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Abstract. Inference control can guarantee confidentiality but is costly to imple-
ment. Access control can be implemented efficiently but cannot guarantee con-
fidentiality. Hence, it is a natural question to ask when exactly inference control
becomes necessary. We characterize the situation in which it becomes possible
to infer secrets without any violation of a given access control policy. For this
purpose, we establish the Chase as a tool that infers secrets from previous query
answers by applying a class of equality- and tuple-generating data dependencies
declared over the underlying schema. Our characterization aims to exploit new
opportunities for maximizing the availability of data while confidentiality is pre-
served dynamically and efficiently.

1 Introduction

Information is a fundamental asset in today’s society. The owners of information may
want to discretionarily share some pieces of their private information while hiding other
pieces. Inference control is a security mechanism aiming to keep information confi-
dential, according to a confidentiality policy declared by the information owner [1, 2].
Unfortunately, however, inference control is known to be costly: we need to control the
users’ access to data items that represent crucial information, but additionally we also
have to take into account the users’ abilities to draw conclusions from the data accessed
by a usage history, their application-specific a priori knowledge, and further potential
background knowledge. Indeed, the overall quality of inference control depends cru-
cially on the assumptions about the users’ capabilities.

Controlled Query Evaluation. As a generally applicable countermeasure for pre-
venting the gain of forbidden information, controlled query evaluation has been de-
veloped and analyzed as a policy-based, dynamic inference control mechanism for en-
forcing confidentiality in information systems [3–8]. The mechanism is based on main-
taining a log file of previously returned query answers and a priori knowledge, and on
evaluating a censor function that has to solve implications between logical sentences
constructed from the log file and the actual query on the one side, and logical sentences
formed from the potential secrets as declared by the confidentiality policy on the other
side. Whenever the control system detects that a query answer would lead to a violation
of confidentiality, the query answer is suitably distorted by refusing the answer or by
lying.

In the following we only consider the refusal approach [5, 6]. For this approach, the
non-refused answers are logged, and the censor checks whether the a priori knowledge
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and the previous non-refused answers together with either 1) the correct query result
or 2) the negated query result would logically imply a potential secret. The first check
ensures that the log file never logically implies any potential secret. The second check is
necessary to prevent so-called meta-inferences by the user who might reason about the
actual causes of a refusal. This necessity is a well-known feature of dynamic inference
control (i.e. inference control at run-time), e.g., for controlling logic-based queries [3]
or statistical aggregate queries [9].

Drawbacks and Optimizations. Controlled query evaluation by refusals can be
employed for relational databases, subject to some restrictions that ensure the decid-
ability of all implication problems that occur during the inference control procedures
[8]. Even then, the generally high computational costs at run-time remain a major draw-
back of inference control. However, for specific cases highly efficient optimizations are
possible [10–12]. In these cases costly inference control can be reduced to an efficient
form of access control, called “natural” in the following. Natural access control sim-
ply checks whether every constant that appears in a potential secret (an existential-R-
sentence, i.e. a closed select-project query) also appears in a query (another existential-
R-sentence) at the same position. Hence, natural access control does not require the
maintenance of a log file, and deciding logical implications is reduced to a simple check
whether the pattern of a potential secret matches that of a query.

So far, two cases have been identified in which natural access control provides an
efficient mechanism that guarantees confidentiality effectively [10–12]. These cases are
described in terms of the data definition language (DDL) that defines the relational
schema, the confidentiality policy language (CPL) in which potential secrets can be
declared, and the query language (QL) in which queries can be specified.

In both cases, regarding the DDL, only schemas with functional dependencies are
considered, which are then taken as the sole a priori knowledge; and regarding the CPL
and the QL, only existential-R-sentences are permitted. Under these restrictions alone,
however, confidentiality is not guaranteed.

