture. This commonly happens
because the objective was not to create a global model that could represent the
context of the developer, but instead a context model that could aid a specific
objective. Also, as discussed in the previous section, the working environment
of the developer is commonly confined to the IDE, which we believe to be a
reductive perspective on what the work of a developer usually comprises. We aim
to create a unified context model that integrates all the dimensions of the context

Towards a Software Developer Context Model 5

information provided by the working environment of a developer, as described
before when discussing the layered architecture of the developer context model.

Context Representation. The context representation deals with the way con-
text information is actually represented and depends on the complexity of the
context model. The technology or data structure used must be expressive enough
to represent the details of the context information and suitable to deal with the
needs of the application regarding the use of that information.

The approaches studied present various ways of representing context infor-
mation, ranging from simple lists to ontologies [6]. The simplest structures are
easier to build and maintain, but provide limited reasoning over the context in-
formation, thus limiting the outcomes we may expect from such approaches. On
the other hand, semantically rich structures, such as ontologies, provide a more
powerful formalism to store and exploit context information, but are more diffi-
cult to build, maintain and validate. Ultimately, the complexity of the context
model is what most determines the choice of what technology or structure to
use.

Taking into account various issues, we propose to use one or more ontologies
in order to represent the context model we envision. First, we think that the
complexity of a global and unifying context model for software development
demands the use of a complex structure, such as an ontology. Although some
approaches already make use of ontologies to represent their context model,
we believe that they are under-explored, especially in the software development
domain. The ontologies can be represented and manipulated using the Semantic
Web technologies. We believe that the use of the Semantic Web technologies is an
advantage, first because of the standards accepted by the scientific community
and second because they promote the reusability and knowledge sharing.

Context Application. The ultimate objective of capturing, modeling and rep-
resenting context information is always the improvement of some process and
the consequent improvement on the results we may expect from that process. We
focus on software development, especially from the perspective of the developer.

By taking into account the context of the developer, we are able to filter out
information that does not fit the actual interests of the user, to rank information
in order to reflect the actual importance they may have to the developer and
to elicit information that could not be highlighted otherwise. But, where we
believe we can make the difference is presenting relevant information to the user
that s/he never asked for, but which may be relevant for the activity s/he is
performing.

The process of suggesting information to the user is of special importance
when we get out of the scope of the IDE and take into account information that
is not present in such environment, but is very important for the activities of
the developer. The objective is always to present the most relevant information
to the developer, either when s/he explicitly demands for that information or
when the system considers that information to be relevant to the user.

6 B. Antunes, F. Correia, P. Gomes

3 Current Work

We are currently working on the project layer of our developer context model,
and we will discuss our work at this level from the different perspectives we have
presented before.

Concerning context capture, the main sources of contextual information that
feed up the developer context model at the project level are project management
tools. These tools store a big amount of explicit and implicit information about
the resources produced during a software development project, how the people
involved relate with these resources and how the resources relate to each other.
We are focusing on two types of tools: Version Control Systems1 (VCS) and
Issue Tracking Systems2 (ITS). As shown in figure 2, the former deals with
resources and their changes, the second deals with tasks. These systems store
valuable information about how developers, tasks and resources relate and how
these relations evolve over time. We are especially interested in revision logs
and tasks. Briefly described, a revision log tell us that a set of changes were
applied by a developer to a set of resources in the repository. A task commonly
represents a problem report and the respective fix.

Fig. 2. The project layer relevant entities and their roles.

The network of developers, resources, tasks and their relations will be used to
build our context model at the project level. This way, the context model of the
developer, from a project point of view, will be modeled as a set of implicit and
explicit relations, as shown in figure 3. The lines with a filled pattern represent
the explicit relations and those with a dotted pattern represent the implicit ones.
The developers are explicitly related with revisions, as they are the ones who
commit the revisions, and with tasks, as each task is assigned to a developer.
The relation between tasks and resources is not explicit, but we believe it can
be identified by analyzing the information that describe tasks and revisions. The
1 http://en.wikipedia.org/wiki/Version_control_system
2 http://en.wikipedia.org/wiki/Issue_tracking_system

Towards a Software Developer Context Model 7

proximity between developers can be inferred by analyzing the resources were
they share work. Also, the resources can be implicitly related by analyzing how
often they are changed together.

Fig. 3. The elements that compose the context model in the project layer.

In order to extract relations from the information stored in project man-
agement tools, that information is previously imported and stored locally for
analysis. The prototype developed uses a database to store both the imported
data and extracted relations. In the next phase, we intend to represent these
relations and connection elements in an ontology, which will gradually evolve to
a global developer context model ontology.

The context information extracted at the project level will be used to inform
the developer about the network that links people, resources and tasks on the
project s/he works. This information can be prepared to facilitate consulting
and presented to the developer easily accessible in her/his working environment.
This way the developer can easily gather information about what resources are
likely to be implicated in the fulfillment of a task, what other tasks affected
these resources in the past, and what other developers may be of help if extra
information is needed.

4 Experimental Work

The experimental work conducted so far is focused on the project layer of the
developer context model, which has been discussed in the previous section. We
have elected VCS and ITS as two central project management tools, from the
developer point of view, and started using the information provided by these
tools in order to build our context model.

We have implemented connectors that allowed us to collect all the desired
information from the Subversion3 and Bugzilla4 systems, as they are among
the most popular in use. Through the collected information, we could already
perceive a set of explicit relations: which resources are created/changed by which
3 http://subversion.tigris.org/
4 http://www.bugzilla.org/

8 B. Antunes, F. Correia, P. Gomes

developers, which tasks have been assigned to which developers, which resources
are likely to be related because they were changed together, etc. There is also a
set of implicit relations that would be valuable if disclosed: which revisions are
associated with a task and which resources are associated with a task.

4.1 Relation Extraction

Our approach to extract implicit relations between revision logs and tasks relies
on the analysis of the text provided by revision messages, task summaries and
task comments. It is common to find references to task identifiers in revision
messages, denoting that the revision was made in the context of a specific task.
Also, task summaries and comments commonly reference specific resources, ei-
ther because a problem has been identified in a specific class or because a error
stack trace is attached to the task summary to help developers identify the source
of the problem. Taking this into account, we have defined three algorithms to
find resource/task and task/revision relations:

– Resource/Task (I). For each resource referenced in a revision, the respective
name was searched in all task summaries. The search was performed using
the file name and, in case it was a source code file, the full qualified name
(package included) and the class name separately.

– Resource/Task (II). For each resource referenced in a revision, the respec-
tive name was searched in task comments. This search was performed as
described for the previous relation.

– Task/Revision. For each task, the respective identification number was searched
in revision messages. The search was performed using common patterns such
as “<id>”, “bug <id>”and “#<id>”.

4.2 Preliminary Results

To validate the relation extraction algorithms, these were tested against two
open-source projects from the Eclipse5 foundation:

– gEclipse6. The gEclipse framework allows users and developers to access
Computing Grids and Cloud Computing resources in a unified way, indepen-
dently of the Grid middleware or Cloud Computing provider. Our analysis
was performed over the work of 19 developers in a time window of approxi-
mately 3 years and 3 months, which included 3279 revisions and 1508 tasks
with 7765 comments.

– Subversive7. The Subversive project supports the development of an Eclipse
plug-in for Subversion integration. Our analysis was performed over the work
of 10 developers in a time window of approximately 3 years and 2 months,
which included 1120 revisions and 1013 tasks with 3252 comments.

5 http://www.eclipse.org/
6 http://www.eclipse.org/geclipse/
7 http://www.eclipse.org/subversive/

Towards a Software Developer Context Model 9

Table 1. Number of extracted relations.

Resource/Task (I) Resource/Task (II) Task/Revision

gEclipse 2527 31671 629

Subversive 208 9076 773

By applying the relation extraction algorithms to the information related
with these two projects, we have gathered the results represented in table 1.
The table shows the number of distinct relations extracted using each one of the
algorithms in the two projects analyzed.

The results show that a large amount of implicit relations can be extracted
from the analysis of the information associated to tasks and revisions. These
relations complement the context model we are building by connecting tasks
with related resources. With a more detailed analysis we have identified some
problems with the algorithms creating some relations that do not correspond to
an effective correlation between the two entities analyzed. These problems are
mainly related with string matching inconsistencies and can be corrected with
minor improvements in the way expressions are searched in the text.

5 Related Work

The EPOS (Evolving Personal to Organizational Knowledge Spaces) project,
presented by Schwarz [7], aims to build organizational structured knowledge
from information and structures owned by the elements of the organization.
The world of a knowledge worker is defined as containing document-like ob-
jects, objects used for classification and applications. This work environment
is taken into account when modeling the user context, which comprises infor-
mation about various aspects, including currently or recently read documents,
relevant topics, relevant persons, relevant projects, etc. The context model is
formalized using RDFS [8], and each user’s context is an up-to-date instance of
this context model. The context information is gathered and modeled through
user observation and/or user feedback. The gathering and elicitation of contex-
tual information is done in two ways: context-polling, by requesting a snapshot
of the user’s current context; and context-listening, by subscribing the Context
Service to be informed of every change in the user’s context. Being a developer
a knowledge worker, much of the concepts referenced in this work apply to the
software development domain, but the specificities of this domain demand for
a context model adapted to the reality of the work environment of a software
developer.

Modularity is in the basis of the development of complex software systems
and largely used to support a programmer’s tasks, but not always help the pro-
grammer finding the desired information or delimit the point of interest for a
specific task. Based on this, Kersten and Murphy [9] have been working on a
model for representing tasks and their context. The task context is derived from

10 B. Antunes, F. Correia, P. Gomes

an interaction history that comprises a sequence of interaction events represent-
ing operations performed on a software program’s artifact. They have developed
Mylar, now called Mylyn8, which uses the information in a task context either
to help focus the information displayed in the IDE, or to automate the retrieval
of relevant information for completing a task. The focus of this work is the task
and the knowledge elements present in the IDE that are more relevant for the
fulfillment of that task. Our approach aims to define a context model that goes
beyond the IDE and explores the knowledge provided by the different systems
that support the software development process.

In the same line of task management and recovery, Parnin and Gorg [10]
propose an approach for capturing the context relevant for a task from a pro-
grammer’s interactions with an IDE, which is then used to aid the programmer
recovering the mental state associated with a task and to facilitate the explo-
ration of source code using recommendation systems. Their approach is focused
on analyzing the interactions of the programmer with the source code, in order to
create techniques for supporting recovery and exploration. Again, this approach
is largely restricted to the IDE and the developer interaction with it.

With the belief that customized information retrieval facilities can be used
to support the reuse of software components, Henrich and Morgenroth [11] pro-
pose a framework that enables the search for potentially useful artifacts during
software development. Their approach exploits both the relationships between
the artifacts and the working context of the developer. The context information
is used to refine the search for similar artifacts, as well as to trigger the search
process itself. The context information model is represented with RDF [12] state-
ments and covers several dimensions: the user context, the working context, and
the interaction context. While the focus here is in software reuse, our approach
focuses on the information captured during the process development.

6 Conclusions

We have presented our approach of a software developer context model. Our
context model is based on a layered structure, taking into account four main
dimensions of the work environment of a software developer: personal, project,
organization and domain. We proposed that each layer should be defined tak-
ing into account context capture, modeling, representation and application and
explained what should be take into account in each one of these perspectives.

The current work is focused on the project layer of the software developer
context model. We have discussed this layer in more detail and presented pre-
liminary experimentation on the context capture perspective. The results show
that it is possible to relate tasks and revisions/resources using simple relation
extraction algorithms. The relations extracted help us defining the network that
exist between developers, tasks and resources. This network represents the con-
text model of the developer at the project layer and can be used to unveil useful
information to the developer.
8 http://www.eclipse.org/mylyn/

Towards a Software Developer Context Model 11

As future work we plan to integrate the contextual information in an IDE,
for instance using an Eclipse plug-in, and present this information to the devel-
oper in a way that should not be intrusive but useful for the tasks that s/he is
performing. Once this information is integrated in the work environment of the
developer, it is crucial to understand what her/his personal context comprises,
so that the information provided can be adequate to her/his information needs.
The remaining layers of the context model will be addressed iteratively, as an
extent to the work already developed. Finally, we pretend to test our approach
with developers working in real world projects.

References

1. Mostefaoui, G.K., Pasquier-Rocha, J., Brezillon, P.: Context-aware computing: A
guide for the pervasive computing community. In: Proceedings of the IEEE/ACS
International Conference on Pervasive Services, ICPS 2004. (2004) 39-48

2. Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts.
IEEE Network (1994) 22-32

3. Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: From the labora-
tory to the marketplace. Personal Communications, IEEE 4 (1997) 58-64

4. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, The Hague, The Netherlands (2000)

5. Mena, T.B., Saoud, N.B.B., Ahmed, M.B., Pavard, B.: Towards a methodology for
context sensitive systems development. In Kokinov, B.N., Richardson, D.C., Roth-
Berghofer, T., Vieu, L., eds.: Modeling and Using Context, 6th International and
Interdisciplinary Conference, CONTEXT 2007, Roskilde, Denmark, August 20-24,
2007, Proceedings. Volume 4635 of Lecture Notes in Computer Science., Springer
(2007) 56-68

6. Zuniga, G.L.: Ontology: Its transformation from philosophy to information sys-
tems. In: Proceedings of the International Conference on Formal Ontology in Infor-
mation Systems, ACM Press (2001) 187-197

7. Schwarz, S.: A context model for personal knowledge management applications.
In: Modeling and Retrieval of Context, 2nd International Workshop (MRC 2005),
Edinburgh, UK (2005)

8. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema
(2004) Published: W3C Recommendation.

9. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Portland, Oregon, USA, ACM (2006) 1-11

10. Parnin, C., Gorg, C.: Building usage contexts during program comprehension. In:
Proceedings of the 14th IEEE International Conference on Program Comprehen-
sion (ICPC’06). (2006) 13-22

11. Henrich, A., Morgenroth, K.: Supporting collaborative software development by
context-aware information retrieval facilities. In: DEXA Workshops, IEEE Com-
puter Society (2003) 249-253

12. Miller, E., Manola, F.: Rdf primer (2004) Published: W3C Recommendation.

12 B. Antunes, F. Correia, P. Gomes

Towards an Implementation of a Multi-Context
System Framework

Tarek R. Besold and Stefan Mandl

University of Erlangen-Nuremberg,
Chair of Computer Science 8: Artificial Intelligence,

D-91058 Erlangen, Germany
sntabeso@i8.informatik.uni-erlangen.de

stefan.mandl@informatik.uni-erlangen.de

Abstract. This system description provides (after a limited formal in-
troduction to the topic) an overview of our proof-of-concept multi-context
system framework implementation, lining out the main functionalities
and working principles. Moreover, two basic techniques for reducing com-
putational complexity when searching for equilibria of a multi-context
system are proposed.

1 Introduction

One of the basic problems in knowledge representation and knowledge engineer-
ing is the impossibility of writing globally true statements about realistic problem
domains. Multi-context systems (MCS) are a formalization of simultaneous rea-
soning in multiple contexts. Different contexts are inter-linked by bridge rules
which allow for a partial mapping between formulas/concepts/information in
different contexts. Recently there have been a number of investigations of MCS
reasoning (for instance, see [1] or [2]), with [3] and [4] being two of the latest
contributions. In the former one, the authors describe reasoning in multiple con-
texts that may use different logics locally. In the latter one, the concept of MCS
reasoning is extended to also integrate sub-symbolic contexts, and an algorithm
for finding the equilibria of an MCS is presented.

In this paper, we want to describe how we designed and implemented a proof-
of-concept MCS framework software, based on results from [3] and [4].

2 (Very) Crisp Introduction to Multi-Context Systems

As an introduction to the topic, we restate the key definitions given in [3]: First,
the concept of logic1 is defined in terms of input-output conditions.

1 As in the following, no information containing satisfiability or inference rules within
the corresponding logics will be given, also the denomination ”pre-logic” would be
justifiable. For the sake of consistency we will keep the original naming calling it a
”logic”.

13

Definition 1. A logic L = (KBL, BSL, ACCL) is composed of the following
components:

1. KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set.

2. BSL is the set of possible belief sets,
3. ACCL : KBL 7→ 2BSL is a function describing the “semantics” of the logic

by assigning to each element of KBL a set of acceptable sets of beliefs.

Given several logics, bridge rules are used to translate between the logics.

Definition 2. Let L = {L1, . . . , Ln} be a set of logics. An Lk -bridge rule over
L, 1 ≤ k ≤ n, containing m conditions, is of the form

s← (r1 : p1), . . . , (rj : pj), not(rj+1 : pj+1), . . . , not(rm : pm) (1)

where j ≤ m, 1 ≤ rk ≤ n, pk is an element of some belief set of Lrk
and s

is a syntactically valid element of a knowledge base from KBk,2 and for each
kb ∈ KBk : kb ∪ {s} ∈ KBk.

A configuration of logics and bridge rules comprises a multi-context system.

Definition 3. A multi-context system M = (C1, . . . , Cn) consists of a collection
of contexts Ci = (Li, kbi, bri), where Li = (KBi, BSi, ACCi) is a logic, kbi a
knowledge base (an element of KBi), and bri is a set of Li-bridge rules over
{L1, . . . , Ln}.

A belief state is the combination of the belief sets of all contexts of the MCS.

Definition 4. Let M = (C1, . . . , Cn) be a MCS. A belief state is a sequence
S = (S1, . . . , Sn) such that each Si is an element of BSi.

Now we can clarify the applicability of a bridge rule in the context of a belief
state: We say a bridge rule r of form (1) is applicable in a belief state S =
(S1, . . . , Sn) iff for 1 ≤ i ≤ j : pi ∈ Th(Sri) and for j + 1 ≤ k ≤ m : pk 6∈
Th(Srk

).3

A belief state is an equilibrium if the consequences of all applicable bridge
rules are given or derivable, hence each context has an acceptable belief set given
the belief sets of the other contexts.

Definition 5. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for
1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ {head(r)|r ∈ bri applicable in S}).4

2 In contrast to [3] where a similar constraint concerning the nature of s is imposed
only implicitly.

3 Th(·) indicates the deductive closure, i. e. Th(Θ) = {ϕ ∈ L | Θ |= ϕ}, where Θ is a
set of formulae, ϕ is a formula, and L is a logic.

