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t. Moving obje
t (MO) data representation and 
omputing havere
eived a fair share of attention over re
ent years from the database
ommunity. Repla
ing raw traje
tory data (i.e., MO positions at di�er-ent time instants) by sequen
es of appli
ation-dependent stops o

urredat so-
alled pla
es of interest (PoIs) leads to the notion of semanti
 tra-je
tories. Di�erent te
hniques exist for sequential pattern analysis of tra-je
tories de�ned in this way. One of them, RE-SPaM, expresses sequen-tial patterns by means of regular expressions built not only over itemidenti�ers, but also over 
onstraints de�ned on the (temporal and non-temporal) attributes of the items to be analyzed. This analysis 
ould begreatly enri
hed if spatial and non-spatial data asso
iated with the MOare taken into a

ount. In this paper we show how we 
an take advan-tage of the extensibility properties of RE-SPaM to augment its expressivepower by allowing to in
lude spatial queries in the 
onstraints. For this,we make use of Piet, a framework allowing to integrate OLAP, GIS andMO data, and its asso
iated query language denoted Piet-QL, providinga link between moving obje
t data and their geographi
 environment.1 Introdu
tionTypi
al queries in Geographi
 Information Systems (GIS) [10℄ ask for geomet-ri
 obje
ts that satisfy some 
ondition, or involve the aggregation of geographi
measures (i.e. area, length). Although it is usual in GIS pra
ti
e to store non-spatial data in themati
 layers (also 
alled themes), when aggregation is involved,non-spatial GIS data 
an be stored in a data warehouse to a
hieve better perfor-man
e. Then, OLAP (On Line Analyti
al Pro
essing) [9℄ tools and algorithms
an be used for exploiting the data warehouse. In OLAP, data are per
eived asa data 
ube where ea
h 
ell 
ontains a measure or set of measures representingfa
ts and the 
ontextual information whi
h 
onforms dimensions. A re
ently pro-posed paradigm, denoted SOLAP [11℄ states the basi
 requirements for e�
ientlyproviding integration between GIS and OLAP.Moving obje
t data (MOD) appli
ations [7℄ have been steadily gaining at-tention from the GIS 
ommunity. The behavior of moving obje
ts is tra
eable



by means of ele
troni
 devi
es (e.g., GPS, RFID), produ
ing traje
tory data,whi
h 
an be analyzed in order to obtain interesting patterns. Sin
e lo
ations ofa moving obje
t are reported as a time-ordered sequen
e, sequential pattern al-gorithms appear as natural tools for querying and mining traje
tory databases.Moving obje
t positions are 
aptured at a given time interval, with a 
ertaingranularity. Thus, the traje
tory of a moving obje
t is given by samples 
om-posed of a �nite number of tuples of the form < Oid, x, y, t >, stating that at a
ertain point in time, namely t, the obje
t Oid was lo
ated at 
oordinates (x, y).A very a
tive resear
h area in this setting is the dis
overy of sequential patternsin traje
tories [3, 8℄. Many re
ent proposals perform this kind of analysis notover the original MOD, but over a database built based on the ideas introdu
edby Spa

apietra et al. [12℄, where it is assumed that obje
ts move over a mapthat 
ontains disjoint geometries, and there is also semanti
 information asso
i-ated with them in the form of attributes. These geometries are denoted Pla
esof Interest (PoIs). When a moving obje
t spends a fair amount of time within aPoI, the PoI is 
onsidered a stop of the traje
tory, and all (x, y) points in the PoIare repla
ed by a data obje
t representing a stop. This allows 
onsidering ea
hobje
t's traje
tory as a sequen
e of stops instead of a sequen
e of points. Thus,sequential pattern analysis 
an be applied to this approximation of traje
tories,also 
alled �semanti
 traje
tories�, given that they 
an provide more informationthan the one provided by the x, y, t points alone.1.1 Problem statement and 
ontributionsSeveral authors have emphasized the need of dis
overing patterns in traje
toriesat di�erent temporal and/or spatial granularities. However, to the best of ourknowledge, the problem of �nding sequential patterns that a

