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Computational Models of Spatial Language Interpretation

Competence in spatial language modelling is a cardinal issue in disciplines including
Cognitive Psychology, Computational Linguistics, and Computer Science. Within
Cognitive Psychology, the relation of spatial language to models of spatial represen-
tation and reasoning is considered essential to the development of more complete
models of psycholinguistic and cognitive linguistic theories. Within Computer Sci-
ence and Computational Linguistics, the development of a wide class of so-called
situated systems such as robotics, virtual characters, and Geographic Information
Systems is heavily dependent on the existence of adequate models of spatial language
in order to allow users to interact with these systems when standard graphical, tex-
tual, or tactile modes of communication are infeasible or inconvenient.

Competence in spatial language requires that we assign appropriate meaning to
spatial terms such as projective, perspective, topological, distance, and path de-
scriptive markers. However, it is not the case that a given linguistic unit such as a
spatial preposition has a meaning that can be described in terms of a single qualita-
tive or quantitative model. The same preposition can have multiple meanings, and
such variance must be handled through either underspecified models that can be
stretched to particular situations, or models which incorporate multiple disparate
meanings that are assigned to terms as a situation invites, or models that take into
account vague interpretations in situated contexts. In spite of some formal propos-
als in this area, such heterogeneous meaning accounts are rarely seen in practical
computational systems. Moreover, while early models of spatial term interpretation
focused on the geometric interpretation of spatial language, it is now widely rec-
ognized that spatial term meaning is also dependent on functional and pragmatic
features. Competent models of spatial language must thus draw on complex models
of situated meaning, and while some early proposals exist, it is not at all clear how
geometric, functional and pragmatic features should be integrated in computational
models of spatial language interpretation.



i
i

“cosli2010” — 2010/8/8 — 19:25 — page IV — #2 i
i

i
i

i
i

IV

The aim of the CoSLI 2010 workshop is to draw together the often orthogonal
views on formal symbolic and embodied spatial language interpretation in order to
foster theories which adequately draw on both geometric and functional spatial lan-
guage meaning. On one hand, formal symbolic approaches have attempted to assign
meaning to spatial terms through well defined theories that provide a natural sym-
bolic backbone to connect spatial meaning with heterogeneous sources of knowledge
and reasoning. These symbolic models, however, often simplify and generalize spa-
tial term meanings and ignore their various situated interpretations. On the other
hand, embodied quantitative interpretation models assign meaning to spatial terms
through spatial templates which relate the symbolic level to sub-symbolic knowledge
such as sensory-motor information and spatial representations more suited to real
situated systems. These quantitative models, however, often define templates in a
rigid way that allows only few generalizations. By drawing together these formal
symbolic and embodied models of spatial meaning we wish to move the research
community towards models of spatial meaning which couple embodied geometric
and functional features in order to improve and support situated natural language
interpretation systems.
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A Probabilistic Approach to Modelling Spatial

Language with Its Application To Sensor Models

Jamie Frost1, Alastair Harrison2, Stephen Pulman1, and Paul Newman2
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Abstract. We examine why a probabilistic approach to modelling the
various components of spatial language is the most practical for spatial
algorithms in which they can be employed, and examine such models
for prepositions such as `between' and `by'. We provide an example of
such a probabilistic treatment by exploring a novel application of spatial
models to the induction of the occupancy of an object in space given a
description about it.

1 Introduction

Space occupies a privileged place in language and our cognitive systems, given
the necessity to conceptualise various semantic domains. Spatial language can
broadly be divided into two categories [1]: functions which map regions to some
part of it, e.g. `the corner of the park', and functions (in the form of spatial
prepositions) which map a region to either an adjacent region, projection or axis,
e.g. `the car between the two trees'. Approaches to implementing spatial models
have fallen into two categories. [2] for example takes a logic-based approach,
using a set of predicates on objects and binary or tertiary relations that connect
objects to generate descriptions of objects that distinguishes it from others. A
second approach is a numerical one, which given some reference object or objects
and another `located' object1 or point, assigns a value based on some notion of
`satisfaction' of the spatial relation in question. But conceptualisation of this
assigned value has a large amount of variety. [3] uses a `Potential Field Model'
characterised by potential �elds which decreases away from object boundaries.
[4] for example uses a linear function to model topological prepositions such as
`near', and produces a value in the range [0,1] depending on whether some point
is directly by the object in question or on/beyond the horizon.

However, we argue that a conceptually more rigorous probabilistic approach
is needed for all aspects of spatial language, in which validity of some spatial or
semantic proposition is determined by the likelihood a human within the context

1 We use the term `locative expression' to refer to any expression whose intention is
to identify the location of an object or objects (such as `a chair by the table'). The
`located object' refers to the object in question, and the `reference' object(s) are
others that can be used to determine the location of the located object (the table in
the latter example).
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of the expression would deem it to be true. We motivate this by the following
reasons:

1. It provides a uniform treatment of con�dence across both spatial and non-
spatial domains; uncertainty may be established in the latter in cases of
variants of descriptive attributes (such as names) for example. As a result
these models can be used in a variety of spatial algorithms such as searching
or describing objects and inferring the occupancy in space of an object.

2. In the latter of the above applications (which will be explored in detail) as
well as other independent systems or frameworks, a probabilistic represen-
tation is often required.

3. Combining multiple spatial observations becomes more transparent: While
any monotonically increasing or decreasing function is su�cient to establish
a relative measure of applicability across candidate points or objects, the
lack of consideration of the function's `absolute' value becomes problematic
when combining data from di�erent spatial models, for example if we were
to say `The chair is by the table and between the cat and the rug'.

Fig. 1. One of the questions for the `on/next to/by' section in an online experiment.
There were 132 questions in total across the 3 sections.

Such an approach of assessing the `acceptibility' of regions given a spatial re-
lation is based on a concept called `Spatial Templates' established by [5], but
a probabilistic approach puts more emphasis on absolute value. What precisely
then do we mean by `human con�dence'? One might think we can measure it by
the probability that a given human would consider a (spatial) proposition to be
true. But such a notion neglects a concept in philosophy known as subjectivism,
in which rational agents can have degrees-of-belief in a proposition (rather than
constricted to boolean answers of `agree' or `disagree'), and probabilities can be
interpreted as the measure of such a belief. With such an assumption it is there-
fore su�cient to construct our models based on the `average degree-of-belief'
across people in some sample. Generically, this con�dence can be de�ned as
p(φ|ψ), where φ represents the proposition and ψ represents the context. For a
particular spatial model, one might use p(in_front(obj1, obj2)|xt), where xt is
the current position of the observer. We use φx as a convenience to indicate that
the location (say its centre of mass) of the located object in φ is at position x.

In the next section we present such models we have developed for the prepo-
sitions `between' and `by', and present a possible novel approach in which we

2
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might induce the occupancy of an object in space given a spatial description.We
carried out an online experiment in which users asserted the validity of various
locative expressions given a variety of scenes. For each category of spatial re-
lation, e.g. by and between (and a number of other prepositions not presented
here), the user was asked to rate the extent to which they agreed with the given
statement, on a scale of 1 (representing `no') to 7 (representing `yes'), each ques-
tion accompanied by a picture2. To produce the `average degree-of-belief' we

(1) Full Validity 
(2) Partial Validity 
(3) No Validity 

|v1-v2| 

Located Object 
(centred at x) 

|q- v1| 

Reference  
Object 

Reference 
Object 

q 

v1 

v2 

conn = Connecting lines 

1 

2 

2 

3 

|x-q| 

Fig. 2. The variation of con�dence for the preposition `between'.

scaled the average answer to [0,1]. Our models are based on the Proximal Model

as described in [7]. That is, features are based on the nearest point to the ref-
erence object, thus incorporating the shape of the object. This is in contrast to
the Centre-of-Mass Model (as used in [4] for example) which treats all objects as
points. This latter approach is computationally simpler and requires less data,
although can be problematic for larger objects; if for example we were to assess
the acceptibility of `you are near the park', we would expect such a judgement
to be based on proximity to the edge of the park rather than the centre.

2 Spatial Models for `between' and `by'

2.1 �Between�

The model we present below determines the acceptibility of a proposition φ =
between(a, b, c) such that a is the located object, b and c the reference objects,
and the position of a is at x. We determined that any point within the convex hull
of the two reference objects (excluding the area of the objects themselves) was
deemed to be fully valid. Outside of this area, certainty degraded proportional
to the centrality of the object. Our model below quanti�es these �ndings:

p(φx|xt) = p(φx) =

{
max(0, 1− |x−q|tol ) if x /∈ Hull(ref1 ∪ ref2)

1 otherwise
(1)

2 The experiment was restricted to native English speakers only, due to cross-linguistic
variations in spatial coding, such as a lack of distinction between di�erent frames of
reference (that is, distinguishing between say the deictic interpretation of �in front
of the tree� based on the position of the observer, and the intrinsic interpretation
based on the salient side of an object, as in �in front of the shop�) [6].

3
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s.t. q = arg min
q′
{|x− q′|

∣∣q′ on line l}, tol = |v1 − v2|k1(
|q − v1|
|v1 − v2|

)k2

l : (v1, v2) = arg min
l′
{|x− q′|

∣∣q′ on line l′, l′ ∈ conn}

conn = {(v̄1, v̄2)|v̄1 ∈ ref1, v̄2 ∈ ref2, (v̄1, v̄2) ∈ edges(Hull(ref1 ∪ ref2))}
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Fig. 3. A comparison of experimental results against the inferred model for `between'.
Both the x and y axis are in terms of the length of the convex hull edge l.

x is the central point of the located object in question, ref1 and ref2 are
the vertices of the two referenced objects, Hull(V ) gives the convex hull of the
set of vertices V (thus q is the nearest point on the convex hull to x), tol gives
the maximum allowed distance from the convex hull before the con�dence score
is 0, conn is the set of 2 edges on the convex hull which connect the shapes
corresponding to ref1 and ref2 (that is, the straight dotted lines in Fig. 2 and
function edges gives the edges of a polygon. k1 controls the maximum tolerance
permitted, a speci�ed proportion of the distance between the two objects, and
k2 controls the curvature of this ambiguous region. Via model �tting (using the
minimum sum of squared di�erences) we found values of k1 = 0.55 and k2 = 2.5
yielded the best results (see Figure 3).

2.2 �By�

For the preposition `by', there are 3 main variables that can in�uence the magni-
tude of the con�dence score; the base width (w) and height (h) of the reference
object, and the distance (d) from the reference object. For polygonal objects,
users were given 8 di�erent reference objects in their scenarios, of a variety of
di�erent widths and heights. It was found that although the con�dence score
for a given distance with respect to the width of the object (i.e. d

w ) was a good
starting point (see Fig 4(a)), greater heights led to a small increase in proba-
bility. Assuming a linear relationship with height (again relative to the object
width), we therefore divide by h

w + kh for some constant kh (given that �at ob-
jects such as lakes still yield a non-zero con�dence score). Additionally, smaller
objects tended to have a larger tolerance of distance with respect to this width,
although this e�ect became less prominent as the width of the object became

4
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very large. Thus we multiply the distance by log(w + kw) for some constant
kw ≥ 1, since for very small objects we still expect some tolerance of distance.
Combining these relationships and simplifying, we suggest the following model:

p(φi,j |xt) = clamp(kc − kmd
log (w + kw)

h+ khw
) (2)

where km and kc the coe�cients of some line to obtain the con�dence from the
adjusted distance, and clamp clamps the overall value to the range [0, 1]. Fig.
4(b) shows the e�ect of these using these transformations, using kw = 14 and
kh = 2, resulting in values for km and kc of 1.38 and 1.15 respectively. Ultimately
it is impossible to base any model of `by' on physical metrics alone; the `use case'
of objects, i.e. the set of contexts in which an object is used, is likely to have
an e�ect. In Fig. 4(b) for the case where the reference object was a chair, it is
apparent con�dence deteriorated with distance much faster than expected. But
if one considers that a chair is intended `to be sat on', and therefore adjust the
recorded height h to the more salient `seat-level', we obtain con�dence values
very close to the model for this example.
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Fig. 4. Experimental results for the preposition `by' for a number of di�erent examples.
Each series indicates the reference object used in the locative expression, e.g. `lake' in
�The house is by the lake�. Graph (a) shows distance (in terms of width) plotted against
validity. Graph (b) shows adjustments as per equation 2.

3 Occupancy Grid Maps

We now propose a method to infer the occupancy in space of a particular object
given an observation in the form of a spatial description made about it. This is
strongly predicated on a probabilistic treatment of our spatial models discussed
earlier. Occupancy Grid Mapping is a technique employed in robotics to generate
maps of an environment via noisy sensor measurements. The occupancy grid map
is useful because it can subsequently be fused with other maps obtained from
say physical sensors. The aim is to produce a posterior p(m|z1:t, x1:t) where
m = {mi} is a partitioning of space into a �nite grid of cells mi, z1:t are the
observations made up to time t, and x1:t are the poses of the robot at each
observation. mi is the event that cell i is occupied, thus p(mi) describes the
probability that cell i is occupied. In the scope of this paper, we focus on how
the `inverse sensor model' p(mi|zt, xt) can be computed, although a more detailed
description of Occupancy Grid Mapping can be found in [8].

Our aim is to compute this inverse sensor model, in terms of our calcu-
lated p(φ|xt) probabilities from the previous section. An important simplify-
ing assumption we make is that locative expressions refer to a speci�c point

5
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in space, within the boundaries of the object in question. This seems intu-
itive; were we to describe a town as being `10km away', it would clearly be
fallacious to assume that the entirety of the town is precisely 10km away. We
de�ne a probability p(ri,j |xt, zt), where ri,j represents the event that the ob-
server was referring to a point (i, j) in their observation, and zt is the loca-
tive expression such that the position of the located object is not speci�ed, say
φ� (since we consider such a position in ri,j). We can then calculate the de-
sired probability easily by simply normalising our con�dence function across the
space: p(ri,j |xt, zt = φ�) = αp(φi,j |xt). Before we determine how to calculate
p(mi,j |xt, zt), we analyse the conceptual parallelism between traditional Occu-
pancy Grid Mapping and that employed in our linguistic context.

3.1 A Comparison of Sensor Models

On a cursory inspection there are some initial clear similarities that can be
drawn between the traditional occupancy grid map and our linguistic variant.
Both involve the pose of some observer xt (although depending on the spatial
model this is sometimes irrelevant) and some manifestation of an observation zt;
a physical sensor reading with respect to the traditional approach and a loca-
tive expression for the linguistic approach. Upon closer analysis more similarities
can be drawn. With a physical sensor, we expect a measurement of distance to
a point being sensed to be noisy, and thus maintain a probability distribution
with regards to the precise position of this point. This corresponds to our dis-
tribution p(ri,j |xt, zt). For a locative expression of a town being �10km away�,
human error or rounding is likely to lead to uncertainty in the judged distance,
and additionally the direction of the town is unspeci�ed, leading to a `blurred
doughnut' type distribution.

There are however a number of conceptual di�erences. With traditional Oc-
cupancy Grid Mapping the posterior for a cell is only updated if it was part of
the sensor range (i.e. we make no assumption with regards to space outside the
limited range of our sensor). With locative expressions however, we can infer
data outside that explicitly conveyed. Suppose for our town example, the town
was 1km in diameter, and that the distance judgement of 10km (to some point
within the town) was entirely accurate. If the centre of the town was actually
10.5km away, our observation would still hold, but a point any further could not
possibly be occupied by `town'.