4 Please note that, if r is a bridge rule of the form a← . . ., then head(r) = a

14 T. R. Besold, S. Mandl

Equilibria are a fundamental concept of multi-context systems as they make the
introduction of a notion of semantics for MCS possible, and under certain circum-
stances exhibit properties analogue to those of fixpoints as means of semantics:
In [3], a restricted class of MCS is introduced, for which the authors present a
reduction similar to the Gelfond/Lifschitz reduction for logic programs. For this
class of “reducible MCS”, the notion of “grounded equilibria” is given, following
ideas and terminology from logic programming. Brewka and Eiter finally define
a well-founded semantics for reducible MCS by constructing an operator involv-
ing the concepts of reducibility and grounded equilibria, and using a fixpoint
argument in the style of the Knaster-Tarski theorem.

For the implementation of the proof-of-concept MCS framework, we used a
generalized account of the just outlined theory, which also allows for the incor-
poration of sub-symbolic contexts of reasoning. We will now briefly restate the
relevant concepts (introduced in [4], where also a more thorough discussion of
the now following account may be found), which may be understood as direct
generalizations of the above stated ideas.

Definition 6. A reasoner is a 5-tuple R = (InpR, ResR, ACCR, CondR, UpdR)
where

1. InpR is the set of possible inputs to the reasoner.
2. ResR is the set of possible results of the reasoner
3. ACCR : InpR 7→ 2ResR defines the actual reasoning, assigning each input

a set of results in a decidable manner.
4. CondR is a set of decidable conditions on inputs and results:

condR : InpR×ResR 7→ {0, 1}.

5. UpdR is a set of update functions for inputs:

updR : InpR 7→ InpR .

Please note that in contrast to Definition 1 we do not make any assumption
about the form of the input to the reasoner.

The following definitions adapt the basic concepts of multi-context reasoning
given in Definitions 2 to 5 for the use with reasoners as of Definition 6.

Definition 7. Let R = {R1, . . . , Rn} be a set of reasoners. An Rk -bridge rule
over R, 1 ≤ k ≤ n, containing m conditions, is of the form

u← (r1 : c1), . . . , (rj : cj),
not(rj+1 : cj+1), . . . , not(rm : cm)

(2)

where j ≤ m, 1 ≤ rk ≤ n and ck is a condition of inputs and results of some
Rrk

and u is an element of the Updk.

Analogously to Definition 3 we now define a generalized MCS.

Towards an Implementation of a Multi-Context System Framework 15

Definition 8. A generalized multi-context system M = (C1, . . . , Cn) consists
of a collection of contexts Ci = (Ri, inpi, bri), where Ri = (Inpi, Resi, ACCi,
Condi, Updi) is a reasoner, inpi an input (an element of Inpi), and bri is a
set of Ri-bridge rules over {R1, . . . , Rn} as of equation (2).

Belief states also have to be adapted.

Definition 9. Let M = (C1, . . . , Cn) be a generalized MCS. A generalized belief
state is a sequence S = (S1, . . . , Sn) such that each Si is of the form (inpi, resi)
with inpi ∈ Inpi and resi ∈ Resi.

We say a bridge rule r of form (2) is applicable in a generalized belief state
S = (S1, . . . , Sn) iff for 1 ≤ i ≤ j : ci(inpi, resi) = 1 in Si and for j + 1 ≤ k ≤
m : ck(inpk, resk) = 0 in Sk. Now we prepare for the concept of equilibrium in
the generalized setting.

Definition 10. The set of (context local) update functions with respect to a
corresponding element Si of a belief state S is given by

USi(MCS,S) = {head(r)|r ∈ bri applicable in S},

where bri denotes the set of bridge rules of Si’s corresponding context Ci.

In general, a set of update functions may yield different results when the func-
tions are applied multiple times or in different orders. We do not allow such sets
of update functions.

Definition 11. An applicable set of update functions USi(MCS,S) is station-
ary for an input inpi iff the following two conditions hold:

– ∀u ∈ USi(MCS,S) : u(inpi) = um(inpi) for m ≥ 1 (idempotency)
– ∀u, u′ ∈ USi(MCS,S) : u(u′(inpi)) = u′(u(inpi)) (commutativity)

Definition 12. The update of a belief state element Si of a belief state S, with
respect to a set of update functions USi with k elements, is given by

u1(u2(. . . uk(inpi) . . .))

if USi is stationary for inpi, and undefined otherwise.

Please note that stationarity is only required for the set of update functions
that is actually applied to belief state elements at a time. We now can give the
definition of the generalized concept of equilibrium.

Definition 13. A generalized belief state S = ((inp1, res1), . . . , (inpn, resn)) of
M is an equilibrium iff, for 1 ≤ i ≤ n, the following condition holds:

update(inpi, USi) = inpi and resi ∈ ACC(inpi)

where update(inpi, USi) denotes the update of Si with respect to USi, which in
turn has to be stationary for the corresponding inpi.

16 T. R. Besold, S. Mandl

The remainder of this section describes a procedure to compute all equilibria
of a finite MCS, based on complete enumeration, which served as basis for our
proof-of-concept implementation.

Definition 14. An MCS M = (C1, . . . , Cn) is said to be finite, iff for 1 ≤ i ≤ n,
following condition holds: |ACC(inpi)| <∞ and |bri| <∞.

For the implementation, we consider finite MCS only.

Definition 15. Let Br be a set of n bridge rules of an MCS. A bridge rule
model is an assignment Br 7→ {0, 1}n that represents for each bridge rule in Br
whether it is active or not.

Proposition 1. For each equilibrium there is exactly one bridge rule model.

For a given bridge rule model and an MCS we first apply all the bridge rules
activated in the bridge rule model yielding inp′1...inp′n. Then we compute the set
of results for each context i given inp′i by applying ACC(inp′i), yielding a set of
results resj

i for each i, being of finite cardinality as MCS was said to be finite.
Thus, testing whether (inpi, res

j
i) is an equilibrium for all j, we obtain the set

of equilibria for the given bridge rule model. Iterating the procedure over the
(finite) set of all bridge rule models and joining the resulting sets of equilibria
finally yields the set of all equilibria.

Definition 16. Given an MCS with a (global) set of bridge rules br =
⋃

i bri.
A set of bridge rules brj ⊆ br is called update-monotonic iff for all belief states
S, S’ the following condition holds:

S′ = update(MCS,S)⇒ V C(MCS,S) ⊆ V C(MCS,S′)

where
V C(MCS,S) =

⋃

i

{condi ∈ Ri|condi(inpi, resi) = 1}

and update(MCS,S) is the (global) update over all Si ∈ S.

As bridge rules in the update-monotonic subset of bridge rules of the MCS
are guaranteed to remain active after any update, the update-monotonic bridge
rules that are initially active in the MCS when searching for equilibria have to be
active in any equilibrium. Hence, when iterating over all bridge rule models, only
those bridge rule models that comply with the initially active update-monotonic
bridge rules have to be considered.

Proposition 2. For finite MCS, the above sketched algorithm (for a pseudo
code representation see Algorithm 1) is both complete and correct.

3 Refinements of the Basic Algorithm

In the following, we present two refinements – mainly used for reducing compu-
tational complexity – we added to the MCS algorithm from [4].

Towards an Implementation of a Multi-Context System Framework 17

Input: MCS = (C1, . . . , Cn) (a finite multi-context system)
Output: answer
answer ← {}
br ← S

1≤i≤n bri

ums ← UpdateMonotonicBridgeRules(MCS,br)

cand← {brm ∈ 2br|ums ⊆ brm}
for brm ∈ cand do

S ← ((inp1, res1), . . . , (inpn, resn))
for b ∈ brm do

S ←Apply(head(b), S)

for 1 ≤ i ≤ n do
S[i]←(inp(S[i]), ACCi(inp(S[i]))

for 1 ≤ i1 ≤ |res(S1)|, . . . , 1 ≤ in ≤ |res(Sn)| do
S∗ ← ((inp(S1),res(S1)[i1]),. . . , (inp(S1),res(S1)[in]))
if Equilibrium(S∗) then

answer← answer∪{S∗}

Algorithm 1: Algorithm for computing all equilibria of an MCS

3.1 The Notion of Conflicting Bridge Rules

The first refinement comprises a method for pruning out some bridge rule models
(BRMs) already before they are falsely considered as possible equilibria.

We exploit the (within every context locally valid) demand for consistency
in order to reduce the equilibria search space via “conflicting bridge rules”:

Definition 17. Two bridge rules bri, brj ∈ br (where br is a set of bridge rules
of an MCS) are called i-conflicting if applying bri would directly inhibit the ap-
plication of brj due to a condition cjk ∈ body(brj) which contains (where appli-
cable) “¬head(bri)” or “not head(bri)” (or any other statement contradicting
head(bri)).

This allows for an extension of the algorithm: For a given set of bridge rules
br, we can initially compute, for every bri ∈ br, the corresponding set of i-
conflicting bridge rules in br. As every active bridge rule bri ∈ br may directly
inactivate all i-conflicting bridge rules, we may further reduce the number of
BRMs tested on being an equilibrium by setting all i-conflicting bridge rules to
0, when setting bri to 1.

The additional effort spent on initially computing the conflicting bridge rules
within the set br in most cases pays off, as in total

∑C
m=1 2n−(1+m) (n the total

number of bridge rules of the MCS, C the total number of i-conflicting bridge
rules for all bri ∈ br) BRMs are pruned out. Hence, at least (

∑C
m=1 2n−(1+m))·N

(N the number of contexts of the MCS) reasoner calls less have to be performed.
An upper boundary for the extra costs of computing the conflicting bridge rules
within br is given by n · l (n the total number of bridge rules of the MCS, l the

18 T. R. Besold, S. Mandl

maximum of the numbers of conditions in the body of a bridge rule from br)
comparisons between bridge rule heads and bridge rule conditions from bridge
rules within the set br.5

3.2 Constraints on Bridge Rules

Moreover, the wish to reduce some complexity by making knowledge of the
combinatorical structure of bridge rules (that is already implicitly contained in
the MCS) explicit may arise. In order to do so, constraints on bridge rules or
groups of bridge rules may be used, resulting in a formalism to impose constraints
on the BRMs to be considered.

The constraint formalism shall offer possibilities to group bridge rules into
classes and impose cardinality restrictions on these classes up to uniqueness of
a rule as a representant of a certain rule class. It may be used to model inter-
connectedness and hierarchy between the classes of bridge rules by establishing
a concept of subclasses and superclasses, as well as introducing complementary
classes. Moreover, features have been added to provide some kind of rudimentary
inference mechanism amongst bridge rules/bridge rule classes.6

1. X.maxCard(numb): class1.maxCard(a), with 0 ≤ a ≤ max, where max is the
total number of bridge rules in the model, expresses that only BRMs in which at
most a bridge rules from the class class1 are active shall be considered.

2. X.minCard(numb): Analogously.
3. X.unique: class1.unique expresses that only BRMs in which exactly one bridge

rule from the class class1 is active shall be considered.
4. X.bundled: class1.bundled expresses that only BRMs in which all bridge rules from

the class class1 are active, or BRMs in which all bridge rules from the class class1
are inactivated, shall be considered.

5. X.superClass(Y): class1.superClass(class2) expresses that class1 has class2 as
a superclass, i.e. class1 ⊂ class2.

6. X.subClass(Y): Analogously.
7. X.complementary(Y): class1.complementary(class2) expresses that only BRMs

in which bridge rules from class1 or bridge rules from class2, but not bridge rules
from both classes at a time, are active shall be considered.

8. X.oneOfImplicatesExactlyOne(Y): class1.oneOfImplicatesExactlyOne(class2)
expresses that only BRMs in which, whenever a bridge rule of class1 is active, ex-
actly one bridge rule out of class2 is active, shall be considered.

9. X.oneOfImplicatesSome(Y): Analogously.
10. X.oneOfImplicatesAll(Y): Analogously.
11. X.entireClassImplicatesExactlyOne(Y): class1.entireClassImplicatesOne(class2)

expresses that only BRMs in which, whenever the bridge rules of class1 are all ac-
tive, exactly one bridge rule out of class2 is active, shall be considered.

5 As in general the comparisons between heads and conditions can be performed by
magnitudes more time-efficient as a reasoner call (e.g. in many logical contexts the
comparison may be performed by a simple syntax based matching between heads
and conditions), the overall computational efficiency of the MCS will be improved.

6 In the following using the implemented constraint language, where X and Y are
variables which can be replaced by concrete classes, and numb is a numeric integer
variable.

Towards an Implementation of a Multi-Context System Framework 19

12. X.entireClassImplicatesSome(Y): Analogously.

13. X.entireClassImplicatesAll(Y): Analogously.

The individual bridge rules are explicitly distributed over the different classes by
labeling them with the class name, e. g. directly in the bridge rule base (by this
establishing some kind of instanceOf relation between the individual bridge
rules and the classes they belong to: the class being the concept, the bridge
rule the instance). Every unlabeled bridge rule is implicitly added to a generic
class of bridge rules (classgeneric) which is the superclass of all other classes. On
classgeneric, no constraints in form of properties as listed above may be imposed.

4 A Proof-of-concept MCS Framework Implementation

The proof-of-concept implementation is based on the principles of the aforemen-
tioned algorithm for finding the equilibria of an MCS presented in [4]. After
some steps of reading the MCS specification, getting input and creating the lo-
cal representations of the knowledge bases and the sets of bridge rules of the
MCS, we generate all possible BRMs. Then for each BRM we perform the up-
dates it indicates and check whether the result is an equilibrium or not. When
doing so we also perform a test if the conditions of all applied bridge rules are
really fulfilled, and the bridge rules have been applied justifiedly. According to
the result of this tests, we add the BRM to the list of equilibria BRMs, or we
directly proceed with the next bridge rule model.

Inter alia for the implementation of the constraint mechanism for bridge rules
and bridge rule classes, we make use of the lparse/smodels combination (see [5]
and [6]) as implementation of the stable model semantics for logic programmes.
Both are at some points called as external components.

4.1 Infrastructure & Ex Ante Setup

As programming language for the first implementation7 of the MCS framework
we used Scala, a general purpose programming language.

In our MCS framework, an MCS is unequivocally defined by an MCS configu-
ration file. In the file all contexts are represented. Having read the configuration
file and built an internal representation of each context, the MCS framework
sets up a list of initial knowledge or input bases, as well as a list of bridge rule
bases, each associated with a context.

Moreover, if indicated in the invocation, the bridge rule constraint configu-
ration file is processed. This file contains information concerning the grouping of
bridge rules into different classes, the properties of individual bridge rule classes
and the relations between different classes (see Section 3.2). For doing so, the
different bridge rule classes explicitely have to be declared as such in the file,
afterwards their properties and the relations between the classes may be named.

7 In the meantime, a second implementation using Clojure has been built.

20 T. R. Besold, S. Mandl

If this functionality shall be used, in the bridge rule bases every bridge rule indi-
vidually has to be labelled with the name of the class it belongs to. Unlabelled
bridge rules by default will be treated as belonging to classgeneric.

After performing these steps, the BRMs which afterwards will be tested
for representing an equilibrium are generated. This may be done by creat-
ing a bitstring representing a BRM for each possible combination of activa-
tion/inactivation of bridge rules. Thereby, in total 2n (n the total number of
bridge rules in the MCS) bitstrings are generated.

Due to performance considerations, we implemented another mechanism, ex-
ploiting – whenever indicated and possible – constraints on bridge rules and
conflicting bridge rules. In this scenario, we are using the lparse/smodels an-
swer set solver to generate the BRM bitstrings. This offers the possibility to
directly include the information given in the constraints on the bridge rules into
the model generation: smodels is used for generating a complete list of mod-
els of bridge rule combinations complying with the constraints stated via the
constraints on bridge rules formalism, which then are transformed into BRM
bitstrings. By this, no a priori contradicting bridge rule combinations are con-
sidered possible BRMs. At least for logical contexts we may also use the notion
of conflicting bridge rules, further sparsening the field of BRMs. The bridge rule
head bases and the bridge rule body bases are scanned for conflicting structures,
adding information of any conflict found to the input for the answer set solver.

To start the equilibria mechanism, the MCS’s knowledge bases, the bridge
rule bases and the BRMs are handed over to the “findEquilibria” subroutine.

“findEquilibria” returns pairs of equilibria and corresponding BRMs. The
output may be written out directly, or postprocessing steps may be performed.

4.2 The Equilibria Mechanism: “findEquilibria”

Given the MCS’s knowledge bases, the bridge rules, a list of BRMs and the
contexts “findEquilibria” lists the equilibria amongst the BRMs and the cor-
responding belief states of the respective contexts.

Given a BRM, the heads and bodies of the corresponding bridge rules, the
contexts and the knowledge bases, “findEquilibria” performs all the updates
which are indicated by the heads of bridge rules set to 1 in the given BRM.
This is done by a subroutine called “createReasonerInput′′. Then it invokes
the corresponding reasoners (indicated by the information stored in the con-
texts), thereby performing a global reasoner call over all the (possibly updated)
knowledge bases. If the reasoner calls yield consistent results for all knowledge
bases, for every inactivated bridge rule “findEquilibria” has to test whether
the bridge rule is correctly set to 0 in the BRM. To do so, it has to find in every
inactivated bridge rule’s body at least one condition that is not fulfilled. The
same has to be done for all the bridge rules set to 1: All the conditions in every
bridge rule body have to be fulfilled. If this tests may successfully be completed,
the BRM represents an equilibrium for the given MCS, and the BRM, as well as
the the belief state are linked and jointly added to the list of equilibria. Then,
“findEquilibria” proceeds with the next BRM (if there is any).

Towards an Implementation of a Multi-Context System Framework 21

As long as we are dealing with logical contexts for which we may use the
lparse/smodels answer set solver as a reasoner, we may make the test for founded
activation of the 1-bridge rules superfluous, by modifying the “createReasoner-
Input” mechanism: For every knowledge base element a, demanded in a condi-
tion in the body of an activated bridge rule, we integrate a constraint “:- not a”
into the answer set solver input (which in its result inhibits the generation of a
model in that a is not present), and for every knowledge base element b, listed
in an inhibitive condition, we add “:- b” (preventing the occurrence of models
in which b is present). Thus, we assure that if a model is returned, for every
1-bridge rule the conjunction of the conditions in its body holds.

For the inactivated bridge rules this technique may not be applied: For a
bridge rule set to 0 it is sufficient that only one of its conditions fails. Thus,
doing as we did before with the 1-bridge rules would be by far too restrictive.

