Using Genetic Programming to Evaluate the Impact of
Social Network Analysis in Author Name Disambiguation

Felipe Hoppe Levin and Carlos A. Heuser

Instituto de Informatica, Universidade Federal do Rio Grande do Sul (UFRGS),
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil
{thlevin, heuser} @inf.ufrgs.br

Abstract. In digital libraries, which have become extremely popular in the
scientific community, often people want to find publications by an author using
the author name as a query. However, since authors may have many
denominations and one denomination may refer to many authors, name
searches may present ambiguous results. To tackle this problem, several studies
have been developed. Recently the use of social networks has been studied in
author name disambiguation. In this article, we use a machine learning
approach based on Genetic Programming to evaluate the impact of social
network analysis in author name disambiguation. Through experiments using
real-world data, we show that social network analysis greatly improves the
quality of results. Also, we demonstrate that our approach is able to compete
with state-of-the-art techniques.

Keywords: name disambiguation, relationship analysis, social networks,
genetic programming, digital libraries.

1 Introduction

Digital Libraries (DLs) are complex information systems for storing and presenting
online collections of information. A DL provides services for searching and browsing
its collection and stores metadata that describes its content (e.g., author, publisher) as
well as the relationships between its data. It is constructed, collected and organized
with the goal of supporting the information needs of a specific community [3].

DLs have become an important source of information for the scientific community
by presenting a centralized interface for searching and browsing publications. By
grouping publications by metadata such as author, topic and publishing venue, users
may employ the content of DLs for distinct analysis, such as coverage of topics, or
evaluating a researcher’s production.

When using DLs, users often assume that its content is free of errors and
ambiguities. However, DLs gather data from different sources which often use
different standards and abbreviations, leading to ambiguities. One of the most
common is name ambiguity as there is a many-to-many relationship between persons
and their denominations. A person may have many denominations, since first names
may be abbreviated and middle names may be omitted. Also, different persons may
share the same denomination. For example, two authors, Mark Jones and Matthew

Jones, may have their names abbreviated to M. Jones. A search for M. Jones would
present these publications as belonging to the same author, leading to a problem
known as mixed citation [12]. However, while some of Mark Jones’s production is
under the name M. Jones, other publications could be found at the author’s full name
and a search of Mark Jones would not present the author’s complete production,
leading to the split citation problem [12].

The name disambiguation problem has been subject to several studies and many
methods and heuristics have been developed. Traditional methods compare syntactic
attribute information (eg., name, title, venue) between ambiguous objects and, by
using complex match functions, determine which objects represent the same real
entity. In [13], we used social network analysis as an evidence for the disambiguation
process, showing that by using such evidence the quality of results is improved.

A social network is a collection of people — or actors — where each actor is tied to a
subset of the others [16]. In DLs, actors are authors which are tied when they have
co-authored a publication. Collaboration between two authors implies an affinity
between them: they may be interested in the same area or be affiliated to the same
institution [15]. If the distance between these two authors in the network is small,
they have a greater chance of having the same interests and being affiliated to the
same institution and therefore have a greater chance of representing the same entity.

In [13], we evaluated the impact of adding social network analysis to traditional
disambiguation methods based on author name similarity, demonstrating it
significantly improves the quality of results. In this article we continue this research
by showing that the use of social network analysis also improves methods based not
only on author name similarity but in other evidences such as title and venue. To
combine these evidences and the social network measures, we use a machine learning
approach to create match functions for the disambiguation process. This approach is
based on Genetic Programming (GP) which has been successfully used in author
name disambiguation [4]. We show that, even when using other evidences such as
venue and title, social networks continue to provide a significant improvement on
quality. Also, we compare our results with those obtained by a related work [5], and
show that our approach can compete with state-of-the-art methods.

The main contributions of this article are the following:

(1) presenting a machine learning approach for generating match functions using
Genetic Programming,

(2) evaluating the impact of adding social network analysis to methods based on
attributes such as name, venue and title,

(3) showing through experimental results that our approach can compete with a
state-of-the-art method by comparing results obtained over real datasets.

This paper is organized as follows. Section 2 presents the concept of Author Social
Network and its use in name disambiguation. Section 3 presents the GP algorithm for
generating Match Functions. Section 4 describes the experiments performed in order
to evaluate our approach. Section 5 covers related work. The paper is concluded in
Section 6 with a description of future work.