3.2 Computing the Inverse Sensor Model

We can use the above fact to compute p(mi,j |xt, zt) from our previously calcu-
lated values of p(ri,j |xt, zt). Let Q be the set of possible `poses' for the located
object such that the point (i, j) is within the object's boundary, and a pose is the
position and orientation of the object. Given our assumption that the observer
referred to a point within the con�nes of their perceived position of the object,
Q represents all valid poses of the object given such a point. It follows that
p(mi,j |xt, zt) =

∫
q∈Q p(q|xt, zt) dq. For each pose q ∈ Q there is an associated

frame (i∗q , j
∗
q , θq) where (i∗q , j

∗
q ) is the nominal centre of the shape in pose q (say

6



i
i

“cosli2010” — 2010/8/8 — 19:25 — page 7 — #15 i
i

i
i

i
i

The point (i,j) under 
consideration. 

The known shape of 
the object (presuming 
availability of this data) 
in some pose q. 

The nominal centre of 
the object in this pose, 

(iq
*, jq

*). 

The axis/rotation θq of 
the object in this pose. 

Fig. 5. In calculating the occupancy probability p(mi,j |xt, zt), we consider all possible
poses of the located object in which the point (i, j) is con�ned. The probability of each
pose q is p(ri∗q ,j∗q |xt, zt)p(θq).

the centre of mass) and θq is the rotation of the object about this point. It is
then possible to use p(ri∗q ,j∗q |xt, zt) to refer to the probability of the object being

positioned at (i∗q , j
∗
q ) (see Fig. 5). The pose also has a probability p(θq) associated

with its orientation; for simplicity we assume this is independent of xt and zt
(although the use of p(θq|zt) would allow us to model for example observations
such as �The boat is in front of you, facing East�). Putting this together, this
gives us the following equation to compute the occupancy probability:

p(mi,j |xt, zt) =

∫

q∈Q
p(ri∗q ,j∗q |xt, zt)p(θq) dq s.t.Q = {q | (i, j) ∈ R(q)} (3)

where R(q) is the region of the located object in pose q. Considering the pose
of the located object has useful consequences; it allows us to model for example
that vehicles are aligned to the direction of a road. Given a lack of prior shape
information with regards to the located object, and given the above integral is
somewhat intractable, a suitable approximation is to use the approximate width
W of the object (which can be obtained via knowledge of the class of the located
object, say the usual width of a town). If we infer as little about the shape as
possible, the resulting approximation of the shape is a circle of diameter W .
Equation 3 then reduces to the following:

p(mi,j |xt, zt) =

∫

(i′,j′)∈R(W
2 ,i,j)

p(ri′,j′ |xt, zt) di′ dj′ (4)

s.t. R(W
2 , i, j) is a set of points in a circular region of centre (i, j) and radius W

2

4 Conclusions & Future Work

In this paper we motivated a probabilistic approach to modelling spatial lan-
guage that can be used in a number of algorithms, and provided an example of
such an algorithm to induce a sense of `the space that an object occupies' via
the use of occupancy grid maps. We also presented models for the prepositions

7



i
i

“cosli2010” — 2010/8/8 — 19:25 — page 8 — #16 i
i

i
i

i
i

Fig. 6. The occupancy grid generated by a `between' observation for two objects in an
environment. Note that the grid consists of cells of variable size; such a modi�cation
to the OGM allows us to choose a cell size appropriate to the scale of the observation,
as well as represent areas of constant probability or empty space e�ciently.

`by' and `between' based on the results of an online experiment. Future work is
predominantly focused further development of our dialogue manager language
that interacts with these spatial models, as well as developing further algorithms
which make use of such models. For example, we developed an algorithm that
combines semantic and spatial models to provide con�dence scores for arbitrarily
complex locative expressions (including those based on current bounded trajecto-
ries, such as `the second left'). We are also investigating a measure of `relevance'
(one of the Gricean maxims [9]) for locative expressions, a consideration that is
particularly key in generating descriptions of objects or locations.

This work has been supported by the European Commission under grant
agreement number FP7-231888-EUROPA.
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Abstract. Spatial relations play an important role in our understanding
of language. In particular, they are a crucial component in descriptions
of scenes in the world. WordsEye (www.wordseye.com) is a system for au-
tomatically converting natural language text into 3D scenes representing
the meaning of that text. Natural language offers an interface to scene
generation that is intuitive and immediately approachable by anyone,
without any special skill or training. WordsEye has been used by several
thousand users on the web to create approximately 15,000 fully rendered
scenes. We describe how the system incorporates geometric and semantic
knowledge about objects and their parts and the spatial relations that
hold among these in order to depict spatial relations in 3D scenes.

1 Introduction

Spatial relations are expressed either directly or implicitly in a wide range of
natural language descriptions. To represent these descriptions in a 3D scene, one
needs both linguistic and real-world knowledge, in particular knowledge about:
the spatial and functional properties of objects; prepositions and the spatial
relations they convey, which is often ambiguous; verbs and how they resolve to
poses and other spatial relations. For example, to interpret apple in the bowl we
use our knowledge of bowls – that they have interiors that can contain objects.
With different objects (e.g., boat in water), a different spatial relation is conveyed.

WordsEye [6] is a system for automatically converting natural language text
into 3D scenes representing the meaning of that text. A version of WordsEye has
been tested online (www.wordseye.com) with several thousand real-world users.
We have also performed preliminary testing of the system in schools, as a way to
help students exercise their language skills. Students found the software fun to
use, an important element in motivating learning. As one teacher reported, “One
kid who never likes anything we do had a great time yesterday...was laughing
out loud.”

WordsEye currently focuses on directly expressed spatial relations and other
graphically realizable properties. As a result, users must describe scenes in some-
what stilted language. See Figure 1. Our current research focuses on improving
the system’s ability to infer these relations automatically. However, in this pa-
per, we describe the basic techniques used by WordsEye to interpret and depict
directly expressed spatial relations.
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In Section 2 we describe previous systems that convert natural language
text to 3D scenes and prior linguistic work on spatial relations. In Section 3 we
provide an overview of WordsEye. In Section 4 we discuss the spatial, semantic
and functional knowledge about objects used to depict spatial relations in our
system. We conclude and describe other ongoing and future work in Section 5.

2 Prior Work

Natural language input has been investigated in some early 3D graphics systems
[1][13] including the Put system [4], which was limited to spatial arrangements
of existing objects in a pre-constructed environment. In this system, input was
restricted to an artificial subset of English consisting of expressions of the form
Put(X,P, Y ), where X and Y are objects and P is a rigidly defined spatial
preposition. Work at the University of Pennsylvania’s Center of Human Model-
ing and Simulation [2], used language to control animated characters in a closed
virtual environment. CarSim [7] is a domain-specific system that creates ani-
mations from natural language descriptions of accident reports. CONFUCIUS
[12] is a multi-modal text-to-animation system that generates animations of vir-
tual humans from single sentences containing an action verb. In these systems
the referenced objects, attributes, and actions are typically relatively small in
number or targeted to specific pre-existing domains.

Spatial relations have been studied in linguistics for many years. One rea-
sonably thorough study for English is Herskovits [9], who catalogs fine-grained
distinctions in the interpretations of various prepositions.3 For example, she dis-
tinguishes among the various uses of on to mean “on the top of a horizontal
surface” (the cup is on the table), or “affixed to a vertical surface” (the picture
is on the wall). Herskovits notes that the interpretation of spatial expressions
may involve considerable inference. For example, the sentence the gas station is
at the freeway clearly implies more than just that the gas station is located next
to the freeway; the gas station must be located on a road that passes over or
under the freeway, the implication being that, if one proceeds from a given point
along that road, one will reach the freeway, and also find the gas station.

3 It is important to realize that how spatial relations are expressed, and what kinds
of relations may be expressed varies substantially across languages. Levinson and
colleagues [11] have catalogued profound differences in the ways different languages
encode relations between objects in the world. In particular, the Australian language
Guugu Yimithirr and the Mayan language Tzeltal use absolute frames of reference
to refer to the relative positions of objects. In Guugu Yimithirr, one can locate a
chair relative to a table only in terms of cardinal points saying, for example, that the
chair is north of the table. In English such expressions are reserved for geographical
contexts — Seattle is north of Portland — and are never used for relations at what
Levinson terms the “domestic scale”. In Guugu Yimithirr one has no choice, and
there are no direct translations for English expressions such as the chair is in front
of the table.

10
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Eye of the Beholder by Bob Coyne No Dying Allowed by Richard Sproat

Input text: The silver penny is on the moss
ground. The penny is 7 feet tall. A clown is 2
feet in front of the penny. The clown is facing the
penny.

Input text: Eight big white washing machines
are in front of the big cream wall. The wall is 100
feet long. The “No Dying Allowed” whiteboard is
on the wall. The whiteboard is one foot high and
five feet long. The ground is tile. Death is in front
of the washing machines. It is facing southeast.
Death is eight feet tall.

Fig. 1: Some Examples from WordsEye’s Online Gallery

3 System Overview

Our current system is an updated version of the original WordsEye system [6],
which was the first system to use a large library of 3D objects to depict scenes in a
free-form manner using natural language. The current system contains 2,200 3D
objects and 10,000 images and a lexicon of approximately 15,000 nouns. It sup-
ports language-based control of objects, spatial relations, and surface properties
(e.g., textures and colors); and it handles simple coreference resolution, allow-
ing for a variety of ways of referring to objects. The original WordsEye system
handled 200 verbs in an ad hoc manner with no systematic semantic modeling
of verb alternations and argument combinations. In the current system, we are
instead adding frame semantics to support verbs more robustly. To do this, we
are utilizing our own lexical knowledge-base, called the SBLR (Scenario-Based
Lexical Resource) [5]. The SBLR consists of an ontology and lexical semantic
information extracted from WordNet [8] and FrameNet [3] which we are aug-
menting to include the finer-grained relations and properties on entities needed
for depicting scenes as well as capturing the different senses of prepositions re-
lated to those properties and relations.

The system works by first parsing each input sentence into a dependency
structure. These dependency structures are then processed to resolve anaphora
and other coreferences. The lexical items and dependency links are then con-
verted to semantic nodes and roles drawing on lexical valence patterns and other
information in the SBLR. The resulting semantic relations are then converted
to a final set of graphical constraints representing the position, orientation, size,
color, texture, and poses of objects in the scene. Finally, the scene is composed
from these constraints and rendered in OpenGL (http://www.opengl.org) and
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optionally ray-traced in Radiance [10]. The user can then provide a title and
caption and save the scene in our online gallery where others can comment and
create their own pictures in response. See Figure 1.

4 Spatial Relations

WordsEye uses spatial tags and other spatial and functional properties on
objects to resolve the meaning of spatial relations. We focus here on the inter-
pretation of NPs containing spatial prepositions of the form “X-preposition-Y”,
where we will refer to X as the figure and Y as the ground. For example, in
snow is on the roof, snow is the figure and roof is ground. The interpreta-
tion of the spatial relation often depends upon the types of the arguments to
the preposition. There can be more than one interpretation of a spatial relation
for a given preposition The geometric and semantic information associated with
those objects will, however, help narrow down the possibilities.

Base Canopy Top surface Side surface

Stem Cup Enclosure Touch-point handle

Fig. 2: Spatial Tags, represented here by the boxes associated with each object,
designate regions of those objects used in resolving spatial relations. For example,
the top surface region marked on the seat of the chair is used in sentences
like The pink mouse is on the small chair to position the figure (mouse) on
the ground (chair). See Figure 3 for the depiction of this sentence and several
others that illustrate the effect of spatial tags and other object features.

The 3D objects in our system are augmented with the following features:

– Is-a: The lexical category to which the given object belongs.
– Spatial tags identifying the following regions: (See Figure 2)

• Canopy: A canopy-like area “under” an object (e.g., under a tree).
• Cup: A hollow area, open above, that forms the interior of an object.
• Enclosure: An interior region, bounded on all sides (holes allowed).

12
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• Top/side/bottom/front/back: For both inner and outer surfaces.
• Named-part: For example, the hood on car.
• Stem: A long thin, vertical base.
• Opening: An opening to an object’s interior (e.g., doorway to a room).
• Hole-through: A hole through an object. For example, a ring or donut.
• Touch-point: Handles and other functional parts on the object. For

example, in John opened the door, the doorknob would be marked as a
handle, allowing the hand to grasp at that location.

• Base: The region of an object where it supports itself.
– Overall shape: A dominant overall shape used in resolving various spatial

relations. For example, sheet, block, ribbon, cup, tube, disk, rod.
– Forward/Upright direction: The object’s default orientation.
– Size: The default real-world size of the object. This is also used in spa-

tial relations where the figure and ground size must be compatible. For
example, ring on a stick versus *life-preserver on a pencil.

– Length axis: The axis for lengthening an object.
– Segmented/stretchable: Some objects don’t change size in all dimen-

sions proportionally. For example, a fence can be extended indefinitely in
length without a corresponding change in height.

– Embeddable: Some objects, in their normal function, are embedded in oth-
ers. For example, fireplaces are embedded in walls, and boats in water.

– Wall-item and Ceiling-item: Some objects are commonly attached to
walls or ceilings or other non-upward surfaces. Some (e.g., pictures) do this
by virtue of their overall shape, while for others (e.g., sconces) the ori-
entation of the object’s base is used to properly position the object.

– Flexible: Flexible objects such as cloth and paper allow an object to hang
or wrap. For example, towel over a chair.

– Surface element: Any object that can be part of a flat surface or layer.
For example, a crack, smudge, decal, or texture.

– Semantic properties such as Path, Seat, Airborne for object function.

Some of these features were used in earlier versions of our system [6]. Features
we have added to the current version include: surface element, embeddable,
overall shape, length axis, segmented/stretchable. Other features,
including (flexible, opening, hole-through and various semantic features)
are in the development stage. The implemented tagset supports the generation
of scenes such as Figure 3.

In order to resolve a spatial relation, we find the spatial tags and other
features of the figure and ground objects that are applicable for the given
preposition. For example, if the preposition is under, a canopy region for the
ground object is relevant, but not a top surface. Various other factors, such
as size, must also be considered. With enclosed-in, the figure must fully
fit in the ground. For embedded-in, only part need fit. For other relations
(e.g., next-to), the objects can be any size, but the figure location might
vary. For example, The mosquito is next to the horse and The dog is next to the
horse position the figure in different places, either in the air or on the ground,

13
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Spatial Relation Example Partial Conditions

on-top-surface vase on table Ground is upward-surface

on-vertical-surface postcard on fridge Ground is vertical-surface

on-downward-surface fan on ceiling Ground is downward-surface

on-outward-surface pimple on nose Ground is surface

pattern/coating-on plaid pattern on shirt Figure is texture or layer

fit-on-custom train on track special base pairing

ring-on-pole bracelet on wrist Figure=ring-shape,
Ground=pole-shape

on-vehicle man on bus Ground=public-transportation

on-region on the left side of... ground=region-designator

hang-on towel on rod figure is hangable

embedded-in pole in ground Ground is mass

embedded-in boat in water Figure is embeddable

buried-in treasure in ground Ground is terrain

enclosed-in-volume bird in cage Ground has enclosure

enclosed-in-area tree in yard Ground is area

in-2D-representation man in the photo Ground is 2D representation

in-cup cherries in bowl ground has cup

in-horiz-opening in doorway ground has opening

stem-in-cup flower in vase figure has stem, ground has cup

wrapped-in chicken in the foil ground is flexible/sheet

member-of-arrangement plate in stack ground is arrangement

in-mixture dust in air Figure/Ground=substance

in-entanglement bird in tree Ground has entanglement

fitted-in hand in glove Figure/Ground=fit

in-grip pencil in hand Ground=gripper

Table 1: Spatial relations for in and on (approximately half are currently im-
plemented). Similar mappings exist for other prepositions such as under, along.
Handcrafted rules resolve the spatial relation given the object features.

depending on whether the given object is commonly airborne or not. We also
note that the figure is normally the smaller object while the ground functions
as a landmark. So it’s normal to say The flower bed is next to the house, but
unnatural to say *The house is next to the flowerbed. This is discussed in [9].
See Table 1 for some mappings we make from prepositions to spatial relations.