But nevertheless, as long as we are dealing with contexts allowing for smod-
els as a reasoner, and yielding unique reasoning results (i.e. only one model is
returned when smodels is called as a reasoner), we may exploit some function-
ality of smodels when testing for founded inactivation of a 0-bridge rule: The
following test will be based on comparing the total number of bridge rules in the
MCS with the number of correctly activated/inactivated bridge rules. If both
values are equal, the BRM represents an equilibrium of the MCS.

Given the valid results of the reasoner calls, we cycle through the represen-
tation of the contexts in the BRM. If a context’s BRM part doesn’t contain a 0,
we may directly add the number of bridge rules of this context to the number
of foundedly activated/inactivated bridge rules (founded activation has already
been assured by the use of the smodels-optimization when creating the reasoner
input for the context) and proceed with the next context’s representation. Oth-
erwise, we take the context’s model, which was previously returned as result by
the smodels call. For every inactivated bridge rule, we cycle through its body,
and add every condition to a list corresponding to the conditions target context
(e.g. for “2 : not q” “not q” would be added to C2’s list). Having completely
traversed the bridge rule’s body, we add to every context’s reasoning result a
constraint, containing the conjunction of the elements of the context’s list. E.g.
for the list “{p, not q, r, s}” the constraint “: − p, not q, r, s.” would be
added to the model previously returned by the smodels call. Having done so for
all the contexts of the MCS, we perform another global reasoner call, invoking
smodels for every single context, handing over the modified reasoning results of
the earlier calls. If there is at least one context – with modified reasoning result
as input – for which the second reasoner call returns a valid model (i.e. the con-
junction constraint is not applied), we may augment the number of foundedly
activated/inactivated bridge rules by one and proceed with the next bridge rule.
If the models of all contexts with modified input are invalid, the 0-bridge rule has
been inactivated unfoundedly, and the BRM does not represent an equilibrium.

Unfortunately, we have to perform this process for every single bridge rule,
and cannot include all constraints from bridge rules into one global reasoner

22 T. R. Besold, S. Mandl

call, as bridge rules which “overlap” in their conditions (e.g. one containing
“2 : not s”, the other containing “2 : s’) may otherwise cause wrong results.

4.3 Identifying Self-sustaining Equilibria

For MCS consisting only of logical contexts using smodels as a reasoner, we
added “findSstEquilibria′′, used to list the self-sustaining8 (s-st.) equilibria.

The “findSstEquilibria” function is given a BRM, the knowledge bases,
the bridge rules and the contexts. The “createReasonerInput” subroutine is
called with empty knowledge bases (again performing the smodels-optimization
already mentioned), and the result is handed over to the contexts’ reasoners. If
a reasoner returns an invalid (e.g. inconsistent) reasoning result, the BRM does
not represent an s-st. equilibrium of the given MCS.

In order to eliminate all equilibria other than the s-st. ones, additional tests
are performed on the reasoning results: For every bridge rule set to 1 in the BRM,
a test is performed whether one of its conditions contains a “not”-statement. If
this test yields a positive result, the found equilibrium is not an s-st. equilibrium,
as its status as equilibrium is based on the absence of the knowledge base element
contained in the “not”-condition. Then, a test for unfoundedly inactivated 0-
bridge rules in the BRM has to be performed analogously as in “findEquilibria”.

Finally, we add the content of the knowledge bases initially handed over
when invoking “findSstEquilibria” to the belief state obtained as equilibrium,
and perform another reasoner call for every context, assuring the consistency
of the expanded belief state. If all reasoner calls yield a valid result, the equi-
librium found is a s-st. equilibrium of the MCS. The BRM and the expanded
belief state are linked and jointly added to the list of s-st. equilibria. Then,
“findSstEquilibria” proceeds with the next BRM (if there is any).

4.4 Comments Concerning Algorithmic Complexity

As a measure for the complexity of the “findEquilibria” routine we may use
the number of reasoner calls performed. Given an MCS with m contexts and
n BRMs. In the worst case, at least m · n reasoner calls have to be performed.
Therefore, in order to identify all equilibria of an MCS, in the worst case at least
m · 2k reasoner calls (k the number of bridge rules in the MCS) are needed.9

In real world applications, when all equilibria of an MCS ought to be found,
the dominating element in this estimation is the number of bridge rules k. For
the naive generate and test approach, in the most general case the number of
m · 2k reasoner calls is a hard lower boundary. All BRMs have to be tested, and
in every test for every context a reasoner call has to be performed.
8 We call an equilibrium self-sustaining iff the application of all bridge rules may only

be based on the application of other bridge rules, and thus be independent of the
concrete knowledge bases of the MCS.

9 Always assuming that per context per BRM one reasoner call is in fact needed and
is sufficient. Here, sufficiency may be assured for the different types of contexts of
finite generalized MCS (as admissible for the algorithm presented in [4]).

Towards an Implementation of a Multi-Context System Framework 23

For the “findSstEquilibria” mechanism, in the most general case m·(2k−1)
is a hard lower boundary for the number of reasoner calls (m the number of
contexts of the MCS, k the number of bridge rules). In the average case, the
number of reasoner calls will be higher: For every BRM which in fact represents
a s-st. equilibrium, m2 reasoner calls have to be performed.

5 Conclusion

When applying the MCS framework to different testing examples, it has shown to
be applicable and appropriate (see [7] and [8] for examples). For the future, more
sophisticated techniques for reducing computational complexity will be needed.
Nevertheless, the approach to implementing an MCS has proven to be effective,
and an important step towards the implementation of an MCS framework has
been made.

References

1. Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: Inter-
national Joint Conference on Artificial Intelligence. Volume 19., Lawrence Erlbaum
Associates LTD (2005) 558

2. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. Proc. IJCAI-
07, Hyderabad, India (2007)

3. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context
Systems. In: Proceedings of the National Conference on Artificial Intelligence. Vol-
ume 22., Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999
(2007) 385-390

4. Besold, T.R., Mandl, S.: Integrating Logical and Sub-Symbolic Contexts of Rea-
soning. In Filipa, J., Fred, A., Sharp, B., eds.: Proceedings of ICAART 2010 -
Second International Conference on Agents and Artifcial Intelligence, INSTICC
Press (2010) . For a full version of the paper see also http://www8.informatik.uni-
erlangen.de/inf8/Publications/bridging mcs original.pdf.

5. Syrjnen, T.: Lparse 1.0 User’s Manual. (2000)
6. Simons, P., Niemela, I., Soininen, T.: Extending and implementing the stable model

semantics. Artif. Intell. 138(1-2) (2002) 181-234
7. Besold, T.R., Schiemann, B.: A Multi-Context System Computing Modalities. In:

Proc. 23rd Int.Workshop on Description Logics (DL2010),Waterloo, Canada. Num-
ber 573 in CEUR Workshop Proceedings (2010)

8. Besold, T.R.: Theory and Implementation of Multi-Context Systems Contain-
ing Logical and Sub-Symbolic Contexts of Reasoning. Master’s thesis, Depart-
ment of Mathematics & Department of Computer Science 8: Artificial Intel-
ligence, FAU Erlangen-Nuremberg (2009) . The full thesis is available under
http://www.opus.ub.uni-erlangen.de/opus/volltexte/2010/1587/.

24 T. R. Besold, S. Mandl

Useability versus Adaptation – Approaches to
Higher Level Context Detection

Robert Lokaiczyk1, Andreas Faatz2, Benedikt Schmidt2, and Matthäus
Martynus3

1 TU Darmstadt,
Rundeturmstr. 10

D-64283 Darmstadt, Germany??

2 SAP Research,
Bleichstr. 8,

D-64285 Darmstadt, Germany
3 SAP AG

Dietmar-Hopp-Allee 16
D-69190 Walldorf

Germany

Abstract. While the research in detection of context features - even
cognitive ones like the user’s goal - steps forward continuously, it is often
focused on the quality of detection. But since context often finds use
in context adaptive systems that proactively adapt to the user’s need,
research should always consider the resulting benefit of context for the
user in any context-based application. This paper presents the results of
a case study which a) evaluates algorithms to detect three subtypes of
user goals in knowledge work and b) focuses on useability issues, that
have a direct impact for a measurable improvement of the work results.
Our work includes a quantitative evaluation like task completion time
improvement and qualitative aspects (e.g. intrusiveness of the system).
Finally, we draw conclusions from our measurements, especially on how
modeling of an adaptive approach at the workplace might take place.

1 Introduction

While low level context features like location or temperature can be determined
easily by appropriate sensors, higher level context is not an explicit state that
could be measured by sensors. In personal information management systems or
context-aware e-learning scenarios, such cognitive context features include the
user’s goal, which is in best case a conscious state of mind expressible by the user.
Neither is it feasible to measure the user’s goal with a physical apparatus, nor is
it adequate to continuously ask the user for his/her goal. Actively interrupting
the user during his/her work reduces the useability of a contextualized informa-
tion or e-learning system. In most cases frequent pop-ups will immediately lead
the user to a refusal of the overall software system, no matter how helpful the
?? research conducted while the author was with SAP Research Darmstadt

25

recommended resources or actions based on the context are. Useability overrules
context-aware adaptation here.

Consequently, research should not only focus on unintrusive context detection
with high precision and accuracy but also on adequate mechanisms in order to
use this context information for applications in provable helpful way. Useability
of context-aware applications might also suffer in many ways while reconfigura-
tion of GUI elements or ever changing lists of recommendations might distract
the user from the working task and actually lead to longer task completion times
(efficiency) or even lower task completion ratios (effectiveness). As a conclusion
context based systems should not only be benchmarked by the quality of their
context detection mechanisms but primarily by the benefit that context infor-
mation is gives the user.

In order to analyze effects of the design of context adaptive systems to use-
ability and work results in a corporate knowledge work scenario we set up a
user study with the goal to measure the interrelation between acceptance (i.e.
usability) and efficiency (i.e. ability to speed up knowledge work) of a context
detection environment. Therefore we sketch the connection between context and
user goal in Section 2. define a taxonomy of user goals for knowledge work in Sec-
tion 3 and introduce up-to-date approaches for unintrusive, probabilistic context
detection in Section 4. We instantiate these approaches in a corporate user study
that involves 12 typical tasks of knowledge work (see Section 5). The resulting
improvement of the user’s knowledge work is measured qualitatively and quan-
titatively in Section 5, before we draw conclusions more on a systems modeling
level.

2 Connection between User Goal and Context

Context adaptive systems generate user support with respect to a user goal iden-
tified by the system. This demands an understanding of the connection between
goal and context. To describe this connection, we use an extended k-system
control-circuit model as presented by [1] (see Figure 1), originally used to de-
scribe system-world interaction. In our adaptation it shows the dominance of the
user goal on user context mediated by action in and perception of the real world.
A user might have multiple goals concurrently which have different relevancies.
We consider the goal with the highest relevance as trigger for the organization
of user-world interaction in a situation. Organization means that the goal leads
to a planning process of the user, how to achieve a goal. The resulting plan as
behavior in rehearsal guides user perception of and user action in the real world,
as described in adaptive resonance theory [2]. Thus, user context is dependent
on a goal and the resulting plan. A respective context term has been introduced
by [3]4 and slightly modified by [5]. They distinguish the following categories of
the real world for an individual:

– Intrinsic Context: Those elements of the physical world which are consciously
perceived and considered by an individual as related to a goal

4 referred to in [4]

26 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

– Extrinsic Context: Those elements of the physical world which are con-
sciously perceived and not considered as related to a goal

– Unperceived things: Aspects of the real world which are not consciously
perceived by an individual

Context is changed by actions and consumed by perception. That can result
in adaptation of the plan and can again have an effect on the goal, which closes
the modeled control-circuit. A context adaptive system interacts with the control
circuit. It is an element of the real world which detects user actions based on
sensors and deduces user goals based on collected sensor data. In a desktop
environment this means that the actions of the user, like opening applications,
using application-specific functionalities, etc. are indicators which are used to
identify a user goal. Once, the system identifies a user goal three different kinds
of support can be given:

– support the perception of the intrinsic context (e.g. highlight specific ele-
ments of the context to support user orientation)

– support actions on elements of the intrinsic context (e.g. automation of time
consuming and stereotype activities)

– extend the intrinsic context by adding elements to the conscious and goal
related user perception (e.g. recommendation lists)

To identify goals and decide on reasonable support a thorough understanding of
user goals and their effects on the interaction with the real world is necessary. In
the following we describe the understanding of user goals we followed to realize
a context adaptive system.

Fig. 1. Connection between User Goal and Context

3 Modeling User Goals

In accordance to Broder [6], who defined a taxonomy of user goals for web
retrieval, we sub-divide the concept of user goal into three different subtypes
including:

1. Informational Goal

Useability versus Adaptation – Approaches to Higher Level Context Detection 27

2. Transactional Goal
3. Navigational Goal

While all subcategories are intentions the user might have during his/her
work, the characteristics and the methodology to detect these goals differ.

In certain work situations the knowledge worker needs factual knowledge in
order to fulfill his/her working task. An informational goal addresses background
knowledge that is necessary to understand concepts with regard to the working
task. If for example the knowledge worker needs to model a software with UML,
the understanding of the concept UML class diagram is crucial to complete the
task. The search for proper knowledge resources, that explain a class diagram,
embodies an informational goal.

The user goes after a transactional goal if s/he is trying to accomplish a
working task in a work process by performing certain transactions. Those trans-
actions might involve user interaction with the system that result in a defined
work result (e.g. a text document or a spreadsheet). The detection of a trans-
actional goal consist of the analysis of the user interaction with the system in
order to reason about the anticipated work task. A work task might be writing
a letter, creating a balance sheet or compiling a presentation.

A navigational goal however is not characterized with regard to content as-
pects, but does target on a navigation path to a state of location in the work
environment. The user’s intent here is to find a particular document, directory
or file, s/he already used. This involves also web resources like URLs the users
has visited sometimes in the past. The resource might be of interest for him/her
as a template or as an example. The navigational goal represents a description
of the location of the object of interest via a path or a URL.

Since the three types of user goals cover different aspects of knowledge work,
the algorithms to anticipate them vary too. The next section describes prob-
abilistic approaches to reason for the supposed goal of the user by analyzing
context features of the work environment (for a detailed enumeration of our
context features see [7]). All approaches target to manage to get along with low
explicit user input (like it would be the case with online learning or feedback
mechanisms), in order not to spoil the useability. We strongly believe the user
is not willing to accept additional effort to support a system that is meant to
support him/her without an overall benefit.

4 Approaches to User Goal Detection

4.1 Informational Goal

In order to estimate the user’s need for information in a certain work situa-
tion, the system needs to have means of interpretation of the topic the user is
currently dealing with. The scientific field of topic detection offers a number
of options given a textual corpus that can be analyzed. In distinction to topic
detection in computational linguistics, where the input consist solely of one text
document or fragment, we define the combination of all textual context features

28 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

of the work environment as input for the topic detection. This involves not only
documents currently opened in different applications, but also the content of
websites displayed in the browser, window titles and file names. Recent meth-
ods for topic detection that deliver good results include e.g. LSA5 [8]. But since
we extract topical information only for the purpose to identify relevant words
or concepts the user might have a question or informational need for, we focus
on simple keyword-based approaches here. The extracted keywords relevant to
the user’s current working task represent potential informational goals the user
needs information on. Based on the list of keywords a knowledge management
system or work-place embedded help system might offer resources that explain
the concept or define the keyword. In a generic scenario the learning resources
can be derived simply by offering the corresponding Wikipedia page to the key-
word, in specific corporate scenarios a corporate knowledge repository, reflecting
professional needs is recommended. The relevance of a keywords with regard
to the working task can be estimated by term relevancy measures as in [9] or
given by a static list of relevant terms defined by a domain expert. In a similar
fashion to the APOSDLE approach [10] we applied string matching on a list of
keywords characteristic for a particular task. But in contrast to the APOSDLE
approach the tagged learning material was automatically drawn from Wikipedia,
i.e. referring to pages with the respective tags.

4.2 Transactional Goal

Task detection as a research category, which is used for the identification of
a transactional goal, has already been described in [11], [12] and [7]. We also
proceed with a machine learning approach that uses user interaction with the
system and the work environment itself as an indication for a particular work
task, since after a short training phase which can also be outsourced, the system
works autonomously. Therefore we operate on slices of the event stream captured
by desktop sensors. Our context model here is a holistic one with regard to the
number of features that can be captured on the computer desktop itself, not in
the physical environment around it. We apply a hybrid voting approach between
the decision tree ID3 [13], Näıve Bayes [14], Euclidean distance [15], Irep [16]
and SMO(128) [17] algorithms in this experiment. This outperformed the single
algorithms named on our data set.

4.3 Navigational Goal

The identification of the navigational goal is the task of identifying the next
document to be opened by the user. If we anticipate the document right and
provide a short link the user saves time for navigation and search. We formu-
late this problem scientifically as sequential prediction and leverage from recent
research in clickstream analysis (see [9]). Without any background models we
create a navigational graph in-time that consists of documents accessed as nodes
5 Latent Semantic Analysis

Useability versus Adaptation – Approaches to Higher Level Context Detection 29

and transitions between two documents as vertices in the graph. A sample graph
from our user study is shown in Figure 2. The detection of the matching docu-
ment is then based on a sequence of documents in the navigation path, which
was recently used by the user. On this graph we can use partitioning algorithms
and propose all navigation objects in the actual partition that have not been
accessed in the actual session. Phase 1 of our user study showed the most effec-
tive results for navigational goal detection, which are based on the paradigm of
spreading activation [18] on such a navigational graph.

Fig. 2. Navigational graph enabling algorithms without task or domain model

5 Design of the User Study

The following paragraph describes the general setup of our in-house context de-
tection study in the corporate environment of a large software company with
dominant characteristics of knowledge work in daily business. Our general re-
search question addresses not only the accuracy of context detection itself but
also the interrelation between acceptance (i.e. usability) and efficiency (i.e. abil-
ity to speed up knowledge work) of the described context detection environment.
The experiment consisted of two phases:

In phase 1 we collected training and evaluation data. We used these data
to improve our system and find the best machine learning algorithms and pa-
rameters for the recommendation algorithms. In phase 2 we tested the improved
system.

Our report will sketch these phases, discuss the measurements and draw con-
clusions for the introduction of context detection to an organization - in general,

30 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

along task models and along domain ontologies characterizing the organization.