ounts for the 
har-a
teristi
s of the geographi
 environment in whi
h the obje
ts move has not beenaddressed so far. Here we study this problem and provide a solution, buildingover previous work in the �elds of SOLAP and sequential pattern mining.Gómez et al. re
ently introdu
ed RE-SPaM, a language that 
an expresssequential patterns by means of regular expressions over 
onstraints de�ned interms of the (temporal and non-temporal) attributes of the items to be analyzed,where an item is a tuple 
omposed of an obje
t identi�er, a time instant, and apla
e of interest [5℄4. These patterns 
an be used during the sequential patternmining pro
ess to prune sequen
es that, although satisfying minimum supportrequirements, are not of interest to the user [2℄.In order to retrieve spatial data, we need a query language that 
an returnspatial obje
ts. For this, we use Piet-QL [6℄5, a language that supports thePiet data model [4℄, a proposal aimed at integrating GIS and OLAP in a singleframework. Piet-QL is an SQL-like query language that 
an express 
omplex andpowerful spatial and OLAP queries, and supports the operators in
luded in theOpen Geospatial Consortium spe
i�
ation6 for SQL. In addition, it in
orporates4 http://piet.exp.d
.uba.ar/mo-patterns5 http://piet.exp.d
.uba.ar/pietql6 http://www.opengeospatial.org



the ne
essary syntax to integrate OLAP operations through the MDX standard7.The language resulting from the integration between RE-SPaM and Piet-QL isdenoted RE-SPaM++. This language delivers 
apabilities not present in otherproposals, whose usefulness we show in this paper.Throughout the paper we assume we have traje
tory data, originally in theform (Oid, x, y, t), that are transformed in sequen
es of PoIs. Obje
ts move in ageographi
 spa
e represented in a real-world map of Belgium, 
onsisting in �velayers, 
ontaining geographi
 information on rivers, regions, provin
es, distri
ts,and 
ities. The rivers are represented as polylines, 
ities as points, and the otherlayers as polygons. There is also a data warehouse with information about storesand sales for di�erent regions in Belgium.1.2 Related workSome re
ent proposals address the problem of mining patterns in MODs, basedon the notion of �pla
es of interest�. Giannotti et.al. introdu
ed t-patterns, formining sequential patterns on regions of interest [3℄. A t-pattern is of the formRailway Station 1h10min> Castle Square 2h15min> Museum. Karli and Saygin[8℄ propose to obtain patterns over so-
alled �important pla
es� (a region where atra
ed obje
t spends a fair amount of time) at di�erent time granularities. Notethat these patterns are basi
ally de�ned by extension. On the 
ontrary, regularexpressions allow de�ning more 
omplex patterns, intensionally. The idea ofusing regular expressions for traje
tory analysis was �rst proposed by Mouza andRigaux [1℄. They present a language based on regular expressions for queryingmobility patterns where ea
h zone is represented by its label (a 
onstant) or bya variable (�x). In this language, ea
h o

urren
e of a variable in the pattern isinstantiated with the same value. The language, however, has some limitations.For instan
e, it 
annot deal with time 
onstraints or 
ategories, neither supportsvariables or data des
ribing the geographi
 environment. Gómez et al. extendthis language using regular expressions to express sequential patterns over pla
esof interest [5℄, resulting in the RE-SPaM language, dis
ussed in Se
tion 2.The remainder of the paper is organized as follows. Se
tion 2 gives an overviewof the languages involved in our proposal. Se
tion 3 introdu
es the RE-SPaM++query language and provides examples. Se
tion 4 des
ribes how the sequentialpattern mining algorithm is modi�ed to allow an e�
ient implementation of ourideas. We 
on
lude in Se
tion 6.2 PreliminariesPiet-QL. From the kinds of queries Piet-QL supports, we are interested in theones that return spatial obje
ts. We introdu
e Piet-QL through an example.Consider the query �Distri
ts in Belgium with at least one sale in 2007�.7 http://msdn2.mi
rosoft.
om/en-us/library/ms145506.aspx