In order to use the object features described above to resolve the spatial
meaning of prepositions, linguistically referenced subregions must also be con-
sidered. Spatial relations often express regions relative to an object (e.g., left side
of in The chair is on the left side of the room). The same subregion designation
can yield different interpretations, depending on the features of the objects.

– external-vertical-surface: shutters on the left side of the house
– interior-vertical-surface: picture on the left side of the room
– region-of-horiz-surface: vase on the left side of the room
– neighboring-area: car on the left side of the house

14
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These regions (when present) are combined with the other constraints on spatial
relations to form the final interpretation.

Input text: A large magenta flower is
in a small vase. The vase is under an
umbrella. The umbrella is on the right
side of a table. A picture of a woman is
on the left side of a 16 foot long wall. A
brick texture is on the wall. The wall is
2 feet behind the table. A small brown
horse is in the ground. It is a foot to
the left of the table. A red chicken is in
a birdcage. The cage is to the right of
the table. A huge apple is on the wall. It
is to the left of the picture. A large rug
is under the table. A small blue chicken
is in a large flower cereal bowl. A pink
mouse is on a small chair. The chair is
5 inches to the left of the bowl. The bowl
is in front of the table. The red chicken
is facing the blue chicken. . .

Fig. 3: Spatial relations and features: enclosed-in (chicken in cage);
embedded-in (horse in ground); in-cup (chicken in bowl); on-top-surface
(apple on wall); on-vertical-surface (picture on wall); pattern-on (brick
texture on wall); under-canopy (vase under umbrella); under-base (rug under
table); stem-in-cup (flower in vase); laterally-related (wall behind table);
length-axis (wall); default size/orientation (all objects); region (right
side of); distance (2 feet behind); size (small and 16 foot long); orientation
(facing).

5 Conclusions and Ongoing and Future Work

In order to represent spatial relations more robustly, much remains to be done
at the language, graphical, and application levels.

We are augmenting the system to resolve verbs to semantic frames using
information in our SBLR, and mapping those in turn to corresponding poses
and spatial relations [5]. Figure 4 illustrates this process, which currently is sup-
ported for a limited set of verbs and their arguments. This enhanced capability
also requires contextual information about actions and locations that we are ac-
quiring using human annotations obtained via Amazon’s Mechanical Turk and
by extracting information from corpora using automatic methods [14]. We will
be evaluating our software in partnership with a non-profit after-school program
in New York City.
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The truck chased the man down the road... The man ran across the sidewalk...

Fig. 4: Spatial relations derived from verbs. The verbs are mapped to semantic
frames which in turn are mapped to vignettes (representing basic contextual
situations) given a set of semantic role and values. These, in turn, are mapped
to spatial relations. In the first example, the pursued (soldier) is in a running
pose, located on the path (road), and in front of the pursuer (truck).
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Abstract. We consider mapping unrestricted natural language to for-
mal spatial representations. We describe ongoing work on a two-level ma-
chine learning approach. The first level is linguistic, and deals with the
extraction of spatial information from natural language sentences, and is
called spatial role labeling. The second level is ontological in nature, and
deals with mapping this linguistic, spatial information to formal spatial
calculi. Our main obstacles are the lack of available annotated data for
training machine learning algorithms for these tasks, and the difficulty of
selecting an appropriate abstraction level for the spatial information. For
the linguistic part, we approach the problem in a gradual way. We make
use of existing resources such as The Preposition Project (TPP) and
the validation data of General Upper Model (GUM) ontology, and we
show some computational results. For the ontological part, we describe
machine learning challenges and discuss our proposed approach.

1 Introduction

An essential function of language is to convey spatial relationships between
objects and their relative locations in a space. It is a challenging problem in
robotics, navigation, query answering systems, etc. [19]. Our research considers
the extraction of spatial information in a multimodal environment. We want to
represent spatial information using formal representations that allow spatial rea-
soning. An example of an interesting multimodal environment is the domain of
navigation where we expect a robot to follow navigation instructions. By placing
a camera on the robot, it should be able to recognize visible objects and their
location. In this context, mapping natural language to a formal spatial repre-
sentation [4] has several advantages. First, generating language from vision and
vice versa visualizing the language is more feasible if a formal intermediate layer
is employed [16]. Second, applying the same representation for extraction from
image/video data allows combining multimodal features for better recognition
and disambiguation in each modality. Finally, a unified representation for various
modalities enables spatial reasoning based on multimodal information.
In our work we identify two main layers of information (see also [2]):
1) a linguistic layer, in which (unrestricted) natural language is mapped onto
ontological structures that convey spatial information, and 2) a formal layer, in
which the ontological information is mapped onto a specific spatial calculus such
as region connection calculus (RCC) (cf. [4]). For example, in the sentence the
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book is on the table the first step should identify that there is a spatial relation
(on) between book and table, after which this could be mapped to a specific,
formal relation AboveExternallyConnected(book, table) between two tokens
book and table that denote two physical objects in some Euclidean space. For
both transformations we propose machine learning techniques to deal with the
many sources of ambiguity in this task. This has not been done systematically
before; most often a restricted language is used to extract highly specific and
application-dependent relations and usually one focuses on phrases of which it
is known that spatial information is present [8, 6, 19, 11].

To apply machine learning effectively, a clear task definition as well as anno-
tated data are needed. Semantic hand-labeling of natural language is an ambigu-
ous, complex and expensive task and in our two-level view we have to cope with
the lack of available data two times. In our recently proposed semantic labeling
scheme [10], we tag sentences with the spatial roles according to holistic spa-
tial semantic (HSS) theory [21] and also formal spatial relation(s). For mapping
between language and spatial information, we defined spatial role labeling and
performed experiments on the (small amount of) available annotated corpora.
The Preposition Project (TPP) data is employed for spatial preposition recog-
nition in the context of learning the main spatial roles trajector and landmark
from data. We have conducted initial experiments on the small corpus of the
GUM [1] spatial ontology, and the results indicate that machine learning based
on linguistic features can indeed be employed for this task.

The second layer of our methodology consists of mapping the extracted spa-
tial information onto formal spatial systems capable of spatial reasoning. Here we
propose to annotate data with spatial calculi relations and use machine learning
to obtain a probabilistic logical model [3] of spatial relations for this mapping.
Such models can deal with both the structural aspects of spatial relations, as
well as the intrinsic ambiguity and vagueness in such mappings (see also [5]). In
the following sections we will describe both the linguistic and the formal steps,
and results of our initial machine learning experiments.

2 Linguistic Level and Spatial Role Labeling

To be able to map natural language to spatial calculi we should first extract
the components of spatial information. We call this task spatial role labeling.
It has not been well-defined before and has not been considered as a stand-
alone linguistic task. We define it analogous to semantic role labeling (SRL) [15],
targeting semantic information associated with specific phrases (usually verbs),
but as a stand-alone linguistic task utilizing specific (data) resources.

Task definition. We define spatial role labeling (SpRL) as the automatic la-
beling of natural language with a set of spatial roles. The sentence-level spatial
analysis of text deals with characterizing spatial descriptions, denoting the spa-
tial properties of objects and their location (e.g. to answer ”what/who/where”-
questions). A spatial term (typically a preposition) establishes the type of spatial
relation and other constituents express the participants of the spatial relation
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(e.g. a location). The roles are drawn from a pre-specified list of possible spatial
roles and the role-bearing constituents in a spatial expression must be identified
and their correct spatial role labels assigned.

Fig. 1. Parse tree with spatial roles

Representation based on spatial
semantics. The spatial role set we
employ contains the core roles of tra-
jector, landmark, spatial indicator, and
motion indicator [6, 21], as well as the
features path and frame of reference.
Our set of spatial roles are motivated
by the theory of holistic spatial seman-
tics upon which we have defined an an-
notation scheme in [10]. We describe
these terms briefly. A trajector is the
entity whose (trans)location is of rele-
vance. It can be static or dynamic; a
person or an object. It can also be ex-
pressed as a whole event. Other terms
often used for this concept are the local object, locatum, figure object, referent
and target. A landmark is the reference entity in relation to which the loca-
tion or the trajectory of motion of the trajector is specified. Alternative terms
include reference object, ground and relatum. A spatial indicator is a token
which defines constraints on the spatial properties, such as the location of the
trajector with respect to the landmark (e.g. in, on). It explains the type of the
spatial relation and usually is a preposition, but can also be a verb, a noun, etc.
It is the pivot of a spatial relation, and in terms of GUM ontology it is called a
spatial modality. A motion indicator is a spatial term which is an indicator of
motion, e.g. motion verbs. We also consider other conceptual aspects like frame
of reference and the path of a motion that are important for spatial semantics
and roles [21].
Linguistic challenges. Given a sentence, SpRL should answer: Q1. Does the
sentence contain spatial information? Q2. What is the pivot of the spatial
information? (spatial indicator) Q3. Starting from the pivot how can we iden-
tify/classify the related arguments with respect to predefined set of spatial roles?
Spatial relations in English are mostly expressed using prepositions [7], but verbs
and even other lexical categories can be central spatial terms. Hence SpRL con-
sists of identifying the boundaries of the arguments of the identified spatial term
and then labeling them with spatial roles (argument classification). However,
there are very sparse and limited resources for learning spatial roles. Other work
typically uses a limited set of words, often based on a set of spatial prepositions
and specific grammatical patterns in a specific domain [13, 8].

General extraction of spatial relations is hindered by several things. First,
there is not always a regular mapping between a sentence’s parse tree and its
spatial semantic structure. This is more challenging in complex expressions which
convey several spatial relations [4]; see the following sentence (and Fig. 1).

The vase is on the ground on your left.
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Here a dependency parser relates the first “on” to “vase” and “ground”. This
will produce a valid spatial relation. But the second “on” is related to “ground”
and “left”, producing a meaningless spatial relation (ground on your left). For
more complex relations and nested noun phrases, deriving spatially valid rela-
tions is not straightforward and depends on the lexical meaning of the words.
Other linguistic phenomena such as spatial-focus-shift and ellipsis of trajector
and landmark [11] make the extraction more difficult. Recognizing the right PP-
attachment (i.e. whether the preposition is attached to the verb phrase or noun
phrase) could help the identification of spatial arguments when the verb in the
sentence conveys spatial meaning. Spatial motion detection and recognition of
the frame of reference are additional challenges but will not be dealt with here.
Approach. We aim to tackle the problem using machine learning, in a way
similar to SRL, but with important differences. The first difference is that the
main focus of SRL is on the predicate, its related arguments and their roles [15].
On the other hand, in SpRL the spatial indicator plays the main role and should
be identified and disambiguated beforehand. Second, the set of main roles is
quite different in SpRL and a large enough English corpus is not available from
which spatial roles can be learned directly. Hence new data resources are needed.
The main point is that we aim at domain-independent and unrestricted language
analysis. This prohibits using very limited data or a small set of extraction rules.
However, utilizing existing linguistic resources which can partially or indirectly
help to set up a (relational) joint learning framework will be of great advantage.
It can relinquish the necessity of expensive labeling of one huge corpus. Our
results for preliminary experiments are briefly described in Section 4.

3 Towards Spatial Calculi and Spatial Formalizing

Mapping the spatial information in a sentence onto spatial calculi is the second
step in our framework. We denote this as spatial formalizing task.
Task definition. We define spatial formalizing as the automatic mapping of the
output of SpRL to formal relations in spatial calculi. In the previous section we
have assumed that our spatial role representation covers all the spatial semantic
aspects according to HSS. For the target representation of spatial formalizing
we also require that it can express various kinds of spatial relations.
Spatial challenges. Ambiguity and under-specification of spatial information
conveyed in the language, but also overspecification of spatial calculi models,
make a direct mapping between the two sides difficult [2]. Most of the qualita-
tive spatial models focus on a single aspect, e.g. topology, direction, or shape [12].
This is a drawback, particularly from a linguistic point of view and with respect
to the pervasiveness of the language. Hence spatial formalizing should cover mul-
tiple aspects with practically acceptable level of generality. In the work of [5] the
alignment between the linguistic and logical formalizations is discussed. Since
these two aspects are rather different and provide descriptions of the environ-
ment from different viewpoints, constructing an intermediate, linguistically mo-
tivated ontology is proposed to establish a flexible connection between them.
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GUM (Generalized Upper Model) is the state-of-the-art example of such an on-
tology [1, 17]. Moreover, in [5] S−connections are suggested as a similarity-based
model to make a connection between various formal spatial systems and mapping
GUM to various spatial calculi. However, obtaining an annotated corpus is the
main challenge of machine learning for mapping to the target relations/ontology.
In this respect using an intermediate level with a fairly large and fine-grained di-
vision of concepts is to some extent difficult and implies the need to have a huge
labeled corpus. In addition, the semantic overlap between the included relations
in the large ontologies makes the learning model more complex.

Moreover, mapping to spatial calculi is an inevitable step for spatial reason-
ing. Hence even if a corpus is constructed by annotating with a linguistically
motivated ontology, mapping to spatial calculi still should be handled as a sep-
arate and difficult step. Even at this level, it is not feasible to define a deter-
ministic mapping by formulating rules because bridging models to each other
is not straightforward and external factors, context and all the involved spatial
components, discourse features, etc influence this final mapping. Therefore the
relationships between instances in different domains are not deterministic and
they are often ambiguous and uncertain [5]. Given that for each learning step,
a corpus should be available, we argue that it seems most efficient to learn a
mapping from SpRL to (one or several) spatial calculi directly.

Representation based on spatial calculi. To deal with these challenges we
proposed an annotation framework [10] inspired by the works of SpatialML [14]
and a related scheme in [18]. We suggest to map the extracted spatial indicators
and the related arguments onto the general type of the related spatial relation Re-
gion, Direction, Distance because these relations cover all coarse-grained aspects
of space (except shape). The specific relation expressed by the indicators is stated
in the suggested scheme with an attribute named specific-type. If the general-
type is REGION then we map this onto topological relations in a qualitative
spatial reasoning formalism, so the specific-type will be RCC8 which is a popu-
lar formal model. For directions the specific type gets a value in {ABSOLUTE,
RELATIVE}. For absolute directions we use {S(south), W(west), N(north),
E(east), NE(northeast), SE(southeast), NW(northwest), SW(southwest)} and
for relative directions {LEFT, RIGHT, FRONT, BEHIND, ABOVE, BELOW}
which can be used in qualitative direction calculi. Distances are tagged with
{QUALITATIVE, QUANTITATIVE} (cf. [10]). To provide sufficient flexibility
in expressing all possible spatial relations our idea is to allow more than one for-
mal relation to be connected to one linguistic relation, helped by a (probabilistic)
logical representation. The following examples illustrate this.

a)...and next to that left of that is my computer, perhaps a meter away.

Let X=my computer, Y=that, then a SpRL gives nextTo(X, Y), leftOf(X, Y), and a result-

ing spatial formalization is DC(X, Y), LEFT(X, Y), Distance(X, Y,′ value′) which in GUM

corresponds to leftprojectionexternal.

b) The car is between two houses.

SpRL: between(car, houses), spatial relations: left(car, houses) AND

right(car, houses) which corresponds to GUM’s Distribution.
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c) The wheatfield is in line with crane bay.