Phase 1
We defined 12 tasks, which have been performed by 20 participants from

the SAP Research CEC Darmstadt (mainly postdoc-level researchers and PhD
candidates) during the first phase without any contextualized support.

The tasks are condensed versions of typical work a researcher has to carry out
in the context of the industrial research projects, transfer projects and program
activities at SAP Research in Darmstadt (comments in italics):

1. create a presentation on Generics in Java (i.e. preparing technical slides)
2. leave request (interacting with a typical SAP tool)
3. update the SRN (the SAP Research Knowledge Representation Tool) page

of your project
4. distribute presentation slides (find the right people and their full names to

send slides to)
5. visualization of quantitative research results (MS Excel-style)
6. translation of executive summary (a typical task as SAP is a bilingual com-

pany)
7. code development: Hello World class in Java (very simplified programming

task)
8. create a handout (for a presentation)
9. create a UML-diagram (very simplified)

10. budget calculation (no tool pre-nominated)
11. software update (non-automatic software update of one tool)
12. inventory update (modeled as an interruption of another task)

To avoid correlations between the tasks the participants got the tasks in a
random order. During the data collection phase these tasks were conducted in a
restricted time and with some hints on supporting material (e.g. the presentation
slides). We collected the data in a database and labeled it according to the task
in which it was collected.

Phase 2
In this phase we let 15 participants from the SAP Research CEC Darmstadt

(a true subset of the phase 1 participants) perform the tasks a second time in
random order. This time they were supported by our context detection system
(see Figure 3). This happened weeks after the first phase to blur the participants
memory on how the tasks are performed - a quite realistic condition with sup-
port from our system. In comparison to recent approaches (e.g. APOSDLE P3)
we used a very simplified user interface (see the screenshot below) only showing
documents stemming from task detection, topic detection and clickstream anal-
ysis to collect information about how our system helps them to fulfill the task
faster and easier. By design, the users in phase 2 had as easy access to the tools
for the tasks (left side, for instance MS Excel) as in phase 1 to principally enable
work without context detected support.

Useability versus Adaptation – Approaches to Higher Level Context Detection 31

Fig. 3. Screenshot of the simplified UI - the right hand sidebar showing three potential
recommended list of documents from topic detection (with a topic as informational
goal), purely unsupervised mechanisms based on the users clickstream (a document or
URL as a navigational goal) and task detection (with a task as transactional goal).

5.1 Evaluation and Discussion

We used a connection of the users actions to a system clock to measure the
amount of time needed per task in phase 1 and phase 2. Figure 4 shows a
detailed time analysis in the form of and the relative amount of time gained
(green) or lost (red) with/without context adaptive support.

The average user became 30% faster on an average task. Intuitively, this
number is more than the speed-up expected without tool support by a pure
learning effect with scrambled, once interrupted short tasks resembling a heavy
workload. But the proof via a control group that tool support is the reason for
speed-up is still missing.

The two most effectively tasks speeded up were routine tasks (Update SRN
and Software Update) with relatively low involvement of personal creativity.
However, despite the fact that these were routine tasks, their repetitivety is low
enough to still offer enormous room for automated support as in our study, e.g.
by just presenting the right entry point to the system to be updated. Tasks like
Visualization Results and the ones on Prototype Development or Translation

32 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

Fig. 4. Speed measurements, relative speed-up (green) or slow-down (red) of users

involve more creativity, but still show the supportability by context detection in
our lab setting. There was one user (User 2), who was very much distracted by the
recommendation system - at least in a positive sense, as s/he liked the system
very much and started playing with it. This attitude seems to be an outlier
in comparison to the other fourteen users. Another outlier, the leave request
with relatively many users taking more time to perform with context detection
support, lacks explanation so far. None of the 15 users found particular bad
suggestions by the system regarding this task - and even 43% of the users found
particularly good recommendations in that task.

Figure 5 shows the overall satisfaction with the combination of tools as de-
termined by a questionnaire.

A surprising result shown at the top of Figure 5 is the overall opinion about
the intrusiveness of the system. 57% of the users did not feel intrusiveness, a
reason to follow to the presentation of documents and not tasks and topics, such
as in APOSDLE P3 [19] and similar systems as the Microsoft Office Assistant.
As the design of the UI came nearly by chance and just piggy-bagged of the
scientific approach to make the three different flavors of context detection (nav-
igational, transactional, informational) comparable for the lab study, we see a
very interesting anchor for further UI design around the smoothly morphing list
of document hits updated by the context detection regularly. Further research
in that direction drawing a distinction from the current metaphors “pop-up of
suggestions” or “click to get a context-based suggestion” seems to be very valu-
able. Although the system was not felt to be very intrusive (or at least by a
minority of the users perceived as such), a strong majority (93%) of the users
were aware of the fact, that different kinds of context detection were designed to
support them. The recommendation of documents from the spreading activation
algorithm turned out to be most valuable from the users perspective. We also

Useability versus Adaptation – Approaches to Higher Level Context Detection 33

Fig. 5. Results of the questionnaires

related this question to the click behavior, which showed that these documents
from the navigational mechanism were also selected most often - in contrast to a
mediate selection (and a medium judgement in the questionnaires) of documents
from the task detection and almost no response to the topic detection. This is
a clear distinction from the results in the summative evaluation of APOSDLE,
where the topic detection was favored above the task detection. The outcome
depends on the quality of the models and annotation. In this experiment, the
linking to Wikipedia was perceived as too general even for “non-office” tasks,
where a source of encyclopedic knowledge might be expected as useful. The other
way around, navigational mechanisms do not depend on models, supported the
users in our study - but have the conceptual drawback of only referring to doc-
uments, which were already at least touched by the users (i.e. triggering the
question, how new knowledge can be transported to the individual user, a ques-
tion of true knowledge transfer in the organization).

34 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

Finally, the system was perceived as helpful, which we conclude from the
combination of the two facts that it caused speed-up and that most of the users
claimed, that they would use it again. The questions which remain open are less
on the algorithmic side, but more on the organizational side and UI side:

– How to effectively and efficiently connect models to the context detection and
how to complement this with the more personal navigational mechanisms?

– Which UI-metaphor is best suited for presenting the continuous flow of
context-dependent suggestions?

– Does the possible extension of defining and adopting holistic enterprise mod-
els compensate the heavy modeling effort?

6 Summary and Outlook

We identified the best context detection algorithms in a specific empirically ac-
cessible workplace environment. Our study included task detection, topic detec-
tion and model-free, purely statistically determined navigational context detec-
tion. Contextualized support seems to be helpful along with the right metaphor
for the UI but - when going beyond the helpful reconstruction of personal docu-
ment streams and piles - strongly dependent on the investment in the modeling
of tasks and topics (i.e. in transactional and informational goals). Thus the main
follow-up of our study is, that we are now in the position to suggest a way of
context detection intertwined with modeling, which slightly deviates from the
strategy taken in e.g. APOSDLE integrated modeling [20]. The key is human
activity monitoring: We suggest to apply context detection already in the very
early phases of task and topic modeling by navigational mechanisms individu-
ally and to complement this by task models and ontologies, which in some sense
(e.g. by pooling search terms passed to search engines) are seeded decentrally in
the organization. The purpose is to focus modeling on situations, where we can
automatically determine, that navigational context detection passes back values
(e.g. documents), which are from the personal history, but do not reflect the
user’s goal. Such a gap analysis should determine the shape of the domain and
task model. This differs from a modeling strategy of interviewing experts and
opens the door to a more decentralized and continuous way of relating detection
mechanisms and modeling. However, the knowledge engineer and the domain ex-
pert are still be needed to work on the seed we mentioned as a result of human
activity monitoring and the later phases of validation. In our upcoming work, we
will focus on the category of transactional goals. We want to use user action data
of multiple users to identify reoccuring subcategories of the transactional goal.
For these subcategories we want to provide identification mechanisms and realize
specific, proactive user support. This will help to get a better understanding of
the difference and similarity of transactional goals of multiple users.

References

1. Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag (1973)

Useability versus Adaptation – Approaches to Higher Level Context Detection 35

2. Grossberg, S.: The link between brain learning, attention, and consciousness.
Causality, Meaningful Complexity and Embodied Cognition (1999) 3–45

3. Hewitt, K.: Context effects in memory: A review. Unpublished manuscript. Cam-
bridge University, Psychological Laboratory. (1977)

4. Tiberghien, G.: Il CONTEXT AND COGNITION: INTRODUCTION. Revue
bimestrielle publiée avec le concours des Universités de Provenœ et Aix-Marseille
II 6(2) (1986)

5. Öztürk, P., Aamodt, A.: A context model for knowledge-intensive case-based rea-
soning. International Journal of Human Computer Studies 48 (1998) 331–356

6. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2) (2002) 3–10
7. Lokaiczyk, R., Faatz, A., Beckhaus, A., Görtz, M.: Enhancing just-in-time e-

learning through machine learning on desktop context sensors. In Kokinov, B.N.,
Richardson, D.C., Roth-Berghofer, T., Vieu, L., eds.: CONTEXT. Volume 4635 of
Lecture Notes in Computer Science., Springer (August 2007) 330–341

8. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent seman-
tic analysis theory of the acquisition, induction, and representation of knowledge.
Psychological Review 104 (1997) 211–240

9. Lokaiczyk, R.: Verfahren kontextbasierter Nutzerzielanalyse. PhD thesis, Univer-
sität Leipzig (2009)

10. APOSDLE consortium: Deliverable d6.3 - use cases & application requirements 2
(second prototype). Technical report (2008)

11. Shen, J., Li, L., Dietterich, T.G.: Real-time detection of task switches of desktop
users. In Veloso, M.M., ed.: IJCAI. (2007) 2868–2873

12. Granitzer, M., Kröll, M., Seifert, C., Rath, A.S., Weber, N., Dietzel, O., Lindstaedt,
S.N.: Analysis of machine learning techniques for context extraction. In Pichappan,
P., Abraham, A., eds.: ICDIM, IEEE (2008) 233–240

13. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1) (1986) 81–106
14. Dumais, S.T., Platt, J.C., Hecherman, D., Sahami, M.: Inductive Learning Algo-

rithms and Representations for Text Categorization. In Gardarin, G., French, J.C.,
Pissinou, N., Makki, K., Bouganim, L., eds.: Proceedings of the 1998 ACM CIKM
International Conference on Information and Knowledge Management, Bethesda,
Maryland, USA, November 3-7, 1998, ACM (1998) 148–155

15. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence
databases. In: FODO ’93: Proceedings of the 4th International Conference on
Foundations of Data Organization and Algorithms, London, UK, Springer-Verlag
(1993) 69–84

16. Fürnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings
the Eleventh International Conference on Machine Learning, New Brunswick, NJ
(1994) 70–77

17. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal
Optimization. MIT Press (1998)

18. Anderson, J.R.: A spreading activation theory of memory. In Collins, A., Smith,
E.E., eds.: Readings in Cognitive Science: A Perspective from Psychology and
Artificial Intelligence. Kaufmann, San Mateo, CA (1988) 137–154

19. Lindstaedt, S.N., Ley, T., Mayer, H.: Integrating Working and Learning with
APOSDLE. In: Proceedings of the 11th Business Meeting of Forum Neue Medien,
10-11 November 2005, Vienna, Verlag Forum Neue Medien (2005)

20. Rospocher, M., Ghidini, C., Serafini, L., Kump, B., Pammer, V., Lindstaedt, S.,
Faatz, A., Ley, T.: Collaborative enterprise integrated modelling. In: Proceedings
of the 5th Workshop on Semantic Web Applications and Perspectives (SWAP2008),
Rome, Italy, December. (2008) 15–17

36 R. Lokaiczyk, A. Faatz, B. Schmidt, M. Martynus

Movement Recognition using Context:
a Lexical Approach Based on Coherence

Alessandra Mileo1, Stefano Pinardi1, and Roberto Bisiani1

Department of Informatics, Systems and Communication, University of
Milan-Bicocca, viale Sarca 336/14, I–20126 Milan

Abstract. Movement recognition constitutes a central task in home-
based assisted living environments and in many application domains
where activity recognition is crucial. Solutions in these application areas
often rely on an heterogeneous collection of body-sensors whose diver-
sity and lack of precision has to be compensated by advanced techniques
for feature extraction and analysis. Although there are well established
quantitative methods in machine learning for robotics and neighboring
fields for addressing these problems, they lack advanced knowledge repre-
sentation and reasoning capacities that may help understanding through
contextualization.
Such capabilities are not only useful in dealing with lacking and imprecise
information, but moreover they allow for a better inclusion of semantic
information and more general domain-related knowledge.
We address this problem and investigate how a lexical approach to multi-
sensor analysis can be combined with answer set programming to sup-
port movement recognition. A semantic notion of contextual coherence
is formalized and qualitative optimization criteria are introduced in the
reasoning process. We report upon a first experimental evaluation of the
lexical approach to multi-sensor analysis and discuss the potentials of
knowledge-based contextualization of movements in reducing the error
rate.

1 Introduction and Motivations

Movement recognition is an important aspect of situation assessment both in
Ambient Intelligence and Healthcare applications [1]. It is also important in
order to forecast critical situations like a fall or a stroke, to understand emotional
patterns from position of the body [2, 3], to track activities [4, 5]. It is important
also for gait and posture analysis, human computer interaction, and in motion
recognition and capture [6, 7, 4, 8].

It is possible to use video cameras for movement classification, but with a
video camera you have to segment body from the background, identify body
parts, solve luminance and hidden parts problems, and target the monitored
person when more people are present in the area. Video movement analysis is a
useful technique in hospital but it can hardly be used in a day by day analysis to
classify movements in any natural condition like real sport analysis, healthcare
applications, medical or social surveillance protocols [9–11].

37

It is possible to recognize the movements of a person using wearable inertial
sensors, as shown by various studies and applications [12, 13, 1, 4, 5, 14]. Wearable
sensors usually contain inertial devices like accelerometers and gyroscopes to
detect linear and torque forces: they can be placed on different segments of the
body to analyze movements. Some sensors also use magnetometers in order to
identify the north-pole direction to determine Euler angles in respect to a fixed
reference system [8]. Also, sensors can be connected to a wireless network in
order to facilitate the collection of data [13].

Many different ways to use inertial sensors for movement classification have
been described in the literature; they are mainly based on Machine Learn-
ing techniques [4]. Some researchers use sensors placed on a single spot of
the body [1], others use many sensors positioned on different segments of the
body [12, 1, 4], others use a multimodal approach using both microphones and
inertial sensors [6, 15].

The advantage of using inertial sensors for movement recognition are patent.
We know with absolute certainty which segment of the body data come from.
We do not have to solve hidden surfaces problems or identify the correct person
in a crowded situation. Also inertial sensors can be used in any natural situation
and are more respectful of privacy. On the other hand, movement classification
using inertial sensors is still an open subject of research and needs to be well
understood both in the field of data analysis with machine learning techniques
and in the reasoning area.

The rationale is that these methods are useful to create a “lexicon” of move-
ments: the proposed methods have significant error rates, and use small vocab-
ularies [4]. But movements are not only isolated events, they have a “lexical
context”, are causally and logically connected, and are space dependent.

We are interested in classifying movements with a Machine Learning ap-
proach aimed to create a rich user-independent vocabulary, and in exploiting
our knowledge of legal sequences of movements as a pattern to reason about
movements in order to validate or reject one or more actions in a given scenario.

Our modeling and reasoning technique is based on Answer Set Programming
(ASP), a declarative logic programming framework, combining a compact, flex-
ible, and expressive modeling language with high computational performance.
The knowledge-based approach provides a more flexible way to reason about
semantically-annotated sequences, compared to pure quantitative approaches.

We will use a new proposed Machine Learning method for “lexical analysis”
that has a good accuracy 95.23% - 97.63% [12]. Our methodology is inspired by
machine learning techniques used for information retrieval and text mining [16],
with some adaptation.

On top of this analysis, a further level of knowledge-based validation is in
charge of reasoning about meta-patterns of sequences as well as contextual con-
straints to reduce error rate.

The ASP based reasoning process follows the common generate and test
methodology in (i) generating the space of legal patterns according to semantic
validation and (ii) exploring the search space by applying efficient solving tech-

38 A. Mileo, S. Pinardi, R. Bisiani

niques to compensate for possible errors by enforcing constraint satisfaction and
optimization.

The lexical analysis of features for classification of movements is described
in Section 2. Section 3 introduces the ASP formalism and presents our modeling
and reasoning strategies, while a preliminary evaluation of the potentials of our
approach is presented in Section 4. A short discussion follows in Section 5.

2 Movements Classification: from Sensors to Activity

2.1 Sensors and Features Extraction

We used five MTx inertial sensors produced by XSens [8], these sensors have three
different devices mounted on board: a 3D accelerometer, a 3D Gyroscope, and a
3D magnetometer. Informations are represented as a three dimensional vector in
the sensors reference frame providing data about linear forces (ms/sec2), torque
forces (rad/sec) and earth-magnetic field intensity (direction) (milli-Tesla). Even
if it is possible to represent vectors in a geo-referenced fixed frame with the MTx
sensors, we preferred this configuration because many technologies do not have
a fixed frame reference system, and we want to study the problem in the more
generic and technologically neutral situation.

In order to create a flexible mechanism to classify movements, we extract
very generic features that are not dependent on the application domain. Every
sensor component - the accelerometer, gyroscope and magnetometer - returns
one information for every spatial dimension (X, Y, Z). Every component infor-
mation has also been considered in its planar norm representation (|XY |, |XZ|,
|Y Z|) and in its 3D norm representation (|XY Z|), for a total of 7 data per sen-
sor. These data have been filtered using eight functions (null, smoothing, low
pass, mean, variance, variance with low pass, first derivative, second derivative)
generating 840 transformations of the original data. Then, ten generic features
have been chosen (Maximum value, Minimum value, First Sample, Last Sample,
Mean, Variance, Zero Crossing Rare, Mean Crossing Rate, Skewness, Kurtosis)
for a total number of 8400 features. Finally, features have been quantized roughly
into 20 intervals (see Figure1). At the end, every action generates a sparse binary
vector of 184800 dimensions. This vector is used to create the classification pat-
tern of movements that constitutes the Lexicon or Dictionary of the application
scenario.

