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Abstract. In digital libraries, which have become extremely popular in the 

scientific community, often people want to find publications by an author using 

the author name as a query. However, since authors may have many 

denominations and one denomination may refer to many authors, name 

searches may present ambiguous results. To tackle this problem, several studies 

have been developed. Recently the use of social networks has been studied in 

author name disambiguation. In this article, we use a machine learning 

approach based on Genetic Programming to evaluate the impact of social 

network analysis in author name disambiguation. Through experiments using 

real-world data, we show that social network analysis greatly improves the 

quality of results. Also, we demonstrate that our approach is able to compete 

with state-of-the-art techniques. 

Keywords: name disambiguation, relationship analysis, social networks, 

genetic programming, digital libraries. 

1   Introduction 

Digital Libraries (DLs) are complex information systems for storing and presenting 

online collections of information. A DL provides services for searching and browsing 

its collection and stores metadata that describes its content (e.g., author, publisher) as 

well as the relationships between its data. It is constructed, collected and organized 

with the goal of supporting the information needs of a specific community [3]. 

DLs have become an important source of information for the scientific community 

by presenting a centralized interface for searching and browsing publications. By 

grouping publications by metadata such as author, topic and publishing venue, users 

may employ the content of DLs for distinct analysis, such as coverage of topics, or 

evaluating a researcher’s production. 

When using DLs, users often assume that its content is free of errors and 

ambiguities. However, DLs gather data from different sources which often use 

different standards and abbreviations, leading to ambiguities. One of the most 

common is name ambiguity as there is a many-to-many relationship between persons 

and their denominations. A person may have many denominations, since first names 

may be abbreviated and middle names may be omitted. Also, different persons may 

share the same denomination. For example, two authors, Mark Jones and Matthew 



Jones, may have their names abbreviated to M. Jones. A search for M. Jones would 

present these publications as belonging to the same author, leading to a problem 

known as mixed citation [12]. However, while some of Mark Jones’s production is 

under the name M. Jones, other publications could be found at the author’s full name 

and a search of Mark Jones would not present the author’s complete production, 

leading to the split citation problem [12].  

The name disambiguation problem has been subject to several studies and many 

methods and heuristics have been developed. Traditional methods compare syntactic 

attribute information (eg., name, title, venue) between ambiguous objects and, by 

using complex match functions, determine which objects represent the same real 

entity. In [13], we used social network analysis as an evidence for the disambiguation 

process, showing that by using such evidence the quality of results is improved. 

A social network is a collection of people – or actors – where each actor is tied to a 

subset of the others [16]. In DLs, actors are authors which are tied when they have 

co-authored a publication. Collaboration between two authors implies an affinity 

between them: they may be interested in the same area or be affiliated to the same 

institution [15].  If the distance between these two authors in the network is small, 

they have a greater chance of having the same interests and being affiliated to the 

same institution and therefore have a greater chance of representing the same entity. 

In [13], we evaluated the impact of adding social network analysis to traditional 

disambiguation methods based on author name similarity, demonstrating it 

significantly improves the quality of results. In this article we continue this research 

by showing that the use of social network analysis also improves methods based not 

only on author name similarity but in other evidences such as title and venue. To 

combine these evidences and the social network measures, we use a machine learning 

approach to create match functions for the disambiguation process. This approach is 

based on Genetic Programming (GP) which has been successfully used in author 

name disambiguation [4]. We show that, even when using other evidences such as 

venue and title, social networks continue to provide a significant improvement on 

quality. Also, we compare our results with those obtained by a related work [5], and 

show that our approach can compete with state-of-the-art methods. 

The main contributions of this article are the following: 

(1) presenting a machine learning approach for generating match functions using 

Genetic Programming, 

(2) evaluating the impact of adding social network analysis to methods based on 

attributes such as name, venue and title, 

(3) showing through experimental results that our approach can compete with a 

state-of-the-art method by comparing results obtained over real datasets.  

 

This paper is organized as follows. Section 2 presents the concept of Author Social 

Network and its use in name disambiguation. Section 3 presents the GP algorithm for 

generating Match Functions. Section 4 describes the experiments performed in order 

to evaluate our approach. Section 5 covers related work. The paper is concluded in 

Section 6 with a description of future work.  