SpRL: inline(wheatfield, cranebay), spatial relations: behind(wheatfield,

cranebay) XOR front(wheatfield, cranebay) GUM: RelativeNonProjectionAxial

Approach. The above mentioned examples show that a logical combination of
basic relations can provide the required level of expressivity in the language.
These annotations will enable learning probabilistic logical models relating lin-
guistic spatial information to relations in multiple spatial calculi. Afterwards
qualitative (or even probabilistic) spatial reasoning will be feasible over the pro-
duced output. The learned relations could be considered as probabilistic con-
straints about most probable locations of the entities in the text. Probabilistic
logical learning [3] provides a tool in which considerable amounts of (structured)
background knowledge can be used in the presence of uncertainty. The available
linguistic background knowledge and features includes i) the features of the first
step of spatial role labeling (syntactic, lexical and semantical information from
the text) and ii) linguistic resources such as WordNet, FrameNet, language mod-
els and word co-occurences [20]. These could be combined with visual features
extracted from visual resources in a multimodal environment for more specifi-
cation of spatial relations. Structured outputs (i.e. the mapping to formal rela-
tions) could be learned in a joint manner. By exploiting a joint learning platform,
annotating a corpus by aforementioned spatial semantics in addition to annotat-
ing by the final spatial relations (derived from spatial calculi) is less expensive
than annotating and learning the two levels independently. Implementing such
a learning setting is ongoing work.

4 Current Experiments

To start with empirical studies, we have performed experiments on the first
SpRL learning phase. We learn to identify spatial indicators and their arguments
trajector and landmark. We do not treat motion, path and frame of reference in
this paper, and focus solely on prepositions as spatial indicators here.
Spatial preposition. For unrestricted language it seems valuable to first recog-
nize whether there is any spatial indicator in the text. Since prepositions mostly
play key roles for the spatial information in the first step we examine whether
an existing preposition in a sentence conveys a spatial sense. Here we use lin-
guistically motivated features, such as parse and dependency trees and semantic
roles. We extracted these features from the training and test data of the TPP
data set and tested several classifiers. The current results are a promising start-
ing point for the spatial sense recognition and the extraction of spatial relations.
The selected features were evaluated experimentally and our final coarse-grained
MaxEntropy sense classifier outperformed the best system of the SemEval-2007
challenge by providing an F1 measure of about 0.874. We achieved an accuracy
of about 0.88 for the task of recognizing whether a preposition has a spatial
meaning in a given context.
Extraction of trajector and landmark. In the second SpRL step we ex-
tract the trajector and landmark arguments. Our features are inspired by those
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in SRL. The main difference is that the pivot of the semantic relations here is
the preposition, and not the predicate. The features from the parse/dependency
tree and semantic role labeler are extracted from GUM examples. We labeled the
nodes in the parse tree with GUM labels trajector(locatum), landmark(relatum)
and spatial indicator (spatialModality).

Method F1(T) F1(L) Acc(All)

NBayes 0.86 0.70 0.94

MaxEnt 0.91 0.767 0.965

CRF 0.928 0.901 0.921

Table 1. Extraction of trajector
(T) and landmark (L)

We assume the spatial indicator (prepo-
sition) is correctly disambiguated and given,
i.e. we perform a multi-class classification of
parse tree nodes by trajector, landmark and
none, for which we employed standard classi-
fiers (naive Bayesian (NB), and maximum en-
tropy (MaxEnt)). In addition, we tagged the
sentences as sequences using the same features
and applied a simple sequence tagger based on conditional random fields (CRF).
The spatial annotations of GUM were altered in some instances to be able to
obtain more regular patterns for machine learning. We labeled the continuous
words (prepositions) and their modifiers as one spatial modality even if they
had been tagged as individual relations in GUM, and we do not tag implicit
trajectors/landmarks. In ongoing experiments we classify the headwords instead
of whole constituents [9]. Table 1 presents the preliminary results for “trajector”
(T) and “landmark” (L) recognition including overall accuracy evaluated by 10-
fold cross validation. The simple multi-class classification ignores the global cor-
relations between classes and as Table 1 indicates, more sophisticated CRF mod-
els can improve the results in particular for landmarks. Since the main sources
of errors are a lack of data and the dependency of spatial semantics on lexical
information, we will employ additional (lexical) features and ideally will use a
larger corpus in our future experiments. However the current results show the
first step of applying machine learning for SpRL and indicate a promising start
towards achieving the entire automatic mapping from language to spatial calculi.

5 Conclusion and Future Directions

We have introduced a model for mapping natural language to spatial calculi.
Both aspects of spatial role labeling and spatial formalizing have been described.
A number of related problems that cause difficulties and ambiguities were ad-
dressed, and we have shown preliminary results for experiments on SpRL and
the extraction of trajectors and landmarks. Our main idea for future work is to
obtain (i.e. create) a corpus which is labeled by holistic spatial semantics plus a
combination of spatial calculi. Each relation in the language can be connected
to a set of relations belonging to predefined spatial calculi. This gives a logical
representation of the language based on spatial calculi. We aim to learn sta-
tistical relational models for this. This enables adding probabilistic background
knowledge related to structural information and spatial semantic notions, and
supports (probabilistic) spatial reasoning over the learned models.
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Abstract. We describe a system where the semantics of spatial referential
expressions have been automatically learned by finding mappings between
symbolic natural language descriptions of the environment and non-symbolic
representations from the sensory data of a mobile robot used for localisation
and map building (SLAM). Although the success of learning can be measured
by examining classifier performance on held-out data, this does not in itself
guarantee that the descriptions generated will be natural and informative
for a human observer. In this paper we describe the results of an evaluation
of our embodied robotic system by human observers.

Key words: spatial expressions, machine learning, mobile robots, embod-
ied multi-modal conversational agents, evaluation

1 Introduction

A conversational robot must be able to refer to and resolve references to the en-
vironment in which it is located with its human conversational partner. Mapping
between the linguistic and non-linguistic representations is commonly performed by
first identifying some parameters of the physical world on the basis of psychological
evidence and then integrating them into customised functions [1, 2]. However, in
a real robotic system which has been primarily built for tasks such as map build-
ing, localisation and navigation the information required by such models may not
be readily available. Our approach attempts to use a simple model of space and
motion that is available to a mobile robot and show that a mapping between its
representations and highly abstract natural language spatial descriptions can be
learned: that the robot can display a human-like performance in “understanding”
and generating spatial descriptions or motion in new environments. In this paper
we focus on the evaluation of the robot’s performance from the point of view of a
human conversational partner.

2 Learning spatial descriptions

Spatial descriptions may be about the identity of objects in a scene [3], about the
spatial relations between the objects in a scene [4] or about the route that a moving
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object can take in a scene [5]. The scene may be a small artificial town on a table
top, a building with rooms or a real town. Our scenario is a larger room, a lab, which
is constrained by walls, and which contains life-sized objects such as a chest, a box,
a table, a pillar, a stack of tyres, a chair, a desk and shelves. The natural language
descriptions that can be made in this environment belong to two categories: they
can be descriptions of the robot’s motion such as “You’re going forward slowly” or,
when the robot is stationary, descriptions of relations between the objects in the
scene “The table is to the left of the chair”. We consider descriptions of motion
spatial description because their meaning is also relative to the environment in
which they are used.

We use an ATRV-JR mobile robot designed by iRobot which runs middle-ware
called MOOS.1 The system runs an odometry component which provides informa-
tion about the robot’s motion such as its 〈R-Heading〉2 and 〈Speed〉 and the SLAM
localisation component [6] which uses a previously built 2-dimensional SLAM map
to localise the robot. The objects were grounded on the map manually by tak-
ing a centre point of the cloud of points representing them, for example: chair
〈0.6234,0.2132〉 (〈X〉 and 〈Y〉). Our representation of the state of the robot and the
space around it is thus extremely simple but the values of such representations are
very accurate.

A group of four non-expert volunteers was invited to provide linguistic spatial
descriptions of the robot and its environment. Each was first familiarised with the
scene, the names of the objects and the different types of motion that the robot can
produce. Then they were instructed to describe the motion and the location of ob-
jects from the perspective of the robot. This ensured that all directionals were used
unambiguously from a single reference frame [7]. Two datasets were created. The
linguistic descriptions in the first dataset (Simple) were made by a single describer
and were restricted to a pre-defined small vocabulary (16 words) that appeared as
choices on a computer screen. The second dataset (All) was created by all four
participants who could use unrestricted vocabulary and sentences. Such descrip-
tions show considerable lexical variation (46 words) but their syntactic structure is
limited and in most cases similar to the examples above.3 The two settings were in-
tended to show the effects of subjectivity on the datasets and the models produced.
To preserve the naturalness of the situation we used speech recognition (with some
consequent noise in the language).

To turn MOOS log files (where both linguistic and non-linguistic information
was recorded) to learning instances a few processing steps had to be performed: the
locations of objects were expressed relative to the robot (rather than being global
values relative to some random point where the robot has started) and their val-
ues were normalised (given the estimated size of the room or the maximum speed
of the robot in the current session). This ensured that the models that were built
could be later applied to new contexts. Words from natural language descriptions

1 MOOS was designed by Paul M. Newman (Mobile Robotics Group, Department of
Engineering, University of Oxford). We would like to thank him and members of his
group for introducing us to mobile robotics.

2 The attributes used in learning are marked with angled brackets.
3 Complex descriptions such as “the chair is to the left of the table and behind the sofa”

were simplified as two descriptions of relation.
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were tagged to one of the categories 〈Verb〉, 〈Direction〉, 〈Heading〉, 〈Manner〉 and
〈Relation〉 which were also the target classes to be learned. The learning was ac-
complished with the Weka toolkit [8] which includes a range of offline supervised
classifier implementations and a common framework to represent the data and eval-
uate the results. Each of the target linguistic classes was learned separately and not
all attributes were used in each learning exercise. For example, to learn the category
of 〈Verb〉 we only used the 〈R-Heading〉 and 〈Speed〉 attributes and to learn the cat-
egory 〈Relation〉 we used the attributes 〈LO x〉, 〈LO y〉, 〈REFO x〉 and 〈REFO y〉
where LO stands for a located object and REFO stands for a reference object. In-
cluding all attributes resulted in a considerably lower classifier accuracy since may
spurious relations were discovered.

The classifiers that were used in the human evaluation experiments described
in the following sections were produced by the J48 learner which is the Weka’s
implementation of the ID3/C4.5 decision tree learner [9]. Their estimated accuracies
obtained by a stratified 10-fold cross-validation are given in the last column of
Table 1 for both Simple and All datasets. Note that these values are not the best
values that we obtained. The accuracy of the motion categories was improved by
a better method of combining a set of temporally sequential observations from the
robotic log to instances. We also compared the performance of different machine
learning methods on our datasets.

3 Evaluation by humans

The evaluation of machine learning classifiers by a stratified 10-fold cross-validation
tests the degree to which the descriptions learned will generalise correctly to new
cases. However, it does not tell us whether the models that are built will result
in linguistic behaviour natural to humans. In order to know this we carried out a
user study. We integrated the classifiers to a simple system that generates descrip-
tions called pDescriber. This considers the current (normalised) values of the same
attributes that were used in learning and predicts linguistic target classes. If the
robot is moving, it generates descriptions of motion; if it is stationary it generates
descriptions of object relations. The values of the predicted categories are applied
to syntactic patterns such as “I’m 〈Verb〉ing” or “〈LO〉 is 〈Relation〉 the 〈REFO〉”
which produce sentences that are subsequently pronounced by a speech synthesiser,
for example “I’m reversing” and “You are behind the chair”.

A new room was set up. Most of the objects were the same as in the data
collection exercise but their placement was different. Five subjects were invited to
the lab for approximately an hour each. None of them had participated in data
collection. After being introduced the scene, they were explained that they should
indicate whether they agree with the description that was generated by the robot
given its current state and that of the environment. This gave us simple binary
data. If they disagreed with the description, they had a chance to provide a better
description. Note that the descriptions were not evaluated as utterances but per
linguistic category. For example, for each utterance the system would query the
evaluator whether “right” was a good word to describe the robot’s heading in which
it was moving or whether “to the left of” was a good description of the relation
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between the chair and the table. The evaluators were also invited to make qualitative
judgements about the appropriateness of the descriptions which we noted down. For
approximately one half of the session the system used the classifiers built from the
Simple dataset and the other half it used the classifiers built from the All dataset.

4 Evaluator-system agreement

The central part of Table 1 shows the measured accuracies from each evaluator per
category. As explained in the previous section, accuracy is measured as evaluator
agreement with the system on the choice of description. The penultimate column
contains the accuracies when all evaluators are considered together. The last column
contains the estimated accuracies of the classifier that the system was using to
produce these descriptions. The table is split into two parts each containing the
results from one configuration of the system (J48-Simple and J48-All).

Table 1. System performance vs. classifier performance

Category Evaluators Classifier
a b c d e All J48

Simple
Motion n = 36 17 14 2 21 90 −

Verb 100 88.24 100 100 95.24 96.67 89.02
Direction 100 76.47 100 100 100 95.56 87.80
Heading 100 82.35 100 100 85.71 93.33 97.56
Manner 100 82.35 100 100 100 96.67 70.73

Relation n = 65 23 19 53 22 182 −
Relation 67.69 65.22 68.42 66.04 59.09 65.93 75.90

All
Motion n = 53 22 53 7 41 176 −

Verb 96.23 77.27 88.68 100 100 92.61 48.22
Direction 96.23 72.73 92.45 100 100 93.18 55.68
Heading 98.11 68.18 92.45 100 95.12 92.05 60.77
Manner 100 72.73 98.11 100 100 96.02 54.70

Relation n = 66 28 72 110 58 334 −
Relation 72.73 57.14 44.44 70.00 43.10 59.28 69.12

How do the results from the evaluation of the system by humans and the evalu-
ation of the underlying classifiers compare? The classifier accuracies are the average
accuracies obtained through a 10-fold cross-validation. In the human evaluation of
the system the accuracy is determined on an independent test set. In both cases
the reported accuracy is the ratio between the number of agreements with the sys-
tem or correct classifications over the total number of considered testing instances.
There is a slight difference between the two situations in how a positive match is
made. In cross-validation the correct value of the class is pre-defined and hidden
from the classifier and this is matched with the predicted class. In human evalua-
tion an evaluator hears the generated description before they give their evaluation.
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This description is the one that is predicted by a classifier given the attributes rep-
resenting the robot’s current internal state. In this respect it is possible that the
system unavoidably biases the evaluator, since other possible descriptions are never
produced. Furthermore, when evaluating the system in this way, the observers are
not always just evaluating the classifiers. For example, when generating descriptions
of object relations the located and the reference objects are chosen at random and
the classifier is used to predict the best relation between the two. The description
may be evaluated as unsuitable because of an unfortunate choice of objects even
though the spatial relation between them is correct.

A quick look at the table reveals that the evaluators considered the system per-
formance to be better than the accuracy of the underlying classifiers on most classes
of motion descriptions (J48-Simple classifier: x̄ = 86.28%, J48-Simple evaluators: x̄
= 95.56%; J48-All classifier x̄ = 54.84%, J48-All evaluators: 93.47%). To make the
comparison easier we mark the values where the opposite is true, when the system
is evaluated to perform worse than its classifiers, in bold. The evaluator accuracies
are quite similar across categories, even for the 〈Manner〉 category on which the
the classifiers perform less well than others. This is more the case with the Sim-
ple configuration than All. On the contrary, the system was considered to perform
less well than its classifiers on the 〈Relation〉 category by approximately 10% in
both cases (J48-Simple classifier: 75.90%, J48-Simple evaluators: 65.93%; J48-All
classifier: 69.12%, J48-All evaluators: 59.28%).

