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3 Universidad de Buenos Airesavaisman�d.uba.arAbstrat. Moving objet (MO) data representation and omputing havereeived a fair share of attention over reent years from the databaseommunity. Replaing raw trajetory data (i.e., MO positions at di�er-ent time instants) by sequenes of appliation-dependent stops ourredat so-alled plaes of interest (PoIs) leads to the notion of semanti tra-jetories. Di�erent tehniques exist for sequential pattern analysis of tra-jetories de�ned in this way. One of them, RE-SPaM, expresses sequen-tial patterns by means of regular expressions built not only over itemidenti�ers, but also over onstraints de�ned on the (temporal and non-temporal) attributes of the items to be analyzed. This analysis ould begreatly enrihed if spatial and non-spatial data assoiated with the MOare taken into aount. In this paper we show how we an take advan-tage of the extensibility properties of RE-SPaM to augment its expressivepower by allowing to inlude spatial queries in the onstraints. For this,we make use of Piet, a framework allowing to integrate OLAP, GIS andMO data, and its assoiated query language denoted Piet-QL, providinga link between moving objet data and their geographi environment.1 IntrodutionTypial queries in Geographi Information Systems (GIS) [10℄ ask for geomet-ri objets that satisfy some ondition, or involve the aggregation of geographimeasures (i.e. area, length). Although it is usual in GIS pratie to store non-spatial data in themati layers (also alled themes), when aggregation is involved,non-spatial GIS data an be stored in a data warehouse to ahieve better perfor-mane. Then, OLAP (On Line Analytial Proessing) [9℄ tools and algorithmsan be used for exploiting the data warehouse. In OLAP, data are pereived asa data ube where eah ell ontains a measure or set of measures representingfats and the ontextual information whih onforms dimensions. A reently pro-posed paradigm, denoted SOLAP [11℄ states the basi requirements for e�ientlyproviding integration between GIS and OLAP.Moving objet data (MOD) appliations [7℄ have been steadily gaining at-tention from the GIS ommunity. The behavior of moving objets is traeable



by means of eletroni devies (e.g., GPS, RFID), produing trajetory data,whih an be analyzed in order to obtain interesting patterns. Sine loations ofa moving objet are reported as a time-ordered sequene, sequential pattern al-gorithms appear as natural tools for querying and mining trajetory databases.Moving objet positions are aptured at a given time interval, with a ertaingranularity. Thus, the trajetory of a moving objet is given by samples om-posed of a �nite number of tuples of the form < Oid, x, y, t >, stating that at aertain point in time, namely t, the objet Oid was loated at oordinates (x, y).A very ative researh area in this setting is the disovery of sequential patternsin trajetories [3, 8℄. Many reent proposals perform this kind of analysis notover the original MOD, but over a database built based on the ideas introduedby Spaapietra et al. [12℄, where it is assumed that objets move over a mapthat ontains disjoint geometries, and there is also semanti information assoi-ated with them in the form of attributes. These geometries are denoted Plaesof Interest (PoIs). When a moving objet spends a fair amount of time within aPoI, the PoI is onsidered a stop of the trajetory, and all (x, y) points in the PoIare replaed by a data objet representing a stop. This allows onsidering eahobjet's trajetory as a sequene of stops instead of a sequene of points. Thus,sequential pattern analysis an be applied to this approximation of trajetories,also alled �semanti trajetories�, given that they an provide more informationthan the one provided by the x, y, t points alone.1.1 Problem statement and ontributionsSeveral authors have emphasized the need of disovering patterns in trajetoriesat di�erent temporal and/or spatial granularities. However, to the best of ourknowledge, the problem of �nding sequential patterns that aounts for the har-ateristis of the geographi environment in whih the objets move has not beenaddressed so far. Here we study this problem and provide a solution, buildingover previous work in the �elds of SOLAP and sequential pattern mining.Gómez et