SELECT GIS bel_dist.nameFROM bel_distWHERE bel_dist IN(SELECT CUBEfilter([Store℄.[Store Distri
t℄.Members,[Measures℄.[Unit Sales℄>0)FROM [Sales℄sli
e [Time℄.[2007℄)Here, bel_dist represents a layer 
ontaining the distri
ts in Belgium. Thekeyword GIS tells that the query returns spatial obje
ts. The query 
ontains asub-query of OLAP type (indi
ated by the CUBE keyword), that is, a query thatreturns a data 
ube. This sub-query is expressed in a language whi
h is a slightvariation of MDX, operates over a data 
ube, 
alled Sales, takes a 
ube sli
e 
or-responding to sales in 2007, and �lters out the stores with no sales. The hierar
hyof the Store dimension in the 
ube is of the form storeId -> store 
ity -> storedistri
t -> store provin
e, meaning that store sales aggregate over 
ities, distri
tsand provin
e, in that order. The expression 
ontaining the path [Store℄.[StoreDistri
t℄.Members in the sub-query returns the distri
ts with at least one unitsold. System metadata allows mat
hing the identi�ers of the geometri
 obje
tswith the identi�ers of the level members in the OLAP dimension (in the exampleabove, the members of the level Store Distri
t). Finally, we obtain the distri
tsin the layer bel_dist with at least one unit sold. A detailed des
ription of thelanguage 
an be found in [6℄.RE-SPaM. The RE-SPaM data model is basi
ally 
omposed of 
ategory s
hemas,
ategory o

urren
es, 
ategory instan
es, and the table of items (ToI). Ourtourist appli
ation in
ludes four 
ategory s
hemas, namely hotels, restaurants,airports and tourist attra
tions. Ea
h 
ategory s
hema is 
omposed of a set ofattributes that des
ribe it. An element in a 
ategory is denoted a 
ategory o

ur-ren
e, and the set of all o

urren
es in all 
ategories in an appli
ation is denoteda 
ategory instan
e. A set of 
ategory instan
es for our running example is shownin Figure 1 (for example, the 
ategory hotels has two o

urren
es). A value of theattribute geom represents the geometri
 extension of the 
orresponding 
ategoryo

urren
e. For example, in the �rst tuple, pol1 
an be Point(10 20). Adding atime interval to a 
ategory o

urren
e, produ
es an item. The time interval ofan item is des
ribed by its initial and �nal instants, and denoted [ts, tf℄. A pair
(Oid, item) is a tuple in the ToI. For the same Oid, the time-ordered sequen
eof items represent the �semanti
� traje
tory of the obje
t. Figure 2 shows a nor-malized instan
e of the ToI 
orresponding to the 
ategory instan
es of Figure1. There are two moving obje
ts, O1 and O2, and the table 
ontains only the
Oid, the 
ategory o

urren
e identi�er, and the temporal attributes. All otherattributes are stored elsewhere.Over this model, a pattern language based on regular expressions is built.The atoms in RE-SPaM are 
onstraints expressed as formulas over attributes



Category Instan
ehotels [(ID, H1), (categoryName, hotel), (geom, pol1), (star, 3)]
[(ID, H2), (categoryName, hotel), (geom, pol2), (star, 5)]restaurants [(ID, R1), (categoryName, restaurant), (geom, pol3), (typeOfF ood, F rench), (price, cheap)]
[(ID, R2), (categoryName, restaurant), (geom, pol4), (typeOfF ood, F rench), (price, expensive)]
[(ID, R3), (categoryName, restaurant), (geom, pol5), (typeOfF ood, Italian), (price, cheap)]airports [(ID, A1), (categoryName, airport), (geom, pol6), (type, International)]
[(ID, A2), (categoryName, airport), (geom, pol7), (type, Local)]
[(ID, A3), (categoryName, airport), (geom, pol8), (type, International)]attra
tions [(ID, C1), (categoryName, touristattraction), (geom, pol9), (name, CathedralofO.L.), (price, free)]
[(ID, C2), (categoryName, touristattraction), (geom, pol10), (name, CastleofG.theD.), (price, free)]Fig. 1. A set of instan
esOID Items

