Trajectory Sequential Patterns with Regular
Expression Constraints Including Spatial Queries

Juan P. Gardella! and Leticia I. Gémez? and Alejandro A. Vaisman®

! Universidad Nacional de La Plata
jpgardel@senasa.gov.ar
2 Instituto Tecnologico de Buenos Aires
lgomez@itba.edu.ar
3 Universidad de Buenos Aires
avaisman@dc.uba.ar

Abstract. Moving object (MO) data representation and computing have
received a fair share of attention over recent years from the database
community. Replacing raw trajectory data (i.e., MO positions at differ-
ent time instants) by sequences of application-dependent stops occurred
at so-called places of interest (Pols) leads to the notion of semantic tra-
jectories. Different techniques exist for sequential pattern analysis of tra-
jectories defined in this way. One of them, RE-SPaM, expresses sequen-
tial patterns by means of regular expressions built not only over item
identifiers, but also over constraints defined on the (temporal and non-
temporal) attributes of the items to be analyzed. This analysis could be
greatly enriched if spatial and non-spatial data associated with the MO
are taken into account. In this paper we show how we can take advan-
tage of the extensibility properties of RE-SPaM to augment its expressive
power by allowing to include spatial queries in the constraints. For this,
we make use of Piet, a framework allowing to integrate OLAP, GIS and
MO data, and its associated query language denoted Piet-QL, providing
a link between moving object data and their geographic environment.

1 Introduction

Typical queries in Geographic Information Systems (GIS) [10] ask for geomet-
ric objects that satisfy some condition, or involve the aggregation of geographic
measures (i.e. area, length). Although it is usual in GIS practice to store non-
spatial data in thematic layers (also called themes), when aggregation is involved,
non-spatial GIS data can be stored in a data warehouse to achieve better perfor-
mance. Then, OLAP (On Line Analytical Processing) [9] tools and algorithms
can be used for exploiting the data warehouse. In OLAP, data are perceived as
a data cube where each cell contains a measure or set of measures representing
facts and the contextual information which conforms dimensions. A recently pro-
posed paradigm, denoted SOLAP [11] states the basic requirements for efficiently
providing integration between GIS and OLAP.

Moving object data (MOD) applications [7] have been steadily gaining at-
tention from the GIS community. The behavior of moving objects is traceable

by means of electronic devices (e.g., GPS, RFID), producing trajectory data,
which can be analyzed in order to obtain interesting patterns. Since locations of
a moving object are reported as a time-ordered sequence, sequential pattern al-
gorithms appear as natural tools for querying and mining trajectory databases.
Moving object positions are captured at a given time interval, with a certain
granularity. Thus, the trajectory of a moving object is given by samples com-
posed of a finite number of tuples of the form < Oid, z,y,t >, stating that at a
certain point in time, namely ¢, the object Oid was located at coordinates (z, y).
A very active research area in this setting is the discovery of sequential patterns
in trajectories [3,8]. Many recent proposals perform this kind of analysis not
over the original MOD, but over a database built based on the ideas introduced
by Spaccapietra et al. [12], where it is assumed that objects move over a map
that contains disjoint geometries, and there is also semantic information associ-
ated with them in the form of attributes. These geometries are denoted Places
of Interest (Pols). When a moving object spends a fair amount of time within a
Pol, the Pol is considered a stop of the trajectory, and all (x,y) points in the Pol
are replaced by a data object representing a stop. This allows considering each
object’s trajectory as a sequence of stops instead of a sequence of points. Thus,
sequential pattern analysis can be applied to this approximation of trajectories,
also called “semantic trajectories”, given that they can provide more information
than the one provided by the x,y,t points alone.

1.1 Problem statement and contributions

Several authors have emphasized the need of discovering patterns in trajectories
at different temporal and/or spatial granularities. However, to the best of our
knowledge, the problem of finding sequential patterns that accounts for the char-
acteristics of the geographic environment in which the objects move has not been
addressed so far. Here we study this problem and provide a solution, building
over previous work in the fields of SOLAP and sequential pattern mining.

Goémez et al. recently introduced RE-SPaM, a language that can express
sequential patterns by means of regular expressions over constraints defined in
terms of the (temporal and non-temporal) attributes of the items to be analyzed,
where an item is a tuple composed of an object identifier, a time instant, and a
place of interest [5]*. These patterns can be used during the sequential pattern
mining process to prune sequences that, although satisfying minimum support
requirements, are not of interest to the user [2].