2.2 Features Analysis

All features do not have the same relevance depending on population and lexical
contexts: some features are more frequent within the population, others can
be more or less spread inside the given vocabulary of actions. To transform
these qualitative considerations in a quantitative measurement we introduced
two weights: the FF (Feature Frequency) and IVFF (Inverse Vocabulary Feature
Frequency). Feature Frequency takes into account distributions of the feature per
class in the population, as shown in Equation 1:

Movement Recognition using Context: a Lexical Approach Based on Coherence 39

Fig. 1. Feature extraction process. Actions are transformed in a binary sparse vector
of 184.400 values.

Acc. 
Gyr. 
Mag. 

 X 
 Y 
 Z 
|XY| 
|XZ| 
|YZ| 
|XYZ| 

raw 
smoot. 
DFT 
mean 
var. on raw 
var.  On DFT 
1st deriv. 
2nd deriv. 

max value 
min value 
first value 
last value 
average 
variance 
Z.C.R. 
M.C.R. 
skewness 
kurtosis  

3 * 5 = 15 components 

15* 7 = 105 dimensions 

105 * 8 = 840 graphs 

840 * 10 = 8400 features 

component  dimension  filter  feature sensor 

5 sensors 

 >> 100
 90 << 100
 80 << 90
 70 << 80
 60 << 70
 50 << 60
 40 << 50
 30 << 40
 20 << 30
 10 << 20
 0 << 10
 -10 << 0
 -20 << -10
 -30 << -20
 -40 << -30
 -50 << -40
 -60 << -50
 -70 << -60
 -80 << -70
 -90 << -80
-100 << -90
 << -100

interval 

8400 * 22 = 184800 intervals 

FFij =
ni,j

|P | (1)

where ni,j is the number of occurrences of the feature σi in the action aj and
|P | represents the cardinality of the population.

Inverse Vocabulary Feature Frequency weights features according to their
discriminatory ability within the dictionary of actions as shown in Equation 2:

IV FFi = log
|A|

|a : σi ∈ a|
(2)

where |A| is the cardinality of the dictionary, and |a : σi ∈ a| represents the
number of actions in which feature σi assumes the same value.

Every feature is weighted by multiplying FF and IVF as shown in Equation 3:

Wi,j = FFi,j ∗ IV FFi (3)

2.3 Vocabulary and Classification

Actions are feature vectors placed into a feature-actions matrix transformed with
the weighting operation described in Equation 3. The action to be recognized is

40 A. Mileo, S. Pinardi, R. Bisiani

a n-dimensional vector weighted using this transformation. This action is consid-
ered a query in the feature-action space. Through a set of similarity algorithms
the most similar action is calculated, then results are compared with the ground
truth. We used three similarity algorithms: Ranking, Cosine Similarity and Eu-
clidean Distance defined, respectively, as follows:

rankj =
n∑

i=1

Wi,j (4)

disti =

√√√√
n∑

i=1

(Wi,j − qi,j)2 (5)

cosθ =
Wi,j ∗ qi,j
|Wi,j ||qi,j |

(6)

where Wi,j represents the weight of the σi interval of action aj of the Training-
Set, and qi,j is the IVFF value associated to the feature of the query.

Every action to be classified, hit all features in one of the intervals; every
interval for each action in the vocabulary, is associated to a weight for that
feature interval in the action, as defined in Equation 3. The rank of an action is
given by the sum of weights associated to the intervals of all features interested
by the action. The higher the sum of weight, the more similar the action to be
classified is to the action in the vocabulary.

We used a Leave One Out Cross Validation (LOOCV) method to test the
accuracy of the recognition on two different databases: an internal database
NIDA 1.0 with 273 samples, and a public database WARD 1.0 with 1270 samples,
obtaining preliminary results illustrated in Section 4.

The accuracy of our method is high when we use five sensors on different
parts of the body: we reached an accuracy of 95.23% on NIDA 1.0 and 97.74%
on WARD 1.0 outperforming the results presented in the literature on WARD
database [12, 13]. There are many situations where it is not possible to wear
many sensors on the body for social acceptance or comfort, for example with
ill or elder people in health care scenarios. If we use a single sensor accuracy
decreases: with a single sensor on the hip the accuracy rate is 81.31%, with only
one sensor on the right wrist we have an accuracy of 82.78%, and using just
the right ankle we have an accuracy of 83.15%. In these situations the classifier
makes errors in almost all the actions (see 3), and the error rate is higher on some
specific actions reducing the general performance. We want to improve accuracy
reducing the error rate even in the single sensor scenario, and the logic-based
contextual inference can help in doing this in a flexible and performant way.

3 Knowledge-Based Support to Movement Recognition

3.1 ASP Basics

We assume the reader to be familiar with the terminology and basic definitions
of ASP (see [17] for details). In what follows, we rely on the language sup-

Movement Recognition using Context: a Lexical Approach Based on Coherence 41

ported by grounders lparse [18] and gringo [19], providing normal and choice
rules, cardinality and integrity constraints, as well as aggregates and optimiza-
tion statements. As usual, rules with variables are regarded as representatives
for all respective ground instances.

3.2 Model of Movement

The logical formalization of our model of movements is provided in terms of
three aspects of body motion (referred to as classes), each of them characterized
by a set of values and one or more additional attributes for that value.

The current1 list of values and attributes for each class are summarized in
Table 1. Please note that attributes related to values of class posture indicate
where the posture is assumed to be held, while for values of the other classes, the
attribute specifies an additional description of how the movement is performed.

Class Value Attribute

posture sit, stand {chair, bed}
lay {bed}

motion walk {forward, upstairs, downstairs, fast}
jump {once}
open {circular, sliding}
kick {frontal, lateral}

heading right, left {90, 180}

Table 1. Aspects of body motion included in our vocabulary

Each tuple < Class, V alue,Attribute > we define, corresponds to a word of
the vocabulary of movements introduced in Section 2.

Whenever a new word is classified by the underlying mechanism illustrated
in Section 2, the knowledge-based representation associates a time step to the
logical classification of the action, in a predicate of the form:

sensed(Class, V alue,Attribute, T imeStep)

Extending the vocabulary is a straightforward activity in our model, because
it can be done by extending the range of possible attributes of a value, adding
new values or adding new classes. The state of body motion is determined by
three tuples of the form < Class, V alue,Attribute >, one for each of the three
classes, at the same time step T .

1 In this preliminary analysis we reduced the classes of movements we want to reason
about, and their values, in order to better illustrate the reasoning principles via
examples.

42 A. Mileo, S. Pinardi, R. Bisiani

In order to validate tuples identified by the underlying classification method,
we introduce two additional properties for the movement recognition problem:
the semantic distance measure between to subsequent tuples of the same class,
and the state coherence of a tuple of a given class, with respect to tuples of the
other classes at the same time step. It is worth mentioning that we apply the
inertia law on tuples across time steps.

Semantic Distance between two tuples X =< Class, V alue1, Attribute1 >
and Y =< Class, V alue2, Attribute2 > represented by predicate dist(X,Y,N),
is the minimum number of semantically meaningful transitions N that can
lead from X to Y .

State Coherence for a tuple X =< Class, V alue,Attribute > is the number
of (ground) state constraints that are violated at a given time step T by
assuming that the identification of X is correct.

Considering our initial vocabulary, semantic distance is mainly concerned
with tuples of the form < posture, V,A > because for the other classes, each
sequence of values is admitted, therefore we have that the semantic distance is
equal to one for every possible sequence of triples where Class ∈ {heading,
motion}. Distances between triples that are related to class posture are sum-
marised in Table 2.

Source Tuple Target Tuple Condition Distance

< posture, P, V > < posture, P1, V > P1 6= P 1
< posture, P, V > < posture, P, V1 > V1 6= V 2
< posture, lay, V > < posture, sit, V1 > V1 6= V 2
< posture, lay, V > < posture, stand, V1 > V1 6= V 3
< posture, sit, V > < posture, X1, V1 > (V1 6= V) ∨ (X1 6= sit) 3

Table 2. Distances between tuples

As for state coherence, we define a set of constraints that are violated for
some combination of triples at a given time step. Let us consider our reduced
vocabulary of body movements described in Table 1, the state constraints we
define express the following concepts:

– a tuple of the form < posture, sit, Ap >, for any attribute Ap
2 in the domain

of sit is not coherent with tuples of the form < motion, Vi, Am > for any
attribute Am in the domain of the correspondent Vi and Vi ∈ {walk, open};

2 Note that in our notation, upper-case names refer to variables and have to be in-
stantiated over their domain.

Movement Recognition using Context: a Lexical Approach Based on Coherence 43

– in a similar way, a tuple of the form < posture, lay,Ap >, for any at-
tribute Ap in the domain of lay is not coherent with tuples of the form
< motion, Vi, Ai > for any attribute Ai in the domain of the correspondent
Vi and Vi ∈ {walk, jump, open}.

In the next section we illustrate how to reason about contextual coherence
to validate actions recognised by the lexicographic classification of movements.
Plausible sequences of actions are selected via optimization.

3.3 Movement Recognition: a Contextual View

The contextual validation of activities (or movements) is based on the definition
of properties of the activity identified by the underlying classification process.
In our solution, we identified two properties whose combination can determine
a direct validation or the need for a change in the classification.

Shortest Distance property at a given time step T considers a tuple At−1 that
has been validated at time T − 1 and verifies whether the new tuple At to
be validated at time T is in the set of possible tuples having distance 1 from
At−1.

State Coherence property at a given time step T for a tuple At holds whenever
all (100%) of the state constraints are satisfied by the validation of At

3.

When the vocabulary is extended or new sensor information is introduced,
we can easily re-define or extend the list of properties. An example can be the
introduction of localization information in the definition of coherence: to take
such information into account, we just have to introduce additional constraints
to be satisfied for the state coherence property.

As mentioned earlier in this section, a classification represented by a tuple
At =< Class, V alue,Attribute > can be associated to

– a valid status, identified by the fact that the logic predicate valid(At) holds
for At;

– a switched status, identified by fact that logic predicate switched(At, A
′
t)

holds for At, given that At has been identified at time step T (sensed(At, T))
but it has been switched to the movement identified by tuple A

′
t;

– an incomplete status, identified by the fact the the logic predicate
incomplete(At, A

′
t) holds for At, given that At has been identified at time

step T (sensed(At, T)) but a classification is missing between A
′
t and At;

Each classification for At can verify one, both or none of the contextual
properties used for validation at a given time step T .
3 Note that this is a simplified version of our formalization. In a more flexible version

of the reasoning process we want to consider different level of coherence given by
the percentage of constraits that are violated. This would allow to introduce further
optimization that will be discussed in a future extended version of this paper.

44 A. Mileo, S. Pinardi, R. Bisiani

In the trivial case, dist(At−1, At, 1) holds and At is state-coherent: the clas-
sification is validated and valid(At) becomes true.

Otherwise, we need reasoning to support the validation of the following sit-
uations:

1. dist(At−1, At, 1) holds and At is not state-coherent;
2. dist(At−1, At, N) holds for N > 1 but At is state-coherent;
3. dist(At−1, At, N) holds for N > 1 and At is not state-coherent;

The easiest way to validate the classification of At in situation 1., is to provide
acceptable sets of switched(Bt, B

′
t), Bt 6= At, s.t. At becomes state-coherent.

In the other situations, dist(At−1, At, N) with N > 1, and we have to deal
with the following two sub-cases:

a. ∃ A
′
t s.t. dist(At−1, A

′
t, 1) ∨ A

′
t is coherent at time T

⇒ At is an erroneous classification and plausible switches switched(At, A
′
t) are

derived such that valid(A
′
t) becomes true;

b. ∃/ A
′
t s.t. dist(At−1, A

′
t, 1) ∨ A

′
t is coherent at time T

⇒ a classification A∗ between At−1 and At could be missing, incomplete(At, A
′
t)

is derived and we can be in one or both of these scenarios:
• A∗, At are made state-coherent by switching appropriate tuples Bt, B 6= A,

such that valid(At) becomes derivable
• an error in the classification of At is assumed and state-coherence is computed

by switching At to A
′
t such that valid(A

′
t) becomes derivable.

ASP inference is based on a generate-and-test approach. Plausible classifica-
tions for an action are generated using a cardinality constraint and then checked
for state coherence and shortest distance. If the classification provided by the un-
derlying mechanism described in Section 2 is among them, the system validates
it. Otherwise, a different solution is proposed by switching one or more of the
movements in the sequence, or by supposing that the sequence is incomplete and
that some classifications are missing, or both, resulting in a lot of possibilities. In
a similar scenario, default reasoning, non-determinism, choice rules, constraints
and optimization via preferences plays a key role in devising effective deduction
strategies. For lack of space, we cannot illustrate how all these constructs are
used in the ASP encoding. A simple optimization criteria is based on the global
minimization of switched tuples, i.e. we prefer to assume incomplete sequences
rather than wrong classifications when this lead to a solution, but we can easily
change our preference in a declarative way.

4 Evaluation Phase

In this section we illustrate results of preliminary tests on the identification of
movements as non contextualized words of a body lexicon. Althought our machine
learning process gives acceptable results, once we reduce the number of sensors,
the error rate increases and misleading classifications cannot be identified. We
believe that the knowledge-based contextualization of sequences of movements
described in Section 3 can help reducing misinterpretations, although we need
further testing to estimate percentual reduction of error rate.

Movement Recognition using Context: a Lexical Approach Based on Coherence 45

4.1 Test Methods

Fig. 2. Confusion Matrix for Cosine Similarity (CS) with five sensors on NIDA and
WARD databases.

NIDA ‐ CS accuracy 95.23%  WARD ‐ CS accuracy 97.63% 

At first we created a Test-Set of twenty-one different actions called NIDA
1.0. (Nomadis Internal Database of Actions). The NIDA 1.0 database contains
movements acquired by the NOMADIS Laboratory of the University of Milano-
Bicocca. These acquisitions have been obtained using 5 MTx sensors positioned
on the pelvis, on the right and left wrist, and on the right and left ankle. NIDA
includes 21 types of actions performed by 7 people (5 male and 2 female) ranging
from 19 to 44-years-old, for a total of 273 actions. The complete list of actions
is the following:

1. Get up from bed. 2. Get up from a chair. 3. Open a wardrobe. 4. Open a
door. 5. Fall. 6. Walk forward 7. Run. 8. Turn left 180 degrees. 9. Turn right 180
degrees. 10. Turn left 90 degrees. 11. Turn right 180 degrees. 12. Karate frontal
kick. 13. Karate side kick. 14. Karate punch. 15. Go upstairs. 16. Go downstairs.
17. Jump. 18. Write. 19. Lie down on a bed. 20. Sitting on a chair 21. Heavily
sitting on a chair.

We also tested our methodology on a public database called WARD 1.0
(Wearable Action Recognition Database) created at UC-Berkeley [12, 13]. Ac-
quisitions have been obtained positioning 5 sensors on the pelvis, on the right
and left wrist, and on the right and left ankle. Each sensor contains a 3-axial

46 A. Mileo, S. Pinardi, R. Bisiani

accelerometer and a 2-axial gyroscope; magnetometers are not present. WARD
contains 13 types of actions performed by 20 people (7 women and 13 men)
ranging from 20 to 79-years-old with 5 repetition per action, for a total o 1200
actions. The list of actions can be found in [13].

4.2 Preliminary Analysis

We used a Leave One Out Cross Validation (LOOCV) method to test the ac-
curacy of the proposed method. The accuracy of the algorithms for the NIDA
database are: Ranking 89.74%, Euclidean Distance 95.23%, Cosine similarity
95.23%. The accuracy of algorithms using the WARD database are: Ranking
97.5%, Euclidean Distance 97.74%, Cosine 97.63% . We show the results of the
Cosine Similarity also in a synoptic way using a Confusion Matrix (see Figure 2).
In the columns the ground truth, in the rows the output of our classification al-
gorithm. Label definitions are given in the above paragraph.

Fig. 3. Confusion Matrix for Cosine Similarity on the NIDA database. Accuracy:
81.31% using only one sensor on the hip.

5 Discussion

We presented a hybrid approach to movement recognition by combining and
extending standard quantitative methods in a knowledge-based yet qualitative
framework. To this end, we took advantage of the knowledge representation and
reasoning capacities of ASP for providing semantic contextualization.

Although we have not discussed the encoding in detail, it allows for easy
customization and extensibility to a richer “lexicon” of movements. All in all, the
contextual support of the high-level ASP specification makes the major difference
of our approach to potential alternatives, and it seems hard to envisage in a
purely quantitative settings. This preliminary work is only a starting point.

Movement Recognition using Context: a Lexical Approach Based on Coherence 47

Future work will have to address more extensive and systematic experiments in
various simulated as well as real scenarios. The problem of segmentation of a
sequence of movements needs to be taken into account in order to evaluate the
true scalability of our approach.

References

1. Merico, D., Mileo, A., Pinardi, S., Bisiani, R.: A Logical Approach to Home Health-
care with Intelligent Sensor-Network Support. The Computer Journal (2009)
bxn074

2. Kleinsmith, A., Bianchi-Berthouze, N.: Recognizing affective dimensions from body
posture. In: ACII. (2007) 48–58

3. Castellano, G., Villalba, S.D., Camurri, A.: Recognising human emotions from
body movement and gesture dynamics. In: ACII. (2007) 71–82

4. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data.
In: Pervasive. (2004) 1–17

5. woo Lee, S., Mase, K.: Activity and location recognition using wearable sensors.
IEEE Pervasive Computing 1 (2002) 24–32

6. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing phys-
ical activities. In: Pervasive. (2006) 1–16

7. Dessere, E., Legrand, L.: First results of a complete marker-free methodology for
human gait analysis. In: IEEE EMBC 2005. (2005)

8. (http//www.xsens.com/)
9. Cameron, J., Lasenby, J.: Estimating human skeleton parameters and configuration

in real-time from markered optical motion capture. In: AMDO. (2008) 92–101
10. Okada, R., Stenger, B.: A single camera motion capture system for human-

computer interaction. IEICE Transactions 91-D(7) (2008) 1855–1862
11. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion

capture. Computer Vision and Image Understanding 81(3) (2001) 231–268
12. Pinardi, S., B.R.: Movement recognition with intelligent multisensor analysis, a

lexical approach. (2010) To appear.
13. Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human

actions using wearable motion sensor networks. Ambient Intelligence and Smart
Environments (2009) To appear.