O1

([(ts,04/08/2008 14:05), (tf, 04/08/2008 14:33), (ID,R2)℄)([(ts,04/08/2008 17:30), (tf,04/08/2008 18:48), (ID,R3)℄)([(ts,08/08/2008 06:22), (tf,08/08/2008 07:05), (ID,R1)℄)([(ts,08/08/2008 17:10), (tf,08/08/2008 18:17), (ID,R1)℄)
O2

([(ts,19/08/2008 09:00), (tf,19/08/2008 10:20), (ID,R1)℄)([(ts,19/08/2008 17:00), (tf,19/08/2008 18:12), (ID,R2)℄)Fig. 2. An instan
e of the Normalized ToIof the 
omplex items de�ned above. Constraints 
onsist in 
onjun
tions of ex-pressions, en
losed between squared bra
kets. The regular expression language isbuilt in the usual way, supporting the standard operators (`()',`*',`+',`?',`.',`|').The language also supports variables (strings pre
eded by `�').As an example, a pattern expressing traje
tories of tourists who visit hotelH1 and then a pla
e 
hara
terized as `
heap' or that serves Fren
h food, reads:[ID=`H1'℄.([pri
e=`
heap'℄|[typeOfFood=`Fren
h'℄)The se
ond 
onstraint does not mention IDs, only 
ategori
al attributes.The disjun
tion is evaluated as follows: `
heap' pla
es are restaurants R1 andR3 (Figure 1). Pla
es that serve Fren
h food are R1 and R2. During the miningpro
ess, the items whi
h satisfy these 
onditions are 
omputed, without the needof expli
it enumeration of all the possibilities.Fun
tions are supported in RE-SPaM in the forms fun
tionName(attr, ...) =`
onstant', and fun
tionName(attr, ...) = �variable, and 
an be de�ned ad-ho
.Synta
ti
ally, the �rst parameter may be an attribute of a 
ategory o

urren
e(for example, typeOfFood in our running example), or a temporal attribute (ts,tf, or their subparts). All other parameters must be literals, and the fun
tionalso returns a literal. For example, a fun
tion compares(price, c), 
ompares theattribute pri
e with a literal, and returns `equal', `less', or `greater than'; the�rst parameter is an attribute of the 
ategory o

urren
es of restaurants andtourist attra
tions, and the se
ond one is a 
onstant. The fun
tion 
an be in-voked as compares(price,`100'). Also rollup fun
tions à la OLAP 
an be de�nedto return ranges of time for a temporal attribute of an item (e.g., `Early Morn-ing', `Morning',..). The query �Traje
tories that visit two pla
es (the se
ond oneo�ering 
heap pri
es), at the same part of the day (e.g., both of them during themorning) on O
tober 10th, 2008� uses this fun
tion, reading:



[rollup(ts_time,`range',`Time')=@z ∧ ts_date=`10/10/2008'℄.[rollup(ts_time, `range',`Time')= @z ∧ ts_date=`10/10/2008' ∧pri
e=`
heap'℄Note that RE-SPaM 
ould be used as a query language over the traje
torydatabase, or to prune the patterns obtained during the mining pro
ess.3 The RE-SPaM++ LanguageSin
e moving obje
ts evolve in a geographi
 environment, we would like to allowgeometri
 
onditions to be in
luded in the patterns. We present RE-SPaM++, alanguage that integrates Piet-QL and RE-SPaM allowing to add SOLAP 
ondi-tions to 
onstraints in the regular expressions of RE-SPaM. Synta
ti
ally, thisextension is very simple: we only add a WITH statement to a Piet-QL SELECT
lause. This statement generates a sort of materialized view that is used in aRE-SPaM expression. Thus, the language allows not only single statements butalso programs 
omprising sequen
es of Piet-QL and RE-SPaM statements.The kinds of fun
tions dis
ussed in Se
tion 2 are not enough to supportgeometri
 