2 Author Social Network

Usually, the input for a disambiguation process is a list of records representing paper
references. In Fig. 1 we show a list of such records representing papers written by two
or three authors each. This list can be represented as an Author Social Network
(ASN), shown as a graph in Fig. 2, where nodes represent authors (square boxes) and
papers (round boxes). Straight edges link a paper to its authors while dotted edges link
two authors with the same initial letter and the same last name. Notice that the same
person may author many papers and will be represented multiple times in the graph.
Authors with the same initial and last name have a high possibility of being the same
person and therefore our heuristic — others could be used — creates dotted edges to
represent paths in the graph and establish relationships between other authors.

<P1l; Robert Walker; Ben Goldman; Carl Parker>
<P2; Carl T. Parker; Robert D. Walker; George S. Brown>
<P3; Ben Goldman; Ruth Adams>
<P4; Rob Walker; Ruth Adams; George Brown>

Fig. 1. A list of records representing papers.

When comparing authors in the disambiguation process, evidences in the ASN,
combined with other evidences such as the author name, may be used to assess if two
authors are the same real person. In Fig. 2, authors P1.1 and P2.2 have very similar
names but the ASN provides more evidence that these authors are the same person:
there is a path linking them with length two (length is defined as the number of
author-paper-author links in the path), which means they are closely related. As it was
demonstrated in [13], this evidence means the two authors are much more likely to be
the same person. Authors 1.1 and 4.1 also have similar names, but the path between
them has length three. In [13], we demonstrated that relationships with lengths greater
than two do not provide strong evidence that two authors are the same person.

In [13], we presented a set of relationship metrics to be used as evidence in
matching authors in the disambiguation process. One of these metrics is Relationship
Distance (RD). In social networks, the distance between two actors on the network is
the length of the shortest path between them [16]. As stated earlier, path length is
defined as the number of author-paper-author links in the path. Therefore, RD is
defined as follows:

Relationship Distance (RD). Let a; and a, be two authors. Then, RD(a,, ;) is the
length of the shortest path between them, returning 0 if no path exists.

In our example, P1.1 and P2.2 are linked by two paths, the one that goes through
P1-P2, with length 2, and the one which goes through P1-P3-P4-P2, with length four.
Therefore, RD(P1.1, P2.2) is two, which is the length of the shortest path, P1-P2. This
metric measures the importance of the relationship, since shortest distances mean
authors are more closely related to one another.

Another relationship measure is the Relationship Existence, which returns true
when there is a path between two authors at a minimum distance d.

Relationship Existence (RE). Let a; and a, be two authors being compared and d
an integer. Then, RE(a;, a, d) is true if 1 <RD(a;, a;) < d, and false otherwise.

P1.1: Robert Walker P1.3: Carl Parker
P2.1: Carl T. Parker

P1.2: Ben Goldman

P2.2: Robert D. Walker

P3.1: Ben Goldman

P2.3: George S. Brown

|

P4.3: George Brown

P3.2: Ruth Adams

:

P4.2: Ruth Adams P4.1: Rob Walker

Fig. 2. A list of records representing papers.

In our example ASN, RE(P1.1, P2.2, 2) is true, since there is a path of length two
linking them. However, RE(P1.1, P4.1, 2) is false, since both paths linking them have
length three.

Relationship Quantity is the number of authors related to a specific author at a
minimum distance d.

Relationship Quantity (RQ). Let a be an author, A the set of authors in the
dataset and d an integer. Then, RQ(a, d) = |B|, where for all b € B, 1 <RD(a, b) <d
and B C A.

In our example in Fig. 2, P1.1 is related to all the authors in the network, but at
different distances. Therefore, RQ(P1.1, 1) is four, since P1.1 is only related to four
authors at distance one, P1.2, P1.3, P2.1 and P3.1. At distance two, P1.1 is related to
five more authors, P3.2, P4.2, P2.3, P2.2 and P4.3, and therefore RQ(P1.1, 2) is nine.
RQ is used to measure the connectivity of an author, i.e. how likely an author will
have other authors related to it. In the disambiguation process, we may choose not to
use relationship measures in authors with very low connectivity, since few or no
authors are related to it. Also, when an author has a very high connectivity, RE loses
its value as an evidence of duplicate authors, since a considerable amount of the
network is linked to this author, most of which are not duplicates.