14. Mntyjrvi J, Himberg J, S.T.: Recognizing human motion with multiple acceleration
sensors. (2001) 747–752

15. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid dis-
criminative/generative approach for modeling human activities. In: In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI. (2005) 766–772

16. Gerard Salton, A.W., Yang, C.: A vector space model for information retrieval.
Journal of the American Society for Information Science 18(11) (1975) 613–620

17. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

18. Syrjänen, T.: Lparse 1.0 user’s manual.
(http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz)

19. Gebser, M., Schaub, T., Thiele, S.: Gringo : A new grounder for answer set pro-
gramming. In: LPNMR. (2007) 266–271

48 A. Mileo, S. Pinardi, R. Bisiani

A Unifying Framework for Situation
Identification Methodologies

Olga Murdoch and Paddy Nixon

CLARITY: Centre for Sensor Web Technologies,
University College Dublin,

Ireland
olga.murdoch@ucdconnect.ie,paddy.nixon@ucd.ie

Abstract. Situation identification methodologies in pervasive comput-
ing aim to abstract low level context data into more meaningful high
level contexts for use by context-aware application developers and users.
Many situation identification techniques have been developed and suc-
cessfully applied to limited scenarios. It is not possible to apply a single
technique to a wide range of diverse applications. An ideal solution would
allow the combination and and interchanging of techniques as appropri-
ate. We propose a unifying framework for existing situation identification
methodologies that will automatically select the best techniques for an
application.

1 Introduction

Pervasive computing involves building highly responsive and self-adaptive sys-
tems which aim to increase the integration of technology into the fabric of ev-
eryday living [1] e.g., smart spaces. Context in pervasive systems comprises any
information that characterises the situation of any person, place, or object that
is considered relevant to the interaction between a user and an application [2].
Context data may be gathered from many sources including sensors deployed in
the environment (sensing light or sound levels for example), digital sources such
as calendar information, and static information such as a person’s name, date of
birth, etc. Sensors are inherently uncertain, providing an approximation of the
real world rather than truely reflecting the variables they sense. They also may
become damaged leading to inaccurate readings. This means that any action we
decide to take may be wrong or may be invalidated by new information [3].

Individually, context data does not yield much information about the envi-
ronment but when accumulated gives rise to higher-level contexts such as events,
activities and situations. A higher-level context is the interpretation of context
data, i.e., it describes a high level of abstraction in the environment in which the
sensors are deployed. We refer to this process as situation identification. There
is no general solution to the problem of situation identification for pervasive
systems. Existing research provides us with an insight into how situation iden-
tification techniques can perform with high accuracy for limited scenarios [7–9]

49

but it is not possible to utilise a single technique for a broad range of diverse
problems [4–6].

Research on situation identification methodologies for contextual systems is
still in its early stages. The relationship between techniques and their perfor-
mance given diverse context-aware applications is little understood. We propose
a decision framework for the selection of situation identification techniques by de-
termining the characteristics of distinct scenarios for context-aware applications
and how those characteristics relate to the performance of situation identifica-
tion techniques. This will form the basis for a design time automatic selection
tool whereby the most suitable situation identification techniques will be chosen
for the context-aware application developer based on a set of application specific
inputs.

We discuss related work in section 2. In section 3 we characterise applications
and describe their relationship to existing situation identification techniques. We
present the architecture for our framework in section 4. We conclude with a
summary of this research and an outline future work.

2 Related Work

2.1 Situation Identification Methodologies

Situation identification methodologies abstract low level context data into more
meaningful high level contexts. Many techniques have been developed and suc-
cessfully applied to specific scenarios.

A Bayesian network (BN) is a directed acyclic graph that can learn the
relationships between contexts. It is a probabilistic model allowing higher level
contexts to be inferred based on prior and conditional probabilities. Leaf nodes
in the graph represent sensed contexts and internal nodes and the root node
represent higher-level inferred contexts. BN’s have been used for device location
and activity recognition [12, 7] .

Neural networks have been used as a way to learn a mapping between
context data and higher level abstractions. They comprise a network of weighted
values and transfer functions used to derive output values. While they have
been proved useful in identifying links between contexts and abstractions such as
events or activities, they use a ”black-box” learning process which is hidden from
the user/application and developer. Applications of Neural networks include user
location detection [13] and activity recognition [8].

In Support Vector Machines (SVM) classification is performed by con-
struction of an N-dimensional hyperplane that seperates training samples. Qian
et. al., [14] use SVM’s to identify activities using video data.

Case Based Reasoning (CBR) is a way of solving new problems based on
previous similar solved problems. Each case consists of a problem (set of features
describing current state of environment) and a solution (correctly identified sit-
uation). CREEK is a case based reasoning architecture which has been used to
identify situations of hospital staff [10, 11] . Knox et al. [15] used CBR to identify
situations in a home environment.

50 O. Murdoch, P. Nixon

Hidden Markov Models (HMM) are probabilistic models consisting of
hidden and observable variables at specific time-steps. A HMM is a finite set of
hidden states whose transitions are governed by transition probabilities and each
state is associated with probability distribution. An observable outcome/evidence
can be generated from a hidden state according to its probability distribution.
HMMs have been used to infer user situations from wearable sensors [9] and for
recognising activities in the home [23].

Decision trees model decisions and consequences in order to predict an
outcome based on a set of input variables. They have been applied to activity
detection in [20] and [21].

Discussion Each of the described methodologies have been developed and
tested by researchers focusing on specific application areas. Despite techniques
successfully identifying situations in many of the evaluations performed, the
same technique may not perform as well given another application setup. Also,
techniques are not directly comparable unless identical evaluation setups and
datasets are used [17]. As previously discussed, it is not possible to take one
technique and solve the situation identification problem for a diverse range of
applications. An ideal solution would allow us to interchange techniques on de-
mand. Current research does not give a decisive description of what each tech-
nique is best at and what application characteristics they are best suited to.

2.2 Middleware and Frameworks

The fact that there is no one general solution to situation identification for
context-aware applications has been taken into account in some systems where
multiple techniques are employed. GAIA [4, 24] is middleware for context-aware
application development that supports the use of fuzzy logic, probabilistic logic
and Bayesian networks. A development framework is provided within which an
application developer can define rules and build a BN according to their needs.
Similarly the CAMUS middleware [5, 25, 26] supports the use of Bayesian, onto-
logical and rule-based reasoning about context data. Dargie [6] discusses the ben-
efits of incorporating multiple probabilistic situation identification techniques.
Making multiple techniques available to a developer is very beneficial since one
single technique will not meet every developers needs. Without decision aids the
context-aware application developer chooses situation identification techniques
based on intuition and experience. This is not an ideal solution.

Przybilski et. al., [18, 19] propose a reasoning framework for context-aware
applications. They suggest an architecture encorporating multiple situation iden-
tification (reasoning) techniques in order to support a more diverse range of ap-
plications. The focus of the work presented however, is on the distribution of
such a framework.

Discussion Research in situation identification does not identify the links be-
tween techniques and how and why they perform differently for diverse applica-
tions. A method for the automated selection of optimal situation identification

A Unifying Framework for Situation Identification Methodologies 51

techniques for applications has not, to our knowledge, been implemented or pro-
posed. Based on our research in the area an automated selection framework
for situation identification methodologies is needed but such a tool has not yet
been developed. We propose a unifying framework for existing situation identifi-
cation methodologies. We define the important characteristics of context-aware
application scenarios and use their relationship to the performance of situation
identification techniques as a basis for automatic technique selection. This will
allow a unifying framework to determine the situation identification technique(s)
that are best suited to the characteristics of a diverse range of applications.

3 Understanding the Relationship Between Applications
and Optimal Situation Identification Methodologies

To automatically select situation identification techniques we must first under-
stand the characteristics of context-aware applications. We must identify the
important characteristics that differentiate between applications and those that
will have an impact on how a situation identification technique performs. By
analysing evaluations of situation identification techniques over a range of sce-
narios we can begin to understand the links between scenario characteristics and
technique performance.

3.1 Application Characteristics

Previous research has catalogued context-aware applications in terms of the
types of context used (activity, identity, location, time) and context-aware fea-
tures of the application (presentation, automatic execution, tagging) [2]. For the
purpose of this research and based on analysis of existing context-aware applica-
tions and datasets we provide classifications on two levels, physical deployment
and specific application scenarios. We choose this level of separation as the phys-
ical deployment is relevant to all aspects of the application. On the other hand,
applications can often be split into independent tasks whose characteristics differ
greatly, so it is necessary to characterise such scenarios individually.

First however, we define types of context used in context-aware applications.
There have been other classifications used but in our version we expand on that
of Dey et. al., [2]. As well as identity, location and time, we also include de-
vice, environment, and user-profile. In our classification we have left out activity
since this is a more abstract concept. We use device to describe contexts re-
lated to specific objects, for example when state change sensors detect the use
of household appliances. By environment we mean the information sensed such
as temperature and light, and by user-profile we refer to information gathered
about the user from sources such as calendars, emails, or instant messengers.

Deployment Characteristics We define the important characteristics of an
application’s physical deployment. The number of sensors, types of sensors, num-
ber of users, and duration of annotated dataset (if any) differ greatly between

52 O. Murdoch, P. Nixon

Dataset Size Sensor Types Users Dataset

PlaceLab [22] 900+ heterogeneous 1 120h
CASL [15] 15 heterogeneous 3 5d

Van Kasteren [23] 14 State change 1 28d
Table 1. Application deployment characteristics

applications and deployments. This can be seen in table 1 where we characterise
three diverse datasets. While it may seem obvious how these characteristics dif-
fer between applications, they were also selected on the basis that they influence
the performance of situation identification techniques. For example, the size of
the deployment may lead to scalability issues for some situation identification
techniques.

Scenario Characteristics We also need to further dissect the application in
terms of the scenarios involved. A smart office application, for example, may
rely on the identification of high level situations such as meeting, presentation,
or coffee break. The contexts required for identifying the different situations in
an application vary. This can also be said for the same situation across differ-
ent applications where the physical deployment differs. We refer to these high
level situations and their application specific characteristics as scenarios. We
define the important characteristics of scenarios as frequency, duration, regular-
ity, and required contexts (Time, Location, Identity, Device, Application). We
illustrate this classification in table 2, using four scenarios that occur in the
PlCouple1PlaceLab dataset [22].

Scenario Frequency Avg. Duration Est. Regularity Req. Contexts

Eating 197 1.58 mins 4 times per day kitchen sensors, lo-
cation

Hygeine 38 3.05 mins 2 times per day bathroom sensors,
location

Watching TV 22 33.29 mins none tv sensor, location
Using Computer 132 19.24 mins 3 times per day computer sensor,

location
Table 2. Scenario characteristics example using Plcouple1 PlaceLab dataset

3.2 Relating Situation Identification Performance to Application
Characteristics

We have identified the evaluations by Knox et. al., [15, 16] as being one of the
most comprehensive in terms of comparing the performance of techniques us-

A Unifying Framework for Situation Identification Methodologies 53

ing diverse datasets. They evaluated the performance of Case Based Reasoning
(CBR), Naive Bayes (NB), Suppor Vector Machines(SVM), and C4.5 Decision
Trees (DT) in situation identification using three differing datasets. The Place-
Lab home dataset [22], the CASL office dataset [15] and the home dataset by
Van Kasteren et. al., [23]. The differences between these datasets can be seen
in Table 1. Since these techniques were evaluated using identical setups they
are directly comparable. We further analyse these evaluation results as a basis
for understanding the relationship between scenarios and situation identification
techniques.

The evaluation results presented show that one solution does not outperform
the others in all scenarios. By scenario we mean identifying a specific situation
given the characteristics of the dataset. By analysing these results in terms of
how each technique performed for each scenario we can begin to understand the
links between the physical characteristics and requirements of scenarios and how
this effects the performance of a technique for that scenario.

Technique Scenario F-Measure

CBR Eating+PlaceLab 0.39
DT Eating+PlaceLab 0.41
NB Eating+PlaceLab 0.0

SVM Eating+PlaceLab 0.0

CBR Watching TV+PlaceLab 0.46
DT Watching TV+PlaceLab 0.47
NB Watching TV+PlaceLab 0.73

SVM Watching TV+PlaceLab 0.65

CBR Go to bed + Van Kasteren 0.02
DT Go to bed + Van Kasteren 0.52
NB Go to bed + Van Kasteren 0.58

SVM Go to bed + Van Kasteren 0.63

Table 3. Performance of techniques for PlaceLab Scenarios. Taken from [16]

SVMs and NB performed very well in a limited number of scenarios that
occur frequently, i.e., have more available training data. This is illustrated in
table 3 where the performance in terms of f-measure is listed for each technique
for four scenarios. The first scenario identifies the situation where someone is
eating and the second identifies someone watching TV, both using the PlaceLab
dataset. From table 2 it is clear that there is many more instances of the eating
scenario compared to that of watching TV, but the watching TV scenario has a
much longer average duration meaning that there is more data relevant to that
scenario. This suggests that SVM’s and NB are better solutions for scenarios
that are longer in duration. Both techniques failed to identify any of the brief
scenarios in this from the PlaceLab dataset and this further demonstrates the
inability of a single technique to solve all problems.

54 O. Murdoch, P. Nixon

CBR and DT’s were identified as the most consistent techniques across
scenarios although CBR struggled to distinguish between similar scenarios in
some cases. The ”go to bed” situation from the Van Kasteren dataset relies the
context-type time to be identified. As can be seen in table 3 CBR is the only
technique that performed poorly for this scenario.Interestingly however, CBR
was by far the most successful in identifying the ”Prepare breakfast” situation
from the same dataset. This scenario relied on time and device contexts. This
demonstrates that CBR is not the optimal solution for solely time based sce-
narios. For scenarios where multiple contexts are available, and the scenario is
distinct from others, CBR performs well.

Discussion Analysis of the evaluations performed by Knox et. al., [16] shows
the relationship between the situation identification techniques and application
characteristics. Support Vector Machines and Naive Bayesian were identified
(out of the techniques in question) as being optimal solutions for scenarios that
have long lasting durations where there is more training data. They should be
avoided however for brief scenarios as they often fail to identify the situation at
all. Case Based Reasoning was shown to perform well for scenarios that involve
multiple context types, but poorly for scenarios that were solely time based.
Case Based Reasoning also struggles to distinguish between similar scenarios.
These evaluations have given us an initial insight into how the characteristics of
applications relate to the performance of situation identification techniques. This
understanding forms the basis for a profile of situation identification techniques
which we will use in order to automatically select the most suitable solutions.

4 Architecture: Unifying Framework for Existing
Situation Identification Methodologies

Our architecture aims to provide a decision framework for the selection of sit-
uation identification techniques on the behalf of the developer. It is divided
into three layers as illustrated in figure 1. The developer layer supports appli-
cation specific inputs by providing templates to be filled in by the developer.
These templates are based on the important characteristics of application de-
ployments/scenarios defined in section 3.1. This layer also displays the output
from lower layers, i.e., the recommended situation identification technique(s).
The decision layer contains the logic for selection of technique(s) from the sit-
uation identification layer, based on the application profile. We describe these
layers in more detail using a smart home application example.

4.1 Developer Layer

The deployment template supports the input of information unique to the phys-
ical deployment for the application. The required information may be provided
as domain knowledge, e.g., information provided from the proposed user of the
system, and/or from datasets gathered from the deployment.

A Unifying Framework for Situation Identification Methodologies 55

Fig. 1. Architecture of a unifying framework for situation identification methodologies

In our smart home example the deployment consists of 30 state change sen-
sors attached to household objects and 5 location sensors monitoring the users
movements throughout the house. The state change sensors are present in the
kitchen, living room and bathroom. There is a dataset with 100 hours of anno-
tated data available.

<Deployment name = "Case Study Deployment">
<Characteristics>

<Size = "40" />
<SensorTypes = "statechange, location" />
<NumParticipants = "1" />
<DatasetDuration = "100h" />

</Characteristics>
</Deployment>

Scenario templates support the input of scenario specific characteristics.
These characteristics have been chosen as they have been shown in previous
evaluations to have a connection with the performance of specific situation iden-
tification techniques. Using the scenario templates, the developer describes each
of the scenarios that need to be identified in the application. This information
comes from domain knowledge and/or training data. Training data can also be
used to validate any manually entered domain knowledge.

We describe three common scenarios for home applications, eating, hygiene,
and gone to bed. Watching TV occurs about once every two days lasting 30
minutes on average, there is no pattern to it’s occurrence and the contexts it relies

56 O. Murdoch, P. Nixon

on are location and device. Gone to bed lasts 8 hours on average, usually occurs
once daily between 11pm and 1am and relies on location and time contexts. The
eating scenario template is illustrated below:

<Scenario name = "Eating" >
<Characteristics>

<AverageDuration = " 10m" />
<ExpectedFrequency = " 2/1d " />
<Regularity = "~9am, ~6pm " />

</Characteristics>
<ContextTypes>

<Location = "yes" />
<Time = "yes" />
<Identity = "no" />
<Device = "yes" />
<Application = "no" />

</ContextTypes>
</Scenario>

The reasoning profile displays the output of the decision framework to the
developer. The situation identification technique(s) selected will be presented to
the developer illustrating which scenario(s) each technique is most suited to. We
give an example of this output after describing the decision making process.

4.2 Decision Layer

The application profile component combines information provided in the de-
ployment and scenario templates and builds a profile for the application as a
whole. Here, scenarios and relevant deployment characteristics are analysed and
grouped according to the characteristic similarities and contextual similarities.
This step allows us to identify similar scenarios which can prove difficult to iden-
tify for some situation identification techniques. This was shown to be an issue
for Case Based Reasoning for example. This profile will serve as a more concise
description of application characteristics for use by the decision logic.

Based on the application and technique profiles, the decision logic component
selects technique(s) based on their ability to effectively perform situation identi-
fication for the application as a whole, i.e., the applications physical and scenario
specific characteristics. For example, a scenario may rely on context from sensors
that are prone to error/failure such as environmental sensors. This needs to be
accounted for in the decision making process. The selected technique should be
able to identify such a situation while managing the uncertainty of the data.
Techniques that can not manage a particular scenario’s characteristics with the
training data available are ruled out for that scenario, but not for others.

A profile of the relevant situation identification technique(s) is built incre-
mentally by the recommended reasoning techniques component. This again is

A Unifying Framework for Situation Identification Methodologies 57

assessed by the decision logic component, reducing the number of techniques
available based on the similarities of scenarios. In order to prevent the recom-
mendation of an unnecessarily large number of techniques the decision logic
component analyses the trade-offs between techniques, recommending as few
techniques as possible while maintaining an optimal solution. The complete rec-
ommendation forms the basis for a reasoning profile in the developer layer. The
final reasoning profile is presented to the developer via the reasoning profile in
the decision layer, illustrating the grouping of similar scenarios and the optimal
solutions for each group. The following is a sample output for our smart home
example.