onditions in regular expression-based 
onstraints. A Piet-QL queryreturns a 
ursor over tuples (i.e., a set of literals), not a literal. Thus, we needto de�ne new kinds of fun
tions. The syntax for these fun
tions 
onsists in a�rst parameter whi
h 
orresponds to an attribute of a 
ategory o

urren
e (forexample, geom) or a temporal attribute (ts, tf, or their sub-parts). The se
ondparameter must be of the form a.b, where the semanti
s is that b is the nameof an attribute, and a is the name of a table asso
iated to some WITH 
lause.The fun
tion returns a literal.For example, if a Piet-QL query returns the geometries of regions 
rossed byrivers, in a stru
ture named r.geom (using the WITH 
lause), we 
an then usethis result to de�ne a fun
tion that 
he
ks whether the value of the attributegeom (e.g., the geometry of the PoI in our running example) is 
ontained by anyof the geometries in the 
ursor de�ned by r.geom. The fun
tion returns `true'or `false', and it is invoked as containedBy(geom, r.geom). We now give someexamples that illustrate the use of RE-SPaM++.Q1. Traje
tories that stop at a pla
e whi
h belongs to a region that 
ontains ariver, and whose next stop is an airport or a tourist attra
tion.WITH TABLE regRiver(the_geom) ASSELECT GIS DISTINCT(bel_regn.the_geom)FROM bel_regn, bel_riverWHERE 
ontains(bel_regn.the_geom,bel_river.the_geom);[containedBy(geom, regRiver.the_geom)=`true'℄.([
ategoryName=`Airport'℄|[
ategoryName=`Tourist Attra
tion'℄)The Piet-QL part returns a set of geometri
 obje
ts (polygons) representingregions 
ontaining rivers, in the 
ursor regRiver(the_geom). In the RE-SPaM



part of the query, the �rst 
onstraint 
he
ks if the PoI is 
ontained in one of theregions in the set. In other words, when an item in the Table of Items is beingevaluated (e.g., during the mining pro
ess or just using RE-SPaM++ as a querylanguage), the 
orresponding PoI geometry (represented by the attribute geom)is 
ompared against ea
h of the geometri
 elements in the 
ursor.Q2. Traje
tories that stop at a pla
e with 
heap pri
es, whi
h is very 
loseto a distri
t lo
ated in a region 
rossed by a river, and then at the Castle ofGerard the Devil (G. the D.), �nishing there.WITH TABLE distri
t(the_geom) ASSELECT GIS DISTINCT(bel_dist.the_geom)FROM bel_dist, bel_regn, bel_riverWHERE interse
ts(bel_regn.the_geom, bel_river.the_geom) and
ontains(bel_regn.the_geom, bel_dist.the_geom);[pri
e=`
heap' ∧ short_distance(geom,distri
t.the_geom)=`true'℄.[name=`Castle of G. the D.'℄)This example also shows how the Piet-QL part of the query is used to linkthe traje
tories of the moving obje
ts to the geographi
 spa
e where they evolve.Here, the Piet-QL query returns distri
ts (i.e., polygons) in a map. At evaluationtime, ea
h geometry of the PoI where a traje
tory stops is 
ompared with thegeometry of ea
h distri
t in the 
ursor, to 
he
k if the PoI being visited is 
loseto it (we are not interested in how this `
loseness' is 
omputed, we just give thisquery as an example to illustrate the power of the language).Q3. Traje
tories that visit a pla
e with 
heap pri
es and then stop at an airport(�nishing there), su
h that both stops are either lo
ated in regions 
rossed by ariver (although not ne
essarily the same region), or not 
rossed by rivers.WITH TABLE reCrRi(the_geom) ASSELECT GIS DISTINCT(bel_regn.the_geom)FROM bel_regn, bel_riverWHERE interse
ts(bel_regn.the_geom, bel_river.the_geom);[pri
e=`
heap' ∧ containedBy(geom,reCrRi.the_geom)= @x℄.[
ategoryName=`Airport' ∧ containedBy(geom,reCrRi.the_geom)=@x ℄In this 
ase, the variable @x is of boolean type. At evaluation time, thevariable is bound to `true' or `false', and the two 
onstraints are evaluated withthis value. In this example, the two 
onstraints in the RE-SPaM++ expressionin
lude the geometri
 fun
tion 
ontainedBy.4 The RE-SPaM++AlgorithmWe explain now how RE-SPaM++ is used within a sequential pattern mining al-gorithm. The algorithm for �nding frequent patterns is a variation of the one de-