In order to retrieve spatial data, we need a query language that can return
spatial objects. For this, we use Piet-QL [6]°, a language that supports the
Piet data model [4], a proposal aimed at integrating GIS and OLAP in a single
framework. Piet-QL is an SQL-like query language that can express complex and
powerful spatial and OLAP queries, and supports the operators included in the
Open Geospatial Consortium specification® for SQL. In addition, it incorporates

* http://piet.exp.dc.uba.ar/mo-patterns
% http://piet.exp.dc.uba.ar/pietql
® http://www.opengeospatial.org

the necessary syntax to integrate OLAP operations through the MDX standard”.
The language resulting from the integration between RE-SPaM and Piet-QL is
denoted RE-SPaM ™. This language delivers capabilities not present in other
proposals, whose usefulness we show in this paper.

Throughout the paper we assume we have trajectory data, originally in the
form (O,q, X, v, t), that are transformed in sequences of Pols. Objects move in a
geographic space represented in a real-world map of Belgium, consisting in five
layers, containing geographic information on rivers, regions, provinces, districts,
and cities. The rivers are represented as polylines, cities as points, and the other
layers as polygons. There is also a data warehouse with information about stores
and sales for different regions in Belgium.

1.2 Related work

Some recent proposals address the problem of mining patterns in MODs, based
on the notion of “places of interest”. Giannotti et.al. introduced t-patterns, for
mining sequential patterns on regions of interest [3]. A t-pattern is of the form
Railway Station 1210min . (Castle Square 28min . Myseum. Karli and Saygin
[8] propose to obtain patterns over so-called “important places” (a region where a
traced object spends a fair amount of time) at different time granularities. Note
that these patterns are basically defined by extension. On the contrary, regular
expressions allow defining more complex patterns, intensionally. The idea of
using regular expressions for trajectory analysis was first proposed by Mouza and
Rigaux [1]. They present a language based on regular expressions for querying
mobility patterns where each zone is represented by its label (a constant) or by
a variable (@x). In this language, each occurrence of a variable in the pattern is
instantiated with the same value. The language, however, has some limitations.
For instance, it cannot deal with time constraints or categories, neither supports
variables or data describing the geographic environment. Gémez et al. extend
this language using regular expressions to express sequential patterns over places
of interest [5], resulting in the RE-SPaM language, discussed in Section 2.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the languages involved in our proposal. Section 3 introduces the RE-SPaM ™t
query language and provides examples. Section 4 describes how the sequential
pattern mining algorithm is modified to allow an efficient implementation of our
ideas. We conclude in Section 6.

2 Preliminaries

Piet-QQL. From the kinds of queries Piet-QL supports, we are interested in the
ones that return spatial objects. We introduce Piet-QL through an example.
Consider the query “Districts in Belgium with at least one sale in 2007”.

" http://msdn2.microsoft.com/en-us/library /ms145506.aspx

SELECT GIS bel_dist.name
FROM bel_dist
WHERE bel_dist IN(
SELECT CUBE
filter ([Store].[Store District] .Members,
[Measures] . [Unit Sales]>0)
FROM [Sales]
slice [Time].[2007])

Here, bel dist represents a layer containing the districts in Belgium. The
keyword GIS tells that the query returns spatial objects. The query contains a
sub-query of OLAP type (indicated by the CUBE keyword), that is, a query that
returns a data cube. This sub-query is expressed in a language which is a slight
variation of MDX, operates over a data cube, called Sales, takes a cube slice cor-
responding to sales in 2007, and filters out the stores with no sales. The hierarchy
of the Store dimension in the cube is of the form storeld -> store city -> store
district -> store province, meaning that store sales aggregate over cities, districts
and province, in that order. The expression containing the path [Store] . [Store
District].Members in the sub-query returns the districts with at least one unit
sold. System metadata allows matching the identifiers of the geometric objects
with the identifiers of the level members in the OLAP dimension (in the example
above, the members of the level Store District). Finally, we obtain the districts
in the layer bel dist with at least one unit sold. A detailed description of the
language can be found in [6].