al. reently introdued RE-SPaM, a language that an expresssequential patterns by means of regular expressions over onstraints de�ned interms of the (temporal and non-temporal) attributes of the items to be analyzed,where an item is a tuple omposed of an objet identi�er, a time instant, and aplae of interest [5℄4. These patterns an be used during the sequential patternmining proess to prune sequenes that, although satisfying minimum supportrequirements, are not of interest to the user [2℄.In order to retrieve spatial data, we need a query language that an returnspatial objets. For this, we use Piet-QL [6℄5, a language that supports thePiet data model [4℄, a proposal aimed at integrating GIS and OLAP in a singleframework. Piet-QL is an SQL-like query language that an express omplex andpowerful spatial and OLAP queries, and supports the operators inluded in theOpen Geospatial Consortium spei�ation6 for SQL. In addition, it inorporates4 http://piet.exp.d.uba.ar/mo-patterns5 http://piet.exp.d.uba.ar/pietql6 http://www.opengeospatial.org



the neessary syntax to integrate OLAP operations through the MDX standard7.The language resulting from the integration between RE-SPaM and Piet-QL isdenoted RE-SPaM++. This language delivers apabilities not present in otherproposals, whose usefulness we show in this paper.Throughout the paper we assume we have trajetory data, originally in theform (Oid, x, y, t), that are transformed in sequenes of PoIs. Objets move in ageographi spae represented in a real-world map of Belgium, onsisting in �velayers, ontaining geographi information on rivers, regions, provines, distrits,and ities. The rivers are represented as polylines, ities as points, and the otherlayers as polygons. There is also a data warehouse with information about storesand sales for di�erent regions in Belgium.1.2 Related workSome reent proposals address the problem of mining patterns in MODs, basedon the notion of �plaes of interest�. Giannotti et.al. introdued t-patterns, formining sequential patterns on regions of interest [3℄. A t-pattern is of the formRailway Station 1h10min> Castle Square 2h15min> Museum. Karli and Saygin[8℄ propose to obtain patterns over so-alled �important plaes� (a region where atraed objet spends a fair amount of time) at di�erent time granularities. Notethat these patterns are basially de�ned by extension. On the ontrary, regularexpressions allow de�ning more omplex patterns, intensionally. The idea ofusing regular expressions for trajetory analysis was �rst proposed by Mouza andRigaux [1℄. They present a language based on regular expressions for queryingmobility patterns where eah zone is represented by its label (a onstant) or bya variable (�x). In this language, eah ourrene of a variable in the pattern isinstantiated with the same value. The language, however, has some limitations.For instane, it annot deal with time onstraints or ategories, neither supportsvariables or data desribing the geographi environment. Gómez et al. extendthis language using regular expressions to express sequential patterns over plaesof interest [5℄, resulting in the RE-SPaM language, disussed in Setion 2.The remainder of the paper is organized as follows. Setion 2 gives an overviewof the languages involved in our proposal. Setion 3 introdues the RE-SPaM++query language and provides examples. Setion 4 desribes how the sequentialpattern mining algorithm is modi�ed to allow an e�ient implementation of ourideas. We onlude in Setion 6.2 PreliminariesPiet-QL. From the kinds of queries Piet-QL supports, we are interested in theones that return spatial objets. We introdue Piet-QL through an example.Consider the query �Distrits in Belgium with at least one sale in 2007�.7 http://msdn2.mirosoft.om/en-us/library/ms145506.aspx



