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Abstract. Movement recognition constitutes a central task in home-
based assisted living environments and in many application domains
where activity recognition is crucial. Solutions in these application areas
often rely on an heterogeneous collection of body-sensors whose diver-
sity and lack of precision has to be compensated by advanced techniques
for feature extraction and analysis. Although there are well established
quantitative methods in machine learning for robotics and neighboring
fields for addressing these problems, they lack advanced knowledge repre-
sentation and reasoning capacities that may help understanding through
contextualization.
Such capabilities are not only useful in dealing with lacking and imprecise
information, but moreover they allow for a better inclusion of semantic
information and more general domain-related knowledge.
We address this problem and investigate how a lexical approach to multi-
sensor analysis can be combined with answer set programming to sup-
port movement recognition. A semantic notion of contextual coherence
is formalized and qualitative optimization criteria are introduced in the
reasoning process. We report upon a first experimental evaluation of the
lexical approach to multi-sensor analysis and discuss the potentials of
knowledge-based contextualization of movements in reducing the error
rate.

1 Introduction and Motivations

Movement recognition is an important aspect of situation assessment both in
Ambient Intelligence and Healthcare applications [1]. It is also important in
order to forecast critical situations like a fall or a stroke, to understand emotional
patterns from position of the body [2, 3], to track activities [4, 5]. It is important
also for gait and posture analysis, human computer interaction, and in motion
recognition and capture [6, 7, 4, 8].

It is possible to use video cameras for movement classification, but with a
video camera you have to segment body from the background, identify body
parts, solve luminance and hidden parts problems, and target the monitored
person when more people are present in the area. Video movement analysis is a
useful technique in hospital but it can hardly be used in a day by day analysis to
classify movements in any natural condition like real sport analysis, healthcare
applications, medical or social surveillance protocols [9–11].
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It is possible to recognize the movements of a person using wearable inertial
sensors, as shown by various studies and applications [12, 13, 1, 4, 5, 14]. Wearable
sensors usually contain inertial devices like accelerometers and gyroscopes to
detect linear and torque forces: they can be placed on different segments of the
body to analyze movements. Some sensors also use magnetometers in order to
identify the north-pole direction to determine Euler angles in respect to a fixed
reference system [8]. Also, sensors can be connected to a wireless network in
order to facilitate the collection of data [13].

Many different ways to use inertial sensors for movement classification have
been described in the literature; they are mainly based on Machine Learn-
ing techniques [4]. Some researchers use sensors placed on a single spot of
the body [1], others use many sensors positioned on different segments of the
body [12, 1, 4], others use a multimodal approach using both microphones and
inertial sensors [6, 15].

The advantage of using inertial sensors for movement recognition are patent.
We know with absolute certainty which segment of the body data come from.
We do not have to solve hidden surfaces problems or identify the correct person
in a crowded situation. Also inertial sensors can be used in any natural situation
and are more respectful of privacy. On the other hand, movement classification
using inertial sensors is still an open subject of research and needs to be well
understood both in the field of data analysis with machine learning techniques
and in the reasoning area.

The rationale is that these methods are useful to create a “lexicon” of move-
ments: the proposed methods have significant error rates, and use small vocab-
ularies [4]. But movements are not only isolated events, they have a “lexical
context”, are causally and logically connected, and are space dependent.

We are interested in classifying movements with a Machine Learning ap-
proach aimed to create a rich user-independent vocabulary, and in exploiting
our knowledge of legal sequences of movements as a pattern to reason about
movements in order to validate or reject one or more actions in a given scenario.

Our modeling and reasoning technique is based on Answer Set Programming
(ASP), a declarative logic programming framework, combining a compact, flex-
ible, and expressive modeling language with high computational performance.
The knowledge-based approach provides a more flexible way to reason about
semantically-annotated sequences, compared to pure quantitative approaches.

We will use a new proposed Machine Learning method for “lexical analysis”
that has a good accuracy 95.23% - 97.63% [12]. Our methodology is inspired by
machine learning techniques used for information retrieval and text mining [16],
with some adaptation.

On top of this analysis, a further level of knowledge-based validation is in
charge of reasoning about meta-patterns of sequences as well as contextual con-
straints to reduce error rate.

The ASP based reasoning process follows the common generate and test
methodology in (i) generating the space of legal patterns according to semantic
validation and (ii) exploring the search space by applying efficient solving tech-
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niques to compensate for possible errors by enforcing constraint satisfaction and
optimization.