For the first case [10] it is necessary to confine the DDL to schemas in Boyce-
Codd normal form having a unique key [15] and the CPL to potential secrets in which
constants only occur for attributes of either the unique key or the unique key and one
additional attribute, but for the QL any existential-R-sentence is permitted. In the second
case [11] the DDL accepts schemas with any set of functional dependencies, and the
CPL permits any set of existential-R-sentences, but the QL prohibits any existential
quantification in queries, i.e., permits R-sentences (select queries) only. Moreover, in
both cases appropriate examples indicate that the restrictions can essentially not be
relaxed without a violation of the confidentiality requirement. This is simply the price
that needs to be paid to guarantee confidentiality efficiently.

The following example exhibits a simple type of violations. Consider a relation
schema EMP(Id,Name,Salary) where the attribute ID forms a key, i.e., both attributes
Name and Salary are functionally dependent on ID. Suppose that the security officer
declares the subtuple (Steve Jobs, $1,000K) over the attribute set {Name,Salary} as a
potential secret. Suppose further that the database administrator permits users to submit
any sequence of existential-EMP-sentences (closed select-project queries), in particu-
lar queries that retrieve subtuples over the attribute sets {ID,Name} and {ID,Salary},
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respectively. This combination is prohibited in both cases sketched above, for good
reasons as shown now. If the user queries first whether the subtuple (0001,Steve Jobs)
over the attribute set {ID,Name} occurs in the database and then whether the subtuple
(0001,$1,000K) over the attribute set {ID,Salary} occurs in the database, then neither
query answer contains the potential secret (Steve Jobs,$1,000K). Therefore, natural ac-
cess control would return the correct answers. Provided the subtuples do occur in the
database, the user could then apply the key property to infer that the tuple (0001,Steve
Jobs,$1,000K) must also occur in the database, and thus discover the potential secret.
Hence, natural access control would fail, in contrast to inference control by controlled
query evaluation, which logs the returned answers and censors the crucial inference.

Availability. The restrictions specified for the two cases above prevent a violation
of confidentiality in a uniform way. That is, either by prohibiting the pertinent potential
secret under the considered schema (first case), or by prohibiting the queries regarding
subtuples (second case). These prohibitions are uniform in the sense that the exhibited
violation type cannot occur for any permitted instantiation of the considered languages.
However, uniformity might result in unnecessary restrictions at run time, thus disabling
maximal availability of information. Consequently, important resources can potentially
not be shared effectively and successful cooperations become impossible. Limited avail-
ability appears to be a general trade-off in static approaches to inference control. For
example, in recent works the goal of availability is demoted by defining a query to be
secret with respect to a set of views, if i) the query and the view answers are independent
statistical events [14], or ii) the query can be rewritten using the views only [13].

In contrast, dynamic approaches to inference control, such as controlled query eval-
uation, can be tailored to maximize the availability of information. For this purpose, the
confidentiality policy is treated as a declaration of exceptions to generally accessible
data elements, and, at run-time, query answers are only refused when necessary, i.e.,
when the answer together with previous query answers would result in a violation of
the confidentiality policy. In our example above, any user may either learn that the sub-
tuple (0001,Steve Jobs) occurs in the database or learn that the subtuple (0001,$1,000K)
occurs in the database, but no user must learn that both subtuples occur in the database.

Contribution. Accordingly, we are interested in exploring necessary and sufficient
conditions for a potential violation of confidentiality in terms of a particular schema or
even of a particular relation instance of a schema. Clearly, for any particular schema
or instance, respectively, the exhibited violation constitutes a “forbidden structure”: the
user must not successfully query the connections of one key value 0001 with both the
property value Steve Jobs and the property value $1,000K whenever the property value
combination (Steve Jobs,$1,000K) is protected. For detecting the occurrence of this
“forbidden structure” it would suffice to exploit the “forbidden structure” as an infer-
ence (intrusion) signature. As the main contribution of this paper we demonstrate that
inference control becomes necessary precisely when there is a nontrivial template de-
pendency TD [16] such that i) TD is implied by the data dependencies declared over
the underlying schema (and assumed to be functional or full join dependencies here),
ii) previous query answers result in an instantiation of all rows of the hypothesis of TD
and iii) the potential secret is covered by the instantiated conclusion of TD. For our
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example above, a “forbidden structure” is encoded in the template dependency

aID aN bS

aID bN aS

aID aN aS

.