SELECT GIS bel_dist.nameFROM bel_distWHERE bel_dist IN(SELECT CUBEfilter([Store℄.[Store Distrit℄.Members,[Measures℄.[Unit Sales℄>0)FROM [Sales℄slie [Time℄.[2007℄)Here, bel_dist represents a layer ontaining the distrits in Belgium. Thekeyword GIS tells that the query returns spatial objets. The query ontains asub-query of OLAP type (indiated by the CUBE keyword), that is, a query thatreturns a data ube. This sub-query is expressed in a language whih is a slightvariation of MDX, operates over a data ube, alled Sales, takes a ube slie or-responding to sales in 2007, and �lters out the stores with no sales. The hierarhyof the Store dimension in the ube is of the form storeId -> store ity -> storedistrit -> store provine, meaning that store sales aggregate over ities, distritsand provine, in that order. The expression ontaining the path [Store℄.[StoreDistrit℄.Members in the sub-query returns the distrits with at least one unitsold. System metadata allows mathing the identi�ers of the geometri objetswith the identi�ers of the level members in the OLAP dimension (in the exampleabove, the members of the level Store Distrit). Finally, we obtain the distritsin the layer bel_dist with at least one unit sold. A detailed desription of thelanguage an be found in [6℄.RE-SPaM. The RE-SPaM data model is basially omposed of ategory shemas,ategory ourrenes, ategory instanes, and the table of items (ToI). Ourtourist appliation inludes four ategory shemas, namely hotels, restaurants,airports and tourist attrations. Eah ategory shema is omposed of a set ofattributes that desribe it. An element in a ategory is denoted a ategory our-rene, and the set of all ourrenes in all ategories in an appliation is denoteda ategory instane. A set of ategory instanes for our running example is shownin Figure 1 (for example, the ategory hotels has two ourrenes). A value of theattribute geom represents the geometri extension of the orresponding ategoryourrene. For example, in the �rst tuple, pol1 an be Point(10 20). Adding atime interval to a ategory ourrene, produes an item. The time interval ofan item is desribed by its initial and �nal instants, and denoted [ts, tf℄. A pair
(Oid, item) is a tuple in the ToI. For the same Oid, the time-ordered sequeneof items represent the �semanti� trajetory of the objet. Figure 2 shows a nor-malized instane of the ToI orresponding to the ategory instanes of Figure1. There are two moving objets, O1 and O2, and the table ontains only the
Oid, the ategory ourrene identi�er, and the temporal attributes. All otherattributes are stored elsewhere.Over this model, a pattern language based on regular expressions is built.The atoms in RE-SPaM are onstraints expressed as formulas over attributes



Category Instanehotels [(ID, H1), (categoryName, hotel), (geom, pol1), (star, 3)]
[(ID, H2), (categoryName, hotel), (geom, pol2), (star, 5)]restaurants [(ID, R1), (categoryName, restaurant), (geom, pol3), (typeOfF ood, F rench), (price, cheap)]
[(ID, R2), (categoryName, restaurant), (geom, pol4), (typeOfF ood, F rench), (price, expensive)]
[(ID, R3), (categoryName, restaurant), (geom, pol5), (typeOfF ood, Italian), (price, cheap)]airports [(ID, A1), (categoryName, airport), (geom, pol6), (type, International)]
[(ID, A2), (categoryName, airport), (geom, pol7), (type, Local)]
[(ID, A3), (categoryName, airport), (geom, pol8), (type, International)]attrations [(ID, C1), (categoryName, touristattraction), (geom, pol9), (name, CathedralofO.L.), (price, free)]
[(ID, C2), (categoryName, touristattraction), (geom, pol10), (name, CastleofG.theD.), (price, free)]Fig. 1. A set of instanesOID Items

O1

([(ts,04/08/2008 14:05), (tf, 04/08/2008 14:33), (ID,R2)℄)([(ts,04/08/2008 17:30), (tf,04/08/2008 18:48), (ID,R3)℄)([(ts,08/08/2008 06:22), (tf,08/08/2008 07:05), (ID,R1)℄)([(ts,08/08/2008 17:10), (tf,08/08/2008 18:17), (ID,R1)℄)
O2

([(ts,19/08/2008 09:00), (tf,19/08/2008 10:20), (ID,R1)℄)([(ts,19/08/2008 17:00), (tf,19/08/2008 18:12), (ID,R2)℄)Fig. 2. An instane of the Normalized ToIof the omplex items de�ned above. Constraints onsist in onjuntions of ex-pressions, enlosed between squared brakets. The regular expression language isbuilt in the usual way, supporting the standard operators (`()',`*',`+',`?',`.',`|').The language also supports variables (strings preeded by `�').As an example, a pattern expressing trajetories of tourists who visit hotelH1 and then a plae haraterized as `heap' or that serves Frenh food, reads:[ID=`H1'℄.