The lexical analysis of features for classification of movements is described
in Section 2. Section 3 introduces the ASP formalism and presents our modeling
and reasoning strategies, while a preliminary evaluation of the potentials of our
approach is presented in Section 4. A short discussion follows in Section 5.

2 Movements Classification: from Sensors to Activity

2.1 Sensors and Features Extraction

We used five MTx inertial sensors produced by XSens [8], these sensors have three
different devices mounted on board: a 3D accelerometer, a 3D Gyroscope, and a
3D magnetometer. Informations are represented as a three dimensional vector in
the sensors reference frame providing data about linear forces (ms/sec2), torque
forces (rad/sec) and earth-magnetic field intensity (direction) (milli-Tesla). Even
if it is possible to represent vectors in a geo-referenced fixed frame with the MTx
sensors, we preferred this configuration because many technologies do not have
a fixed frame reference system, and we want to study the problem in the more
generic and technologically neutral situation.

In order to create a flexible mechanism to classify movements, we extract
very generic features that are not dependent on the application domain. Every
sensor component - the accelerometer, gyroscope and magnetometer - returns
one information for every spatial dimension (X, Y, Z). Every component infor-
mation has also been considered in its planar norm representation (|XY |, |XZ|,
|Y Z|) and in its 3D norm representation (|XY Z|), for a total of 7 data per sen-
sor. These data have been filtered using eight functions (null, smoothing, low
pass, mean, variance, variance with low pass, first derivative, second derivative)
generating 840 transformations of the original data. Then, ten generic features
have been chosen (Maximum value, Minimum value, First Sample, Last Sample,
Mean, Variance, Zero Crossing Rare, Mean Crossing Rate, Skewness, Kurtosis)
for a total number of 8400 features. Finally, features have been quantized roughly
into 20 intervals (see Figure1). At the end, every action generates a sparse binary
vector of 184800 dimensions. This vector is used to create the classification pat-
tern of movements that constitutes the Lexicon or Dictionary of the application
scenario.

2.2 Features Analysis

All features do not have the same relevance depending on population and lexical
contexts: some features are more frequent within the population, others can
be more or less spread inside the given vocabulary of actions. To transform
these qualitative considerations in a quantitative measurement we introduced
two weights: the FF (Feature Frequency) and IVFF (Inverse Vocabulary Feature
Frequency). Feature Frequency takes into account distributions of the feature per
class in the population, as shown in Equation 1:
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Fig. 1. Feature extraction process. Actions are transformed in a binary sparse vector
of 184.400 values.
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FFij =
ni,j

|P | (1)

where ni,j is the number of occurrences of the feature σi in the action aj and
|P | represents the cardinality of the population.

Inverse Vocabulary Feature Frequency weights features according to their
discriminatory ability within the dictionary of actions as shown in Equation 2:

IV FFi = log
|A|

|a : σi ∈ a| (2)

where |A| is the cardinality of the dictionary, and |a : σi ∈ a| represents the
number of actions in which feature σi assumes the same value.

Every feature is weighted by multiplying FF and IVF as shown in Equation 3:

Wi,j = FFi,j ∗ IV FFi (3)

2.3 Vocabulary and Classification

Actions are feature vectors placed into a feature-actions matrix transformed with
the weighting operation described in Equation 3. The action to be recognized is
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a n-dimensional vector weighted using this transformation. This action is consid-
ered a query in the feature-action space. Through a set of similarity algorithms
the most similar action is calculated, then results are compared with the ground
truth. We used three similarity algorithms: Ranking, Cosine Similarity and Eu-
clidean Distance defined, respectively, as follows:

rankj =
n�

i=1

Wi,j (4)

disti =

����
n�

i=1

(Wi,j − qi,j)2 (5)

cosθ =
Wi,j ∗ qi,j

|Wi,j ||qi,j |
(6)

where Wi,j represents the weight of the σi interval of action aj of the Training-
Set, and qi,j is the IVFF value associated to the feature of the query.

Every action to be classified, hit all features in one of the intervals; every
interval for each action in the vocabulary, is associated to a weight for that
feature interval in the action, as defined in Equation 3. The rank of an action is
given by the sum of weights associated to the intervals of all features interested
by the action. The higher the sum of weight, the more similar the action to be
classified is to the action in the vocabulary.