2   Author Social Network 

Usually, the input for a disambiguation process is a list of records representing paper 

references. In Fig. 1 we show a list of such records representing papers written by two 

or three authors each. This list can be represented as an Author Social Network 

(ASN), shown as a graph in Fig. 2, where nodes represent authors (square boxes) and 

papers (round boxes). Straight edges link a paper to its authors while dotted edges link 

two authors with the same initial letter and the same last name. Notice that the same 

person may author many papers and will be represented multiple times in the graph. 

Authors with the same initial and last name have a high possibility of being the same 

person and therefore our heuristic – others could be used – creates dotted edges to 

represent paths in the graph and establish relationships between other authors. 

 
<P1; Robert Walker; Ben Goldman; Carl Parker> 

<P2; Carl T. Parker; Robert D. Walker; George S. Brown> 

<P3; Ben Goldman; Ruth Adams> 

<P4; Rob Walker; Ruth Adams; George Brown> 

Fig. 1. A list of records representing papers. 

When comparing authors in the disambiguation process, evidences in the ASN, 

combined with other evidences such as the author name, may be used to assess if two 

authors are the same real person. In Fig. 2, authors P1.1 and P2.2 have very similar 

names but the ASN provides more evidence that these authors are the same person: 

there is a path linking them with length two (length is defined as the number of 

author-paper-author links in the path), which means they are closely related. As it was 

demonstrated in [13], this evidence means the two authors are much more likely to be 

the same person. Authors 1.1 and 4.1 also have similar names, but the path between 

them has length three. In [13], we demonstrated that relationships with lengths greater 

than two do not provide strong evidence that two authors are the same person.  

In [13], we presented a set of relationship metrics to be used as evidence in 

matching authors in the disambiguation process. One of these metrics is Relationship 

Distance (RD). In social networks, the distance between two actors on the network is 

the length of the shortest path between them [16]. As stated earlier, path length is 

defined as the number of author-paper-author links in the path. Therefore, RD is 

defined as follows: 

Relationship Distance (RD). Let a1 and a2 be two authors. Then, RD(a1, a2) is the 

length of the shortest path between them, returning 0 if no path exists. 

In our example, P1.1 and P2.2 are linked by two paths, the one that goes through 

P1-P2, with length 2, and the one which goes through P1-P3-P4-P2, with length four. 

Therefore, RD(P1.1, P2.2) is two, which is the length of the shortest path, P1-P2. This 

metric measures the importance of the relationship, since shortest distances mean 

authors are more closely related to one another. 

Another relationship measure is the Relationship Existence, which returns true 

when there is a path between two authors at a minimum distance d. 

Relationship Existence (RE). Let a1 and a2 be two authors being compared and d 

an integer. Then, RE(a1, a2, d) is true if 1 ≤ RD(a1, a2) ≤ d, and false otherwise. 



 

Fig. 2. A list of records representing papers. 

In our example ASN, RE(P1.1, P2.2, 2) is true, since there is a path of length two 

linking them. However, RE(P1.1, P4.1, 2) is false, since both paths linking them have 

length three. 

Relationship Quantity is the number of authors related to a specific author at a 

minimum distance d.  

Relationship Quantity (RQ). Let a be an author, A the set of authors in the 

dataset and d an integer. Then, RQ(a, d) = |B|, where for all b B, 1 ≤ RD(a, b) ≤ d 

and B  A. 

In our example in Fig. 2, P1.1 is related to all the authors in the network, but at 

different distances. Therefore, RQ(P1.1, 1) is four, since P1.1 is only related to four 

authors at distance one, P1.2, P1.3, P2.1 and P3.1. At distance two, P1.1 is related to 

five more authors, P3.2, P4.2, P2.3, P2.2 and P4.3, and therefore RQ(P1.1, 2) is nine. 

RQ is used to measure the connectivity of an author, i.e. how likely an author will 

have other authors related to it. In the disambiguation process, we may choose not to 

use relationship measures in authors with very low connectivity, since few or no 

authors are related to it. Also, when an author has a very high connectivity, RE loses 

its value as an evidence of duplicate authors, since a considerable amount of the 

network is linked to this author, most of which are not duplicates. 

The last relationship measure is Relationship Strength, which is the number of 

paths between two authors at a maximum distance d. 

Relationship Strength (RS). Let a1 and a2 be two authors and d an integer. Then, 

RS(a1, a2, d) is the number of paths between a1 and a2 with length d or lower. 

In Fig. 2, there are two paths between P1.1 and P4.1, both having length two. 

Therefore, RS(P1.1, P4.1, 2) is two. The greater the RS between authors, the stronger 

relationship between them, meaning they have a greater chance to be duplicates.  