In fact, this template dependency is implied by the two FDs ID → Name and
ID → Salary, when we map aID to 0001, aN to Steve Jobs and aS to $1,000K the
two query answers result in an instantiation of all rows of the hypothesis and the instan-
tiated conclusion covers the potential secret (Steve Jobs,$1,000K). Hence, a violation of
confidentiality occurs precisely when there is a potential secret that results from chasing
[17–19], as pioneered also by A. Mendelzon, previous query answers and a non-refused
answer by the declared data dependencies.

Organization. After introducing a formal framework (Section 2), we establish an
application scenario, describing which actors employ which languages (Section 3). We
then establish the violation condition and prove it to be sufficient and necessary under
reasonable circumstances (Section 4). We illustrate our results by a medical example
(Section 5), and comment on a new approach to inference control that is based on our
results (Section 6). Finally, we conclude and comment on future work (Section 7).

2 Formal framework

A relation schema is denoted by RS = 〈R,U , Σ〉 where R is a relation symbol, U is
a finite set of attributes, and Σ is a finite set of dependencies (semantic constraints). Σ
consists of functional dependencies, assumed to be a minimal cover [20]; or it consists
of full join dependencies; or it comprises both kinds of dependencies. An instance r of a
relation schema is a finite dependency-satisfying Herbrand interpretation of the schema,
considering the relation symbol as a predicate. A tuple is denoted by µ = R(a1, . . . , an)
where n = |U| and ai ∈ Const , an infinite set of constants. As further discussed in [8],
the infinity assumption avoids inferences based on the combinatorial effects of a fixed
finite domain. If µ is an element of r, we write r |=M µ. More generally, |=M denotes
the satisfaction relation between an interpretation and a sentence. The corresponding
notion of logical implication (entailment) between sentences is denoted by |=.

Let A,B ⊆ U be attribute sets. A relation r over U satisfies the functional depen-
dency (FD) A → B if any two tuples that agree on the values of attributes in A also
agree on the values of the attributes in B. A → B is called trivial if B ⊆ A. A ⊆ U is
a super key of RS if Σ |= A → U . A key is a minimal super key. RS is in Boyce-Codd
normal form (BCNF) if for every nontrivial FD A → B, logically implied by Σ, A is a
super key of RS.

Let C1, . . . , Cl ⊆ U be attribute sets (used as hypothesis) such that C1∪ . . .∪Cl = U
and Cl+1 an attribute set (used as conclusion) with Cl+1 ⊆ U . A relation r over U
satisfies the embedded join dependency (EJD) 1[C1, . . . , Cl|Cl+1] if whenever there are
tuples µ1, . . . , µl (not necessarily different) in r with µi[Ci ∩ Cj ] = µj [Ci ∩ Cj ] for
1 ≤ i, j ≤ l, there is also a tuple µl+1 in r with µl+1[Ci ∩ Cl+1] = µi[Ci ∩ Cl+1] for
1 ≤ i ≤ l (cf. [20]). If the conclusion covers all declared attributes, i.e., Cl+1 = U , then
we have a full join dependency, denoted by 1[C1, . . . , Cl].
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We express queries in a fragment of the relational calculus. Let Var be a set of
variables. The query language L c

Q is the set of all closed formulas (sentences) of the
form (∃X1) . . . (∃Xl)R(v1, . . . , vn) with 0 ≤ l ≤ n, Xi ∈ Var , vi ∈ Const ∪ Var ,
{X1, . . . , Xl} ⊆ {v1, . . . , vn}, and vi 6= vj if vi, vj ∈ Var and i 6= j; these properties
and the closedness imply that {X1, . . . , Xl} = {v1, . . . , vn} ∩ Var . We refer to such
formulas as existential-R-sentences, or closed select-project queries. For Φ ∈ L c

Q, we
define the scheme of Φ as the set of attributes for which a constant appears; the set of
the remaining attributes, i.e., U r scheme, is called the bound part.