([prie=`heap'℄|[typeOfFood=`Frenh'℄)The seond onstraint does not mention IDs, only ategorial attributes.The disjuntion is evaluated as follows: `heap' plaes are restaurants R1 andR3 (Figure 1). Plaes that serve Frenh food are R1 and R2. During the miningproess, the items whih satisfy these onditions are omputed, without the needof expliit enumeration of all the possibilities.Funtions are supported in RE-SPaM in the forms funtionName(attr, ...) =`onstant', and funtionName(attr, ...) = �variable, and an be de�ned ad-ho.Syntatially, the �rst parameter may be an attribute of a ategory ourrene(for example, typeOfFood in our running example), or a temporal attribute (ts,tf, or their subparts). All other parameters must be literals, and the funtionalso returns a literal. For example, a funtion compares(price, c), ompares theattribute prie with a literal, and returns `equal', `less', or `greater than'; the�rst parameter is an attribute of the ategory ourrenes of restaurants andtourist attrations, and the seond one is a onstant. The funtion an be in-voked as compares(price,`100'). Also rollup funtions à la OLAP an be de�nedto return ranges of time for a temporal attribute of an item (e.g., `Early Morn-ing', `Morning',..). The query �Trajetories that visit two plaes (the seond oneo�ering heap pries), at the same part of the day (e.g., both of them during themorning) on Otober 10th, 2008� uses this funtion, reading:



[rollup(ts_time,`range',`Time')=@z ∧ ts_date=`10/10/2008'℄.[rollup(ts_time, `range',`Time')= @z ∧ ts_date=`10/10/2008' ∧prie=`heap'℄Note that RE-SPaM ould be used as a query language over the trajetorydatabase, or to prune the patterns obtained during the mining proess.3 The RE-SPaM++ LanguageSine moving objets evolve in a geographi environment, we would like to allowgeometri onditions to be inluded in the patterns. We present RE-SPaM++, alanguage that integrates Piet-QL and RE-SPaM allowing to add SOLAP ondi-tions to onstraints in the regular expressions of RE-SPaM. Syntatially, thisextension is very simple: we only add a WITH statement to a Piet-QL SELECTlause. This statement generates a sort of materialized view that is used in aRE-SPaM expression. Thus, the language allows not only single statements butalso programs omprising sequenes of Piet-QL and RE-SPaM statements.The kinds of funtions disussed in Setion 2 are not enough to supportgeometri onditions in regular expression-based onstraints. A Piet-QL queryreturns a ursor over tuples (i.e., a set of literals), not a literal. Thus, we needto de�ne new kinds of funtions. The syntax for these funtions onsists in a�rst parameter whih orresponds to an attribute of a ategory ourrene (forexample, geom) or a temporal attribute (ts, tf, or their sub-parts). The seondparameter must be of the form a.b, where the semantis is that b is the nameof an attribute, and a is the name of a table assoiated to some WITH lause.The funtion returns a literal.For example, if a Piet-QL query returns the geometries of regions rossed byrivers, in a struture named r.geom (using the WITH lause), we an then usethis result to de�ne a funtion that heks whether the value of the attributegeom (e.g., the geometry of the PoI in our running example) is ontained by anyof the geometries in the ursor de�ned by r.geom. The funtion returns `true'or `false', and it is invoked as containedBy(geom, r.geom). We now give someexamples that illustrate the use of RE-SPaM++.Q1. Trajetories that stop at a plae whih belongs to a region that ontains ariver, and whose next stop is an airport or a tourist attration.WITH TABLE regRiver(the_geom) ASSELECT GIS DISTINCT(bel_regn.the_geom)FROM bel_regn, bel_riverWHERE ontains(bel_regn.the_geom,bel_river.the_geom);[containedBy(geom, regRiver.the_geom)=`true'℄.([ategoryName=`Airport'℄|[ategoryName=`Tourist Attration'℄)The Piet-QL part returns a set of geometri objets (polygons) representingregions ontaining rivers, in the ursor regRiver(the_geom). In the RE-SPaM



part of the query, the �rst onstraint heks if the PoI is ontained in one of theregions in the set. In other words, when an item in the Table of Items is beingevaluated (e.g., during the mining proess or just using RE-SPaM++ as a querylanguage), the orresponding PoI geometry (represented by the attribute geom)is ompared against eah of the geometri elements in the ursor.Q2. Trajetories that stop at a plae with heap pries, whih is very loseto a distrit loated in a region rossed by a river, and then at the Castle ofGerard the Devil (G. the D.), �nishing there.WITH TABLE distrit(the_geom) ASSELECT GIS DISTINCT(bel_dist.the_geom)FROM bel_dist, bel_regn, bel_riverWHERE intersets(bel_regn.the_geom, bel_river.the_geom) andontains(bel_regn.the_geom, bel_dist.the_geom);[prie=`heap' ∧ short_distance(geom,distrit.the_geom)=`true'℄.