RE-SPaM. The RE-SPaM data model is basically composed of category schemas,
category occurrences, category instances, and the table of items (Tol). Our
tourist application includes four category schemas, namely hotels, restaurants,
airports and tourist attractions. Each category schema is composed of a set of
attributes that describe it. An element in a category is denoted a category occur-
rence, and the set of all occurrences in all categories in an application is denoted
a category instance. A set of category instances for our running example is shown
in Figure 1 (for example, the category hotels has two occurrences). A value of the
attribute geom represents the geometric extension of the corresponding category
occurrence. For example, in the first tuple, poll can be Point(10 20). Adding a
time interval to a category occurrence, produces an item. The time interval of
an item is described by its initial and final instants, and denoted [ts, tf]. A pair
(O;q4,item) is a tuple in the Tol. For the same O;4, the time-ordered sequence
of items represent the “semantic” trajectory of the object. Figure 2 shows a nor-
malized instance of the Tol corresponding to the category instances of Figure
1. There are two moving objects, O; and O, and the table contains only the
0,4, the category occurrence identifier, and the temporal attributes. All other
attributes are stored elsewhere.

Over this model, a pattern language based on regular expressions is built.
The atoms in RE-SPaM are constraints expressed as formulas over attributes

[Category [Instance

(ID, H1), (categoryN ame, hotel), (geom, poll), (star, 3)]

hotels (ID, H2). (categoryName, hotel), (geom. pol2). (star, 5)]

(ID, R1), (categoryName, restaurant), (geom, pol3), (typeO fFood, French), (price, cheap)]
restaurants | [(I D, R2), (categoryName, restaurant), (geom, pol4), (typeO fFood, French), (price, expensive)]
(ID, R3), (categoryName, restaurant), (geom, pol5), (typeO f Food, Italian), (price, cheap)]

(ID, A1), (categoryName, airport), (geom, pol6), (type, International)]
airports (ID, A2), (categoryName, airport), (geom, pol7), (type, Local)]
(ID, A3), (categoryName, airport), (geom, pol8), (type, International)]

(ID, C1), (categoryName, touristattraction), (geom, pol9), (name, CathedralofO.L.), (price, free)]
(ID, C2), (categoryName, touristattraction), (geom, pol10), (name, CastleofG.theD.), (price, free)]

attractions

Fig. 1. A set of instances

[OID[Items |
([(ts,04/08/2008 14:05), (tf, 04/08,/2008 14:33), (ID,R2)])
0. | ([(ts,04/08/2008 17:30), (tf,04/08 /2008 18:48), (ID,R3)])
| ([(ts,08,/08,/2008 06:22), (tf,08/08/2008 07:05), (ID,R1)])
([(ts,08/08,/2008 17:10), (tf,08/08/2008 18:17), (ID,R1)])
o, | ([(ts,19/08/2008 09:00), (¢f,19/08/2008 10:20), (ID,R1)])
2 | ([(ts,19/08,/2008 17:00), (tf,19/08/2008 18:12), (ID,R2)])

Fig. 2. An instance of the Normalized Tol

of the complex items defined above. Constraints consist in conjunctions of ex-
pressions, enclosed between squared brackets. The regular expression language is
built in the usual way, supporting the standard operators (‘()’,"*,*+",?",*.*|’).
The language also supports variables (strings preceded by ‘@’).

As an example, a pattern expressing trajectories of tourists who visit hotel
H1 and then a place characterized as ‘cheap’ or that serves French food, reads:

[ID=‘H1’]. ([price=‘cheap’]|[type0fFood=‘French’])

The second constraint does not mention IDs, only categorical attributes.
The disjunction is evaluated as follows: ‘cheap’ places are restaurants R1 and
R3 (Figure 1). Places that serve French food are R1 and R2. During the mining
process, the items which satisfy these conditions are computed, without the need
of explicit enumeration of all the possibilities.

Functions are supported in RE-SPaM in the forms functionName(attr, ...) =
‘constant’, and functionName(attr, ...) = @variable, and can be defined ad-hoc.
Syntactically, the first parameter may be an attribute of a category occurrence
(for example, typeOfFood in our running example), or a temporal attribute (ts,
tf, or their subparts). All other parameters must be literals, and the function
also returns a literal. For example, a function compares(price, ¢), compares the
attribute price with a literal, and returns ‘equal’, ‘less’, or ‘greater than’; the
first parameter is an attribute of the category occurrences of restaurants and
tourist attractions, and the second one is a constant. The function can be in-
voked as compares(price,’100’). Also rollup functions & la OLAP can be defined
to return ranges of time for a temporal attribute of an item (e.g., ‘Early Morn-
ing’, ‘Morning’,..). The query “Trajectories that visit two places (the second one
offering cheap prices), at the same part of the day (e.g., both of them during the
morning) on October 10th, 2008” uses this function, reading:

[rollup(ts_time, ‘range’, ‘Time’)=Qz A ts_date=‘10/10/2008’].
[rollup(ts_time, ‘range’,‘Time’)= @z A ts_date=‘10/10/2008’ A
price=‘cheap’]

Note that RE-SPaM could be used as a query language over the trajectory
database, or to prune the patterns obtained during the mining process.