Let Φ ∈ L c
Q be a query and r an instance. The ordinary evaluation of Φ on r is

defined by
eval∗(Φ)(r) := if r |=M Φ then Φ else ¬Φ. (1)

For a sentence in L c
Q let its corresponding “generalized tuple” denote the sentence

without its prefix of existential quantifiers. In this case we think of the variables in the
generalized tuple as the null value “exists but unknown”.

We employ controlled query evaluation (CQE), developed in [3–8], briefly outlined
as follows. A potential secret Ψ is a sentence in the language L c

Q. If r 6|=M Ψ for a
database instance r, the database user may learn that Ψ is false in the instance; however,
if r |=M Ψ , it has to be kept secret that Ψ is actually true. The set pot sec ⊆ L c

Q

denotes a confidentiality policy being known to the database user. The a priori user
knowledge log0, with Σ ⊆ log0 ⊆ L c

Q ∪Σ, r |=M log0, and log0 6|= Ψ for every Ψ ∈
pot sec, has the following properties: it consists of the declared constraints; it is true in
the actual instance; and none of the actual truth values of the potential secrets is known
to the user in advance. For the purpose of this paper we assume that log0 = Σ. A query
sequence is given by Q = 〈Φ1, Φ2, . . .〉 with Φi ∈ L c

Q. The CQE for known potential
secrets enforced by refusal is defined by cqeR(Q, log0)(r, pot sec) := 〈(ans1, log1),
(ans2, log2), . . .〉. The values of the returned answers ansi and the representation of
the current user knowledge logi are determined by a censor function:

censorR(pot sec, log, Φ) := (existsΨ)[Ψ ∈ pot sec and
(log ∪ {Φ} |= Ψ or log ∪ {¬Φ} |= Ψ)]

ansi :=if logi−1 |= eval∗(Φi)(r) then eval∗(Φi)(r)
else if censorR(pot sec, logi−1, Φi)
then mum else eval∗(Φi)(r)

logi := if censorR(pot sec, logi−1, Φi) then logi−1

else logi−1 ∪ {ansi}
The CQE by refusal cqeR is secure for all possible query sequences and confiden-

tiality policies in the sense of the following definition (see [5, 7]).

Definition 1. A CQE cqe is secure for Q and pot sec if for every finite prefix Q′ of Q
the following holds: For every Ψ ∈ pot sec, for every instance r1, and for every log0

with r1 |=M log0 and log0 6|= χ for every χ ∈ pot sec, there exists an appropriate
instance r2 with r2 |=M log0 such that:

1) cqe(Q′, log0)(r1, pot sec) = cqe(Q′, log0)(r2, pot sec);
2) eval∗(Ψ)(r2) = ¬Ψ .
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Fig. 1. Application scenario with roles of agents and system architecture

3 Application scenario

Roughly sketched, in any specific application, firstly, a database administrator config-
ures and initializes the system. Secondly, a security officer deals with permissions and
prohibitions. Thirdly and finally, users actually employ the system by issuing queries.
In this paper, we assume that the database is not subject to any updates. Thus, there are
three (roles of) agents DBA, SO, and QU, who exploit some formal languages DDL,
CPL, and QL, respectively, as outlined in the following (and exemplified by formal
definitions in the preceding section).

The database administrator, DBA, acts as follows. (1) The DDL (data definition
language) is employed for declaring a (relation) schema 〈R,U , Σ〉 which includes se-
mantic constraints as functional dependencies and full join dependencies. (2) An in-
stance r is generated, which complies with the declared schema, by inserting appro-
priate data (assumed to be fixed since later updates are not considered). (3) An access
control method is installed. (4) The CPL (confidentiality policy language) is defined,
which provides the formal means to express prohibitions in terms of sentences to be
kept confidential (while we assume permissions by default). (5) The QL (query lan-
guage) is defined, which provides the formal means to express queries in terms of the
schema referring to the instance.