The last relationship measure is Relationship Strength, which is the number of
paths between two authors at a maximum distance d.

Relationship Strength (RS). Let a; and a, be two authors and 4 an integer. Then,
RS(a;, as, d) is the number of paths between a; and a, with length d or lower.

In Fig. 2, there are two paths between P1.1 and P4.1, both having length two.
Therefore, RS(P1.1, P4.1, 2) is two. The greater the RS between authors, the stronger
relationship between them, meaning they have a greater chance to be duplicates.

3 Creating Match Functions with Genetic Programming

To determine if two authors are the same person, we must use a match function (MF).
A MF, as defined in [1], is a function which takes two objects as input, returning true
if they are duplicates and false otherwise. Also, a MF uses evidences in order to
match these inputs. An evidence is, for example, the similarity value between author
names or the existence of a relationship between them. Since many evidences may be
used and it is difficult to determine the weight and threshold for each one, in this
article we use GP to generate these MFs. Our GP algorithm combines a set of
evidences randomly into MFs and, in an iterative process, improves these functions
through a series of generations.

Table 1. Evidences Used to Generate Match Functions

Evidence Operators Values

Name Similarity (NameSim) > < Otol

Title Similarity (TitleSim) >, < Oto1l

Venue Similarity (VenueSim) > < Oto1

Initial Letter and Last Name Match (IniLastName) = Oorl
Number of Title Words Match (NumTitleWords) >, < 0to8
Title Word Similarity (TitleWordSim) > < Oto1

Is First Name Abbreviated (IsAbbrev) = Oorl
Relationship Existence (RE) = Oorl
Relationship Strength (RS) > < 0to 10
Minimum Relationship Quantity (MinRQ) > < 0to 10
Maximum Relationship Quantity (MaxRQ) > < 0to 10

Table 1 shows the evidences used to generate the MFs. Name, title and venue
similarity compare these attributes using trigram similarity [6], which returns a value
between 0 and 1, the higher, the more similar. The /niLastName evidence returns 1
(true) if the first letter and the last name of the author names being compared are the
same and O (false) otherwise. The NumTitleWords evidence returns the number of
equal title words in two titles being compared, while the TitleWordSim normalizes
this number by the number of words in the biggest title. The IsAbbrev evidence
returns true when the first name on one of the authors being compared is abbreviated
and false otherwise. The RE and RS evidences were defined in the previous chapter
and MinRQ returns the minimum RQ of two authors being compared while MaxRQO
returns the maximum RQ. We used d = 2 in all relationship measures.

In Fig. 3, we show the GP algorithm used to generate MFs. In the first step (line 6)
the initial population of MFs is generated. Each MF is generated randomly, but it
follows a structure as shown in Fig. 4. According to [10], there are three requirements
in order to properly use the GP technique: the problem must be modeled as a tree
structure; the modeled tree must be automatically evaluated; the evolutionary
operations applied over the tree must result in a valid tree. The tree structure shown in
Fig. 4 fulfills the first requirement. Each evidence comparison (the ‘evid’ node) is
composed by an evidence, an operator and a value, for example, RE = 1. We show the
valid operators and values for each evidence on Table 1. The evidence comparisons
are linked through ‘and’ operators, forming an ‘and’ group. And each ‘and’ group is

linked through ‘or’ operators, forming the MF. Therefore, a valid would be (RE = 1
and NameSim > 0.5) or (NameSim > 0.9), for example.

1. GenerateMF (popSize: int, maxGen: int)

2. i, j: int

3. pop: array of match functions

4. eval: array of double

5. Begin

6. pop « GenerateInitialPopulation (popSize)

7. For i from 1 to maxGen do

8. For j from 1 to popSize do

9. eval[j] < EvaluateFunction (popl[j])
10. Selection (pop, eval)

11. Crossover (pop)

12. Mutation (pop)

13. For j from 1 to popSize do

14. eval[j] < EvaluateFunction (popl[j])
15. Return Order (pop, eval)

16. End

Fig. 3. GP algorithm to generate match functions.