P1.1: Robert Walker 

P1.2: Ben Goldman 

P1.3: Carl Parker 

P1 

P2 

P2.1: Carl T. Parker 

P2.2: Robert D. Walker 

P2.3: George S. Brown 

P3 

P3.1: Ben Goldman 

P3.2: Ruth Adams 

P4.2: Ruth Adams 

P4.3: George Brown 

P4.1: Rob Walker 

P4 



3   Creating Match Functions with Genetic Programming 

To determine if two authors are the same person, we must use a match function (MF). 

A MF, as defined in [1], is a function which takes two objects as input, returning true 

if they are duplicates and false otherwise. Also, a MF uses evidences in order to 

match these inputs. An evidence is, for example, the similarity value between author 

names or the existence of a relationship between them. Since many evidences may be 

used and it is difficult to determine the weight and threshold for each one, in this 

article we use GP to generate these MFs. Our GP algorithm combines a set of 

evidences randomly into MFs and, in an iterative process, improves these functions 

through a series of generations. 

Table 1.  Evidences Used to Generate Match Functions 

Evidence Operators Values 

Name Similarity (NameSim) ≥, ≤ 0 to 1 

Title Similarity (TitleSim) ≥, ≤ 0 to 1 

Venue Similarity (VenueSim) ≥, ≤ 0 to 1 

Initial Letter and Last Name Match (IniLastName) = 0 or 1 

Number of Title Words Match (NumTitleWords) ≥, ≤ 0 to 8 

Title Word Similarity (TitleWordSim) ≥, ≤ 0 to 1 

Is First Name Abbreviated (IsAbbrev) = 0 or 1 

Relationship Existence (RE) = 0 or 1 

Relationship Strength (RS) ≥, ≤ 0 to 10 

Minimum Relationship Quantity (MinRQ) ≥, ≤ 0 to 10 

Maximum Relationship Quantity (MaxRQ) ≥, ≤ 0 to 10 

 

Table 1 shows the evidences used to generate the MFs. Name, title and venue 

similarity compare these attributes using trigram similarity [6], which returns a value 

between 0 and 1, the higher, the more similar. The IniLastName evidence returns 1 

(true) if the first letter and the last name of the author names being compared are the 

same and 0 (false) otherwise. The NumTitleWords evidence returns the number of 

equal title words in two titles being compared, while the TitleWordSim normalizes 

this number by the number of words in the biggest title. The IsAbbrev evidence 

returns true when the first name on one of the authors being compared is abbreviated 

and false otherwise. The RE and RS evidences were defined in the previous chapter 

and MinRQ returns the minimum RQ of two authors being compared while MaxRQ 

returns the maximum RQ. We used d = 2 in all relationship measures.  

In Fig. 3, we show the GP algorithm used to generate MFs. In the first step (line 6) 

the initial population of MFs is generated. Each MF is generated randomly, but it 

follows a structure as shown in Fig. 4. According to [10], there are three requirements 

in order to properly use the GP technique: the problem must be modeled as a tree 

structure; the modeled tree must be automatically evaluated; the evolutionary 

operations applied over the tree must result in a valid tree. The tree structure shown in 

Fig. 4 fulfills the first requirement. Each evidence comparison (the ‘evid’ node) is 

composed by an evidence, an operator and a value, for example, RE = 1. We show the 

valid operators and values for each evidence on Table 1. The evidence comparisons 

are linked through ‘and’ operators, forming an ‘and’ group. And each ‘and’ group is 



linked through ‘or’ operators, forming the MF. Therefore, a valid would be (RE = 1 

and NameSim ≥ 0.5) or (NameSim ≥ 0.9), for example. 

 
1. GenerateMF(popSize: int, maxGen: int) 
2.  i, j: int 
3.  pop: array of match functions 
4.  eval: array of double 
5. Begin 
6.  pop ← GenerateInitialPopulation(popSize) 
7.  For i from 1 to maxGen do 
8.    For j from 1 to popSize do 

9.    eval[j] ← EvaluateFunction(pop[j]) 

10.   Selection(pop, eval) 

11.   Crossover(pop) 

12.   Mutation(pop) 

13.  For j from 1 to popSize do 
14.    eval[j] ← EvaluateFunction(pop[j]) 

15.  Return Order(pop, eval) 
16. End 

Fig. 3. GP algorithm to generate match functions. 