The security officer, SO, employs the CPL, as previously defined by the DBA, for
declaring a confidentiality policy pot sec, which is specific for a particular user (or
group of collaborating users).

The user, acting as a querier, QU, employs the QL, as previously defined by the
DBA, for stepwise submitting a query sequence Q = 〈Φ1, Φ2, . . . , Φi, . . .〉.

The controlled relational database management system consists of the traditional
functional part and the control part. The functional part maintains an instance r accord-
ing to the schema 〈R,U , Σ〉 and evaluates the submitted queries Φi. The control part
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applies a censor function to the query answers and reacts appropriately based on the de-
clared confidentiality policy pot sec and the current user knowledge log. The overall
situation is illustrated by Figure 1.

4 The violation condition

In the context of controlled query evaluation a violation of the confidentiality policy
occurs whenever instance data, returned as part of query answers, logically imply a
potential secret under the a priori knowledge of the declared data dependencies. If we
completely understand the circumstances under which such implications occur, then we
might be able to maximize the availability of data while confidentiality is still guaran-
teed. Consequently, it is our goal to characterize, in terms of the declared data depen-
dencies, when natural access control fails to observe violations of the confidentiality
policy, i.e., when inference control becomes necessary. This characterization will be
established in Theorems 1 and 2.

As an expressive class of equality- and tuple-generating data dependencies that are
frequently declared on relational schemas in practice we consider functional and arbi-
trary full join dependencies. The following example points us to our anticipated char-
acterization. It illustrates how potential secrets can be chased by applying the declared
data dependencies to previous query answers.

Example 1. Consider a relation schema RS = 〈R,U , Σ〉 with attribute set U =
NLK1K2AB and constraints

Σ = {N → K1, L → K2, 1[K1K2A,K1K2NLB], 1[K1K2B,K1K2NLA]}

consisting of functional and full join dependencies. Furthermore, let the instance r con-
tain just one tuple denoted by R(n, l, k1, k2, a, b) and

Ψ = (∃XN )(∃XL)(∃XK1)(∃XK2)R(XN , XL, XK1 , XK2 , a, b)

the sole potential secret. Suppose that the user issues the following queries:
Φ1 = (∃XL)(∃XK2)(∃XA)R(n,XL, k1, XK2 , XA, b),
Φ2 = (∃XL)(∃XK1)(∃XB)R(n,XL, XK1 , k2, a, XB),
Φ3 = (∃XN )(∃XK1)(∃XB)R(XN , l, XK1 , k2, a,XB),
Φ4 = (∃XN )(∃XK2)(∃XA)R(XN , l, k1, XK2 , XA, b).
Under natural access control all queries can be answered correctly as none of the

answers contains the potential secret. Therefore, the user knowledge is log = Σ ∪
{Φ1, Φ2, Φ3, Φ4}. Then, the user could infer the following equalities and sentences by
chasing and substitutions, respectively:

apply N → K1 to Φ1 and Φ2: k1 = XK1 ;
apply k1 = XK1 to Φ2: Φ5 = (∃XL)(∃XB)R(n,XL, k1, k2, a,XB);
apply L → K2 to Φ3 and Φ4: k2 = XK2 ;
apply k2 = XK2 to Φ4: Φ6 = (∃XN )(∃XA)R(XN , l, k1, k2, XA, b);
apply 1[K1K2A,K1K2LNB] to Φ5 and Φ6: Φ7 = (∃XN )R(XN , l, k1, k2, a, b).
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As a result we have log |= Ψ , i.e. the user can infer Ψ , resulting in a violation of
confidentiality. Using JD-chasing, we observe that Σ implies the embedded join de-
pendency ϕ = 1[NK1B, NK2A,LK2A, LK1B|LK1K2AB], where the hypothesis
captures the respective schemes of the four queries Φ1, Φ2, Φ3, and Φ4, and the con-
clusion corresponds to the scheme of the inferred sentence Φ7 and thereby covers the
scheme of the potential secret.