We used a Leave One Out Cross Validation (LOOCV) method to test the
accuracy of the recognition on two different databases: an internal database
NIDA 1.0 with 273 samples, and a public database WARD 1.0 with 1270 samples,
obtaining preliminary results illustrated in Section 4.

The accuracy of our method is high when we use five sensors on different
parts of the body: we reached an accuracy of 95.23% on NIDA 1.0 and 97.74%
on WARD 1.0 outperforming the results presented in the literature on WARD
database [12, 13]. There are many situations where it is not possible to wear
many sensors on the body for social acceptance or comfort, for example with
ill or elder people in health care scenarios. If we use a single sensor accuracy
decreases: with a single sensor on the hip the accuracy rate is 81.31%, with only
one sensor on the right wrist we have an accuracy of 82.78%, and using just
the right ankle we have an accuracy of 83.15%. In these situations the classifier
makes errors in almost all the actions (see 3), and the error rate is higher on some
specific actions reducing the general performance. We want to improve accuracy
reducing the error rate even in the single sensor scenario, and the logic-based
contextual inference can help in doing this in a flexible and performant way.

3 Knowledge-Based Support to Movement Recognition

3.1 ASP Basics

We assume the reader to be familiar with the terminology and basic definitions
of ASP (see [17] for details). In what follows, we rely on the language sup-
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ported by grounders lparse [18] and gringo [19], providing normal and choice
rules, cardinality and integrity constraints, as well as aggregates and optimiza-
tion statements. As usual, rules with variables are regarded as representatives
for all respective ground instances.

3.2 Model of Movement

The logical formalization of our model of movements is provided in terms of
three aspects of body motion (referred to as classes), each of them characterized
by a set of values and one or more additional attributes for that value.

The current1 list of values and attributes for each class are summarized in
Table 1. Please note that attributes related to values of class posture indicate
where the posture is assumed to be held, while for values of the other classes, the
attribute specifies an additional description of how the movement is performed.

Class Value Attribute

posture sit, stand {chair, bed}
lay {bed}

motion walk {forward, upstairs, downstairs, fast}
jump {once}
open {circular, sliding}
kick {frontal, lateral}

heading right, left {90, 180}

Table 1. Aspects of body motion included in our vocabulary

Each tuple < Class, V alue, Attribute > we define, corresponds to a word of
the vocabulary of movements introduced in Section 2.

Whenever a new word is classified by the underlying mechanism illustrated
in Section 2, the knowledge-based representation associates a time step to the
logical classification of the action, in a predicate of the form:

sensed(Class, V alue,Attribute, T imeStep)

Extending the vocabulary is a straightforward activity in our model, because
it can be done by extending the range of possible attributes of a value, adding
new values or adding new classes. The state of body motion is determined by
three tuples of the form < Class, V alue, Attribute >, one for each of the three
classes, at the same time step T .

1 In this preliminary analysis we reduced the classes of movements we want to reason
about, and their values, in order to better illustrate the reasoning principles via
examples.
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In order to validate tuples identified by the underlying classification method,
we introduce two additional properties for the movement recognition problem:
the semantic distance measure between to subsequent tuples of the same class,
and the state coherence of a tuple of a given class, with respect to tuples of the
other classes at the same time step. It is worth mentioning that we apply the
inertia law on tuples across time steps.

Semantic Distance between two tuples X =< Class, V alue1, Attribute1 >

and Y =< Class, V alue2, Attribute2 > represented by predicate dist(X,Y, N),
is the minimum number of semantically meaningful transitions N that can
lead from X to Y .

State Coherence for a tuple X =< Class, V alue, Attribute > is the number
of (ground) state constraints that are violated at a given time step T by
assuming that the identification of X is correct.

Considering our initial vocabulary, semantic distance is mainly concerned
with tuples of the form < posture, V, A > because for the other classes, each
sequence of values is admitted, therefore we have that the semantic distance is
equal to one for every possible sequence of triples where Class ∈ {heading,

motion}. Distances between triples that are related to class posture are sum-
marised in Table 2.