3 The RE-SPaM™* Language

Since moving objects evolve in a geographic environment, we would like to allow
geometric conditions to be included in the patterns. We present RE-SPaM™*+, a
language that integrates Piet-QL and RE-SPaM allowing to add SOLAP condi-
tions to constraints in the regular expressions of RE-SPaM. Syntactically, this
extension is very simple: we only add a WITH statement to a Piet-QL SELECT
clause. This statement generates a sort of materialized view that is used in a
RE-SPaM expression. Thus, the language allows not only single statements but
also programs comprising sequences of Piet-QL and RE-SPaM statements.

The kinds of functions discussed in Section 2 are not enough to support
geometric conditions in regular expression-based constraints. A Piet-QL query
returns a cursor over tuples (i.e., a set of literals), not a literal. Thus, we need
to define new kinds of functions. The syntax for these functions consists in a
first parameter which corresponds to an attribute of a category occurrence (for
example, geom) or a temporal attribute (ts, tf, or their sub-parts). The second
parameter must be of the form a.b, where the semantics is that b is the name
of an attribute, and a is the name of a table associated to some WITH clause.
The function returns a literal.

For example, if a Piet-QL query returns the geometries of regions crossed by
rivers, in a structure named r.geom (using the WITH clause), we can then use
this result to define a function that checks whether the value of the attribute
geomn (e.g., the geometry of the Pol in our running example) is contained by any
of the geometries in the cursor defined by r.geom. The function returns ‘true’
or ‘false’, and it is invoked as containedBy(geom,r.geom). We now give some
examples that illustrate the use of RE-SPaM ™.

Q1. Trajectories that stop at a place which belongs to a region that contains a
river, and whose next stop is an airport or a tourist attraction.

WITH TABLE regRiver (the_geom) AS

SELECT GIS DISTINCT(bel_regn.the_geom)

FROM bel_regn, bel_river

WHERE contains(bel_regn.the_geom,bel_river.the_geom) ;

[containedBy (geom, regRiver.the_geom)=‘true’].
([categoryName=‘Airport’] | [categoryName=‘Tourist Attraction’])

The Piet-QL part returns a set of geometric objects (polygons) representing
regions containing rivers, in the cursor regRiver (the_geom). In the RE-SPaM

part of the query, the first constraint checks if the Pol is contained in one of the
regions in the set. In other words, when an item in the Table of Items is being
evaluated (e.g., during the mining process or just using RE-SPaM ™™ as a query
language), the corresponding Pol geometry (represented by the attribute geom)
is compared against each of the geometric elements in the cursor.

Q2. Trajectories that stop at a place with cheap prices, which is very close
to a district located in a region crossed by a river, and then at the Castle of
Gerard the Devil (G. the D.), finishing there.

WITH TABLE district(the_geom) AS

SELECT GIS DISTINCT(bel_dist.the_geom)

FROM bel_dist, bel_regn, bel_river

WHERE intersects(bel_regn.the_geom, bel_river.the_geom) and
contains(bel_regn.the_geom, bel_dist.the_geom) ;

[price=‘cheap’ A short_distance(geom,
district.the_geom)=‘true’].[name=°‘Castle of G. the D.’])

This example also shows how the Piet-QL part of the query is used to link
the trajectories of the moving objects to the geographic space where they evolve.
Here, the Piet-QL query returns districts (i.e., polygons) in a map. At evaluation
time, each geometry of the Pol where a trajectory stops is compared with the
geometry of each district in the cursor, to check if the Pol being visited is close
to it (we are not interested in how this ‘closeness’ is computed, we just give this
query as an example to illustrate the power of the language).

Q3. Trajectories that visit a place with cheap prices and then stop at an airport
(finishing there), such that both stops are either located in regions crossed by a
river (although not necessarily the same region), or not crossed by rivers.