Note that the hypothesis of the embedded join dependency ϕ of the previous ex-
ample must never be fully instantiated by constants that occur in query answers. The
reason is that such an instantiation would cover the potential secret in the conclusion of
ϕ. Since ϕ is implied by Σ, this would mean that the potential secret can be inferred
from the query answers and would therefore result in a violation of the confidentiality
policy. Vice versa, an inference of a potential secret from a set of query answers also
entails that there is some dependency that is implied by the constraint set Σ and that
encodes the instantiations that can lead to this inference. As it turns out, the class of
template dependencies [16, 20, 21] can be successfully utilized to encode the forbidden
structures, and characterize the situations under which natural access control can be
bypassed and, therefore, inference control becomes a necessity.

A template dependency over U is represented by one or more rows h1, . . . , hl, called
hypothesis rows, or hypotheses, and a conclusion row c, or conclusion, below a line.
Each row consists of abstract symbols, one symbol per attribute in U . A symbol may
appear more than once, but not in columns that correspond to different attributes, and
thus a symbol is typed. We usually denote a template dependency by TD[h1, . . . , hl|c].

Let t and t′ denote tuples (or rows) over U . We define the agree set ag(t, t′) as
the set of attributes where the tuples (rows) t and t′ agree; that is, ag(t, t′) = {A |
A ∈ U and t(A) = t′(A)}. A relation r over U satisfies the template dependency
TD[h1, . . . , hl|c] if whenever l tuples t1, . . . , tl can be found in r such that for all
i, j ∈ {1, . . . , l} we have ag(hi, hj) ⊆ ag(ti, tj), then r has a tuple t such that for all
i = 1, . . . , l we have ag(c, hi) ⊆ ag(t, ti).

Let c′ be a row over U and {t1, . . . , tn} a set of rows over U . Let p be a mapping
that maps a symbol in c′ either to itself or to a symbol that does not appear in t1, . . . , tn.
We extend p to map rows in the usual way. We say c = p(c′) is a weakening of c′ in the
context of {t1, . . . , tn}.

A template dependency TD[h1, . . . , hl|c] is trivial if the conclusion c can be ob-
tained by weakening of one of its hypotheses h1, . . . , hl in the context of {h1, . . . , hl}.

The following theorems (we omit proofs due to space restrictions) characterize
when inference control becomes necessary in order to guarantee confidentiality. Infor-
mally summarized, the characterization expresses that any violating implication with
instance data that cannot be detected by natural access control has a formal proof that
we can obtain by applying a single template dependency which is implied by the de-
clared dependencies. Thus, for any specific situation, a full analysis of the implications
regarding the constraints declared over the schema will provide us with a full under-
standing of the violating implications regarding the actual instance.

Note that for template dependencies a sound and complete set of inference rules
exists and chasing can be utilized as a proof procedure to recognize implications (see
Theorem 1 and Lemma 3 of [16], respectively, and [21]). To establish our characteri-
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zation we apply this method to the case of functional and full join dependencies. We
conjecture that, under the provision of taking care of potentially nonterminating con-
structions, we can generalize our results to functional and template dependencies. We
note, however, that in practice it is unlikely that a database user is sufficiently knowl-
edgeable to apply inferences involving template dependencies.

Theorem 1 (forbidden structures, sufficient for a violation). Let RS = 〈R,U , Σ〉
be a relation schema where the dependency set Σ consists of functional and full join
dependencies. Let TD[h1, . . . , hl|c] be a nontrivial template dependency implied by Σ.

Then there are an instance r of RS, queries Φ1, . . . , Φl ∈ L c
Q with schemes Fi

where ∪j∈{1,...,l}r{i} ag(hi, hj) ⊆ Fi, and a potential secret Ψ ∈ L c
Q with scheme

P = ∪l
j=1ag(hj , c) such that the following properties hold:

1. Φi 6|= Ψ , for all i = 1, . . . , l, i.e., all queries are permitted under natural access
control (there is a constant in Ψ that does not appear at the same position in Φi);

2. r |=M Φi, for all i = 1, . . . , l, i.e., all queries are true in the instance r;
3. Σ ∪ {Φ1, . . . , Φl} |= Ψ , i.e., the answers violate the confidentiality policy.