[name=`Castle of G. the D.'℄)This example also shows how the Piet-QL part of the query is used to linkthe trajetories of the moving objets to the geographi spae where they evolve.Here, the Piet-QL query returns distrits (i.e., polygons) in a map. At evaluationtime, eah geometry of the PoI where a trajetory stops is ompared with thegeometry of eah distrit in the ursor, to hek if the PoI being visited is loseto it (we are not interested in how this `loseness' is omputed, we just give thisquery as an example to illustrate the power of the language).Q3. Trajetories that visit a plae with heap pries and then stop at an airport(�nishing there), suh that both stops are either loated in regions rossed by ariver (although not neessarily the same region), or not rossed by rivers.WITH TABLE reCrRi(the_geom) ASSELECT GIS DISTINCT(bel_regn.the_geom)FROM bel_regn, bel_riverWHERE intersets(bel_regn.the_geom, bel_river.the_geom);[prie=`heap' ∧ containedBy(geom,reCrRi.the_geom)= @x℄.[ategoryName=`Airport' ∧ containedBy(geom,reCrRi.the_geom)=@x ℄In this ase, the variable @x is of boolean type. At evaluation time, thevariable is bound to `true' or `false', and the two onstraints are evaluated withthis value. In this example, the two onstraints in the RE-SPaM++ expressioninlude the geometri funtion ontainedBy.4 The RE-SPaM++AlgorithmWe explain now how RE-SPaM++ is used within a sequential pattern mining al-gorithm. The algorithm for �nding frequent patterns is a variation of the one de-
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[ontainedBy(geom,regRiver.the_geom)=`true'℄ [ategoryName=`Airport'℄[ategoryName=`Tourist Attration'℄Fig. 3. Automaton for Q1sribed in detail in [5℄. The input to the algorithm is an RE-SPaM++ program8,and a value for the minimum support required for the disovered sequenes. Ina nutshell, the support of a sequential pattern is the number of sequenes inthe ToI that satisfy suh pattern, out of the total number of sequenes in thedatabase. During evaluation, the disovered patterns are restrited to the onessatisfying the RE-SPaM++ expression. In what follows we fous on the hangesintrodued on the original algorithm in order to support the new features of RE-SPaM++, although to make the explanation self-ontained we need to brie�y goover the RE-SPaM algorithm. For the sake of larity, we proeed by means ofan example, using query Q1 from Setion 3.As a �rst step, a deterministi �nite automaton (DFA) that aepts thelanguage generated by the regular expression (RE) is built. The DFA for theRE-SPaM++ part of Q1 is shown in Figure 3. The labels of the edges of theautomaton are onstraints that must be satis�ed by the sequene that is beingevaluated at eah step of the algorithm that we desribe next. The evaluationof the RE proeeds in inremental phases, building, at eah step, andidate sets
Ci of sequenes of length i. In short, in the �rst step it builds the set C1 withandidate sequenes (i.e. sequenes of POIs) of length one. The automaton isused to prune andidate sequenes that do not satisfy expressions not involvingtemporal attributes. At the �nal phase of the step, the ToI is queried to detetwhih sequenes must be disarded beause they do not have the minimumsupport. During a step k, the self-join of Ck−1 is used to produe Ck, and thenthe automaton and the ToI are, again, used for pruning. Temporal attributesand variables in the onstraints an be evaluated at di�erent moments. We aneither: (a) postpone their evaluation to the �nal phase of the algorithm; or, (b)evaluate them as soon as possible to redue the size of the intermediate andidatesequenes Ck. This is the approah we follow.Sine the algorithm proeeds in inremental steps, funtions must be re-peatedly evaluated. Besides the need of evaluating if a portion of a andidatesequene satis�es some onstraint labeling the edges of the automaton, we needto take are e�iently of the expressions introdued in RE-SPaM++ programs,namely the ursors explained in the previous setion. To aomplish an e�ientimplementation we borrow ideas from dynami programming tehniques, where,8 We denote RE-SPaM++ program the Piet-QL and the regular expression parts al-together, and RE-SPaM++ the part orresponding to the regular expression.