Source Tuple Target Tuple Condition Distance

< posture, P, V > < posture, P1, V > P1 �= P 1
< posture, P, V > < posture, P, V1 > V1 �= V 2
< posture, lay, V > < posture, sit, V1 > V1 �= V 2
< posture, lay, V > < posture, stand, V1 > V1 �= V 3
< posture, sit, V > < posture, X1, V1 > (V1 �= V ) ∨ (X1 �= sit) 3

Table 2. Distances between tuples

As for state coherence, we define a set of constraints that are violated for
some combination of triples at a given time step. Let us consider our reduced
vocabulary of body movements described in Table 1, the state constraints we
define express the following concepts:

– a tuple of the form < posture, sit, Ap >, for any attribute Ap
2 in the domain

of sit is not coherent with tuples of the form < motion, Vi, Am > for any
attribute Am in the domain of the correspondent Vi and Vi ∈ {walk, open};

2 Note that in our notation, upper-case names refer to variables and have to be in-
stantiated over their domain.
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– in a similar way, a tuple of the form < posture, lay, Ap >, for any at-
tribute Ap in the domain of lay is not coherent with tuples of the form
< motion, Vi, Ai > for any attribute Ai in the domain of the correspondent
Vi and Vi ∈ {walk, jump, open}.

In the next section we illustrate how to reason about contextual coherence
to validate actions recognised by the lexicographic classification of movements.
Plausible sequences of actions are selected via optimization.

3.3 Movement Recognition: a Contextual View

The contextual validation of activities (or movements) is based on the definition
of properties of the activity identified by the underlying classification process.
In our solution, we identified two properties whose combination can determine
a direct validation or the need for a change in the classification.

Shortest Distance property at a given time step T considers a tuple At−1 that
has been validated at time T − 1 and verifies whether the new tuple At to
be validated at time T is in the set of possible tuples having distance 1 from
At−1.

State Coherence property at a given time step T for a tuple At holds whenever
all (100%) of the state constraints are satisfied by the validation of At

3.

When the vocabulary is extended or new sensor information is introduced,
we can easily re-define or extend the list of properties. An example can be the
introduction of localization information in the definition of coherence: to take
such information into account, we just have to introduce additional constraints
to be satisfied for the state coherence property.

As mentioned earlier in this section, a classification represented by a tuple
At =< Class, V alue, Attribute > can be associated to

– a valid status, identified by the fact that the logic predicate valid(At) holds
for At;

– a switched status, identified by fact that logic predicate switched(At, A
�

t)
holds for At, given that At has been identified at time step T (sensed(At, T ))
but it has been switched to the movement identified by tuple A

�

t;
– an incomplete status, identified by the fact the the logic predicate

incomplete(At, A
�

t) holds for At, given that At has been identified at time
step T (sensed(At, T )) but a classification is missing between A

�

t and At;

Each classification for At can verify one, both or none of the contextual
properties used for validation at a given time step T .
3 Note that this is a simplified version of our formalization. In a more flexible version

of the reasoning process we want to consider different level of coherence given by
the percentage of constraits that are violated. This would allow to introduce further
optimization that will be discussed in a future extended version of this paper.
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In the trivial case, dist(At−1, At, 1) holds and At is state-coherent: the clas-
sification is validated and valid(At) becomes true.

Otherwise, we need reasoning to support the validation of the following sit-
uations:

1. dist(At−1, At, 1) holds and At is not state-coherent;
2. dist(At−1, At, N) holds for N > 1 but At is state-coherent;
3. dist(At−1, At, N) holds for N > 1 and At is not state-coherent;

The easiest way to validate the classification of At in situation 1., is to provide
acceptable sets of switched(Bt, B

�

t), Bt �= At, s.t. At becomes state-coherent.
In the other situations, dist(At−1, At, N) with N > 1, and we have to deal

with the following two sub-cases:

a. ∃ A
�
t s.t. dist(At−1, A

�
t, 1) ∨ A

�
t is coherent at time T

⇒ At is an erroneous classification and plausible switches switched(At, A
�
t) are

derived such that valid(A
�
t) becomes true;

b. ∃/ A
�
t s.t. dist(At−1, A

�
t, 1) ∨ A

�
t is coherent at time T

⇒ a classification A
∗ between At−1 and At could be missing, incomplete(At, A

�
t)

is derived and we can be in one or both of these scenarios:
• A

∗
, At are made state-coherent by switching appropriate tuples Bt, B �= A,

such that valid(At) becomes derivable
• an error in the classification of At is assumed and state-coherence is computed

by switching At to A
�
t such that valid(A

�
t) becomes derivable.