The scores from evaluator b are lower than those from other evaluators, par-
ticularly on the motion classes and for the J48-Simple configuration. The numbers
in lines starting with n = indicate the size of the evaluation sample. Although the
number of descriptions that the robot generated was not strictly controlled, a rea-
sonable sample was obtained for each evaluator. The only exception is evaluator d
who evaluated only a small number of descriptions of motion but on the other hand
considered more descriptions of object relations.

An explanation why the evaluators consider the system to perform better than
its underlying classifiers on the motion categories but not on the relation category
could be that motion categories contain words that are less semantically restrictive.
For example, the category 〈Verb〉 contains words such as “going”, “moving” and
“continuing” which all have a very similar reference for a human but not for a ma-
chine learner where the attribute values are assumed to be discrete. Consequently,
an evaluator may accept such alternative. The categories 〈Direction〉, 〈Heading〉
and 〈Manner〉 contain words with clearer semantic divisions but they all also con-
tain a word “none” which was assigned as a value of each category in machine
learning dataset if a word for that category was not present. The meaning of this
word is ambiguous between a default meaning and an anaphoric meaning. For the
〈Direction〉 category “none” has the same meaning as “straight”. However, it can
also refer anaphorically to the previously generated description of direction if this
has not changed.

Another explanation why the results are different for descriptions of motion and
object relations is that learning and generating of the latter is more complex. It
could be that our learning and generation models for descriptions of object relations
capture human knowledge less well than the models for description of motion. We
discuss some qualitative evidence for this in Section 6.
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5 Inter-evaluator agreement

Agreement between individual evaluators demonstrates that the system has not
been tuned to the vocabulary of the describers who provided descriptions for ma-
chine learning. Disagreement may be informative too: if evaluators collectively dis-
agree it means that the generation task is not subjective, that there exists a con-
sensus on what is a good description in a particular context and what is not.

Unfortunately, inter-evaluator agreement cannot be established directly, for ex-
ample by calculating a κ coefficient, because not all evaluators evaluated the same
set of items. The evaluators considered a closed set of words produced by the sys-
tem. We can expect that the agreement of a single evaluator with the system will
not be identical on every word that it produces. Some words are more difficult to
learn than others. If so, the difference in the ratings for words should be consis-
tent across evaluators. According to our model of agreement, an evaluator agrees
with other evaluators if their accuracy scores per word correlate with the mean of
accuracy scores per word of everyone else.

Table 2. Agreement of each evaluator with the rest of the group

Configuration a:rest b:rest c:rest d:rest e:rest Mean

J48-Simple 0.824** 0.382 ns 0.787** 0.907** 0.636* 0.707
J48-All 0.504* 0.048 ns 0.635** 0.756** 0.662** 0.521

Table 2 shows the Pearson’s correlation coefficients rxy obtained at each fold
of correlation for both sets of classifiers. The last column contains the average
correlation coefficient. The asterisks indicate the statistical significance levels of the
coefficients obtained by a two-tailed t-test.4

We can see that except for the evaluator b there exists a moderate to high corre-
lation between the scores of an individual evaluator and the mean scores of the rest
of the group. The average correlation coefficient for the J48-Simple configuration is
greater (0.707) than the average correlation coefficient for the J48-All configuration
(0.521). All correlation coefficients, except in the case of evaluator b are statistically
significant at the level α = 0.05. In sum, apart from evaluator b there is a consid-
erable consensus between the remaining four evaluators on the performance of the
system. Thus, it has captured some universal knowledge.

6 Qualitative evaluation

Descriptive observations made by the evaluators are useful because they point out
facts about spatial cognition and the shortcomings of the system that can be further
improved [10, 11].

4 * indicates that the correlation is significant at the 0.05 level, and ** indicate that it is
significant at the 0.01 level. “ns” indicates that the correlation is not significant.
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Ambiguity of heading and direction. The descriptions such as “left” and “right” are
ambiguous when used to refer to motion. “Moving right” can mean moving forward
with a heading in the clockwise direction. It can also mean making a sudden turn
to the region that is to the right of the current location and then moving straight in
that direction. Similarly, “moving backward” can mean that the robot is moving in
the direction that is behind its back (reversing) or that it has reversed but is now
moving forward in the direction that was previously behind its back. The second
of each description pair is more complex and to learn such descriptions the learner
would have to abstract over a set of actions rather than over physical descriptions
of environment. Since while performing the second action “right” and “backward”
may refer to the same state of the robot as “straight” and “forward” in our model,
the robot is likely to over-generate such descriptions in cases where the first action
was not performed.

Object shape. The SLAM map used in our model does not contain abstract rep-
resentations of objects but only clouds of points. Each object is represented by a
centre point. While this works reasonably well for objects that square-shaped, diffi-
culties arise with objects that are markedly different in one dimensions such as “the
wall” and “the barrier”.

Switching the reference frame. Although evaluators were told that the descriptions
generated with the reference frame fixed on the robot or from “its perspective”, it
was very easy for them to switch from this relative reference frame to the intrinsic
reference frame fixed on the reference object. Firstly, it became apparent that some
switches to the intrinsic reference frame have been learned from the training data
and such descriptions appeared appropriate in the current context. In this case, the
majority of evaluators would accept such descriptions although they should not do
so according to our instructions. Secondly, properties of some objects invite human
describers or observers to use intrinsic rather than the relative reference frame. This
is true for objects that are larger than describer (walls, barriers and cupboards), have
an identifiable front and are animate (another robot). Only the intrinsic reference
frame is possible when the robot describes its own location and consequently cannot
serve as a reference object. “I’m in front of the chair” unambiguously means that
the robot is located in the region around and orientated by the seating area of the
chair. Note that the reference frame also applies to the projective descriptions of
motion.

Reference to objects outside the robot’s field of vision. There was a disagreement
between the evaluators whether descriptions that cannot be “seen” by the robot are
appropriate or not. Technically, “the vision field” of the robot is much greater than
that of a human observer - it is the entire SLAM map which represents its mental
map. Humans also use mental maps to imagine configurations of objects for tasks
such as navigation and therefore descriptions of objects not in the visual focus of
the describer may not be completely unnatural. In fact, particularly disapproved
were those descriptions where only one of the objects was “visible”.

Non-optimal choice of objects. The classifiers always attempt to predict the best
description of relation between two objects and may do so but the description may
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be judged inappropriate because of an unfortunate selection of objects. The latter
can be accomplished by a contextual model which our system does not implement.
Given that we are primarily interested in spatial relations itself the choice of objects
at random seems to be reasonable. Some evaluators were more sympathetic to such
descriptions than others. However, they all agreed that descriptions where the lack
of object salience was coupled with the lack of the vision field salience were quite
unacceptable.

7 Conclusion

Although our classifiers use a relatively simple (topological) representation of space
primarily intended for localisation of a mobile robot we can conclude that they
work surprisingly well in practice in replicating human linguistic competence. They
fall short sometimes because they do not have access to non-topological information
such as object shape, reference frame, discourse structure for modelling salience and
world knowledge about the objects. Such data must be provided from other sources.
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Abstract. We describe an approach for connecting language and geog-
raphy that anchors natural language expressions to specific regions of
the Earth, implemented in our TextGrounder system. The core of the
system is a region-topic model, which we use to learn word distribu-
tions for each region discussed in a given corpus. This model performs
toponym resolution as a by-product, and additionally enables us to char-
acterize a geographic distribution for corpora, individual texts, or even
individual words. We discuss geobrowsing applications made possible by
TextGrounder, future directions for using geographical characterizations
of words in vector-space models of word meaning, and extending our
model to analyzing compositional spatial expressions.

Keywords: Geobrowsing, Toponym Resolution, Topic Models

1 Introduction

Incredible amounts of text are now readily available in digitized form in various
collections spanning many languages, domains, topics, and time periods. These
collections are rich sources of information, much of which remains hidden in the
sheer quantity of words and the connections between different texts. Techniques
that reveal this latent information can transform the way users interact with
these archives by allowing them to more easily find points of interest or previ-
ously unnoticed patterns. In this paper, we describe our preliminary progress in
developing our TextGrounder system, which we use to create geospatial charac-
terizations and visualizations of text collections. We also discuss the potential
for using the representations produced by our system to inform or learn models
of how language encodes spatial relationships.

The spatial meaning of an utterance depends on many factors. The expres-
sion a barbecue restaurant 60 miles east of Austin has a compositional analysis
in which one must: (1) identify whether Austin refers to a person or place and
which person or place it is, including determining the correct latitude and lon-
gitude associated with it; (2) identify the location that is 60 miles to the east of
that location; and (3) possibly identify a restaurant that serves barbecue in that
vicinity. We do not tackle such compositional analysis yet; instead we begin with
a standard bag-of-words model of texts that allows us to use the geographic focus
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of words like barbecue and restaurant and other terms in the document to disam-
biguate (potential) toponyms like Austin and landmarks like the Eiffel Tower.1

Our model learns that locations are highly associated with certain vocabulary
items without using labeled training material; it relies only on a gazetteer. To
do this, we use a simple topic model [2] that construes regions of the Earth’s
surface as topics. We refer to this as the region-topic model.

There are at least two linguistically interesting outcomes that could arise
from this modeling strategy. The first is that it directly provides a light-weight
form of grounding natural language expressions by anchoring them to (distribu-
tions over) locations on the Earth. This presents an opportunity to add spatially
relevant features into recent vector space models of word meaning (e.g. [4]).
Typically, the dimensions of vector space models are not interpretable, and the
only way that a vector representation of a word can be interpreted is through
its distance to the vectors of other words. In contrast, dimensions relating to
locations on Earth will be informative and interpretable in themselves. This will
allow us to explore the question of whether such vector space models support
additional inferences informed by world knowledge. Second, our approach is lan-
guage independent, and the fact that expressions are grounded geographically
presents the opportunity—without using labeled data, e.g. as with SpatialML
[9]—to eventually learn the meaning of expressions like X 60 miles east of Y,
based on texts that express many different referential noun phrases X and Y,
some of which will be locations which we can resolve accurately.

We aim to use TextGrounder to improve information access for digitized text
collections. We are working with a collection of ninety-four British and American
travel texts from the nineteenth and early twentieth centuries that were digitized
by the University of Texas libraries.2 These texts are replete with references to
locations all around the Earth, so they are an ideal target for geobrowsing appli-
cations (e.g. in Google Earth) that display the relative importance of different
locations and the text passages that describe them. This kind of analysis could
be used to provide “distant reading” interfaces for literary scholarship [12], to
support digital archeology [1], or to automatically produce geographic visualiza-
tions of important historical events, such as mapping survivor testimonies of the
Rwandan genocide. It could also enable users to create mashups of temporally
and generically diverse collections, such as Wikipedia articles about the Civil
War with contemporary accounts by soldiers and narratives of former slaves.

2 System

TextGrounder performs geolocation in a very general sense: it connects natural
language texts, expressions, and individual words to geographical coordinates
and distributions over geographical coordinates. The most basic and concrete
application of geolocation is toponym resolution, the identification and disam-
biguation of place names [7]. For instance, there are at least forty places around

1 Which could be in Paris (France), Paris (Texas), Las Vegas (Nevada), etc.
2 http://www.lib.utexas.edu/books/travel/index.html
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the world called London; a toponym resolver must identify that a particular
mention of London refers to a place (and not a person, like Jack London) and
identify which London was intended as the referent (e.g., London in Ontario or
England). Most systems focus solely on recognizing the places associated with
texts based on matching known names to known locations. Typically, simple
pattern matching or heuristics are used to identify and disambiguate places.

TextGrounder performs toponym resolution as a by-product; it automati-
cally interprets references to places, landmarks, and geographic features in free
text, and uses that information to provide location information on digital maps.
Because it learns from raw text, the system uses information and representations
that support a much more general connection between language and geography
than toponym resolution alone. The system thus performs a light-weight form
of grounding computational representations of words in the real world.

wiziθ
α

φ
β

D N

Fig. 1: Graphical representation of the
region-topic model with plate notation.
The N word observations wi over D docu-
ments is conditioned on the word-level re-
gion assignments zi and a word-by-region
prior φ|z, β ∼ Dirichlet(β). The topics are
drawn from a multinomial on the region-
by-document prior θ|d, α ∼ Dirichlet(α)
where d ∈ D. Structurally, the model
is identical to a standard topic model—
however, the initialization and interpreta-
tion of the topics is anchored by actual re-
gions on Earth rather than arbitrarily as-
signed latent semantic concepts.

The underlying model, depicted
in Figure 1, is an adaptation of
probabilistic topic models [2]. Top-
ics are simple distributions over the
vocabulary for which some partic-
ular words have higher probability
than others—for example, a topic
related to sports would have high
probability for words like team,
game, and ball. To adapt this ap-
proach for geolocation, we repre-
sent the Earth as a set of non-
overlapping 3-by-3 degree regions,
where each region corresponds to
a topic. Each document is thus a
mixture of region-topics, so differ-
ent locations discussed in the same
document can be modeled. Ulti-
mately, this means that we asso-
ciate word distributions with spe-
cific locations such that words that
are more relevant to that loca-
tion have higher probability. We do
not retain all region-topics; instead,
given a gazetteer, such as World Gazetteer3, we consider only region-topics that
spatially contain at least one entry in the gazetteer.

To analyze a corpus, we first run the Stanford named entity recognizer4

(NER) and extract all expressions identified as locations. We then learn the
region-topics for each word and toponym. Unlike standard topic models, where
topics are not explicitly linked to an external representation, region-topics are

3 http://world-gazetteer.com/
4 http://nlp.stanford.edu/ner
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anchored to specific areas of the Earth’s surface. This allows us to initialize the
inference procedure for our model by seeding the possible topics to only those
for which we have some evidence; this evidence comes via toponyms identified
by the NER system and the regions which contain a location indexed by those
toponyms. The word distributions for non-toponyms in a text conditioned over
regions are then inferred along with distributions for the region-constrained to-
ponyms through a collapsed Gibbs sampler. Note that we do not consider the
topology of the regions themselves (i.e. our model has no knowledge of the sys-
tems of neighborhoods which are inherent in the definition of regions over the
globe); the present model is an intermediate step towards that goal.

Toponym resolution is performed implicitly by this model because the iden-
tified toponyms in a text are constrained to have positive joint probability only
with the regions that enclose the corresponding, possibly ambiguous, coordinates
in the gazetteer for those toponyms. If each toponym in a document is associated
with multiple regions, the topic model will learn a topic and word distribution
that assigns high probabilities to regions that coincide among the possible re-
gions. For example, London, Piccadilly and Hyde Park might occur in the same
document; each of these toponyms are ambiguously mapped to more than one
region. There are different mixtures of regions that contain all these toponyms;
the topic model will assign higher probability to an analysis that accounts for
all of them in a single region (namely, the one containing London, UK). After a
burn-in period for the Gibbs sampler, we take a single sample (or average over
multiple samples) and geolocate the toponyms by placing the toponym on the
coordinates which are resolved by the gazetteer and the region assignment.

The region-topic distributions include both toponyms and standard vocab-
ulary items (non-toponyms). Because non-toponyms are unconstrained over re-
gions, they provide additional evidence for determining the set of region-topics
required to explain each document. Thus, they aid in toponym resolution and
the model discovers the words that are most associated with each region. For
example, the region-topic containing Austin, Texas would have high probability
for words like music, barbecue, and computers, whereas for San Francisco, we’d
expect bay, finance, and tourism to be prominent words. Based on these distri-
butions, we can determine additional relationships, such as the distribution of
a word over the Earth’s surface (by considering its probability in each of the
region-topics) or the similarity of different regions based on their corresponding
region-topics (e.g. through information divergence measures).