a b

c

[
ontainedBy(geom,regRiver.the_geom)=`true'℄ [
ategoryName=`Airport'℄[
ategoryName=`Tourist Attra
tion'℄Fig. 3. Automaton for Q1s
ribed in detail in [5℄. The input to the algorithm is an RE-SPaM++ program8,and a value for the minimum support required for the dis
overed sequen
es. Ina nutshell, the support of a sequential pattern is the number of sequen
es inthe ToI that satisfy su
h pattern, out of the total number of sequen
es in thedatabase. During evaluation, the dis
overed patterns are restri
ted to the onessatisfying the RE-SPaM++ expression. In what follows we fo
us on the 
hangesintrodu
ed on the original algorithm in order to support the new features of RE-SPaM++, although to make the explanation self-
ontained we need to brie�y goover the RE-SPaM algorithm. For the sake of 
larity, we pro
eed by means ofan example, using query Q1 from Se
tion 3.As a �rst step, a deterministi
 �nite automaton (DFA) that a

epts thelanguage generated by the regular expression (RE) is built. The DFA for theRE-SPaM++ part of Q1 is shown in Figure 3. The labels of the edges of theautomaton are 
onstraints that must be satis�ed by the sequen
e that is beingevaluated at ea
h step of the algorithm that we des
ribe next. The evaluationof the RE pro
eeds in in
remental phases, building, at ea
h step, 
andidate sets
Ci of sequen
es of length i. In short, in the �rst step it builds the set C1 with
andidate sequen
es (i.e. sequen
es of POIs) of length one. The automaton isused to prune 
andidate sequen
es that do not satisfy expressions not involvingtemporal attributes. At the �nal phase of the step, the ToI is queried to dete
twhi
h sequen
es must be dis
arded be
ause they do not have the minimumsupport. During a step k, the self-join of Ck−1 is used to produ
e Ck, and thenthe automaton and the ToI are, again, used for pruning. Temporal attributesand variables in the 
onstraints 
an be evaluated at di�erent moments. We 
aneither: (a) postpone their evaluation to the �nal phase of the algorithm; or, (b)evaluate them as soon as possible to redu
e the size of the intermediate 
andidatesequen
es Ck. This is the approa
h we follow.Sin
e the algorithm pro
eeds in in
remental steps, fun
tions must be re-peatedly evaluated. Besides the need of evaluating if a portion of a 
andidatesequen
e satis�es some 
onstraint labeling the edges of the automaton, we needto take 
are e�
iently of the expressions introdu
ed in RE-SPaM++ programs,namely the 
ursors explained in the previous se
tion. To a

omplish an e�
ientimplementation we borrow ideas from dynami
 programming te
hniques, where,8 We denote RE-SPaM++ program the Piet-QL and the regular expression parts al-together, and RE-SPaM++ the part 
orresponding to the regular expression.



on
e a fun
tion is evaluated with some parameters its result is stored in a 
a
heavoiding re
al
ulation. Two types of 
a
hing 
an be exploited, whi
h we denotema
ro and mi
ro 
a
he, respe
tively. The former stores the result of a fun
tionof type fn(`value', tableName.attribute) (that is, geometri
 fun
tions returningsets). The latter stores the result of a fun
tion of the form fn(`value', `literal',...). We explain these ideas by means of an example.Consider query Q1 from Se
tion 3, asking for traje
tories that pass througha pla
e whi
h belongs to regions that 
ontain a river and �nish at an airport ora tourist attra
tion. The Piet-QL part of the query returns regions in the 
ursordenoted regRiver.the_geom. Belgium is 
omposed of three regions: VlaamsGewest, Brussel-Hoofdstad, and the Wallonne. Brussel-Hoofdstad is 
rossed bythe Kanaal van Charleroi river, but this river is not 
ontained by the region.Vlaams Gewest 
ontains the Ieperlee river and the Wallonne region 
ontainsthe Ourthe O