After the population is initialized, every MF is evaluated using a fitness function
(lines 8 and 9). In GP, a fitness function is used to evaluate individuals, selecting the
best fitted for the next generation and discarding the rest, which is done in the
Selection phase, in line 10. By running the disambiguation process with a specific MF
and measuring the quality of results, we can automatically evaluate the MF, thus
fulfilling the second requirement.

| evidence | | operator | | value |

Fig. 4. Match Function Structure.

Next, the Crossover phase (line 11) creates new individuals by combining pairs of
MFs. In our algorithm, this is done by randomly selecting one ‘and’ group from one
individual and exchanging it by an ‘and’ group from another individual. The Mutation
phase (line 12) randomly chooses individuals selected on the Selection phase and
produces new individuals by introducing random mutations. This mutations create,
remove or change an ‘and’ group, create, remove or change an evidence comparison
or change a value node inside an evidence comparison. Both Crossover and Mutation
operations create valid trees, fulfilling the third and last requirement.

The Selection, Crossover and Mutation phases run on a loop until a maximum
generation is reached. The final population is then presented, ordered by its fitness.

4 Experimental Results

4.1 Datasets

In order to evaluate our approach we used 12 different datasets, 11 of which were
extracted from the DBLP! digital library and one which was extracted from the
BDBComp? digital library. The DBLP datasets and the BDBComp dataset have been
used in [5] and [17], respectively, and were made available to us by the authors of
those works. The BDBComp dataset is made up of 361 citations to papers first
authored by people with the most frequent last names in the library, having 674
duplicate first author pairs. The DBLP datasets, shown on Table 1, are made up by
citation to papers first authored by persons with some of the most frequent last names
in the library. Every first author name in a dataset has the same initial letter and a
common last name. For example, in dataset ‘agupta’, every first author name starts
with ‘a’ and has ‘Gupta’ as a surname.

Table 1. DBLP Collection — Number of publications per dataset.

Dataset Publications
agupta 576
akumar 243
cchen 801
djohnson 368
jmartin 112
jrobinson 171
jsmith 924
ktanaka 280
mbrown 153
mjones 260
mmiller 405

In our experiments, only the first author of each paper was disambiguated, since
only first authors were hand-clustered by the datasets’ creators. However, all co-
authors were used to create the ASN.

4.2 Evaluation Measures

To evaluate the quality of the MFs generated, we used the following measures,
defined in [11]: Average Cluster Purity (ACP), Average Author Purity (AAP), and K,
which is the geometric mean between ACP and AAP. ACP evaluates the purity of
generated clusters, i.e. whether the generated clusters include only records belonging
to the reference clusters. The more pure the generated clusters, the closer to 1 ACP
will be. The formula for ACP is:

! http://dblp.uni-tier.de/
2 http://www.ldb.dcc.ufmg.br/bdbcomp/

1 ;2 1
ACP =130 X0 @

where R is the number of reference clusters;

N is the total number of citation records in the dataset;

q is the number of clusters generated,;

n; is the number of elements in generated cluster i belonging to reference cluster j;
n; is the number of elements in generated cluster i.

AAP measures the level of fragmentation in the generated clusters in comparison
to the reference clusters. The closer the value to 1, the less fragmented the generated
clusters are. The formula for AAP is:

1 ny 2
AAP:; f:ozjt-]:o# (2)

nj

where n; is the number of items in reference cluster j.

The K measure combines both AAP and ACP by calculating the geometric mean
between them, expressed as K = VAAP x ACP. The best situation occurs when both
AAP and ACP equals one.

4.3 Experiments

In the experiments, we generated three MFs using the GP algorithm from Section 3 to
evaluate the impact in the quality of results by using evidences found in the ASN. The
first function, called NoNetworkMF, does not use Social Network evidences, and is
used as the baseline. The second function, ExistenceOnlyMF, adds only the RE
evidence, while the third function, FullNetworkMF, used all Social Network
evidences. Table 2 shows which evidences were used to generate each function.

To generate the MFs, we used the ‘akumar’, ‘jsmith’, ‘ktanaka’ and the BDBComp
datasets as the training set, with a total of 1852 records. The rest of the datasets were
used as the evaluation set, with a total of 2846 records. In the GP algorithm, we used
the average K measure in the four training datasets as the fitness function. As
parameters, we used a population of size 20 and 300 maximum generations. Since the
algorithm makes random choices and is not deterministic, each MF was trained five
times and the one with the best results on the training set was picked.