one a funtion is evaluated with some parameters its result is stored in a aheavoiding realulation. Two types of ahing an be exploited, whih we denotemaro and miro ahe, respetively. The former stores the result of a funtionof type fn(`value', tableName.attribute) (that is, geometri funtions returningsets). The latter stores the result of a funtion of the form fn(`value', `literal',...). We explain these ideas by means of an example.Consider query Q1 from Setion 3, asking for trajetories that pass througha plae whih belongs to regions that ontain a river and �nish at an airport ora tourist attration. The Piet-QL part of the query returns regions in the ursordenoted regRiver.the_geom. Belgium is omposed of three regions: VlaamsGewest, Brussel-Hoofdstad, and the Wallonne. Brussel-Hoofdstad is rossed bythe Kanaal van Charleroi river, but this river is not ontained by the region.Vlaams Gewest ontains the Ieperlee river and the Wallonne region ontainsthe Ourthe Ole river. Thus, both regions are in the ursor after the Piet-QLquery is evaluated. Now, we move on to the RE:[containedBy(geom, regRiver.the_geom)=`true'℄.([ategoryName=`Airport'℄|[ategoryName=`Tourist Attration'℄)The algorithm starts by building C1 with all the ategory ourrenes. Then,it uses the automaton for pruning: if a andidate sequene does not satisfy anypath in the automaton, it is pruned. We have three paths of length 1 in theautomaton (see Figure 3). The expression [ategoryName = `Airport'℄ is sat-is�ed by the three airport ourrenes of Table 1 (A1 though A3). The expres-sion [ategoryName=`Tourist Attration'℄ is satis�ed by the astle and theathedral (i.e., ourrenes C1 and C2). The third expression, [containedBy(geom,regRiver.the_geom)℄ must be evaluated for the ategory ourrenes of ho-tels and restaurants, to hek whih PoIs are in regions rossed by rivers (re-turned by the Piet-QL part of the RE-SPaM++ program). Given that the ex-pression ontains a funtion, the ahe is used for this evaluation. The engine�rst looks up in the maro-ahe (implemented as a hash table) for the valueassoiated with the key containedBy(`pol1', regRiver.the_geom). No value isretrieved in this ase, and the funtion starts browsing the ursor. The �rsttuple in the ursor is 〈‘V laams Gewest'〉. Instead of evaluating the fun-tion, the miro-ahe is now queried for the value assoiated with the key
containedBy(`pol1', `V laams Gewest'). We know that `pol1' (the geometry ofHotel H1) is ontained in the Vlaams Gewest region. Thus, the assoiation be-tween containedBy(`pol1', `V laams Gewest') and `true' is stored in the miro-ahe. Sine the value returned by the funtion is `true', there is no need toontinue browsing the ursor. Moreover, the maro-ahe is also updated, asso-iating the key containedBy(`pol1', regRiver.the_geom) with the value `true'(see below how this is used in the next step). Next, we evaluate evaluation
containedBy(`pol2', regRiver.the_geom). Again, nothing is retrieved from themaro ahe, therefore we must browse the ursor. The engine looks up in themiro-ahe for a value assoiated with containedBy(`pol2', `V laams Gewest').Sine nothing is retrieved, the funtion is evaluated, returning the value `false',and this assoiation is stored in the miro-ahe. Finally, the andidate sequene



IDsA1A2A3C1C2H1H2R1R2R3
IDsA1A2A3C1C2H1R1R2R3Fig. 4. Computing C1: before (left) and after (right) pruning with automatonIDsA1 A1A1 A2... ...A1 R3... ...A2 R3... ...H1 A1H1 A2... ...R3 R3