After the population is initialized, every MF is evaluated using a fitness function 

(lines 8 and 9). In GP, a fitness function is used to evaluate individuals, selecting the 

best fitted for the next generation and discarding the rest, which is done in the 

Selection phase, in line 10. By running the disambiguation process with a specific MF 

and measuring the quality of results, we can automatically evaluate the MF, thus 

fulfilling the second requirement.  

 

 

Fig. 4. Match Function Structure. 

Next, the Crossover phase (line 11) creates new individuals by combining pairs of 

MFs. In our algorithm, this is done by randomly selecting one ‘and’ group from one 

individual and exchanging it by an ‘and’ group from another individual. The Mutation 

phase (line 12) randomly chooses individuals selected on the Selection phase and 

produces new individuals by introducing random mutations. This mutations create, 

remove or change an ‘and’ group, create, remove or change an evidence comparison 

or change a value node inside an evidence comparison. Both Crossover and Mutation 

operations create valid trees, fulfilling the third and last requirement. 

The Selection, Crossover and Mutation phases run on a loop until a maximum 

generation is reached. The final population is then presented, ordered by its fitness. 

and 

or 

and 

evid evid 

… 

… 

operator value evidence 



4   Experimental Results 

4.1   Datasets 

In order to evaluate our approach we used 12 different datasets, 11 of which were 

extracted from the DBLP1 digital library and one which was extracted from the 

BDBComp2 digital library. The DBLP datasets and the BDBComp dataset have been 

used in [5] and [17], respectively, and were made available to us by the authors of 

those works. The BDBComp dataset is made up of 361 citations to papers first 

authored by people with the most frequent last names in the library, having 674 

duplicate first author pairs. The DBLP datasets, shown on Table 1, are made up by 

citation to papers first authored by persons with some of the most frequent last names 

in the library. Every first author name in a dataset has the same initial letter and a 

common last name. For example, in dataset ‘agupta’, every first author name starts 

with ‘a’ and has ‘Gupta’ as a surname. 

Table 1.  DBLP Collection – Number of publications per dataset. 

Dataset Publications 

agupta 576 

akumar 243 

cchen 801 

djohnson 368 

jmartin 112 

jrobinson 171 

jsmith 924 

ktanaka 280 

mbrown 153 

mjones 260 

mmiller 405 

 

In our experiments, only the first author of each paper was disambiguated, since 

only first authors were hand-clustered by the datasets’ creators. However, all co-

authors were used to create the ASN. 

4.2   Evaluation Measures 

To evaluate the quality of the MFs generated, we used the following measures, 

defined in [11]: Average Cluster Purity (ACP), Average Author Purity (AAP), and K, 

which is the geometric mean between ACP and AAP. ACP evaluates the purity of 

generated clusters, i.e. whether the generated clusters include only records belonging 

to the reference clusters. The more pure the generated clusters, the closer to 1 ACP 

will be. The formula for ACP is:  

                                                           
1 http://dblp.uni-tier.de/ 
2 http://www.ldb.dcc.ufmg.br/bdbcomp/ 



ACP = 
1

𝑁
  

𝑛𝑖𝑗
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𝑅
𝑗=0

𝑞
𝑖=0   

(1) 

where R is the number of reference clusters; 

N is the total number of citation records in the dataset; 

q is the number of clusters generated; 

nij is the number of elements in generated cluster i belonging to reference cluster j; 

ni is the number of elements in generated cluster i. 

 

AAP measures the level of fragmentation in the generated clusters in comparison 

to the reference clusters. The closer the value to 1, the less fragmented the generated 

clusters are. The formula for AAP is: 

AAP = 
1

𝑁
  

𝑛𝑖𝑗
2

𝑛𝑗

𝑞
𝑗=0

𝑅
𝑖=0   

(2) 

where nj is the number of items in reference cluster j. 

 

The K measure combines both AAP and ACP by calculating the geometric mean 

between them, expressed as K = √AAP x ACP. The best situation occurs when both 

AAP and ACP equals one. 

4.3   Experiments 

 

In the experiments, we generated three MFs using the GP algorithm from Section 3 to 

evaluate the impact in the quality of results by using evidences found in the ASN. The 

first function, called NoNetworkMF, does not use Social Network evidences, and is 

used as the baseline. The second function, ExistenceOnlyMF, adds only the RE 

evidence, while the third function, FullNetworkMF, used all Social Network 

evidences. Table 2 shows which evidences were used to generate each function. 