Next, we show the generated NoNetworkMF':

(NameSim > 0.57 and VenueSim > 0.85 and IniLastName = 1) or (NumTitleWords > 7 (2)
and VenueSim > 0.43 and IniLastName = 1) or (NameSim > 0.94) .

The generated MF shows that the name is the most important evidence and is used
in every ‘and’ group of the function through the NameSim and IniLastName
evidences. When names are almost identical (similarity greater than 0.94) no other
evidence is used, otherwise venue and title evidences are used along with the name.

Table 2. Evidences Used to Generate each Match Function

Evidence NoNetworkMF ExistenceOnlyMF FullNetworkMF
Name Similarity Yes Yes Yes
Title Similarity Yes Yes Yes
Venue Similarity Yes Yes Yes
Initial Letter and Surname Match Yes Yes Yes
Number of Title Words Match Yes Yes Yes
Title Words Similarity Yes Yes Yes
Is First Name Abbreviated Yes Yes Yes
Relationship Existence No Yes Yes
Relationship Strength No No Yes
Minimum Relationship Quantity No No Yes
Maximum Relationship Quantity No No Yes

Next, we show the generated ExistenceOnlyMF:

(TitleWordSim > 0.72 and IniLastName = 1) or (NameSim > 0.4 and RE = 1 and (2)
IniLastName = 1) or (NameSim > 0.97 and IsAbbrev = 0 and IniLastName = 1) or
(IsAbbrev = 1 and IniLastName = 1 and VenueSim > 0.39 and NameSim > 0.71 and
RE = 0 and TitleWordSim > 0.28) or (TitleWordSim > 0.49 and NameSim > 0.45 and
IsAbbrev = 1) or (TitleSim > 0.59 and RE = 0 and IniLastName = 1) or (TitleSim >
0.22 and IsAbbrev = 1 and IniLastName = 1 and VenueSim > 0.39 and NameSim > 0.7
andRE=1).

In this MF, the name continues to be the most important evidence. But by adding
the RE evidence we can see that related authors need less similar names to match
while unrelated ones need more similar names or other evidence like similar venues
and titles to match. Also, the Is4bbrev evidence, which was not picked in the previous
function, appeared in ExistenceOnlyMF. In this function, when names are not
abbreviated and are almost the same (similarity greater than 0.97), they match, but
when they are abbreviated they need other evidence, like RE, to match.

Table 3. Match Function Comparison

Dataset NoNetworkMF ExistenceOnlyMF FullNetworkMF
akumar 0.770 0.877 0.864
jsmith 0.561 0.773 0.836
ktanaka 0.666 0918 0.903
bdbcomp 0.900 0.932 0.937
Training Set Average 0.724 0.875 0.885
agupta 0.608 0.699 0.880
cchen 0.523 0.569 0.573
djohnson 0.601 0.719 0.765
jmartin 0.728 0.826 0.872
jrobinson 0.522 0.858 0.808
mbrown 0.614 0.809 0.734
mjones 0.564 0.655 0.738
mmiller 0.656 0.806 0911

Evaluation Set Average 0.602 0.743 0.785

Finally, the generated FullNetworkMF:

(IsAbbrev = 1 and NameSim > 0.94 and MinRQ < 1) or (TitleSim > 0.39 and MaxRQ 3)
<5 and NameSim > 0.87 and NumTitleWords > 2 and IniLastName = 1) or
(TitleWordSim > 0.23 or NameSim > 0.87 and IsAbbrev = 1 and VenueSim > 0.35 and
MaxRQ < 3) or (VenueSim > 0.67 and MaxRQ < 3 and NameSim > 0.98) or (IsAbbrev
=1 and NameSim > 0.45 and NumTitleWords > 4 and MinRQ < 2 and IniLastName =
1 and RE = 0) or (IniLastName = 1 and RE = 1 and MaxRQ <9) or (RE =1 and
NameSim > 0.72) or (RS > 2 and IniLastName = 1) .

