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Abstract. We consider mapping unrestricted natural language to for-
mal spatial representations. We describe ongoing work on a two-level ma-
chine learning approach. The first level is linguistic, and deals with the
extraction of spatial information from natural language sentences, and is
called spatial role labeling. The second level is ontological in nature, and
deals with mapping this linguistic, spatial information to formal spatial
calculi. Our main obstacles are the lack of available annotated data for
training machine learning algorithms for these tasks, and the difficulty of
selecting an appropriate abstraction level for the spatial information. For
the linguistic part, we approach the problem in a gradual way. We make
use of existing resources such as The Preposition Project (TPP) and
the validation data of General Upper Model (GUM) ontology, and we
show some computational results. For the ontological part, we describe
machine learning challenges and discuss our proposed approach.

1 Introduction

An essential function of language is to convey spatial relationships between
objects and their relative locations in a space. It is a challenging problem in
robotics, navigation, query answering systems, etc. [19]. Our research considers
the extraction of spatial information in a multimodal environment. We want to
represent spatial information using formal representations that allow spatial rea-
soning. An example of an interesting multimodal environment is the domain of
navigation where we expect a robot to follow navigation instructions. By placing
a camera on the robot, it should be able to recognize visible objects and their
location. In this context, mapping natural language to a formal spatial repre-
sentation [4] has several advantages. First, generating language from vision and
vice versa visualizing the language is more feasible if a formal intermediate layer
is employed [16]. Second, applying the same representation for extraction from
image/video data allows combining multimodal features for better recognition
and disambiguation in each modality. Finally, a unified representation for various
modalities enables spatial reasoning based on multimodal information.
In our work we identify two main layers of information (see also [2]):
1) a linguistic layer, in which (unrestricted) natural language is mapped onto
ontological structures that convey spatial information, and 2) a formal layer, in
which the ontological information is mapped onto a specific spatial calculus such
as region connection calculus (RCC) (cf. [4]). For example, in the sentence the



book is on the table the first step should identify that there is a spatial relation
(on) between book and table, after which this could be mapped to a specific,
formal relation AboveExternallyConnected(book, table) between two tokens
book and table that denote two physical objects in some Euclidean space. For
both transformations we propose machine learning techniques to deal with the
many sources of ambiguity in this task. This has not been done systematically
before; most often a restricted language is used to extract highly specific and
application-dependent relations and usually one focuses on phrases of which it
is known that spatial information is present [8, 6, 19, 11].

To apply machine learning effectively, a clear task definition as well as anno-
tated data are needed. Semantic hand-labeling of natural language is an ambigu-
ous, complex and expensive task and in our two-level view we have to cope with
the lack of available data two times. In our recently proposed semantic labeling
scheme [10], we tag sentences with the spatial roles according to holistic spa-
tial semantic (HSS) theory [21] and also formal spatial relation(s). For mapping
between language and spatial information, we defined spatial role labeling and
performed experiments on the (small amount of) available annotated corpora.
The Preposition Project (TPP) data is employed for spatial preposition recog-
nition in the context of learning the main spatial roles trajector and landmark
from data. We have conducted initial experiments on the small corpus of the
GUM [1] spatial ontology, and the results indicate that machine learning based
on linguistic features can indeed be employed for this task.

The second layer of our methodology consists of mapping the extracted spa-
tial information onto formal spatial systems capable of spatial reasoning. Here we
propose to annotate data with spatial calculi relations and use machine learning
to obtain a probabilistic logical model [3] of spatial relations for this mapping.
Such models can deal with both the structural aspects of spatial relations, as
well as the intrinsic ambiguity and vagueness in such mappings (see also [5]). In
the following sections we will describe both the linguistic and the formal steps,
and results of our initial machine learning experiments.

2 Linguistic Level and Spatial Role Labeling

To be able to map natural language to spatial calculi we should first extract
the components of spatial information. We call this task spatial role labeling.
It has not been well-defined before and has not been considered as a stand-
alone linguistic task. We define it analogous to semantic role labeling (SRL) [15],
targeting semantic information associated with specific phrases (usually verbs),
but as a stand-alone linguistic task utilizing specific (data) resources.