WITH TABLE reCrRi(the_geom) AS

SELECT GIS DISTINCT(bel_regn.the_geom)

FROM bel_regn, bel_river

WHERE intersects(bel_regn.the_geom, bel_river.the_geom) ;

[price=‘cheap’ A containedBy(geom,reCrRi.the_geom)= Qx].
[categoryName=‘Airport’ A containedBy(geom,reCrRi.the_geom)=Qx]

In this case, the variable @z is of boolean type. At evaluation time, the
variable is bound to ‘true’ or ‘false’, and the two constraints are evaluated with
this value. In this example, the two constraints in the RE-SPaM™ " expression
include the geometric function containedBy.

4 The RE-SPaM™tAlgorithm

We explain now how RE-SPaM ™™ is used within a sequential pattern mining al-
gorithm. The algorithm for finding frequent patterns is a variation of the one de-

ontainedBy(geom,regRiver.the geom)="true’]

—(a

[categoryName=
‘Tourist Attraction’]

O

Fig. 3. Automaton for Q1

[categoryName=
‘Airport’]

scribed in detail in [5]. The input to the algorithm is an RE-SPaM ™" program?®,
and a value for the minimum support required for the discovered sequences. In
a nutshell, the support of a sequential pattern is the number of sequences in
the Tol that satisfy such pattern, out of the total number of sequences in the
database. During evaluation, the discovered patterns are restricted to the ones
satisfying the RE-SPaM ™" expression. In what follows we focus on the changes
introduced on the original algorithm in order to support the new features of RE-
SPaM ™™, although to make the explanation self-contained we need to briefly go
over the RE-SPaM algorithm. For the sake of clarity, we proceed by means of
an example, using query Q1 from Section 3.

As a first step, a deterministic finite automaton (DFA) that accepts the
language generated by the regular expression (RE) is built. The DFA for the
RE-SPaM™* part of Q1 is shown in Figure 3. The labels of the edges of the
automaton are constraints that must be satisfied by the sequence that is being
evaluated at each step of the algorithm that we describe next. The evaluation
of the RE proceeds in incremental phases, building, at each step, candidate sets
C; of sequences of length . In short, in the first step it builds the set C; with
candidate sequences (i.e. sequences of POIs) of length one. The automaton is
used to prune candidate sequences that do not satisfy expressions not involving
temporal attributes. At the final phase of the step, the Tol is queried to detect
which sequences must be discarded because they do not have the minimum
support. During a step k, the self-join of Cy_; is used to produce C%, and then
the automaton and the Tol are, again, used for pruning. Temporal attributes
and variables in the constraints can be evaluated at different moments. We can
either: (a) postpone their evaluation to the final phase of the algorithm; or, (b)
evaluate them as soon as possible to reduce the size of the intermediate candidate
sequences Cf. This is the approach we follow.

Since the algorithm proceeds in incremental steps, functions must be re-
peatedly evaluated. Besides the need of evaluating if a portion of a candidate
sequence satisfies some constraint labeling the edges of the automaton, we need
to take care efficiently of the expressions introduced in RE-SPaM™™ programs,
namely the cursors explained in the previous section. To accomplish an efficient
implementation we borrow ideas from dynamic programming techniques, where,

& We denote RE-SPaM™™ program the Piet-QL and the regular expression parts al-
together, and RE-SPaM ™" the part corresponding to the regular expression.

once a function is evaluated with some parameters its result is stored in a cache
avoiding recalculation. Two types of caching can be exploited, which we denote
macro and micro cache, respectively. The former stores the result of a function
of type fn(‘value’, table Name.attribute) (that is, geometric functions returning
sets). The latter stores the result of a function of the form fn(‘value’, ‘literal’,
...). We explain these ideas by means of an example.

Consider query Q1 from Section 3, asking for trajectories that pass through
a place which belongs to regions that contain a river and finish at an airport or
a tourist attraction. The Piet-QL part of the query returns regions in the cursor
denoted regRiver.the_geom. Belgium is composed of three regions: Vlaams
Gewest, Brussel-Hoofdstad, and the Wallonne. Brussel-Hoofdstad is crossed by
the Kanaal van Charleroi river, but this river is not contained by the region.
Vlaams Gewest contains the Ieperlee river and the Wallonne region contains
the Ourthe Occle river. Thus, both regions are in the cursor after the Piet-QL
query is evaluated. Now, we move on to the RE:

[containedBy (geom, regRiver.the_geom)=‘true’].
([categoryName=‘Airport’] | [categoryName=‘Tourist Attraction’])