<ReasoningProfile>
<RecommendedTechnique name = "Case Based Reasoning">

<Scenario name = "Watching TV" />
</RecommendedTechnique>
<RecommendedTechnique name = "Support Vector Machines" >

<Scenario name = "Eating" />
<Scenario name = "Gone to bed"/>

</RecommendedTechnique>
</ReasoningProfile>

4.3 Situation Identification Layer

This layer contains the situation identification techniques employed by the frame-
work and a profile of each. Techniques are grouped according to their previously
discussed capabilities and may belong to more than one group. It is important
here, to allow for additional techniques to be added to the framework as they
become available. The technique profiles provide a description of the strengths
and weaknesses of each technique.

5 Summary and Future Work

Situation identification techniques are limited in terms of the variety of applica-
tions they can be successfully applied to. We identified an ideal solution to be
one where techniques can be interchanged according to application needs. We
characterised applications in terms of their deployment and scenario characteris-
tics. We analysed evaluations of situation identification techniques in relation to
these characteristics and gave an initial description of the relationship between
application scenarios and how the applied techniques perform. We proposed a
unifying framework that automatically selects the most suitable combination of
techniques for a given set of application characteristics. It is argued that a uni-
fying framework will support a single development platform for a diverse range
of context-aware applications.

While we used a smart home example to illustrate the workings of our archi-
tecture the framework aims to be accessible to a diverse range of applications.

58 O. Murdoch, P. Nixon

Our initial evaluations analysis identified some relationships between techniques
and the scenarios they are applied to. We will perform further evaluations fo-
cussing on diverse scenarios in order to identify further the characteristics (and
combinations of characteristics) that affect the performance of situation identi-
fication techniques. We also intend to include application requirements into the
decision making process. Until now we assume that all scenarios simply require
the best solution available. Realistically however, some scenarios may be safety
critical and as such may require the combination of techniques used in that sce-
nario in order to reach a satisfactory level of certainty. While our current aim is
to gain a greater understanding of the technique-scenario relationships, it would
also be interesting to apply machine learning to the decision making process in
order to learn optimal solutions. The recommended reasoning techniques from
this architecture have been described using XML. The presentation of such out-
put to the user, illustrating the benefits of one technique over the others for
particular scenarios, will be further investigated.

References

1. M. Weiser, The Computer for the 21st Century, Scientific Am., pp. 94- 104. (1991)
2. Dey, Anind K. and Gregory D. Abowd (2000b). Towards a better understanding

of context and context awareness. In the Workshop on the What, Who, Where,
When and How of Context-Awareness, affiliated with the 2000 ACM Conference on
Human Factors in Computer Systems (CHI 2000), The Hague, Netherlands. April
1-6, 2000

3. Simon Dobson and Paddy Nixon. Whole-system programming of adaptive ambient
intelligence. In Proceedings of HCI International. LNCS. Springer-Verlag. Beijing,
CN. 2007.

4. Anand Ranganathan, et al. A Middleware for Context- Aware Agents in Ubiquitous
Computing Environments, USENIX International Middleware Conference, 2002.

5. Truong BA, Lee Y-K, Lee S-Y (2005) Modeling and Reasoning about Uncertainty in
Context- Aware Systems. IEEE International Conference on e-Business Engineering
2005: 102-109.

6. H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Du-
man. Creating an ambient-intelligence environment using embedded agents. IEEE
Intelligent Systems, 19(6):12-20, 2004.

7. Panu Korpipaa, Miika Koskinen, Johannes Peltola, Satu-Marja Mkel, and TapioSep-
panen. Bayesian Approach to Sensor-Based Context Awareness, Per- sonal and
Ubiquitous Computing J., vol. 7, no. 4, 2003.

8. L. R. Rabiner and B. H. Juang, An introduction to hidden Markov models, IEEE
Acoust., Speech, Signal Processing Mag., pp. 4-16, Jan.1986.

9. Englebienne VanKasteren, Noulas and Krose. Accurate activity recognition in a
home setting. In In Proceedings of Tenth International Conference on Ubiquitous
Computing, South Korea, September 2008.

10. Kofod-Petersen, A., and Aamodt, A. 2009. Case-based reasoning for situation-
aware ambient intelligence: A hospital ward evaluation study. In ICCBR, 450464.

11. Cassens, J. and Kofod-Petersen, A. (2007b). Explanations and case-based rea-
soning in ambient intelligent systems. In Coyle, L. and Schwarz, S., editors, Case-
Based Reasoning and Context-Awareness, The Seventh International Conference on

A Unifying Framework for Situation Identification Methodologies 59

Case-Based Reasoning (ICCBR 07), Workshop Proceedings, pages 167176, Belfast,
Northern Ireland. University of Ulster

12. P. Castro, P. Chiu, T. Kremenek, R. Muntz. A Probabilistic Room Location
Service. Proceedings of Ubicomp 2001: Ubiquitous Computing. Atlanta, Georgia,
September 2001.

13. Randell, C., Muller, H., Context Awareness by Analyzing Accelerometer Data,
Fourth International Symposium on Wearable Computers (ISWC’00), p. 175-176,
Atlanta, Georgia, October 18 - 21, 2000.

14. Huimin Qian, Yaobin Mao, Wenbo Xiang, and Zhiquan Wang. Recognition of hu-
man activities using svm multi-class classifier. Pattern Recogn. Lett., 31(2):100111,
2010.

15. Stephen Knox, Lorcan Coyle and Simon Dobson. Using ontologies in casebased
activity recognition. In Proceedings of the 23rd International Conference of the
Florida Artificial Intelligence Research Society (FLAIRS- 23). Daytona Beach, FL.
May 2010.

16. S. Knox, Combining Case-Based Reasoning and the Semantic Web in Recognising
Situations. PhD thesis, University College Dublin, School of Computer Science and
Informatics, 2010

17. Juan Ye, Lorcan Coyle, Susan McKeever and Simon Dobson. Dealing with activ-
ities with diffuse boundaries. In Proceedings of the Workshop on How to do good
activity recognition research: Experimental methodologies, evaluation metrics and
reproducility issues at PERVASIVE 2010. Helsinki, FI. May 2010.

18. Michael Przybilski, Petteri Nurmi, Patrik Floren: A Framework for Context Rea-
soning Systems Proceedings of the 23rd IASTED International Conference on
SOFTWARE ENGINEERING (SE 2005), pages 448 - 452

19. P. Nurmi, P. Floren, M. Przybilski and G. Linden, A Framework for Distributed
Activity Recognition in Ubiquitous Systems In proceedings of the International
Conference on Artificial Intelligence (ICAI ’05), pp. 650 - 655, Las Vegas, 27 - 30
June, 2005.

20. Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Littman. Ac-
tivity recognition from accelerometer data. In AAAI, pages 1541-1546, 2005.

21. L. Bao and S. Intille. Activity Recognition from User-Annotated Acceleration Data.
Proc. Pervasive, 1-17, Vienna, Austria, 2004.

22. B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. S. Intille. A long-term
evaluation of sensing modalities for activity recognition. In Ubicomp, pages 483500,
2007.

23. T. van Kasteren, A. Noulas, G. Englebienne, and B. Krose. Accurate activity
recognition in a home setting. In UbiComp 08: Proceedings of the 10th international
conference on Ubiquitous computing, pages 19, New York, NY, USA, 2008. ACM.

24. Hung Q. Ngo et al: Developing Context-Aware Ubiquitous Computing Systems
with a Unified Middleware Framework. In Proceedings of the EUC 2004: 672-681.

25. B. A. Truong, Y.-K. Lee, S.-Y. Lee: Modeling Uncertainty in Context-aware Com-
puting. 4th Annual ACIS International Conference on Computer and Information.
Science (ICIS05)

26. Waltenegus Dargie. The role of probabilistic schemes in multisensor contextaware-
ness. IEEE International Conference on Pervasive Computing and Communications
Work-shops, pages 27 32, 2007.

60 O. Murdoch, P. Nixon

Mental Models of Disappearing Systems:
Challenges for a Better Understanding

Felix Schmitt, Jörg Cassens, Martin C. Kindsmüller, and Michael Herczeg

Institute for Multimedia and Interactive Systems
University of Lübeck

23538 Lübeck, Germany
{schmitt|cassens|mck|herczeg}@imis.uni-luebeck.de

Abstract. In this paper, we describe our current research concerning
users’ mental models of what can be called “disappearing computer sys-
tems”. This notion comprises computer systems, applications, and ap-
pliances related to ubiquitous, pervasive, or ambient computing which
blend more or less seamlessly into the users’ natural environment. Mental
models enable users to formulate expectations about which interactions
with the system are possible and how the system will react to certain
interactions. Disappearing computers lack certain cues regarding the in-
ner workings of the system. We thus hypothesize that the mental models
users build of such a system will show defects and inaccuracies that are
directly related to the distributed character of interface and interaction.
Our current research aims at identifying the nature of these defects, un-
derstanding their effects on human computer interaction, and developing
means of avoiding them through appropriate design of both user interface
and underlying system. For this purpose, we are developing an ambient,
context aware computing framework with which we generate and test
hypotheses in an action research paradigm. One of its components will
be described along with possible future additions. The theoretical foun-
dation of our work lies in such diverse fields as systemic functional theory
of language, activity theory, and cognitive science approaches to mental
models.

1 Introduction

The computer as we know it, namely as a box equipped with monitor, key-
board, and mouse, is appended with systems that are not easily identifiable as
computer systems. For the last three decades, these boxes have become an in-
creasingly important part of most peoples’ everyday life in work, education, and
leisure, and the exploding feature sets of modern Personal Computers have in
practice turned them into the “universal machines” that they were theoretically
from the very beginning. But for some ten years now, another tendency can be
observed. The Personal Computer as a single, distinct, and discrete information
processing device is being augmented and partially supplanted. Advances in sil-
icon circuitry and wireless data transmission technologies have made it possible
to put more processing power, storage space, and communication interfaces in

61

ever shrinking devices, which in turn leads to the transformation of formerly
analog or mechanical, unconnected devices into computer-enhanced, connected
systems.

1.1 Disappearing Computers

These recent developments that usually go by the name of pervasive or ubiqui-
tous computing have been the object of extensive scientific and public discourse
(cf. [15,25,29]). The interconnections between these miniature computers form
a sort of meta-computer that is spatially (and temporally) spread across poten-
tially large areas: instead of a single computer serving a single person we now
have several computers serving one or several persons.

In addition, instead of utilizing distinct user interfaces, such as screens, key-
boards, and mice, they are often embedded into other artifacts, and any interac-
tion with any such artifact becomes interaction with the computer. To capture
these changes, the term ambient computing was coined. The term ambient in-
telligence describes the ability of systems to become more proactive and make
assumptions about their surroundings or their users on their own accord [7].

For the purpose of this paper, all computer systems that can be named
under either of these terms (ubiquitous, pervasive, or ambient computing) share
one important property: partial or complete invisibility. Such systems do not
appear as distinct and discrete computers as the PC once did. Instead, they
vanish within the artifacts they are embedded in. They usually also do not
have the prominent and familiar in- and output devices for user interaction
that PCs have. So it is not only the physical box that is disappearing, but also
the interaction with the system. Formerly, human-computer interaction took
place at one particular place, namely at one’s desk, and at a particular point
in time, namely when one typed on the keyboard or used the mouse to point
and click. With disappearing computers, the artifacts and events shaping the in-
and output of the system are not necessarily recognizable as interfaces of and
interaction with computer systems.

In summary, these are the reasons why we speak of disappearing computer
systems (cf. Norman [20]). The twofold disappearance of computers raises nu-
merous questions with regard to the design principles of their user interfaces and
the way the inner working mechanisms of the system are conveyed to the user.
Section 2 below will outline our thoughts on this topic.

1.2 Mental Models

In virtually all situations in everyday life, people rely on mental models of rele-
vant aspects of the world in order to evaluate the situation, plan their actions,
and formulate expectations of the outcome of these actions [19]. Literature re-
veals that different domains have different definitions of mental models and have
established a wide range of theories about how these models are built, chosen
to fit a particular situation, and made use of [23]. In their comprehensive review

62 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

of literature dealing with mental models, Rouse and Morris [23] deliver a func-
tional definition of mental models that is well suited for the needs of designers of
complex systems: “Mental models are mechanisms whereby humans are able to
generate descriptions of system purpose and form, explanations of system func-
tioning and observed system states, and predictions of future system states”.
It is repeatedly shown that mental models can be extremely complex and are
individual to the respective person, since they are usually elaborated over time
and linked to other mental models and knowledge about the world (cf. [11,30]).

This leads to three main characteristics of mental models (cf. Dutke [8])
that must be taken into account when using them to assess the usability of
disappearing computer systems.

1. Mental models are never complete or exhaustive when compared to the real
world. There are always more details to include in the model, and this re-
finement seems to be limited only by the trade-off between the model’s com-
plexity and its useful applicability in actual situations.

2. Mental models are resistant to changes. This is basically due to the fact
that changing existing models requires learning effort, and thus there is a
trade-off between this effort and the perceived usefulness of the resulting
improvement of the mental model.

3. Mental models are unstable, since people tend to forget details of their once-
acquired mental models over time.

Norman [19] summarizes that “most people’s understanding of the devices they
interact with is surprisingly meager, imprecisely specified, and full of inconsis-
tencies, gaps, and idiosyncratic quirks”. And, we would like to add, it is the
foremost duty not only of user interface designers, but of system engineers as
well, to account for these quirks and build their systems to deliver an untroubled
user experience. How this can be done is the subject of our current research.

2 Understanding and Shaping Mental Models

We have recently begun working on the topic of mental models in users of dis-
appearing computer systems, because this class of systems raises questions that
cannot be answered satisfyingly with current theories of mental models. Our ap-
proach is twofold. On the one hand, we address the analysis of the mechanisms
which affect the building of mental models in such users. On the other hand,
we aim at identifying design principles that foster development of useful and
adequate mental models.

Research on ambient and context aware systems needs to address differ-
ent levels of scientific insight. On the one hand, the concepts of “context” and
“awareness” need to be explored, as they form a crucial part of our understand-
ing of the situatedness of a user’s perception and use of disappearing computer
systems. On the other hand, building upon this theoretical foundation, we also
need real ambient systems with which we can test our hypotheses, derive new
ones, and explore the regularities of various facets of human-computer interac-
tion in this domain.

Mental Models of Disappearing Systems: Challenges for a Better Understanding 63

2.1 Challenges for Mental Models of Disappearing Systems

The functionality of disappearing computer systems as described in the Intro-
duction is often achieved by collecting a large variety of data via distributed
sensor nodes. Often this data is also (pre-) processed and the results are de-
livered back to the user in a distributed way. Our research concerns primarily
systems that become more proactive and learn, often referred to as ambient in-
telligence. Ducatel and others [7] give a definition of ambient intelligence: At the
core of an ambient intelligent system lies the ability to appreciate the system’s
environment, be aware of persons in this environment, and respond intelligently
to their needs.

We postulate that challenges to the development of suitable mental models
for ambient intelligent and disappearing computer systems emerge along two
dimensions:

First, the environment and artifacts become the interface, with the difficulty
of exhibiting suitable affordances for its use. For traditional computer systems,
it is considered good practice to provide good affordances, that is to provide
interaction possibilities that are readily perceivable by a user [21]. This becomes
difficult when artifacts in the environment are charged with additional function-
ality. For example, Bob might usually take a bowl of muesli in his lunch breaks.
Taking this bowl and going out of the office can now be perceived by an ambient
system as a sign that Bob is having a break, thus overloading the bowl with
additional functionality. It is not obvious how this function of the bowl can be
easily communicated to the user.

Second, as the technical system becomes proactive, it might produce new and
surprising results, or change itself as well as the environment, possibly without
direct user interaction. For example, if one of Bob’s meetings takes longer than
expected, an advanced ambient system might re-schedule Bob’s later appoint-
ments without disturbing the current meeting. This is the classical problem of
traditional, non-ambient artificial intelligent systems. A promising way to deal
with this challenge is to provide explanations about actions taken and reasoning
performed [17].

Ambient intelligent systems face challenges on both dimensions at the same
time: the aforementioned muesli bowl is now only one part of the sensor network,
and its absence or presence might or might not be taken into account to decide
whether Bob is having a break, all depending on other sensor data and system
states. This function of the bowl has to be communicated to the user, but there
is no easy way to deliver explanations: probably, there are no classical interfaces.
Even if there were, using them would mean that the artifact immediately looses
its ambient character.

2.2 Theory Construction

With regard to the theoretical foundations of our work, we draw from recent
work in context awareness [12], explanation awareness [4,13], and theories of
ambient user interface design [5].

64 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

Our take on disappearing systems as having some form of artificial intel-
ligence forms the backdrop for exploring methods to better understand how
mental models of such systems are formed, what influences their shaping, and
for formulating methods to use the understanding gained to support the devel-
opment process of ambient intelligent systems.

To achieve this, we make use of theories from the fields of cognitive science,
human-computer interaction, psychology, sociology, and linguistics. The specific
theoretical frameworks we draw on are, first and foremost, activity theory [14]
and the systemic functional theory of language (SFL) [10], a social semiotic
framework.

A major problem with research of this nature, research which attempts to
integrate theories from diverse areas of practice, is the perception that there
are very different underlying philosophies. This is of particular importance when
trying to integrate the strengths of theories for the purposes of solving real world
problems. Both activity theory and SFL have been used in the field of ambient
intelligence and explanation awareness [4,28,31].

Following Carley and Palmquist [3], who have examined mental models from
a symbolic, language perspective, we utilize SFL to understand how users’ mental
models are formed. We deem SFL particularly useful because it looks at language
in a very general sense as a means of interaction. We interact not just with each
other, but with our own constructions and with our natural world, and this
interaction is inherently multimodal [9]. Another perspective on mental models
in relation to language is given by van Dijk’s [6] theory of mental and context
models. Van Dijk himself is influenced by SFL and episodic memory as proposed
by Schank [26].

But our mental models are not only shaped by acts of communication, they
are also construed by our acting on and with artifacts. Therefore, in our re-
search, we explore to which extent it is possible to relate a semiotic approach
to activity theory. Bødker and Andersen have outlined some properties of a
socio-technical approach taking advantage of ideas from both theoretical frame-
works [2], and we would like to extend this to cover specific aspects of SFL and
cultural-historical activity theory (CHAT, cf. [18]). This will potentially lead to
a richer understanding of the different aspects of mental models as both result
and prerequisite of communication and of manipulation of artifacts.