Task definition. We define spatial role labeling (SpRL) as the automatic la-
beling of natural language with a set of spatial roles. The sentence-level spatial
analysis of text deals with characterizing spatial descriptions, denoting the spa-
tial properties of objects and their location (e.g. to answer ”what/who/where”-
questions). A spatial term (typically a preposition) establishes the type of spatial
relation and other constituents express the participants of the spatial relation



(e.g. a location). The roles are drawn from a pre-specified list of possible spatial
roles and the role-bearing constituents in a spatial expression must be identified
and their correct spatial role labels assigned.

Fig. 1. Parse tree with spatial roles

Representation based on spatial
semantics. The spatial role set we
employ contains the core roles of tra-
jector, landmark, spatial indicator, and
motion indicator [6, 21], as well as the
features path and frame of reference.
Our set of spatial roles are motivated
by the theory of holistic spatial seman-
tics upon which we have defined an an-
notation scheme in [10]. We describe
these terms briefly. A trajector is the
entity whose (trans)location is of rele-
vance. It can be static or dynamic; a
person or an object. It can also be ex-
pressed as a whole event. Other terms
often used for this concept are the local object, locatum, figure object, referent
and target. A landmark is the reference entity in relation to which the loca-
tion or the trajectory of motion of the trajector is specified. Alternative terms
include reference object, ground and relatum. A spatial indicator is a token
which defines constraints on the spatial properties, such as the location of the
trajector with respect to the landmark (e.g. in, on). It explains the type of the
spatial relation and usually is a preposition, but can also be a verb, a noun, etc.
It is the pivot of a spatial relation, and in terms of GUM ontology it is called a
spatial modality. A motion indicator is a spatial term which is an indicator of
motion, e.g. motion verbs. We also consider other conceptual aspects like frame
of reference and the path of a motion that are important for spatial semantics
and roles [21].
Linguistic challenges. Given a sentence, SpRL should answer: Q1. Does the
sentence contain spatial information? Q2. What is the pivot of the spatial
information? (spatial indicator) Q3. Starting from the pivot how can we iden-
tify/classify the related arguments with respect to predefined set of spatial roles?
Spatial relations in English are mostly expressed using prepositions [7], but verbs
and even other lexical categories can be central spatial terms. Hence SpRL con-
sists of identifying the boundaries of the arguments of the identified spatial term
and then labeling them with spatial roles (argument classification). However,
there are very sparse and limited resources for learning spatial roles. Other work
typically uses a limited set of words, often based on a set of spatial prepositions
and specific grammatical patterns in a specific domain [13, 8].

General extraction of spatial relations is hindered by several things. First,
there is not always a regular mapping between a sentence’s parse tree and its
spatial semantic structure. This is more challenging in complex expressions which
convey several spatial relations [4]; see the following sentence (and Fig. 1).

The vase is on the ground on your left.



Here a dependency parser relates the first “on” to “vase” and “ground”. This
will produce a valid spatial relation. But the second “on” is related to “ground”
and “left”, producing a meaningless spatial relation (ground on your left). For
more complex relations and nested noun phrases, deriving spatially valid rela-
tions is not straightforward and depends on the lexical meaning of the words.
Other linguistic phenomena such as spatial-focus-shift and ellipsis of trajector
and landmark [11] make the extraction more difficult. Recognizing the right PP-
attachment (i.e. whether the preposition is attached to the verb phrase or noun
phrase) could help the identification of spatial arguments when the verb in the
sentence conveys spatial meaning. Spatial motion detection and recognition of
the frame of reference are additional challenges but will not be dealt with here.
Approach. We aim to tackle the problem using machine learning, in a way
similar to SRL, but with important differences. The first difference is that the
main focus of SRL is on the predicate, its related arguments and their roles [15].
On the other hand, in SpRL the spatial indicator plays the main role and should
be identified and disambiguated beforehand. Second, the set of main roles is
quite different in SpRL and a large enough English corpus is not available from
which spatial roles can be learned directly. Hence new data resources are needed.
The main point is that we aim at domain-independent and unrestricted language
analysis. This prohibits using very limited data or a small set of extraction rules.
However, utilizing existing linguistic resources which can partially or indirectly
help to set up a (relational) joint learning framework will be of great advantage.
It can relinquish the necessity of expensive labeling of one huge corpus. Our
results for preliminary experiments are briefly described in Section 4.