The algorithm starts by building C; with all the category occurrences. Then,
it uses the automaton for pruning: if a candidate sequence does not satisfy any
path in the automaton, it is pruned. We have three paths of length 1 in the
automaton (see Figure 3). The expression [categoryName = ‘Airport’] is sat-
isfied by the three airport occurrences of Table 1 (Al though A3). The expres-
sion [categoryName=‘Tourist Attraction’] is satisfied by the castle and the
cathedral (i.e., occurrences C1 and C2). The third expression, [containedBy (geom,
regRiver.the_geom)] must be evaluated for the category occurrences of ho-
tels and restaurants, to check which Pols are in regions crossed by rivers (re-
turned by the Piet-QL part of the RE-SPaM ™™ program). Given that the ex-
pression contains a function, the cache is used for this evaluation. The engine
first looks up in the macro-cache (implemented as a hash table) for the value
associated with the key containedBy(‘poll’, regRiver.the geom). No value is
retrieved in this case, and the function starts browsing the cursor. The first
tuple in the cursor is (‘Viaams Gewest’). Instead of evaluating the func-
tion, the micro-cache is now queried for the value associated with the key
containedBy (‘poll’, ‘Viaams Gewest’). We know that ‘poll’ (the geometry of
Hotel H1) is contained in the Vlaams Gewest region. Thus, the association be-
tween containedBy(‘poll’, ‘Viaams Gewest’) and ‘true’ is stored in the micro-
cache. Since the value returned by the function is ‘true’; there is no need to
continue browsing the cursor. Moreover, the macro-cache is also updated, asso-
ciating the key containedBy(‘poll’, regRiver.the geom) with the value ‘true’
(see below how this is used in the next step). Next, we evaluate evaluation
containedBy(‘pol2’, regRiver.the _geom). Again, nothing is retrieved from the
macro cache, therefore we must browse the cursor. The engine looks up in the
micro-cache for a value associated with containedBy(‘pol2’, ‘Viaams Gewest’).
Since nothing is retrieved, the function is evaluated, returning the value ‘false’,
and this association is stored in the micro-cache. Finally, the candidate sequence

IDs s
—— IDs
Al
. Al
A2
A2
A3
A3
C1
X C1
C2
C2
H1
. H1
H2
R1
R1 .
R2
R2 R3
R3 —

Fig. 4. Computing Ci: before (left) and after (right) pruning with automaton

IDs IDs
Al Al A2 Al
Al A2 A2 A2
Al R3 Cl Al
A2 R3 H1 Al
...... H1 A2
H1 A1l |... ...
H1 A2 R2 A3
...... R2 C1
R3 R3| |... ..

Fig. 5. C> before (left: 81 tuples), and after (right: 40 tuples) pruning with automaton

H2 is discarded since it can not satisfy any path of length one in the automaton.
Thus, all sequences containing H2 are pruned. Analogously, the system finds
out if ‘pold’, ‘pold’ and ‘pold’ are contained in some tuple of the cursor re-
gRiver.the geom, by taking advantage of the macro and micro caches. Figure 4
shows the initial and final states of C;. In the final phase of the first step (the
step with £ = 1), C; is analyzed against the Tol to check for minimum support.

For the second step, suppose that all candidate sequences of C; are main-
tained (i.e., they will be checked for minimum support). Thus, the system pop-
ulates the set C'y in the second step by joining C; with itself. This self-join is
the one typically used in sequential pattern mining [13], adapted to the case of
itemsets of length 1. Two tuples ¢; and 5 match in the join Cx_1 x Cj_q, if the
last k — 2 of the items in t; coincide with the first k — 2 items in ¢5. Then, a new
tuple is formed as the union of the items in ¢; and ¢5. Similarly to the first step,
using the automaton the engine determines the candidate sequences of length
two that are satisfied by some path of length two and discards the rest. To op-
timize the evaluation of functions we use the macro-cache. When deciding if the
candidate sequence of length 2 { H1A2} is accepted by some path of length two
in the automaton, the function containedBy(‘poll’, regRiver.the geom) must
be evaluated. But now, this key and its associated value can be obtained from
the macro-cache, since its value was calculated in the previous step, and this
cache was updated accordingly. The process continues until a step k£ such that
no sequences of length k exist in the Tol. In Figure 5 we show the state of Cs
before and after pruning.