To generate the MFs, we used the ‘akumar’, ‘jsmith’, ‘ktanaka’ and the BDBComp 

datasets as the training set, with a total of 1852 records. The rest of the datasets were 

used as the evaluation set, with a total of 2846 records. In the GP algorithm, we used 

the average K measure in the four training datasets as the fitness function. As 

parameters, we used a population of size 20 and 300 maximum generations. Since the 

algorithm makes random choices and is not deterministic, each MF was trained five 

times and the one with the best results on the training set was picked. 

Next, we show the generated NoNetworkMF: 

(NameSim ≥ 0.57 and VenueSim ≥ 0.85 and IniLastName = 1) or (NumTitleWords ≥ 7 

and VenueSim ≥ 0.43 and IniLastName = 1) or (NameSim ≥ 0.94) . 
(2) 

The generated MF shows that the name is the most important evidence and is used 

in every ‘and’ group of the function through the NameSim and IniLastName 

evidences. When names are almost identical (similarity greater than 0.94) no other 

evidence is used, otherwise venue and title evidences are used along with the name.  



Table 2.  Evidences Used to Generate each Match Function 

Evidence NoNetworkMF ExistenceOnlyMF FullNetworkMF 

Name Similarity Yes Yes Yes 

Title Similarity Yes Yes Yes 

Venue Similarity Yes Yes Yes 

Initial Letter and Surname Match Yes Yes Yes 

Number of Title Words Match Yes Yes Yes 

Title Words Similarity Yes Yes Yes 

Is First Name Abbreviated Yes Yes Yes 

Relationship Existence No Yes Yes 

Relationship Strength No No Yes 

Minimum Relationship Quantity No No Yes 

Maximum Relationship Quantity No No Yes 

 

Next, we show the generated ExistenceOnlyMF: 

(TitleWordSim ≥ 0.72 and IniLastName = 1) or (NameSim ≥ 0.4 and RE = 1 and 

IniLastName = 1) or (NameSim ≥ 0.97 and IsAbbrev = 0 and IniLastName = 1) or 

(IsAbbrev = 1 and IniLastName = 1 and VenueSim ≥ 0.39 and NameSim ≥ 0.71 and 

RE = 0 and TitleWordSim ≥ 0.28) or (TitleWordSim ≥ 0.49 and NameSim ≥ 0.45 and 

IsAbbrev = 1) or (TitleSim ≥ 0.59 and RE = 0 and IniLastName = 1) or (TitleSim ≥ 

0.22 and IsAbbrev = 1 and IniLastName = 1 and VenueSim ≥ 0.39 and NameSim ≥ 0.7 

and RE = 1) .  

(2) 

In this MF, the name continues to be the most important evidence. But by adding 

the RE evidence we can see that related authors need less similar names to match 

while unrelated ones need more similar names or other evidence like similar venues 

and titles to match. Also, the IsAbbrev evidence, which was not picked in the previous 

function, appeared in ExistenceOnlyMF. In this function, when names are not 

abbreviated and are almost the same (similarity greater than 0.97), they match, but 

when they are abbreviated they need other evidence, like RE, to match. 

Table 3.  Match Function Comparison 

Dataset NoNetworkMF ExistenceOnlyMF FullNetworkMF 

akumar 0.770 0.877 0.864 

jsmith 0.561 0.773 0.836 

ktanaka 0.666 0.918 0.903 

bdbcomp 0.900 0.932 0.937 

Training Set Average 0.724 0.875 0.885 
agupta 0.608 0.699 0.880 

cchen 0.523 0.569 0.573 

djohnson 0.601 0.719 0.765 

jmartin 0.728 0.826 0.872 

jrobinson 0.522 0.858 0.808 

mbrown 0.614 0.809 0.734 

mjones 0.564 0.655 0.738 

mmiller 0.656 0.806 0.911 

Evaluation Set Average 0.602 0.743 0.785 

 



Finally, the generated FullNetworkMF: 

(IsAbbrev = 1 and NameSim ≥ 0.94 and MinRQ ≤ 1) or (TitleSim ≥ 0.39 and MaxRQ 

≤ 5 and NameSim ≥ 0.87 and NumTitleWords ≥ 2 and IniLastName = 1) or 

(TitleWordSim ≥ 0.23 or NameSim ≥ 0.87 and IsAbbrev = 1 and VenueSim ≥ 0.35 and 

MaxRQ ≤ 3) or (VenueSim ≥ 0.67 and MaxRQ ≤ 3 and NameSim ≥ 0.98) or (IsAbbrev 

= 1 and NameSim ≥ 0.45 and NumTitleWords ≥ 4 and MinRQ ≤ 2 and IniLastName = 

1 and RE = 0) or (IniLastName = 1 and RE = 1 and MaxRQ ≤ 9) or (RE = 1 and 

NameSim ≥ 0.72) or (RS ≥ 2 and IniLastName = 1) . 