le river. Thus, both regions are in the 
ursor after the Piet-QLquery is evaluated. Now, we move on to the RE:[containedBy(geom, regRiver.the_geom)=`true'℄.([
ategoryName=`Airport'℄|[
ategoryName=`Tourist Attra
tion'℄)The algorithm starts by building C1 with all the 
ategory o

urren
es. Then,it uses the automaton for pruning: if a 
andidate sequen
e does not satisfy anypath in the automaton, it is pruned. We have three paths of length 1 in theautomaton (see Figure 3). The expression [
ategoryName = `Airport'℄ is sat-is�ed by the three airport o

urren
es of Table 1 (A1 though A3). The expres-sion [
ategoryName=`Tourist Attra
tion'℄ is satis�ed by the 
astle and the
athedral (i.e., o

urren
es C1 and C2). The third expression, [containedBy(geom,regRiver.the_geom)℄ must be evaluated for the 
ategory o

urren
es of ho-tels and restaurants, to 
he
k whi
h PoIs are in regions 
rossed by rivers (re-turned by the Piet-QL part of the RE-SPaM++ program). Given that the ex-pression 
ontains a fun
tion, the 
a
he is used for this evaluation. The engine�rst looks up in the ma
ro-
a
he (implemented as a hash table) for the valueasso
iated with the key containedBy(`pol1', regRiver.the_geom). No value isretrieved in this 
ase, and the fun
tion starts browsing the 
ursor. The �rsttuple in the 
ursor is 〈‘V laams Gewest'〉. Instead of evaluating the fun
-tion, the mi
ro-
a
he is now queried for the value asso
iated with the key
containedBy(`pol1', `V laams Gewest'). We know that `pol1' (the geometry ofHotel H1) is 
ontained in the Vlaams Gewest region. Thus, the asso
iation be-tween containedBy(`pol1', `V laams Gewest') and `true' is stored in the mi
ro-
a
he. Sin
e the value returned by the fun
tion is `true', there is no need to
ontinue browsing the 
ursor. Moreover, the ma
ro-
a
he is also updated, asso-
iating the key containedBy(`pol1', regRiver.the_geom) with the value `true'(see below how this is used in the next step). Next, we evaluate evaluation
containedBy(`pol2', regRiver.the_geom). Again, nothing is retrieved from thema
ro 
a
he, therefore we must browse the 
ursor. The engine looks up in themi
ro-
a
he for a value asso
iated with containedBy(`pol2', `V laams Gewest').Sin
e nothing is retrieved, the fun
tion is evaluated, returning the value `false',and this asso
iation is stored in the mi
ro-
a
he. Finally, the 
andidate sequen
e



IDsA1A2A3C1C2H1H2R1R2R3
IDsA1A2A3C1C2H1R1R2R3Fig. 4. Computing C1: before (left) and after (right) pruning with automatonIDsA1 A1A1 A2... ...A1 R3... ...A2 R3... ...H1 A1H1 A2... ...R3 R3
IDsA2 A1A2 A2... ...C1 A1... ...H1 A1H1 A2... ...R2 A3R2 C1... ...Fig. 5. C2 before (left: 81 tuples), and after (right: 40 tuples) pruning with automatonH2 is dis
arded sin
e it 
an not satisfy any path of length one in the automaton.Thus, all sequen
es 
ontaining H2 are pruned. Analogously, the system �ndsout if `pol3', `pol4' and `pol5' are 
ontained in some tuple of the 
ursor re-gRiver.the_geom, by taking advantage of the ma
ro and mi
ro 
a
hes. Figure 4shows the initial and �nal states of C1. In the �nal phase of the �rst step (thestep with k = 1), C1 is analyzed against the ToI to 
he
k for minimum support.For the se
ond step, suppose that all 
andidate sequen
es of C1 are main-tained (i.e., they will be 
he
ked for minimum support). Thus, the system pop-ulates the set C2 in the se
ond step by joining C1 with itself. This self-join isthe one typi
ally used in sequential pattern mining [13℄, adapted to the 
ase ofitemsets of length 1. Two tuples t1 and t2 mat
h in the join Ck−1 ⋊⋉ Ck−1, if thelast k− 2 of the items in t1 
oin
ide with the �rst k− 2 items in t2. Then, a newtuple is formed as the union of the items in t1 and t2. Similarly to the �rst step,using the automaton the engine determines the 
andidate sequen
es of lengthtwo that are satis�ed by some path of length two and dis
ards the rest. To op-timize the evaluation of fun
tions we use the ma
ro-
a
he. When de
iding if the
andidate sequen
e of length 2 {H1A2} is a