‘V OpenJUMP BEX]

Avchivo Eddén Vista Copa Personalcar Herramientas ExtendedRE-sPal Layer Vertons Ayuda

B QY BARREYE RGO A ™ aaw O 3 on

e

o =447

casge 2
o2

B [rath [, b3, c1] (e
o @rath[13,12,¢3])
LB &rah, e,

om0 (Cargar..) TE6 B Mermora ulzada) a5t 5,79

Fig. 6. Implementation tool: output window

5 Implementation and Experimental Results

We implemented RE-SPaM™+ and incorporated this language into the Piet
framework [4]°. Figure 6 depicts the graphic output of the system. Patterns
of length two (i.e., involving three Pols) are shown. The thickness of the lines
reflects the relative support of the discovered pattern, and the edges are labeled
with the number of associated trajectories. For example, pattern [r3,a3,c3] has
447 occurrences, and the lines are much thicker than the ones corresponding to
pattern [r1,h3,c1], which has only 3.

Preliminary experiments were aimed at assessing the impact of introducing
geometric functions in regular expressions. Due to space limitation we do not give
a detailed report of the experimental results, but a general comment on them.
Experiments showed that the time overhead introduced by the parsing of the
Piet-QL part of a RE-SPaM query is negligible. With respect to execution time,
we know that it depends on several parameters, like the size of the intermediate
C}; sets, minimum support, and the kinds of expressions used in the query, among
other factors. Since GSP finds all frequent sequences in a database, and RE-
SPaM ™™ restricts these sequences to the ones matching the regular expressions,
adding a spatial predicate to a constraint in general results in a lower number
of sequences. Thus, two opposite effects appear: on the one hand the use of
functions requires less memory space due to the smaller size of intermediate
Ck; on the other hand, function evaluation impacts over execution time. Our
hypothesis was that the former reduction compensates the cost of evaluating
the function. This hypothesis was confirmed by our experiments. Moreover, the

® A demo is available at http://piet.exp.dc.uba.ar/extendedrespam /installation.pdf.

overall performance of the algorithm does not decrease substantially when using
the cached functions and execution times appear compatible with user needs.
For low values of support, the number of frequent sequences obtained increases,
therefore the execution times also increase because of the higher number of
iterations (and the size of intermediate Cj, sets).

6 Conclusion

We have presented a language that allows to include spatial OLAP queries in
regular expressions that are used during sequential pattern mining for pruning
sequences that are of no interest to the user. We believe this is a relevant feature
when dealing with sequential patterns in trajectory databases, and, to the best
of our knowledge, no proposal of this kind has been introduced so far in the field.
Our experimental results show that this language enhancement is not achieved
at the expense of algorithm execution times.

References

1. C. du Mouza and P. Rigaux. Mobility patterns. In Proceedings of the STDBM’04,
pages 1 — 8, Toronto, Canada, 2004.

2. M. N. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with
regular expression constraints. In IEEE Transactions on Knowledge and Data
Engineering, 2002.

3. F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory pattern mining.
In KDD’07, pages 667680, 2007.

4. L. Gomez, S. Haesevoets, B. Kuijpers, and A. A. Vaisman. Spatial aggregation:
Data model and implementation. Information Systems, 34:551-576, 2009.

5. L. I. Gémez and A. A. Vaisman. Efficient constraint evaluation in categorical
sequential pattern mining for trajectory databases. In EDBT, pages 541-552,
2009.

6. L. I. Gomez, A. A. Vaisman, and S. Zich. Piet-ql: a query language for gis-olap
integration. In GIS, page 27, 2008.

7. R. H. Giiting and M. Schneider. Moving Objects Databases. Morgan Kaufman,
2005.

8. S. Karli and Y. Saygin. Mining periodic patterns in spatio-temporal sequences at
different time granularities. Intelligent Data Analysis, 13(2):301-335, 2009.

9. R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd. Ed. J.Wiley and Sons, Inc, 2002.

10. P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases. Morgan Kaufmann, 2002.

11. S. Rivest, Y. Bédard, and P. Marchand. Modeling multidimensional spatio-
temporal data warehouses in a context of evolving specifications. Geomatica, 55
(4), 2001.

12. S. Spaccapietra, C. Parent, M. L. Damiani, J. A. Fernandes de Macedo, F. Porto,
and C. Vangenot. A conceptual view on trajectories. Data Knowl. Eng., 65 (1):126—
146, 2008.

13. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proc. of the Fifth Int’l Conference on Extending Database
Technology (EDBT), 1996.