3 Datasets and output

We seek to make the British and American travel collection more useful for
scholars of the period through TextGrounder-generated KML (Keyhole Markup
Language) files that may be loaded into a geobrowser like Google Earth, includ-
ing (1) plotting the prominence of different locations on Earth in the collection,
(2) embedding text passages at their identified locations for discovery, and (3)
plotting the region-topic word distributions (see Figure 2). These preliminary
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Fig. 2: TextGrounder visualization in Google Earth for John Beadle’s Western Wilds,
and the Men who Redeem Them. The top ten words associated with each region are
shown, with red 3D bars indicating their relative frequency for that region.

visualizations provide subjective characterizations of the quality of the system
output, which has been useful as we develop and refine our approaches. To obtain
an objective measure of performance on the specific task of toponym resolution,
we are now interfacing TextGrounder with the TR-CoNLL corpus [7], which
contains 946 English-language newspaper articles that contain human-annotated
ground truth for 5,963 toponym mentions.

To test the cross-lingual applicability of TextGrounder, we will create a mul-
tilingual geotagged subset of Wikipedia (see [13] for an extensive discussion of
Wikipedia’s geotagged articles and modeling based on them) that we can use
as a test corpus. TextGrounder associates multiple regions with each document,
but some regions will tend to dominate each document; we can thus choose a
location that is most central to each document and check the geospatial dis-
tance from that location to the one annotated in Wikipedia. We will create the
corpus by extracting pages in English, German, and Portuguese that have simi-
lar geographic coverage in each language (this is necessary because the English
Wikipedia is much larger than the others and has more complete geotagging).
We will identify a subset of pages in all three languages that discuss the same
locations, using their geotagged information. This will be a reasonably large set:
there are currently over 170,000 articles in English (and 1.2 million across all
languages) that are annotated with a geotag for the main subject of the article.

The approach and methodology we advocate are general and flexible—the
same methods can be applied relatively independently of the particular corpus
being analyzed and the task at hand. The resulting robustness gives us confidence
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that our approach will scale well, allowing us to provide geographical searching
and browsing for a much wider range of documents than has been possible in
traditionally curated literary or historical collections. The unsupervised methods
we use allow a more useful mapping of texts because they do not base grounding
entirely on toponyms; this means we can characterize the relative importance of
different locations using a much wider array of evidence than those that simply
resolve toponyms. Furthermore, incorporation of more diverse evidence is of
retroactive benefit to toponym resolution, and we believe it will be mutually
beneficial to jointly learn a textual hidden space and a geospatial model.

4 Spatial features and word meaning

Vector space models are a popular framework for the representation of word
meaning, encoding the meaning of lemmas as high-dimensional vectors [6, 8]. In
the default case, the components of these vectors measure the co-occurrence of
the lemma with context features over a large corpus. Vector spaces are attractive
because they can be constructed automatically from large corpora; however, the
interpretation of the representation for a word is based solely on its distance in
space to other words. The region-topic model provides an opportunity to repre-
sent the meaning of words through grounded features: words can be represented
as a vector whose dimensions are region topics, and the coordinates are the word
probabilities under the topics. This model overcomes the dichotomy of corpus-
derived but uninterpretable versus human-generated and interpretable features:
it is automatically derived, but offers directly interpretable geographical features.

We will use the region-topic models as a vector space model to study three
sets of issues. (1) Traditional vector space models characterize the meaning of
a word intra-textually, solely through other words. How do grounded represen-
tations compare on traditional tasks like word similarity estimation? Are they
perhaps less noisy simply by virtue of pointing to extra-textual entities? (2)
Similarity measures typically used in vector space models, such as Cosine and
Jaccard, treat dimensions as opaque. In a model where dimensions are regions,
we can exploit world knowledge in measuring similarity, for example by taking
the distance between regions into account. Can this fact be used to derive better
estimates of word similarity? (3) While most vector space models derive one vec-
tor per word, conflating senses of polysemous words, it is also possible to derive
vectors for a word in a particular context [11, 3]. In a context of eat apple, the
vector of apple would focus on the fruit sense of apple, suppressing features that
speak to the company sense. This raises the question of whether it is possible to
determine contextually appropriate interpretable features. In the example above,
features like Michigan, California or New Zealand should be strengthened, while
Cupertino (associated with Apple Inc.) should be suppressed. On the technical
side, the main challenge will lie in the difference in strength between dimensions,
due to different corpus frequencies of different senses of a polysemous word.
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5 Related work

There has been quite a bit of research addressing the specific problem of toponym
resolution (see [7] for an overview). Of particular relevance is the Perseus Project,
which uses a heuristic system for resolving toponyms and creating automatically
generated maps of texts written around the time of the Civil War [14].

The two current approaches that are most similar to ours are the location-
aware topic model [10] and the location topic model [5], but the form of our model
is different from both of these. The location-aware topic model assumes that
every document is associated with a small set of locations, so its representation
of geography is discrete and quite restricted. The location topic model is more
similar to ours: they also seek to learn connections between words and geography
using a topic model, and the visualizations they produce (for travel blogs) have a
similar flavor. Interestingly, they model documents as mixtures of location-based
topics and more general topics: this of course allows them to characterize words
that do not have compelling specific geographical meaning. They preprocess their
data, and perform toponym disambiguation using a heuristic system (the details
of which are not given). Our model uses a different representation that actually
grounds topics explicitly, because each topic is directly tied to a specific region
on Earth. As a result, our model connects language to geography and performs
toponym disambiguation as a by-product. We are interested in combining these
two models to see how the learned word distributions differ and the effects they
have on toponym disambiguation and our visualizations.

6 Conclusion

The Internet has become a repository of information in many of the world’s lan-
guages, but the sheer quantity of written material—especially when considering
multilingual contexts—also makes it harder to find or digest information of in-
terest. We seek to create meaningful abstractions of language that allow large
text collections to be browsed with respect to the places they discuss. These ab-
stractions are learnable from unannotated texts, which greatly facilitates their
use for any language with digitized material.

The historically and politically relevant collections that we are examining
provide diverse materials that are replete with references to real people and
places. This makes them an ideal target for geospatial resolution. Our model
performs this resolution, but more importantly, it uses representations that en-
able many alternative ways of relating language to geography. This in turn sup-
ports many different ways to visualize texts geospatially, including seeing the
geographic centrality of an entire collection or for a single word or expression, as
well as exploring the text passages most relevant for a given location in context.
These kinds of visualization will enable scholars to interact with massive text
collections in novel ways, and will test the potential of maps to serve “not as
all-encompassing solutions, but as generators of ideas” [12].

Additionally, these representations create the possibility to anchor natural
language expressions to the real world in a light-weight fashion—this has the
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potential to make them useful for inclusion in vector space models of word
meaning. By starting at this level, using very simple assumptions about the
dependencies between words (by treating texts as bags-of-words), we can ana-
lyze many texts and many languages. However, we ultimately are interested in
deriving the geospatial meaning of compositional expressions—a very difficult
task, but one which we hope our current models will help us eventually address.

TextGrounder is an ongoing effort. The system, example output and updated
documentation are available on the project’s website.5
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Relative to Discourse Relations 
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Abstract. I present a descriptive analysis of reference to physical space in the 
Penn Discourse TreeBank. In particular, I analyze the occurrence of spatial 
prepositional phrases relative to the discourse relations and semantic senses that 
hold between two adjacent clauses. The purpose of this investigation is twofold: 
(1) to better understand how often spatial reference occurs in discourse and (2) 
to investigate possible relationships between spatial reference and discourse 
semantics. Overall, the distribution of spatial prepositional phrases and relation-
sense pairs are similar. However, statistical evidence suggests that the inclusion 
of spatial reference in a given clause is independent of the relation-sense of that 
clause and adjacent clauses. While these results, as applied to the PDTB, 
indicate the absence of a default pattern of occurrence and discourse semantic 
function of spatial information, they can nonetheless be extrapolated to provide 
crucial insights for fully understanding models of spatial representation and 
interpretation in discourse generally. 

Keywords: Spatial Reference, Discourse Relations. 

1   Introduction 

The semantic and pragmatic functions of discourse relations, which hold between two 
clauses, contribute to a text’s coherence [1]. For example, in the two-line discourse 
(a) Lucy is not hungry (b) Cati fed her, (b) is an EXPLANATION for (a) [2]. The 
inclusion of spatial reference, while accounted for in definitions of discourse relations 
(e.g., BACKGROUND), is not strictly necessary. However, recent research, grounded in 
spatial cognitive psychology (e.g., cognitive maps), has suggested that space plays a 
larger role in discourse structure; in particular, spatial reference organizes narrative 
discourse into spatially defined groups of events that are temporally linked [3-4]. 
While this research presents a new analytical perspective, before it can be fully 
exploited, it is first necessary to better understand what relationships may exist 
between spatial reference and discourse relations generally.  

                                                             
1 I would like to thank two anonymous reviewers, my dissertation advisor E. Graham Katz, 
James Pustejovsky and David Herman for beneficial insights and discussion. 
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This paper presents the results of a descriptive analysis that evaluates the interface 
of spatial information and discourse. The particular research question addressed is: 
Does the occurrence of spatial reference in discourse pattern relative to discourse 
relations? A negative answer, which is suggested by existing definitions of discourse 
relations, indicates that spatial reference is independent of discourse relations. An 
affirmative answer indicates that spatial reference is dependent on (certain) discourse 
relations. This paper is arranged as follows: Section 2 discusses spatial information 
(as defined by The Preposition Project [5]), discourse relations (as defined by Penn 
Discourse TreeBank (PDTB) [6]) and the methodology employed. Section 3 presents 
the distribution of spatial prepositional phrases relative to discourse relations. Section 
4 concludes.  

2   Background, Data and Methodology 

In this paper, “spatial reference” refers to physical relationships arranged in figure 
and ground relationships. For example, the cup is on the table locates the figure the 
cup relative to the ground the table.2 A search algorithm was developed to 
automatically extract 334 different prepositions defined in the Preposition Project [5] 
(based on a hierarchical network of dictionary entries). 107 of the 334 prepositions 
have a distinct “spatial” sense. Because prepositions are highly ambiguous (e.g., 
numerous non-spatial senses), the prepositions extracted from the PDTB were 
disambiguated by hand. 

The PDTB includes annotations of discourse relations in the Penn Treebank II 
version of the Wall Street Journal (WSJ) corpus [8]. Discourse relations in the PDTB 
(which hold between pairs of syntactically classified arguments from Penn TreeBank 
II) (“ArgPairs”) are a confluence of connective words, content of the ArgPairs and 
semantic senses. ArgPairs are either: Explicit – a syntactically classified connective 
word exists in the text (but, and); Implicit – a connective word does not exist in the 
text but can be inferred; EntRel – no relation holds, but the second clause in the 
ArgPair includes more information about the first clause; AltLex – there is no 
connective word, but a non-connective expression can capture an inferred relation; 
and NoRel – no relation holds. Explicit, Implicit and AltLex ArgPairs co-occur with 
one of four senses: Temporal, Contingency, Comparison and Expansion. The PDTB 
includes 2159 annotated documents, 40,600 relations and 34,877 senses in total. The 
overall distribution of the relations and senses in the PDTB provide a baseline of 
relation-senses. The occurrence or non-occurrence of spatial reference overall, and 
relative to particular relation-senses and pairs of relation-senses, can then be 
compared to this baseline to determine relevant (statistically significant) differences 
and potential patterns.  

                                                             
2 For sake of brevity, I am restricting the discussion to figure and ground relationships indexed 

by spatial prepositions [7]. Other sources include motion verbs (run, follow), deictic verbs 
(come, go) and deictic adverbs (here, there). 
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3 Results – Distributions and Dependency 

200 documents (approximately 10% of the total PDTB), consisting of 5000 
relations and 4388 senses, were selected for analysis. If one or both of the arguments 
in an ArgPair contained one or more spatial prepositions, then these are referred to as 
Spatial ArgPairs.3 The occurrence of Spatial ArgPairs is roughly equally distributed 
between each argument (Arg1 – 54.15%; Arg2 – 45.84%). The average percentage of 
Spatial ArgPairs per document is 28.90%. The sample selected for analysis conforms 
to the general relation and sense distributions in the PDTB (Table 1). 

Table 1.  Distribution of relations and senses.  

Relations PDTB 
(%) 

Sample 
(%) 

Spatial 
(%) 

Senses PDTB 
(%) 

Sample 
(%) 

Spatial 
(%) 

Explicit 18459 
(45.46) 

2311 
(46.22) 

605 
(41.86) 

Expansion 15432 
(44.24) 

1832 
(41.75) 

524 
(43.73) 

Implicit 16053 
(39.54) 

2002 
(40.04) 

596 
(41.24) 

Contingency 8016 
(22.98) 

1005 
(22.90) 

255 
(21.28) 

EntRel 5210 
(12.83) 

578 
(11.56) 

209 
(14.46) 

Comparison 7634 
(21.88) 

940 
(21.42) 

272 
(22.70) 

AltLex 624 
(1.54) 

75 
(1.50) 

22 (1.52) Temporal 3795 
(10.88) 

611 
(13.92) 

147 
(12.27) 

NoRel 254 (.63) 34 (.68) 13 (.89)     
Total 40600 5000 1445 Total 34877 4388  1198  

 
 

There does not seem to be any independent pattern demonstrated by the Spatial, as 
compared to Non-Spatial, ArgPairs. This is supported by Χ2. H0 is that the occurrence 
or non-occurrence of spatial reference is independent of a given relation-sense. For 
the top six relation-senses occurring in the sample (Explicit-Expansion (EE), Explicit-
Comparison (EP), ENT, and Implicit-Contingency (IC)), H0 can be accepted as the p-
value is greater than .05 and rejected for the Implicit-Expansion (IE) and Explicit-
Temporal (ET) relation-senses as the p-value is less than .05 (Table 2). 

Table 2. Χ2 for spatial and non-spatial relation-senses and pairs. 

Relation-
Sense 

Non-
Spatial 

Spatial p-value Relation-
Sense Paris 

Non-
Spatial 

Spatial  p-value 

IE 1073 384 .0002 IE - IE 223 102 .6499 
EE 796 197 .0546 EE - IE 163 70 .9507 
EP 630 175 .6575 IE - EE 163 72 .8568 
ENT 595 180 .5580 IE - EP 128 52 .6953 
IC 513 157 .5291 EP - IE 118 56 .5738 
ET 451 99 .0131 EE - EE 110 40 .3421 

                                                             
3 40 of the 107 Preposition Project prepositions are represented in the analyzed sample (N = 

2214) with common prepositions making up the majority (82.92%): in – 880 (39.74%); at – 
335 (15.13%); to – 250 (11.29%); on – 142 (6.41%); from – 130 (5.07%); of – 117 (5.28%). 
The remaining 36 prepositions account for the 17.08% complement. 
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However, the effect that is being exhibited by the IE and ET relation-senses arguably 
has more to do with the occurrence of Non-Spatial ArgPairs because of the 
comparative number (1073 Spatial vs. 384 Non-Spatial for IE and 796 vs. 197 for 
EE). For pairs of relation-sense s, H0 can be accepted in all cases (the top six pairs of 
relation-senses in Table 2) as the p-value is greater than .05. This indicates that, even 
in greater local context, the occurrence or non-occurrence of spatial information is 
independent of a given pair of relation-senses. 