ASP inference is based on a generate-and-test approach. Plausible classifica-
tions for an action are generated using a cardinality constraint and then checked
for state coherence and shortest distance. If the classification provided by the un-
derlying mechanism described in Section 2 is among them, the system validates
it. Otherwise, a different solution is proposed by switching one or more of the
movements in the sequence, or by supposing that the sequence is incomplete and
that some classifications are missing, or both, resulting in a lot of possibilities. In
a similar scenario, default reasoning, non-determinism, choice rules, constraints
and optimization via preferences plays a key role in devising effective deduction
strategies. For lack of space, we cannot illustrate how all these constructs are
used in the ASP encoding. A simple optimization criteria is based on the global
minimization of switched tuples, i.e. we prefer to assume incomplete sequences
rather than wrong classifications when this lead to a solution, but we can easily
change our preference in a declarative way.

4 Evaluation Phase

In this section we illustrate results of preliminary tests on the identification of
movements as non contextualized words of a body lexicon. Althought our machine
learning process gives acceptable results, once we reduce the number of sensors,
the error rate increases and misleading classifications cannot be identified. We
believe that the knowledge-based contextualization of sequences of movements
described in Section 3 can help reducing misinterpretations, although we need
further testing to estimate percentual reduction of error rate.
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4.1 Test Methods

Fig. 2. Confusion Matrix for Cosine Similarity (CS) with five sensors on NIDA and
WARD databases.

!"#$%&%'(%)**+,)*-%./0123% 4$5#%&%'(%)**+,)*-%.60723%

At first we created a Test-Set of twenty-one different actions called NIDA
1.0. (Nomadis Internal Database of Actions). The NIDA 1.0 database contains
movements acquired by the NOMADIS Laboratory of the University of Milano-
Bicocca. These acquisitions have been obtained using 5 MTx sensors positioned
on the pelvis, on the right and left wrist, and on the right and left ankle. NIDA
includes 21 types of actions performed by 7 people (5 male and 2 female) ranging
from 19 to 44-years-old, for a total of 273 actions. The complete list of actions
is the following:

1. Get up from bed. 2. Get up from a chair. 3. Open a wardrobe. 4. Open a
door. 5. Fall. 6. Walk forward 7. Run. 8. Turn left 180 degrees. 9. Turn right 180
degrees. 10. Turn left 90 degrees. 11. Turn right 180 degrees. 12. Karate frontal
kick. 13. Karate side kick. 14. Karate punch. 15. Go upstairs. 16. Go downstairs.
17. Jump. 18. Write. 19. Lie down on a bed. 20. Sitting on a chair 21. Heavily
sitting on a chair.

We also tested our methodology on a public database called WARD 1.0
(Wearable Action Recognition Database) created at UC-Berkeley [12, 13]. Ac-
quisitions have been obtained positioning 5 sensors on the pelvis, on the right
and left wrist, and on the right and left ankle. Each sensor contains a 3-axial
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accelerometer and a 2-axial gyroscope; magnetometers are not present. WARD
contains 13 types of actions performed by 20 people (7 women and 13 men)
ranging from 20 to 79-years-old with 5 repetition per action, for a total o 1200
actions. The list of actions can be found in [13].

4.2 Preliminary Analysis

We used a Leave One Out Cross Validation (LOOCV) method to test the ac-
curacy of the proposed method. The accuracy of the algorithms for the NIDA
database are: Ranking 89.74%, Euclidean Distance 95.23%, Cosine similarity
95.23%. The accuracy of algorithms using the WARD database are: Ranking
97.5%, Euclidean Distance 97.74%, Cosine 97.63% . We show the results of the
Cosine Similarity also in a synoptic way using a Confusion Matrix (see Figure 2).
In the columns the ground truth, in the rows the output of our classification al-
gorithm. Label definitions are given in the above paragraph.

Fig. 3. Confusion Matrix for Cosine Similarity on the NIDA database. Accuracy:
81.31% using only one sensor on the hip.

5 Discussion

We presented a hybrid approach to movement recognition by combining and
extending standard quantitative methods in a knowledge-based yet qualitative
framework. To this end, we took advantage of the knowledge representation and
reasoning capacities of ASP for providing semantic contextualization.

Although we have not discussed the encoding in detail, it allows for easy
customization and extensibility to a richer “lexicon” of movements. All in all, the
contextual support of the high-level ASP specification makes the major difference
of our approach to potential alternatives, and it seems hard to envisage in a
purely quantitative settings. This preliminary work is only a starting point.
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Future work will have to address more extensive and systematic experiments in
various simulated as well as real scenarios. The problem of segmentation of a
sequence of movements needs to be taken into account in order to evaluate the
true scalability of our approach.
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