IDsA2 A1A2 A2... ...C1 A1... ...H1 A1H1 A2... ...R2 A3R2 C1... ...Fig. 5. C2 before (left: 81 tuples), and after (right: 40 tuples) pruning with automatonH2 is disarded sine it an not satisfy any path of length one in the automaton.Thus, all sequenes ontaining H2 are pruned. Analogously, the system �ndsout if `pol3', `pol4' and `pol5' are ontained in some tuple of the ursor re-gRiver.the_geom, by taking advantage of the maro and miro ahes. Figure 4shows the initial and �nal states of C1. In the �nal phase of the �rst step (thestep with k = 1), C1 is analyzed against the ToI to hek for minimum support.For the seond step, suppose that all andidate sequenes of C1 are main-tained (i.e., they will be heked for minimum support). Thus, the system pop-ulates the set C2 in the seond step by joining C1 with itself. This self-join isthe one typially used in sequential pattern mining [13℄, adapted to the ase ofitemsets of length 1. Two tuples t1 and t2 math in the join Ck−1 ⋊⋉ Ck−1, if thelast k− 2 of the items in t1 oinide with the �rst k− 2 items in t2. Then, a newtuple is formed as the union of the items in t1 and t2. Similarly to the �rst step,using the automaton the engine determines the andidate sequenes of lengthtwo that are satis�ed by some path of length two and disards the rest. To op-timize the evaluation of funtions we use the maro-ahe. When deiding if theandidate sequene of length 2 {H1A2} is aepted by some path of length twoin the automaton, the funtion containedBy(`pol1', regRiver.the_geom) mustbe evaluated. But now, this key and its assoiated value an be obtained fromthe maro-ahe, sine its value was alulated in the previous step, and thisahe was updated aordingly. The proess ontinues until a step k suh thatno sequenes of length k exist in the ToI. In Figure 5 we show the state of C2before and after pruning.



Fig. 6. Implementation tool: output window5 Implementation and Experimental ResultsWe implemented RE-SPaM++ and inorporated this language into the Pietframework [4℄9. Figure 6 depits the graphi output of the system. Patternsof length two (i.e., involving three PoIs) are shown. The thikness of the linesre�ets the relative support of the disovered pattern, and the edges are labeledwith the number of assoiated trajetories. For example, pattern [r3,a3,3℄ has447 ourrenes, and the lines are muh thiker than the ones orresponding topattern [r1,h3,1℄, whih has only 3.Preliminary experiments were aimed at assessing the impat of introduinggeometri funtions in regular expressions. Due to spae limitation we do not givea detailed report of the experimental results, but a general omment on them.Experiments showed that the time overhead introdued by the parsing of thePiet-QL part of a RE-SPaM query is negligible. With respet to exeution time,we know that it depends on several parameters, like the size of the intermediate
Ck sets, minimum support, and the kinds of expressions used in the query, amongother fators. Sine GSP �nds all frequent sequenes in a database, and RE-SPaM++ restrits these sequenes to the ones mathing the regular expressions,adding a spatial prediate to a onstraint in general results in a lower numberof sequenes. Thus, two opposite e�ets appear: on the one hand the use offuntions requires less memory spae due to the smaller size of intermediate
Ck; on the other hand, funtion evaluation impats over exeution time. Ourhypothesis was that the former redution ompensates the ost of evaluatingthe funtion. This hypothesis was on�rmed by our experiments. Moreover, the9 A demo is available at http://piet.exp.d.uba.ar/extendedrespam/installation.pdf.
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