4 Conclusions and Limitations 

In sum, as applied to the PDTB, for the studied sample, there is statistical evidence 
to support a negative answer to the posed research question: whether or not a figure 
and ground relationship occurs, indexed by a spatial preposition, is independent of the 
type of discourse relation. This insight may prove useful in interpreting the results of 
computational tasks that interpret, represent and analyze spatial information in 
discourse. The main limitations in this study are the amount of data and scope. Future 
research will focus on more linguistic spatial phenomenon and larger corpora with 
varied genres (the WSJ corpus consists of Essays, Summaries, Letters and News; the 
latter of which accounts for roughly 90% of all text in the corpus [9]). Nonetheless, 
the present results facilitate a more complete understanding of spatial reference in 
discourse structure. The occurrence of spatial reference does not appear to be biased 
by inherent discourse patterning. 
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Abstract. This paper discusses spatial terms in Japanese. Japanese is a language
that uses common nouns such as ue “on/over/above” and naka “inside” to repre-
sent spatial and temporal locations as opposed to languages like English, which
uses prepositions such as on, in, under and between to express spatial locations. I
consider Japanese common nouns for spatial locations to be relational nouns that
are two-place predicates, one of whose argument slots is filled with the entity repre-
sented by the other NP in the NP1-no NP2 construction. The corpus data [1] suggests
that spatial nouns are often semantically ambiguous among physical, metaphorical
and temporal locations. Therefore, the ontological information used in the Genera-
tive Lexicon (GL) [5] is useful for spatial term disambiguation.

1 Spatial Relational Nouns

This study considers common nouns representing spatial locations to be relational nouns.
While languages like English use prepositions such as in, on, under, or between to rep-
resent spatial locations, languages such as Chickasaw in North America use relational
nouns to express locations [2].

(1) chokka’ pakna’
house top
“the top of the house (the house’s roof)”

[2, 4]

Pakna’ is a relational noun meaning “top,” which follows its possessor chokka’ “house.”

1.1 Spatial Relational Nouns in Japanese

Japanese is one such language that expresses locations by using relational nouns like naka
“inside,” ue “on/above,” and shita “under.”

(2) a. mune-no mae-de tenohira-o awase (4179)
chest-GEN front-LOC palms-ACC hold
“Put your palms together in front of the chest”

1

1 The numbers in round parentheses indicate the sentence IDs of the output of the data in Yahoo!
Chiebukuro section of [1] using ChaKi.NET 1.2β .
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b. Sensuikan-no nakat-te kaiteki-desu-ka? (1824)
submarine-GEN inside-TOP comfortable-HON-Q

“Is is comfortable inside of the submarine?”

Mae “front” and naka “inside” are relational nouns that do not stand alone semanti-
cally. Mae “front” is semantically unsaturated so that it always means something’s front,
as musuko “son” is always someone’s son, e.g., Bill’s son. Mune “chest” is the argument of
the relation represented by mae “front.” Similarly, sensuikan “submarine” is the argument
of the relational noun naka “inside.”

1.2 Non-spatial Relational Nouns

Nouns such as father, friend, and enemy are called relational nouns. Because a father
is a father of someone, a friend is of someone, and so is enemy, they are considered to
represent functions or relations father-of, friend-of, and enemy-of.

[4] points out that it is the relation expressed by the relational noun brother in John’s
brother that the relation between John and his brother inherits, unlike John’s book in
which book is a common noun so that the relation between John and his book is not
specified—it can mean the book that John owns, wrote or borrowed.

As for Japanese, [3] discusses what he calls unsaturated nouns (hi-howa meishi) such
as shuyaku “hero/heroin” of a play, joshi “boss” of someone which do not become seman-
tically saturated on their own.

I include what [3] calls unsaturated nouns as relational nouns, e.g., kazu “number” in
senpuki-no hane-no kazu “the number of the blades of a fan,” namae “name” in (3). Since
common nouns are one place holders—a function from individuals to truth values—these
relational nouns are two-place holders.

(3) a. [[namae “name”]] = λxλy[name-of(y)(x)]
b. [[shu jinko−no namae “name o f the hero”]] =

λx[name-of(x)(εy.hero(y))]

1.3 Japanese Spatial Language as Relational Nouns

This paper further regards common nouns that represent spacial locations to be relational
nouns. For example, naka “inside,” ue “on/above,” and shita “under” are two-place hold-
ers, and nouns such as aida “between” which requires another argument are three-place
predicates.

(4) a. [[ue“on/top”]] = λxλy[on(y)(x)]
b. [V P [[NP kohi-no ue]-ni] [miruku-o] [V ireru]]

coffee-GEN on-DAT milk-ACC put
“put milk on (the surface of) coffee”

c. [[kohi−no ue“on co f f ee”]] = λx[on(εy.coffee(y))(x)]

(5) a. [[aida“between”]] = λxλyλz[between(z)(y)(x)]
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b. [PP[NP[NP ha-to haguki]-no aida]-ni] [vP[NP kasu-ga] [V P tamari]] (2908)
teeth-and gum-GEN between-DAT plaques-NOM accumulate
“Plaques accumulate between teeth and gum.”

c. [[hato haguki−no aida “theplace between teeth and gum”]] =
λx[between(εy.gum(y))(εz.tooth(z))(x)]

2 Ambiguity among Physical, Metaphorical and Temporal
Locations

Spatial Noun Translation Instances Share Physical Direction(Share) Metaphor(Share) Time(Share)
ho toward 54 0.338 6(0.111) 48(0.889)

naka in 34 0.213 21(0.618) 13(0.382)
aida between/among 10 0.063 6(0.273) 1(0.1) 3(0.3)
ue on 9 0.05 5 1 2

mae in front of/before 6 0.037 5 1
shita under 6 0.038 6(1)
ue-no top 6 0.038 6(1)

ato after 4 0.025 4(1)
chikaku near 4 0.025 4(1)
mawari around 3 0.019 3(1)
shita-no under 2 0.013 2(1)
tonari-no next to 2 0.013 2(1)

ura back 2 0.012 2(1)
atari around 1 0.006 1(1)

ato-no after 1 0.006 1(1)
chokuzen immediately before 1 0.006 1(1)

chuo center 1 0.006 1(1)
chushin center 1 0.006 1(1)

fuchi edge 1 0.006 1(1)
gawa side 1 0.006 1(1)

ge low 1 0.006 1(1)
hidarigawa to the left side of 1 0.006 1(1)
mannaka in the middle of 1 0.006 1(1)

moto under 1 0.006 1(1)
mukogawa over 1 0.006 1(1)

omote surface 1 0.006 1(1)
sayu to the both sides of 1 0.006 1(1)
soba beside 1 0.006 1(1)
soto outside 1 0.006 1(1)

uragawa backside 1 0.006 1(1)
ushiro behind 1 0.006 1(1)
yoko beside 1 0.006 1(1)

TOTAL 160 1 75 74 11

Table 1. Distribution of Spatial Nouns among 3083 NP1-no NP2 Occurrences in Ya-
hoo! Chiebukuro portion of [1]

Table 1 suggests that Japanese relational nouns are ambiguous between three kinds of
readings, namely, locational meaning, metaphorical location, and temporal sequence. For
example, the word most frequent ho “toward” is mostly used for comparisons and show
preferences toward the better one as in (6a), rather than being used for physical directions
as in (6b).

(6) a. Chunichi-yori Hanshin-no ho-ga tsuyoi (2219)
Chunichi Dragons-than Hanshin Tigers-GEN direction-NOM strong
“Chunichi Dragons is stronger than Hanshin Tigers”

b. (neko-ga) watashi-no ho-e ki-masu. (5177)
cat-NOM me-GEN direction-GOAL come-HON

“Cats come toward me.”
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Mae “front/before,” on the other hand, is ambiguous between physical and temporal
locations, e.g., shuppatsu-no mae “before departure” (4000) and mune-no mae “in front
of the chest” (4179).

On the contrary, ue-no “TOP-GEN” in the ue-no NP construction is unambiguously
used metaphorically. Ato “after” only applies to temporal order while ushiro “back” only
implies literal location. Similarly, ue “top” is used for physical locations in the NP-no ue
“on NP” construction. However, abstract nouns cannot use ue but form noun compounds
with a suffix jo “on.”

(7) a. netto-jo-de iroiro mite-tara (3508)
internet-on-LOC various watch-then
“While surfing on the internet”

b. netto-no ue-de iroiro mite-tara
internet-GEN on-LOC various watch-then
“While surfing on the internet”

(8) a. kohi-no ue-ni awadate-ta miruku-o funwari ire-ta nomimono (6320)
coffee-GEN on-DAT whip-PAST milk-ACC to float put-PAST drink
“a drink of coffee with whipped cream floating on it”

b. *kohi-jo-ni awadate-ta miruku-o funwari ire-ta nomimono
coffee-on-DAT whip-PAST milk-ACC to float put-PAST drink
“a drink of coffee with whipped cream floating on it”

3 Disambiguation of Spatial Language Using Generative Lexicon

The Generative Lexicon (GL) theory [5] is a powerful tool for disambiguation of spatial
terms because it provides richer semantic information to the lexicon. GL incorporates an
additional lexical entry to the meaning of words called the qualia structure—constitutive
(part-whole relation), formal (ontological categories, shape, color), telic (purpose), and
agentive (origin).

The formal quale in GL contains ontological information. For example in (8a), coffee
is a drink according to its formal quale, and its higher ontological category is a physical
entity, which implies that ue “on” is interpreted physically. Furthermore, feature matching
between relational nouns the other NP is the key to disambiguation of spatial nouns.
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Abstract. How spatial language varies regionally? This study investigates the possibility of 
exploring regional linguistic variations in spatial language by collecting and analyzing a 
Spatially-strAtified Route Direction Corpus (SARD Corpus) from volunteered spatial language 
text on the Web. Because of the fast content sharing functionality of the World Wide Web, it 
quickly becomes a hotbed for volunteered spatial language text, such as directions on hotels’ 
Websites. These route directions can serve as a representation of everyday spatial language 
usage on the WWW. The spatial coverage and abundance of the data source is appealing while 
collecting and analyzing large quantities of spatially distributed data is still challenging. 
Through automated crawling, classifying and geo-referencing web documents containing route 
directions from the web, the SARD Corpus has been built covering the U.S., the U.K. and 
Australia. We implement a semantic categorical analysis scheme to explore regional variations 
in cardinal versus relative direction usages. Preliminary results show both similarity and 
differences at national level and geographic patterns at regional level. The design and 
implementation of building a geo-referenced large-scale corpus from Web documents offers a 
methodological contribution to corpus linguistics, spatial cognition, and the GISciences. 

Keywords: Spatial language analysis, volunteered spatial information, geo-referenced web 
sampling, regional linguistic variation, cardinal directions 

1   Introduction 

Spatial language is an important medium through which we study the representation, perception, 
and communication of spatial information. Research has approached spatial language from various 
perspectives. From the cognitive perspective, research has focused on group or individual 
differences, on how language affects way-finding behaviour, or on how regional context affects 
spatial language usage. From the computational perspective, modelling and reasoning has been 
applied to spatial language interpretation. The spatial language samples used in these studies have 
been mostly collected by individuals via time consuming experiments or interviews. This data 
collection method could provide samples that offer understanding on small-scale phenomenon 
through manual interpretation by analysts.  

However, studying the regional linguistic patterns in spatial language—such as regional 
variations in route directions—requires a spatially distributed corpus. Spatial language data 
available from the WWW has great potential for this study because of its unrivaled coverage and 
easy accessibility. For example, it is common to find hotels, companies and institutions offering 
route directions on their website which provides spatial way-finding instructions to travelers from 
different places. Harnessing these human generated route directions on-line and analyzing them is 
the major focus of this study.  
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2   Methods 

To harness route direction documents from the WWW and ensure the spatial coverage of the 
resulting corpus, a data collection scheme involving web crawling, text classification, and geo-
referencing has been developed. Computational tools have been applied for assisting processing the 
Spatially-strAtified Route Direction Corpus (SARD Corpus) and interpretation of the results. 

Collecting route direction documents from the WWW has two main challenges. First, route 
directions have a high linguistic complexity that makes it difficult to separate the route direction 
documents from a variety of irrelevant web documents. This challenge can be solved by applying a 
machine learning algorithms for text classification [1]. The precision of this route direction 
document classifier used in this study reaches 93% (from 438 positive classified documents, 407 are 
hand examined to be spatial language documents). Second, exploring regional variation in spatial 
language usage requires geo-referencing each document in the corpus, which is not an easy task 
(i.e., Geographic Named Entity Disambiguation). However, postal code, which commonly appears 
in destination addresses in route directions, can be used to coarsely geo-reference a route direction 
document on a postal code level. The data collection scheme first utilizes lists of postal codes for 
crawling web documents. The returned web documents are fed into the route direction classifier, 
where only positively classified route direction documents are stored in the result corpus. This data 
collection scheme maximizes the spatial coverage of the SARD Corpus at a postal code level. To 
prepare the corpus for extracting region linguistic attributes, the SARD Corpus is organized first by 
nation, then by region (states in the U.S. and Australia, postal district in the U.K.). 

The data analysis of spatial language usage in route directions focuses on the regional linguistic 
variation, which is addressed by analyzing the semantic usages of cardinal directions (i.e.: north, 
south, east, west, northeast, northwest, southeast and southwest) and relative directions (i.e., left and 
right). The semantic categories used are detailed in Table 1. The scale and size of the corpus makes 
corpus linguistic tools a necessity for processing the regional linguistic characteristics. The 
TermTree tool [2], which is a text processing tool with the capacity to handle regular expressions, is 
used for assisting an analyst to manually evaluate the semantic usages of direction terms. The 
semantic categorical data is considered regional linguistic characteristics for each region in the 
SARD Corpus. Visual Inquiry Toolkit [3] is used for geovisualization of the regional linguistic 
characteristics (Fig. 3) to interpret the analysis result.  

Table 1.  Semantic categories for cardinal directions and relative directions. 

 Semantic categories examples 
1. Change of direction take a left, bear right 

2. Static spatial relationship 
see a landmark on your right, the 
destination is left to a landmark 

Relative 
Direction 

3. Driving aid 
keep to the left lane, merge to the right 
lane 

1. Change of direction  head north, traveling south 

2. Static spatial relationship 
veer southwest on US Hwy 24, turn 
north 

3. Traveling direction  2 blocks east of landmark 

4. General origin 
from North, if coming from South of 
New York 

Cardinal 
Direction 

*used in POI names North Atherton Street, West Street. 
 
As a result of the data collection, the SARD Corpus has been built with 11,254 web documents 

covering the U.S., the U.K., and Australia. Overview of the workflow is presented in Fig. 1. 
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Fig. 1. Overview of the data collection and analysis schemes for building and analyzing the SARD Corpus 

3   Results 

Regional pattern analysis demonstrates how cardinal/relative directions usage varies at both 
national level (Fig. 2) and regional level (Fig. 3). On a national level, relative directions in all three 
nations are mostly used to represent “change of direction” (the blue bar on the left). Similarly 
cardinal directions are mostly used to represent “travelling direction” (The white bar on the right). 
On the other hand, the preference for relative direction when representing “change of direction” is 
much more common in the U.K. than in the U.S. and Australia. Correspondingly we find that 
cardinal directions are used more often in the U.S. and Australia than in the U.K. (the blue bars on 
the right) to represent “change of direction”.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Nation-level comparison of relative directions and cardinal directions usage 

To get a better understanding of the regional variation of relative versus cardinal direction 
usages, the proportion of each semantic category is plotted on a map for comparison. The plotted 
map can provide geographical knowledge about the regions, such as adjacency, which helps the 
analyst to detect regional patterns. Fig. 3 shows that the two most dominant usages as noted at the 
national-level (relative directions used for “change of direction”, cardinal directions used as 
“travelling direction”) are used more frequently in most states in the U.S. For cardinal direction 
usage, there is a geographic pattern (South Dakota to Kansas, Wyoming to Iowa, blue circle) that 
differs from its surroundings states in every semantic category. The regional pattern detected is 
comparable to the Colorado West and Central West region in the map of U.S. dialect [4, p.186]. A 
possible explanation for this observation may lie in the correlation between the regional linguistic 
preference and regional geographical features, which is yet to be investigated.  
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Fig. 3. Regional-level comparison of relative directions and cardinal directions usage (the U.S.). 
 