Theorem 2 (forbidden structures, necessary for a violation). Let RS = 〈R,U , Σ〉
be a relation schema where the dependency set Σ consists of functional and full join
dependencies, and r an instance of RS. Let Ψ ∈ L c

Q be a potential secret with scheme
P ⊆ U , and Φ1, . . . , Φl ∈ L c

Q queries with schemes F1, . . . ,Fl such that the following
properties hold:

1. Φi 6|= Ψ , for all i = 1, . . . , l, i.e., all queries are permitted under natural access
control (there is a constant in Ψ that does not appear at the same position in Φi);

2. r |=M Φi, for all i = 1, . . . , l, i.e., all queries are true in the instance r;
3. Σ ∪ {Φ1, . . . , Φl} |= Ψ , i.e., the answers violate the confidentiality policy.

Then there exists a nontrivial template dependency TD[h1, . . . , hl|c] implied by
Σ such that P = ∪l

j=1ag(hj , c) and ∪j∈{1,...,l}r{i}ag(hi, hj) ⊆ Fi holds for all
i = 1, . . . , l.

Basically, we obtain the (omitted) proofs by appropriately combining two known
equivalences from logic, one observation on join dependencies and the known com-
pleteness result on chasing mentioned above. We briefly outline this in the follow-
ing. We have to inspect implications of the form Σ ∪ {Φ1, . . . , Φl} |= Ψ , where the
Φi’s are answers to queries in L c

Q, and Ψ is a potential secret in L c
Q. By the De-

duction Theorem (see, e.g., [22]), such an implication is equivalent to the implication
Σ |= Φ1 ∧ . . . ∧ Φl ⇒ Ψ . A full join dependency, and more generally each template
dependency, can be seen as a first-order sentence where all terms (variables) are typed
in the sense that a term occurs in only one attribute position. In particular, any single
equality requirement expressed by that sentence deals with the values of tuples for one
attribute. Now suppose that in the sentences on the right hand side of the latter impli-
cation, Φ1 ∧ . . . ∧ Φl ⇒ Ψ , some constant c occurs in two or more attribute positions.
Then the equality requirements expressed by these occurrences do not affect the status
of being implied by Σ. Accordingly, we can think of c being split into suitably many
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variants cA, one for each attribute A where c occurs. And thus we can treat all constants
as if they were typed. The sentence on the right hand side of the implication considered
is composed by elements of L c

Q. Accordingly, each of these elements is obtained from
an atomic formula that is built from constants, treated as if they were typed, and vari-
ables, such that all variables are existentially quantified, assumed to be pairwise differ-
ent throughout the whole sentence (and thus to be typed as well). We might then replace
all occurrences of some subset of the constants, say the constants c1, . . . , cd by new and
pairwise different variables x1, . . . , xd, and then take the universal closure. The trans-
formed sentence has the form (∀x1) . . . (∀xd)[Φ1[ci/xi] ∧ . . . ∧ Φl[ci/xi] ⇒ Ψ [ci/xi]]
Then, by the Theorem on Constants (see, e.g., [22]), the validity of the original sentence
is equivalent to the validity of the transformed sentence. The transformed sentence can
be seen as a template dependency, where the required typed equalities are expressed by
multiple occurrences of the new variables. Then, by Lemma 3 of [16] (Completeness
of Chasing) Σ |= (∀x1) . . . (∀xd)[Φ1[ci/xi] ∧ . . . ∧ Φl[ci/xi] ⇒ Ψ [ci/xi]] means that
Σ-chasing of the antecedent produces a sentence Ψ ′ such that Ψ is a weakening of Ψ ′.

5 An Example

Consider the relation schemas 〈R1,U1, Σ1〉 and 〈R2,U2, Σ2〉 over

U1 = {S (ymptom),M (ethod of Examination)},
U2 = {S,D(iagnosis),P(atient)}.