(3) 

In FullNetworkMF the other ASN evidences were also picked, along with RE. In 

this function, with RS greater or equal to 2 and the same initial letter and surname, 

there is a match. This means that with a high RS, less evidence is needed to match. 

MaxRQ and MinRQ are also used throughout the function. For example, there is a 

match when the names are similar, the authors are related and MaxRQ is no greater 

than 9. This means that, as the RQ increases, RE loses its value. This happens as an 

author with many relationships has a higher chance of being related to a different 

person with a similar name, a false positive, than an author with few relationships. 

In Table 3, we compare quality results in the training datasets and in the evaluation 

datasets using the K measure. As our results show, when adding the RE evidence to 

the MF, we have a very significative increase in quality. When comparing 

NoNetworkMF to ExistenceOnlyMF we have a high increase in K value for all 

datasets. In the training set we have an average increase of more than 0.15, while in 

the evaluation set we have an average increase of more than 0.14. 

Table 4.  Comparison between the HHC method and FullNetworkMF 

Dataset HHC FullNetworkMF Difference 

agupta 0.777 0.880 0.103 

cchen 0.588 0.573 -0.015 

djohnson 0.748 0.765 0.017 

jmartin 0.885 0.872 -0.013 

jrobinson 0.760 0.808 0.048 

mbrown 0.855 0.734 -0.121 

mjones 0.742 0.738 -0.004 

mmiller 0.911 0.911 0.000 

Evaluation Set Average 0.783 0.785 0.002 

 

The difference from ExistenceOnlyMF to FullNetworkMF is not as great, and in 

some datasets ExistenceOnlyMF had a better performance, but in average we can see 

that using all Social Network evidences brings a significative improvement. In the 

evaluation set, we have an average improvement of more than 0.04. 

To show our approach can compete with state-of-the-art methods, we compared 

FullNetworkMF to HHC method [5] using the same datasets. As we can see on Table 

4, both methods had very similar results. Only in three datasets there was a difference 

of more than 0.02: in ‘agupta’ and ‘jrobinson’ FullNetworkMF won by 0.103 and 

0.048 while in ‘mbrown’ HHC won by 0.121. In average, FullNetworkMF won by 

0.002, which is considered as a tie between both methods. 



5   Related Work 

There has been some work using co-authorship networks in name disambiguation. In 

[2], authors are compared collectively and co-authorship relations are used as 

evidence that author names represent the same person. However, author names need 

to have a similar set of co-authors to be considered the same person. Sets of co-

authors are also compared on [8], which uses searches on the web to obtain these sets. 

In [14], a network similarity is calculated as the probability from author a to reach 

author b and this similarity is used as evidence to match author names. And in [18], a 

context graph is constructed for each entity, using co-authorship relations for 

example, and similarity between graphs is measured. The main difference between 

these approaches and ours is that in our approach, instead of calculating the similarity 

of relationship networks, author names need only to be linked and the strength or even 

the existence of this link will define a threshold for the attribute similarity. 

 A generic approach has been presented in [9], using the entity-relationship graph 

on data disambiguation, which can be applied to author disambiguation. However, it 

only uses relationships on entities that haven’t been matched using attributes, while in 

our approach we use this information when comparing all entities. 

Other pieces of research use co-author information, but do not make use of social 

network analysis. In [5], along with the author name, evidences such as paper title, 

paper venue and co-author list are used to disambiguate authors. The methods 

presented in [7] and [20], are based on Machine Learning techniques and [19] uses 

information extracted from the web as evidence to match author names. 

6   Conclusions 

In this article, we have used Genetic Programming to evaluate the impact of using 

social network analysis to solve the author name disambiguation problem in Digital 

Libraries. We presented a machine learning approach to generate author match 

functions based on GP. We have also presented Match Functions generated by our 

approach using real-world datasets. Experimental results have shown that MFs that 

use social network evidences produce better results than MFs that don’t make use of 

these evidences. By comparing our results to results obtained by the HHC method [5], 

we have shown that our method can compete with state-of-the-art approaches. 

As future work, scalability and generalization issues could be explored. Also, our 

GP approach could be used to evaluate the impact of adding other evidences which 

are harder to extract, such as name origin (e.g., Indian, Chinese) or publication topic. 
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