4 Summary 

This paper presents a first step toward an effective and scalable data collection method for spatial 
language study. It enables spatial cognitive researches to scale-up the spatial language data sets and 
answer spatial cognitive questions (such as the regional spatial language difference) at a large scale. 
This study shows promise for effective spatial cognitive research through processing and analyzing 
volunteered spatial language data, which is an alternative compared to collecting data by designing 
human participant involved experiments. The presented workflow can also be extended to languages 
other than English to assist in cross-language comparisons. 

The language preference at the nation-level and region-level are both explored, offering 1) a 
better understanding of how people tend to use spatial language to communicate spatial information; 
2) how people differ in using spatial language from different regions; and 3) a guideline to develop 
a localized, use-specific natural language generation system for navigational devices. Regional 
patterns of cardinal and relative direction usages in route directions are observed and analyzed, 
offering a novel perspective for spatial linguistic studies. The design and implementation of 
building a geo-referenced large-scale corpus from Web documents in this study offers a 
methodological contribution to corpus linguistics, spatial cognition, and GISciences. 
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Abstract. This paper proposes a set of qualitative spatial relations designed for 
supporting human-machine communication about objects’ locations in ‘planar’ 
storage. Based on Allen’s interval relations and RCC-5 relations, our relations 
are derived by combining directional and mereo-topological relations between 
the projections of objects onto the 2D background. We identify 29 realizable 
relations, which are then mapped to positioning expressions in English. 

Keywords: spatial communication, relative locations, mereo-topological 
relations, directional relations, RCC-5, Allen’s interval relations    

1 Introduction 

When people describe the location of an object, they often use the relative position of 
the object with respect to other objects which can be identified more easily. In order 
that people can communicate with smart environment via natural dialogue, computers 
should be able to understand and generate such positioning expressions. To process 
such positioning expressions, we may apply existing models of cardinal directional 
relations (e.g., [1, 2]) or those of mereo-topological relations (e.g., [3, 4]). However, 
existing direction models distinguish too large number of relations—for instance, 
Papadias and Sellis [1], Cicerone and Felice [5], and Kurata and Shi [6] distinguish 
169, 218, and 222 relations, respectively. In addition, we have to care the application 
of mereo-topological relations, because partonomy actually does not hold between 
physical objects. This paper, therefore, proposes a task-oriented set of qualitative 
spatial relations designed for supporting human-machine communication about object 
locations in a cabinet, based on the model of cardinal directional relations in [1] and 
that of mereo-topological relations in [3] (Section 2). Here a cabinet refers to any 
‘planar’ storage in which we can neglect the front-back arrangement of two different 
objects. Moreover, objects are limited to physical objects in the real world (i.e., 3D 
single-component spatial objects without cuts or spikes, which never intersect with 
each other). The resulting relations, called cabinet relations, are smoothly mapped to 
natural language expressions for positioning objects (Section 3). 
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2 Formalization of Cabinet Relations 

Allen [7] distinguished 13 relations between two intervals. Considering projections of 
2D objects onto x- and y-axes and the interval relations between these projections on 
each axis, Guesgen [8] distinguished 1313 relations between two 2D objects. His 
theory, called Rectangular Algebra (RA), is used typically for capturing north-south-
east-west relationships, but here we use it for capturing above-below-left-right 
relationships in a cabinet, setting x-, y-, and z-axes parallel to the cabinet’s width, 
height, and depth axes and considering the projections of 3D objects onto the xy-
plane. Moreover, we summarize the 13 interval relations into 6 relations (Fig. 1b), 
such that (i) each relation captures how the main bodies of two intervals overlap and 
(ii) converse of each relation is uniquely determined. The original 1313 relations and 
the new 66 relations are called RA relations and simplified RA relations, 
respectively. For instance, the arrangement of two objects in Fig. 1a is represented by 
a RA relation (meets, starts) or by a simplified RA relation (proceeds, within). 

RCC-5 relations [3] consist of five mereo-topological relations, namely DR 
(discrete), PO (partial overlap), PP (proper part), PPI (proper part inverse), and EQ 
(equal). In our cabinet scenario, we consider the projection of each object onto xy-
plane, whose inner spaces (i.e., empty spaces enclosed by the projection), if they 
exist, are filled. Then, considering RCC-5 relations between the space-filled 
projections, we distinguish three spatial relations between the original objects, namely 
separate, enclosed, and encloses (Fig. 1c). These three relations capture whether one 
object is enclosed by another object as seen from the front of the cabinet, thereby 
called enclosure relations. Note that the projections never take PO and EQ relations, 
since in our scenario two objects never overlap nor have a front-back arrangement.  

A cabinet relation between two objects is defined as a pair of their enclosure 
relation and simplified RA relation. For instance, the cabinet relation in Fig. 1a is 
represented as [separate, (proceeds, within)]. Since we have 3 enclosure relations and 
66 simplified RA relations, there are 366 = 108 pairs of relations. However, only 
29 pairs (Fig. 2) are realizable in the real world because (i) when the enclosure 
relation is enclosed, the simplified RA relation must be (within, within) (note that 
(within, equal), (equal, within), and (equal, equal) are impossible because two objects 
never overlap nor have a front-back arrangement), (ii) similarly, when the enclosure 
relation is encloses, the simplified RA relation must be must be (includes, includes),  
and (iii) when the enclosure relation is separate, the simplified RA relation can be any 
but neither (within, includes), (within, equal), (includes, within), (includes, equal), 
(equal, within), (equal, includes), (equal, equal), (equal, overlap), nor (overlap, 
equal), since these relations presume the overlap of two objects.  

3 Mapping from Cabinet Relations to Positioning Expressions 

When people explain the location of an object, they often rely on topological relations 
between the object and other related object (especially if they intersect) or directional 
relations between them (especially if they are located separately). Thus, the cabinet 
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relations, which capture both topological and directional characteristics of objects’ 
arrangements, have certain correspondences to positioning expressions. Indeed, we 
can map the cabinet relations to the following English expressions: 

 [enclosed, (within, within)] A is in B (Fig. 2a) 
 [encloses, (includes, includes)] A contains B  (Fig. 2b) 
 [separate, (proceeds, proceeds)]  A is at the lower left of B (Fig. 2c) 
 [separate, (proceeds, within/includes/equal/overlap)]  A is at the left of B 

(Figs. 2e-h) 
 [separate, (within/includes/equal/overlap, proceeds)]  A is below B (Figs. 2o, 2s, 

2w, and 2y) 
 [separate, (within, within)]  A is surrounded by B (Fig. 2q) 
 [separate, (includes, includes)]  A surrounds B (Fig. 2u) 

Among 29 cabinet relations, 24 relations are assigned each to a certain expression. 
Other 5 relations (Figs. 2r, 2v, 2-2) refer to rather complicated arrangements and 
are difficult to characterize with simple expressions. 

 

 

 
(a) (b) (c) 

Fig. 1. (a) Projection of two 2D objects in Rectangular Algebra, (b) simplification of Allen’s 
interval relations, and (c) correspondences between RCC-5 relations and enclosure relation 
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Fig. 2. Twenty-nine cabinet relations 
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In actual dialogues, people use lots of expressions for describing locations. For 
generality, we can consider an intermediate use of ontologies. For instance, we can 
assign [separate, (proceeds, within)] to an ontological concept, which is then mapped 
to such expressions as “at the left of” in English and “-no hidari-ni” in Japanese. As a 
similar work, Shi and Kurata [9] mapped path-landmark relations to ontological 
concepts in GUM [10]. Such generalization in our model is left for future work.  

4 Conclusions and Future Work 

This paper introduced a set of qualitative spatial relations designed for the positioning 
of physical objects in a cabinet. These cabinet relations will work powerfully for 
supporting human-machine communication in smart environments. At this moment, 
the mapping between the cabinet relations and language expressions is empirical and 
thus, we need certain justification of this mapping in future work. We may also need 
certain fine-tuning of the model, considering the use of additional information such as 
adjacency/distance between two objects. Lastly, another issue in our future agenda is 
to implement the proposed idea and test its applicability in practical systems. 
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Iconic Gestures with Spatial Semantics: A Case Study
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Abstract.  The  spontaneous  gestures  that  accompany  spoken  language  are 
particularly  suited  to  conveying  spatial  information,  yet  their  briefness, 
individuality,  and  lack  of  conventional  linguistic  structure  impede  their 
integration into NLU systems. The current work characterizes spontaneous size 
gestures  in  a  manual  task  corpus,  clarifying  their  form,  discourse  role  and 
representation as a first step toward incorporating them into NLU systems.

Keywords: gesture, spatial language, knowledge representation.

1 Introduction

When  gesture  carries  the  primary  load  of  communication,  as  in  the  major  sign 
languages,  it  develops linguistic properties such as verb subcategorization [1]  and 
lexicalization  [2,3].  The  spontaneous  hand  gestures  that  accompany  speech,  in 
contrast, do not show linguistic structure [4]. For this reason, computational research 
on spontaneous gesture has focused primarily on discourse functions, such as using 
long range video features to signal repair strategies [5] or shifts in topic [6]. Discrete-
valued features extracted from gaze and body orientation have also been used for 
discourse  functions  such  as  signaling  grounding.  Much  of  this  work  emphasizes 
gesture production rather than recognition [7, 8, 9]. 

Yet  the  spontaneous  hand  gestures  that  accompany  speech  are  increasingly 
recognized both as a cognitive aid to the gesturer, and an encoding of meaning [10,  
11, 12]. Among the spontaneous gestures that accompany speech, iconic gestures are 
those which present “images of concrete entities and actions”[4]. Iconic gestures have 
in some cases (though not yet broadly) been shown to be effective in communicating 
spatial information between discourse participants [4, 11, 13]. 

The  current  work  pursues  the  incorporation  of  spontaneous  gesture  into  NLU 
systems:  much groundwork  must  be  laid.   Amid  the  fluidity  and  abstractness  of 
spontaneous gesture, we focus on concrete gestures with (relatively) straightforward 
spatial interpretations. We seek to answer the questions:

• What is the discourse purpose of the gestures? 
• Do the gestures constitute intended communication?
• To what extent are they lexicalized? 
• What are their semantics?
• How can they be related to the semantics of the co-ocurring speech?
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2 Corpus study

We collected a reference corpus for dialogue with intonation and gesture in a physical 
task context. The subjects were twelve pairs of University of Chicago undergraduate 
and graduate  students,  who were  familiar  with each other  and had  some cooking 
experience.  They  were  recorded  while  performing  a  30-45  minute  cooking  task 
(making  chocolate  truffles),  using  a  single  camera  and  lapel  microphones.  Some 
elements of the task include locating ingredients and equipment, dividing the labor, 
choosing flavorings, and activities such as measuring and washing up. 

The resulting eight hours of videotape were examined for spatial gestures. These 
included pointing, displaying, miming of physical actions and manner[14], and size 
gestures. We selected the size gestures as a focus for possible NLU because they are 
the simplest and most imagistic of these groupings, and because they were relatively 
uniform in form.

All of the size gestures in our corpus stemmed from the recipe step: “Take a hunk 
of set ganache and roll into a walnut-sized ball between your palms.” An example can 
be seen in Illustration 1, where subject Chris reads the recipe step aloud, envisions the 
ball he will roll, and enlists Jason to confirm the ball size. In total he performs the 
gesture for about three seconds; Jason eventually turns his head to view it for about  
800ms.  We will refer to this example and similar gestures as 'the ball size gesture'. 

2.1 results: ball size gesture use and discourse purpose

Of twelve  pairs  of  subjects,  two  did  not  communicate  about  truffle  size  beyond 
reading the recipe.  Ten discussed truffle  size verbally;  of these,  three did not use  
gestures, and three used displays of ganache (dough). Four used size gestures: three 
ball size gestures and one caliper size gesture

1
. Gestures were used in two main ways: 

to inform the partner of a desired size,  or to request  confirmation that a size was 
correct. In one case, multiple ball gestures were used to explain how an incorrect ball  
size leads to difficulties in baking. All gestures were used with co-occurring speech.  

1 A 'caliper gesture' shows the size of a small object using parallel thumb and forefinger .
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2.2 Intended communication – ball size and display 

We classify five of the seven gestures as intended communication, on the basis that: 
in three cases the gesturer used motion or location to attract visual attention; in  two 
cases the gesturer made a verbal reference to the gesture (e.g.“like this?”), and in one 
case both were used. For the seventh gesture (the incorrect ball size explanation) we 
have no evidence that the gesture per se was intended communicatively. A further 
analysis of gaze and uptake in these cases is in progress. Although this is a very small  
sample, most of these gestures showed evidence of communicative intent. 

2.3 Form constraints on the ball size gesture

We  initially  suspected  that  the  ball  size  gesture  was  strongly  lexicalized  in 
comparison with spontaneous gesture generally.  In all cases the thumb and forefinger 
circle to touch each other and embrace a notional ball, and are displayed as the focal 
side of the gesture. However, there is notable variation in other parameters. Either 
hand  could  be  used,  as  in  ASL.  The  position  of  the  other  three  fingers  is  not 
conventionalized (where it might or might not be constrained in a sign language.) 
The location of the gesture relative to the gesturer is not as conventionalized as it  
would be in ASL. In the table, we refer to the gesturer as G and the observer as O.

The third column, the explanation of how two balls may melt into each other while  
baking, is more typical of spontaneous gesture in showing dynamic configurational 
elements with extended duration.  The ball size gesture is not as conventionalized as 
an ASL gesture – nor can we say what lexicon it would belong to.  More work is 
needed on this point. The ball size gesture contrasts with the caliper gesture in form.

Lexicalized? Chris&Jason Chris&Trish Josh&Naomi

Hand left right both

Handform 'OK' 'OK' 'OK', 'OK'

Fingers splayed curled splayed, splayed

Orientation O's visual plane O's visual plane Off G's vis plane

Location At G's eye level Near O's focus Near G's chest

Path static static Slowly together

Duration 
(ASL=250ms)

>3000ms (G)
> 700ms (O)

260ms 1500ms

3  Representing Size 

Finally we consider semantic representation. A size is a property of a physical object, 
generally represented as a value on a scale, where a scale is a partial ordering on a set 
of elements.  The majority of verbal size descriptions followed the recipe text: 'the 

59



i
i

“cosli2010” — 2010/8/8 — 19:25 — page 60 — #68 i
i

i
i

i
i

size of a” small object, or simply mentioned a small object: walnut, half a walnut, 
meatball. The comparative “...smaller”, and (negated) intensifier “don't make it too 
big!” also occurred.  The scale in this case seems to be based on the generics (types) 
of ball shaped food items, and the asserted relation is purely qualitative. Qualitative 
representations [15, 16] may prove extensible. Gesture's spatial medium, by contrast, 
is continuous rather than discrete; the underlying scale is tied to the visual or perhaps 
kinesic  system.  What  representation  could  plausibly  be  generated  by  the  visual 
system?  Our preliminary work investigates low level features in the spirit of [17, 18].
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