2.3 Empirical Evaluation

Our primary scenario for the empirical part of our work is that of an ambient,
intelligent system aimed at facilitating cooperation and mutual awareness in
work teams (cf. Sect. 2.4). We chose this scenario since, due to the system’s dis-
tribution in time and space, the users’ interaction with the system’s intelligent
functions will partly be implicit. That means that the system might, for exam-
ple, change users’ interruptibility status or spatial location information without
being told to do so by explicit user interaction or without direct announcement
of such changes to its users. The system should also be able to infer correct
information even from incomplete or inconsistent source data. This reasoning

Mental Models of Disappearing Systems: Challenges for a Better Understanding 65

capability requires a large amount of data from various sources, aggregated and
processed into a knowledge model, and suitable inference mechanisms. Even if
we expect the system to draw the correct inferences, it seems obvious that the
system would need some kind of explanation component in order to make clear
to the user why a specific decision has been made. In particular, what peculiari-
ties in the data set or reasoning mechanism have led to a different decision than
in a previous, albeit superficially similar situation [4].

In a system with sufficiently high complexity and numerous data sources to
be useful for real-life tasks, simply printing out the chain of firing production
rules or best-matched cases on a screen would surely confuse the user more than
it would help [16] as well as if, e.g. a neural network or other subsymbolic system
was part of the decision process, this display of the reasoning trace would either
not be possible at all or very difficult. Thus, it is of great importance for the
usability of ambient computer systems that they are able to explain themselves
in an unobtrusive, yet comprehensive and sufficiently detailed way. How this can
be achieved is subject to our current research.

2.4 The MATe Framework

The MATe system is a family of appliances, client- and server-based software
that aims at improving situation awareness in work teams. The acronym MATe
stands for “Mate for Awareness in Teams”. The system is designed to blend
seamlessly with the team members’ everyday routine, enabling unobtrusive in-
situ interaction and facilitation of cooperation and communication. Currently,
MATe consists of several components (see Fig. 1), which we will briefly describe,
and is being implemented at our institute.

Fig. 1. MATe: Architectural Overview

66 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

AwarenessHub. The AwarenessHub is the central service to which all other
components connect. It handles all communication among the components and
takes care of the correct routing of messages and the appropriate processing of
different pieces of information. Technically, the AwarenessHub is implemented
as a client which can connect to any instant messaging server using the Extensi-
ble Messaging and Presence Protocol (XMPP1). It has all other components of
one specific MATe installation in its contact list and can thus exchange XMPP
messages conforming to the MATe protocol specification with them.

Since it is not guaranteed that the information available to the AwarenessHub
will be consistent at all times, a component for resolving conflicting status in-
dications is needed. It might be that a user forgot his keys in someone else’s
office, but went out for lunch anyway, while not having corrected a calendar
entry concerning a meeting with another colleague. MATe should be able to de-
duce reliable information about the users’ current status and spatial position by
applying appropriate reasoning techniques to all available source data.

In addition, the AwarenesHub will feature reasoning capabilities to induce the
current interruptibility status of MATe users. MATe’s reasoners and necessary
ontologies are currently under development [24] and will vastly improve the
MATe system’s usefulness in actual field use.

DoorPlate. The DoorPlate is the component which offers the most compre-
hensive interface to MATe and thus requires special consideration regarding the
user interface design. Every team member using MATe has a DoorPlate on his
office door. It serves numerous functions: First, it displays the usual information
found on door plates, such as room number and the occupant’s name. Second, it
conveys information about the occupant’s current status to visitors, i.e. whether
he is present or absent, and, in the former case, whether he agrees to be disturbed
by visitors or not. Third, if the person is not interruptible, visitors can leave one
of several predefined messages via the DoorPlate’s touch screen. Fourth, the oc-
cupant of the room can use the touch screen to set his status and view messages
in case there are any.

Desktop PC. For convenient interaction with the MATe system, users find a
desklet on their computer screen. It allows the user to check the current status
of his colleagues, set his own interruptibility status, and read and send messages
to other users. Basically, the desklet offers the same functionality as the Door-
Plate right at the user’s workplace. In addition, the user can spawn a web-based
interface for setting up the desired information channels and configuring privacy
settings, i.e. which colleagues should be able to access which information about
his status and current spatial position.

DropZone. The DropZone is an ambient frontend to the MATe system, which
tracks the presence of users in the room it is installed in (e.g. personal office,
1 http://xmpp.org/

Mental Models of Disappearing Systems: Challenges for a Better Understanding 67

conference room, laboratory). Users carry a token, and, when entering the room,
put this token inside the DropZone. A small software program then reads the
token and signals the respective user’s presence to the AwarenessHub. There is
no back channel. The DropZone is implemented using optical markers in combi-
nation with an ordinary consumer-grade web cam.

Optical Recognition. Since the DoorPlate is currently based on an embedded
ARM platform focused at low electrical power consumption, local computing
power is also weak. With regard to the DropZone, computing power is readily
available in modern desktop PC systems. But our intention is to keep MATe’s
impact on the users’ usual working routine as low as possible, which includes the
performance of their desktop application software. For both reasons, we opted
for a server side component for the optical marker recognition.

Gateways. Several other services can be accessed via a gateway to the MATe
XMPP server. For example, the SMS gateway is a server side component, which
is able to send and receive short text messages via the HTTP interface of com-
mon HTTP-to-SMS providers. These messages must follow a very simple syntax
and may either communicate status changes to the AwarenessHub or request in-
formation from it. Incoming text messages are parsed, converted to appropriate
XMPP packages, and forwarded to the AwarenessHub, while outgoing XMPP
messages are recoded to short natural language sentences and sent to the user’s
mobile phone. Likewise, the user can communicate with MATe via his instant
messaging client.

Our plan is to include other services as well, for communication outwards
and as additional sensors. For example, micro blogging sites like Twitter can be
used for status updates, or a user’s calendar can be accessed via an appropriate
protocol. Future planned enhancements include a mail gateway with rudimen-
tary natural language understanding capabilities so that MATe can make use of
implicit information contained in mails between co-workers.

2.5 Methods

For some time now, our research group has been developing hardware appliances
and software systems with which we intend to test our hypotheses as well as
develop new ones, and derive design principles for ambient and context aware
computer systems. One of these systems has been described in Sect. 2.4 above.
Further on, our research group’s expertise in alternative user interfaces and
interaction devices enables us to try out different ways of communicating the
systems’ output and reasoning to their users. With several multi-touch tables,
3D projection systems, and a diverse array of wearable devices at hand, we are
exploring new representations of our systems’ states and processes in a variety
of usage contexts.

In addition, besides MATe, several new systems are under development which
will further add ambient and contextualized capabilities. In this sense, the re-
search on mental models is a kind of action research: our hypotheses are derived

68 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

from the existing literature, they are put to the test on existing systems, and
adapted to suit the empirical findings. The changed hypotheses will then lead to
a revision of our development models, before systems built with the according
to changed principles will be tested again to confirm or challenge our reformed
hypotheses.

The experimental settings with which we intend to test our hypotheses are
designed to fit the MATe system. One of MATe’s functions is to convey the user’s
current interruptibility status to colleagues and visitors, that is, whether it is
acceptable to disturb the user. This information will be displayed on the user’s
DoorPlate, but can also be accessed via Desktop PC applications, by querying
the AwarenessHub via the SMS Gateway or an automatically generated Twitter
announcement. MATe can obtain the data from which this status information is
derived from different sources. These sources can be categorized with regard to
the challenges outlined in Sect. 2.1 above.

– A button press in the desktop PC application or on the DoorPlate categorizes
as an explicit interaction. The effect of this interaction is also explicit and
thus can be looked at with the usual methods of HCI and usability studies.

– Setting one’s interruptibility status by taking a muesli bowl to the lunch
room is an implicit interaction. It is a voluntary and conscious action, but
the user has to learn that it effects his interruptibility status.

– Automatically setting the user’s interruptibility status according to his cur-
rent use of application software on his PC or his typing behavior counts as an
implicit interaction. The system’s input does not depend on any voluntary
and/or conscious action by the user, and the effects of each action by itself
are not obvious.

These different interactions will be evaluated with the help of several scenarios.
Typical for the use of MATe is the following situation: Alice is in the library
reading a paper, while Bob would like to go out for lunch. Usually, he would
have to search the institute for several minutes to find Alice in the library. He
then would approach her to ask about lunch, thus interrupting her concentration
on the paper. With MATe’s assistance, Bob will not have to search for Alice,
but he will know where to find her after a quick glance at his PC’s screen or
Alice’s DoorPlate. At the same time, MATe will have inferred that because Alice
is in the library, but has not typed on her laptop’s keybard for some time, she
is probably reading and not to be disturbed. Bob can then decide to wait for
Alice, to leave without her, or to interrupt her anyway.

Several methods for data collection are currently under evaluation. Since
users’ mental models are usually complex and difficult to extract (see Sect. 1.2),
let alone to interpret and evaluate, research methods suitable to cope with these
properties are needed. Established methods from cognitive psychology and us-
ability engineering do not seem to fit our needs because they are created to
measure the deviation of the mental model of the user from the conceptual
model of the target system. Due to the fact that the system image [19] of a dis-
appearing computer cannot easily delivered by affordances of the user interface
the system image has to be actively constructed by the users. Therefore we have

Mental Models of Disappearing Systems: Challenges for a Better Understanding 69

to employ methods of elicitating these constructed system images and mental
models from the users. This will be done by qualitative user interviews (see,
e.g., [1]) and a newly adopted version of the structure-formation-technique by
Scheele and Groeben [27] using concept maps (cf. Novak and Cañas [22]) drawn
by the users of the MATe system. We plan to collect these data at several times
during the prolonged usage of the system in an everyday office context. Besides
primary tests at our research group, we will continuously evaluate other options
for field tests to ensure that our user base is comprised of persons with different
levels of expertise.

2.6 Future Enhancements

Although MATe already makes a valuable framework for the empirical testing
of our theoretical work and also for the explorative research that helps generate
new hypotheses, we plan to extend this framework to include other services and
devices which we believe will help us to understand certain aspects of the field
better and gain additional data sources for those components that already exist.
Since mobile computer systems and thus also mobile human computer interfaces
are present in most peoples’ lives, we would like to cover mobility and mobility-
related computer systems with our framework.

One attempt we are currently making to this end is the adaption of personal
navigation and planning appliances to the MATe system. Think of your car being
connected to your PDAs calendar application and offering you a pre-planned
route to your next appointment. It might even tell your PDAs calendar that it
should remind you of the appointment a little earlier than usual, since there is
a traffic jam along the way and you need to fill up gasoline anyway. Another
interesting service might be to check public transport facilities’ time tables and
not only propose the best connections, but even buy a ticket online and order a
taxi to take you the last mile to your destination.

3 Conclusions and Further Work

We have outlined a research program focusing on how mental models of ambi-
ent, distributed systems come into being, and how these mental models differ
from those arising from interaction with traditional computer systems. Our main
axioms are:

1. Mental models can be understood from a perspective which unifies aspects of
communication and artifact manipulation of human-computer interaction.

2. Distributed, pervasive, ambient systems and environments pose unique chal-
lenges for the development of users’ mental models.

3. A better understanding of these challenges can lead to enhanced methods
for the development of ambient systems which give better clues for the de-
velopment of mental models.

70 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

Hypotheses about mental models of disappearing computer systems will be gen-
erated starting from these axioms. They are put to the test with the help of our
research prototypes. We start off with the MATe system. MATe is currently de-
veloped to be put into use in a team of knowledge workers to increase awareness
about other users’ states and interruptibility. We are collecting empirical data
about how the users manage interruptibility and their work status in general,
and can examine how mental models of the system develop during its use.

References

1. Berg, B.L.: Qualitative Research Methods for the Social Sciences. Allyn and Bacon,
Needham Heights, MA, 4 edn. (2001)

2. Bødker, S., Andersen, P.B.: Complex mediation. Journal of Human Computer In-
teraction 20(4), 353–402 (2005)

3. Carley, K., Palmquist, M.: Extracting, representing, and analyzing mental mod-
els. Social Forces 70(3), 601–636 (March 1992), http://www.jstor.org/stable/
2579746

4. Cassens, J.: Explanation Awareness and Ambient Intelligence as Social Technolo-
gies. Thesis for the degree doctor scientiarum, Norwegian University of Science
and Technology, Trondheim, Norway (May 2008), http://urn.ub.uu.se/resolve?
urn=urn:nbn:no:ntnu:diva-2122

5. Dey, A.K., de Guzman, E.: From awareness to connectedness: the design and de-
ployment of presence displays. In: Grinter, R., Rodden, T., Aoki, P., Cutrell, E.,
Jeffries, R., Olson, G. (eds.) Proceedings of the SIGCHI conference on human
factors in computing systems. pp. 899–908. ACM Press (2006)

6. van Dijk, T.A.: Discourse, context and cognition. Discourse Studies 8(1), 159–177
(2006)

7. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG
scenarios for ambient intelligence in 2010. Tech. rep., IST Advisory Group (2001)

8. Dutke, S.: Mentale Modelle: Konstrukte des Wissens und Verstehens. No. 4 in
Arbeit und Technik, Verlag für Angewandte Psychologie, Göttingen (1994)

9. Halliday, M.A.: Language as a Social Semiotic: the social interpretation of language
and meaning. University Park Press (1978)

10. Halliday, M.A., Matthiessen, C.M.: An Introduction to Functional Grammar, Third
edition. Arnold, London, UK (2004)

11. Hollnagel, E.: Mental models and model mentality. In: Goodstein, L.P., Andersen,
H.B., Olsen, S.E. (eds.) Tasks, errors, and mental models, pp. 261–268. Taylor &
Francis, Inc., Bristol, PA, USA (1988)

12. Kofod-Petersen, A.: A Case-Based Approach to Realising Ambient Intelligence
among Agents. Thesis for the degree doctor scientiarum, Norwegian University of
Science and Technology (2007)

13. Kofod-Petersen, A., Cassens, J.: Explanations and context in ambient intelli-
gent systems. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu,
L. (eds.) Modeling and Using Context – CONTEXT 2007. Lecture Notes in
Computer Science, vol. 4635, pp. 303–316. Springer, Roskilde, Denmark (2007),
http://dx.doi.org/10.1007/978-3-540-74255-5_23

14. Leont’ev, A.N.: Activity, Consciousness, and Personality. Prentice Hall, Upper Sad-
dle River, NJ, USA (1978)

Mental Models of Disappearing Systems: Challenges for a Better Understanding 71

15. Lueg, C.: Representation in pervasive computing. In: Proceedings of the Inaugural
Asia Pacific Forum on Pervasive Computing (2002)

16. Majchrzak, A., Gasser, L.: On using artificial intelligence to integrate the design of
organizational and process change in us manufacturing. AI and Society 5, 321–338
(1991)

17. Mao, J.Y., Benbasat, I.: The use of explanations in knowledge-based systems: Cog-
nitive perspectives and a process-tracing analysis. Journal of Managment Informa-
tion Systems 17(2), 153–179 (2000)

18. Mwanza, D.: Mind the gap: Activity theory and design. Tech. Rep. KMI-TR-95,
Knowledge Media Institute, The Open University, Milton Keynes (2000)

19. Norman, D.A.: Some observations on mental models. In: Gentner, D., Stevens,
A.L. (eds.) Mental Models, pp. 7–14. Lawrence Erlbaum Associates, Hillsdale,
New Jersey (1983)

20. Norman, D.A.: The Invisible Computer. The MIT Press, Cambridge, MA (1999)
21. Norman, D.A.: The Design of Everyday Things. Basic Books (2002)
22. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to con-

struct and use them. Tech. rep., Florida Institute for Human and Machine Cog-
nition (IHMC) (2008), http://cmap.ihmc.us/Publications/ResearchPapers/

TheoryCmaps/TheoryUnderlyingConceptMaps.htm

23. Rouse, W.B., Morris, N.M.: On looking into the black box: Prospects and limits
in the search for mental models. Psychological Bulletin 100(3), 349–363 (1986)

24. Ruge, L.: CoRAL – Context Reasoning and Adaptive Learning. Master’s thesis,
University of Lübeck (To appear)

25. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Per-
sonal Communications 8(4), 10–17 (August 2001), citeseer.ist.psu.edu/

satyanarayanan01pervasive.html

26. Schank, R.C.: Dynamic Memory: A Theory of Reminding and Learning in Com-
puters and People. Cambridge University Press, Cambridge (1983)

27. Scheele, B., Groeben, N.: Die Heidelberger Struktur-Lege-Technik (SLT). Eine
Dialog-Konsens-Methode zur Erhebung Subjektiver Theorien mittlerer Reichweite.
Beltz, Weinheim/Basel (1984)

28. Wegener, R., Cassens, J., Butt, D.: Start making sense: Systemic functional lin-
guistics and ambient intelligence. Revue d’Intelligence Artificielle 22(5), 629–645
(2008), http://dx.doi.org/10.3166/ria.22.629-645

29. Weiser, M.: The computer for the 21st century. Scientific American pp. 94–104
(September 1991)

30. Wilson, J.R., Rutherford, A.: Mental models: theory and application in human
factors. Human Factors 31(6), 617–634 (1989)

31. Zacarias, M., Pinto, H.S., Tribolet, J.: Automatic discovery of personal action
contexts. In: Kofod-Petersen, A., Cassens, J., Leake, D., Zacarias, M. (eds.) HCP-
2008 Proceedings, Part II, MRC 2008 – Fifth International Workshop on Modelling
and Reasoning in Context. pp. 75–88. TELECOM Bretagne (June 2008)

72 F. Schmitt, J. Cassens, M. C. Kindsmüller, M. Herczeg

Author Index

Antunes, B., 1

Besold, T. R., 13
Bisiani, R., 37

Cassens, J., 61
Correia, F., 1

Faatz, A., 25

Gomes, P., 1

Herczeg, M., 61

Kindsmüller, M. C., 61

Lokaiczyk, R., 25

Mandl, S., 13
Martynus, M., 25
Mileo, A., 37
Murdoch, O., 49

Nixon, P., 49

Pinardi, S., 37

Schmidt, B., 25
Schmitt, F., 61