In FullNetworkMF the other ASN evidences were also picked, along with RE. In
this function, with RS greater or equal to 2 and the same initial letter and surname,
there is a match. This means that with a high RS, less evidence is needed to match.
MaxRQ and MinRQ are also used throughout the function. For example, there is a
match when the names are similar, the authors are related and MaxRQ is no greater
than 9. This means that, as the RQ increases, RE loses its value. This happens as an
author with many relationships has a higher chance of being related to a different
person with a similar name, a false positive, than an author with few relationships.

In Table 3, we compare quality results in the training datasets and in the evaluation
datasets using the K measure. As our results show, when adding the RE evidence to
the MF, we have a very significative increase in quality. When comparing
NoNetworkMF to ExistenceOnlyMF we have a high increase in K value for all
datasets. In the training set we have an average increase of more than 0.15, while in
the evaluation set we have an average increase of more than 0.14.

Table 4. Comparison between the HHC method and FullNetworkMF

Dataset HHC FullNetworkMF Difference
agupta 0.777 0.880 0.103
cchen 0.588 0.573 -0.015
djohnson 0.748 0.765 0.017
jmartin 0.885 0.872 -0.013
jrobinson 0.760 0.808 0.048
mbrown 0.855 0.734 -0.121
mjones 0.742 0.738 -0.004
mmiller 0911 0911 0.000
Evaluation Set Average 0.783 0.785 0.002

The difference from ExistenceOnlyMF to FullNetworkMF is not as great, and in
some datasets ExistenceOnlyMF had a better performance, but in average we can see
that using all Social Network evidences brings a significative improvement. In the
evaluation set, we have an average improvement of more than 0.04.

To show our approach can compete with state-of-the-art methods, we compared
FullNetworkMF to HHC method [5] using the same datasets. As we can see on Table
4, both methods had very similar results. Only in three datasets there was a difference
of more than 0.02: in ‘agupta’ and ‘jrobinson’ FullNetworkMF won by 0.103 and
0.048 while in ‘mbrown’ HHC won by 0.121. In average, FullNetworkMF won by
0.002, which is considered as a tie between both methods.

5 Related Work

There has been some work using co-authorship networks in name disambiguation. In
[2], authors are compared collectively and co-authorship relations are used as
evidence that author names represent the same person. However, author names need
to have a similar set of co-authors to be considered the same person. Sets of co-
authors are also compared on [8], which uses searches on the web to obtain these sets.
In [14], a network similarity is calculated as the probability from author a to reach
author b and this similarity is used as evidence to match author names. And in [18], a
context graph is constructed for each entity, using co-authorship relations for
example, and similarity between graphs is measured. The main difference between
these approaches and ours is that in our approach, instead of calculating the similarity
of relationship networks, author names need only to be linked and the strength or even
the existence of this link will define a threshold for the attribute similarity.

A generic approach has been presented in [9], using the entity-relationship graph
on data disambiguation, which can be applied to author disambiguation. However, it
only uses relationships on entities that haven’t been matched using attributes, while in
our approach we use this information when comparing all entities.

Other pieces of research use co-author information, but do not make use of social
network analysis. In [5], along with the author name, evidences such as paper title,
paper venue and co-author list are used to disambiguate authors. The methods
presented in [7] and [20], are based on Machine Learning techniques and [19] uses
information extracted from the web as evidence to match author names.

6 Conclusions

In this article, we have used Genetic Programming to evaluate the impact of using
social network analysis to solve the author name disambiguation problem in Digital
Libraries. We presented a machine learning approach to generate author match
functions based on GP. We have also presented Match Functions generated by our
approach using real-world datasets. Experimental results have shown that MFs that
use social network evidences produce better results than MFs that don’t make use of
these evidences. By comparing our results to results obtained by the HHC method [5],
we have shown that our method can compete with state-of-the-art approaches.

As future work, scalability and generalization issues could be explored. Also, our
GP approach could be used to evaluate the impact of adding other evidences which
are harder to extract, such as name origin (e.g., Indian, Chinese) or publication topic.

7 Acknowledgments

This work has been partially supported by the Brazilian National Institute of Science
and Technology for the Web (CNPq grant no. 573871/2008-6) and by CNPq project
no. 550891/2007-2.