General practitioners (GPs) will get to see the view V which is defined by the SQL
query SELECT * FROM R1,R2 WHERE R1.S = R2.S. On the view V , the JDs
1 [SM,SDP ] and 1 [MD,MSP ] hold. Due to the patients’ privacy, GPs are only
allowed to see the diagnosis for their own patients. For this example we assume that the
SO declares Ψ = (∃Xs)(∃Xm)V (Xs, Xm,Cancer ,Smith) as a potential secret for
some GPs. However, GPs may ask any other queries in our language, in particular

Φ1 = (∃Xm)(∃Xp)V (Fever , Xm,Cancer , Xp),
Φ2 = (∃Xd)V (Fever ,Xray , Xd,Smith)

with schemes F1 = {S,D} and F2 = {S, M, P}, respectively.
Both queries can be asked individually, without revealing the potential

secret Ψ . However, Ψ can still be inferred: chasing the abstract tuples
V (Fever , Xm,Cancer , Xp) and V (Fever ,Xray , Xd,Smith) using 1 [SM, SDP ]
leads to the tuples V (Fever , Xm, Xd,Smith) and V (Fever ,Xray ,Cancer , Xp).
Chasing the tuples V (Fever ,Xray , Xd,Smith) and V (Fever ,Xray ,Cancer , Xp)
with 1 [MD, MSP ] leads to the tuple V (Fever ,Xray ,Cancer ,Smith) that reveals
Ψ .

Our crucial observation is that such a data-dependent derivation of prohibited in-
formation can already be anticipated from the view declaration. In this example, on the
schema level, the two JDs imply the nontrivial template dependency

aS b1 aD b2

aS aE b3 aP

aS aE aD aP

,
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and on the instance level, when this template dependency is instantiated with the
constants appearing in the query answers to Φ1 and Φ2, then the potential secret
(Cancer ,Smith) appears in the conclusion.

6 An Application

For detecting the occurrence of a “forbidden structure” we do not need the full mech-
anism of a general log file and a general censor. Rather it suffices to exploit the “for-
bidden structure” as an inference (intrusion) signature, similarly to the well-known ap-
proach to intrusion detection.

At declaration time, the schema under consideration, possibly together with the
particular instance, and the particular potential secrets, are examined to identify all
“forbidden structures” and to compile them into inference signatures.

At run time, the user behavior is monitored whether a compiled “forbidden struc-
ture” is arising; and at the latest step, just before a violating condition is met, the system
refuses the answer, possibly complemented by further alarm actions.

To analyze the proposed non-uniform case-specific inference detection further we
can utilize our violation condition which is necessary and sufficient for an occurrence of
a forbidden structure. In fact, we could either compile its occurrences into signatures, or
recognize that no violations can ever occur. In particular, we will design the compilation
process and the resulting inference detection procedures in future work.

7 Conclusion and Future Work

In principle, dynamic inference control ensures high flexibility regarding query expres-
siveness and maximal theoretical availability of queried information, utilizing a “last-
minute” distortion strategy.

In practice, however, this may result in (too) high computational costs and thus en-
danger the practical availability of information. Consequently, the requirement to pre-
serve confidentiality results in a trade-off between theoretical availability and efficient
query answering, leading to practical availability.

If we favor efficiency and practical availability, then we must impose further uni-
form restrictions on the languages to express queries and confidentiality policies. If we
favor flexibility and theoretical availability, we must understand when inference control
becomes necessary. We have presented a characterization of this situation that may help
us to establish a framework in the future that guarantees inference-proof query answers
with affordable computational costs and maximal availability of data.

Recently, tuple generating dependencies and chasing have been used for studying
schema mappings in data exchange, see e.g. [23, 24]. For those applications, however,
the main interest is to obtain an assurance for all possible instances of the schemas
involved, whereas our primary goal was to find a characterization for an individual in-
ference situation. Despite this difference, a common topic is composability of mappings
and inferences, respectively, an issue already considered in Section 8 of [21].
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