epted by some path of length twoin the automaton, the fun
tion containedBy(`pol1', regRiver.the_geom) mustbe evaluated. But now, this key and its asso
iated value 
an be obtained fromthe ma
ro-
a
he, sin
e its value was 
al
ulated in the previous step, and this
a
he was updated a

ordingly. The pro
ess 
ontinues until a step k su
h thatno sequen
es of length k exist in the ToI. In Figure 5 we show the state of C2before and after pruning.



Fig. 6. Implementation tool: output window5 Implementation and Experimental ResultsWe implemented RE-SPaM++ and in
orporated this language into the Pietframework [4℄9. Figure 6 depi
ts the graphi
 output of the system. Patternsof length two (i.e., involving three PoIs) are shown. The thi
kness of the linesre�e
ts the relative support of the dis
overed pattern, and the edges are labeledwith the number of asso
iated traje
tories. For example, pattern [r3,a3,
3℄ has447 o

urren
es, and the lines are mu
h thi
ker than the ones 
orresponding topattern [r1,h3,
1℄, whi
h has only 3.Preliminary experiments were aimed at assessing the impa
t of introdu
inggeometri
 fun
tions in regular expressions. Due to spa
e limitation we do not givea detailed report of the experimental results, but a general 
omment on them.Experiments showed that the time overhead introdu
ed by the parsing of thePiet-QL part of a RE-SPaM query is negligible. With respe
t to exe
ution time,we know that it depends on several parameters, like the size of the intermediate
Ck sets, minimum support, and the kinds of expressions used in the query, amongother fa
tors. Sin
e GSP �nds all frequent sequen
es in a database, and RE-SPaM++ restri
ts these sequen
es to the ones mat
hing the regular expressions,adding a spatial predi
ate to a 
onstraint in general results in a lower numberof sequen
es. Thus, two opposite e�e
ts appear: on the one hand the use offun
tions requires less memory spa
e due to the smaller size of intermediate
Ck; on the other hand, fun
tion evaluation impa
ts over exe
ution time. Ourhypothesis was that the former redu
tion 
ompensates the 
ost of evaluatingthe fun
tion. This hypothesis was 
on�rmed by our experiments. Moreover, the9 A demo is available at http://piet.exp.d
.uba.ar/extendedrespam/installation.pdf.



overall performan
e of the algorithm does not de
rease substantially when usingthe 
a
hed fun
tions and exe
ution times appear 
ompatible with user needs.For low values of support, the number of frequent sequen
es obtained in
reases,therefore the exe
ution times also in
rease be
ause of the higher number ofiterations (and the size of intermediate Ck sets).6 Con
lusionWe have presented a language that allows to in
lude spatial OLAP queries inregular expressions that are used during sequential pattern mining for pruningsequen
es that are of no interest to the user. We believe this is a relevant featurewhen dealing with sequential patterns in traje
tory databases, and, to the bestof our knowledge, no proposal of this kind has been introdu
ed so far in the �eld.Our experimental results show that this language enhan
ement is not a
hievedat the expense of algorithm exe
ution times.Referen
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