References

1. Benjelloun, O., Garcia-Molina, H., Kawai, H., Larson, T.E., Menestrina, D., Su, Q.,
Thavisonboon, S., Widom, J.: Generic Entity Resolution in the SERF Project. IEEE Data
Engeneering Bulletin, Vol. 29, p. 13-20. (2006)

2. Bhattacharya, 1., Getoor, L.: Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data, Vol. 1, Issue 1, Article No. 5. (2007)

3. Borgman, C.L: What are Digital Libraries? Competing Visions. Information Processing and
Management: an International Journal, Vol. 35, Issue 3, p. 227-243. (1999)

4. Carvalho, M.G., Laender, A.-H.F., Gongalves, M.A., Silva, A.S.: Replica Identification
Using Genetic Programming. In: ACM SAC 2008, p. 1801-1806. Fortaleza, Brazil (2008)

5. Cota, R., Gongalves, M.A., Laender, A.H.F.: A Heuristic-based Hierarchical Clustering
Method for Author Name Disambiguation in Digital Libraries. In: 12th SBBD, p. 20-34.
Jodo Pessoa, Brazil (2007)

6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Survey.
IEEE Transactions on Knowledge and Data Engineering, Vol. 19, p. 1-16. (2007)

7. Huang, J., Ertekin, S., Giles, C.L.: Efficient name disambiguation for large-scale databases.
In: Proceedings of the 10™ ECML PKDD, p.536-544. (2007)

8. Kang, 1.-S., Na, S.-H., Lee, S., Jung, H., Kim, P., Sung, W.-K., Lee, J.-H.: On co-authorship
for author disambiguation. Information Proc. and Management, Vol. 45, p. 84-97. (2009)

9. Kalashnikov, D., Mehrotra, S.: Domain-Independent Data Cleaning via Analysis of Entity-
Resolution Graph. ACM TODS, Vol. 31, No. 2, p. 716-767. (2006)

10.Koza, J.R.: Genetic Programming: On the programming of computers by means of natural
selection. MIT Press. (1992)

11.Lapidot, L.: Self-Organizing-Maps with BIC for Speaker Clustering. IDIAP Research Report
02-60, IDIAP Research Institute. Martigny, Switzerland (2002)

12.Lee, D., On, B.-W., Kang, J.: Effective and scalable solution for mixed and split citation
problems. In: Proceedings of the 2™ IQIS, p. 69-76. Baltimore, Mariland. (2005)

13.Levin, F.H., Heuser, C.A.: Evaluating the Use of Social Networks in Author Name
Disambiguation in Digital Libraries. In: 14th SBBD, p. 46-60. Fortaleza, Brazil (2009)

14.Malin, B.: Unsupervised name disambiguation via social network similarity. In: Proceedings
of the Workshop on Link Analysis, Counterterrorism and Security, in conjunction with the
SIAM International Conference on Data Mining, p. 93-102. Newport Beach, CA (2005)

15.Menezes, G.V., Ziviani, N., Laender, A.H.F., Almeida, V.: A Geographical Analysis of
Knowledge Production in Computer Science. In: Proceedings of the 18" international
conference on the World Wide Web, p. 1041-1050. Madrid, Spain (2009)

16.Newman, M.E.: The structure and function of complex networks. SIAM Review, 45(2):167-
256 (2003)

17.0liveira, J.W., Laender, A.H.F., Gongalves, M.A.: Remocio de Ambigiiidades na
Identificagdo de Autoria de Objetos Bibliograficos. In: 10th SBBD, p. 205-219. Uberlandia,
Brazil (2007)

18.0n, B.-W., Elmacioglu, E., Lee, D., Kang, J., Pei, J.: An effective approach to entity
resolution problem using quasi-clique and its application to digital libraries. In: Proceedings
of the 6™ ACM/IEEE-CS JCDL, p. 51-52. Chapel Hill, NC (2006)

19.Pereira, D.A., Ribeiro-Neto, B., Ziviani, N., Laender, A.H.F., Gongalves, M.A., Ferreira,
A.A.: Using web information for author name disambiguation. In: Proceedings of the 9™
ACM/IEEE-CS JCDL, p. 49-58. Austin, TX (2009)

20.Treeratpituk, P., Giles, C.L.: Disambiguating authors in academic publications using random
forests. In: Proceedings of the 9™ ACM/IEEE-CS JCDL, p. 39-48. Austin, TX (2009)