3 Towards Spatial Calculi and Spatial Formalizing

Mapping the spatial information in a sentence onto spatial calculi is the second
step in our framework. We denote this as spatial formalizing task.
Task definition. We define spatial formalizing as the automatic mapping of the
output of SpRL to formal relations in spatial calculi. In the previous section we
have assumed that our spatial role representation covers all the spatial semantic
aspects according to HSS. For the target representation of spatial formalizing
we also require that it can express various kinds of spatial relations.
Spatial challenges. Ambiguity and under-specification of spatial information
conveyed in the language, but also overspecification of spatial calculi models,
make a direct mapping between the two sides difficult [2]. Most of the qualita-
tive spatial models focus on a single aspect, e.g. topology, direction, or shape [12].
This is a drawback, particularly from a linguistic point of view and with respect
to the pervasiveness of the language. Hence spatial formalizing should cover mul-
tiple aspects with practically acceptable level of generality. In the work of [5] the
alignment between the linguistic and logical formalizations is discussed. Since
these two aspects are rather different and provide descriptions of the environ-
ment from different viewpoints, constructing an intermediate, linguistically mo-
tivated ontology is proposed to establish a flexible connection between them.



GUM (Generalized Upper Model) is the state-of-the-art example of such an on-
tology [1, 17]. Moreover, in [5] S−connections are suggested as a similarity-based
model to make a connection between various formal spatial systems and mapping
GUM to various spatial calculi. However, obtaining an annotated corpus is the
main challenge of machine learning for mapping to the target relations/ontology.
In this respect using an intermediate level with a fairly large and fine-grained di-
vision of concepts is to some extent difficult and implies the need to have a huge
labeled corpus. In addition, the semantic overlap between the included relations
in the large ontologies makes the learning model more complex.

Moreover, mapping to spatial calculi is an inevitable step for spatial reason-
ing. Hence even if a corpus is constructed by annotating with a linguistically
motivated ontology, mapping to spatial calculi still should be handled as a sep-
arate and difficult step. Even at this level, it is not feasible to define a deter-
ministic mapping by formulating rules because bridging models to each other
is not straightforward and external factors, context and all the involved spatial
components, discourse features, etc influence this final mapping. Therefore the
relationships between instances in different domains are not deterministic and
they are often ambiguous and uncertain [5]. Given that for each learning step,
a corpus should be available, we argue that it seems most efficient to learn a
mapping from SpRL to (one or several) spatial calculi directly.

Representation based on spatial calculi. To deal with these challenges we
proposed an annotation framework [10] inspired by the works of SpatialML [14]
and a related scheme in [18]. We suggest to map the extracted spatial indicators
and the related arguments onto the general type of the related spatial relation Re-
gion, Direction, Distance because these relations cover all coarse-grained aspects
of space (except shape). The specific relation expressed by the indicators is stated
in the suggested scheme with an attribute named specific-type. If the general-
type is REGION then we map this onto topological relations in a qualitative
spatial reasoning formalism, so the specific-type will be RCC8 which is a popu-
lar formal model. For directions the specific type gets a value in {ABSOLUTE,
RELATIVE}. For absolute directions we use {S(south), W(west), N(north),
E(east), NE(northeast), SE(southeast), NW(northwest), SW(southwest)} and
for relative directions {LEFT, RIGHT, FRONT, BEHIND, ABOVE, BELOW}
which can be used in qualitative direction calculi. Distances are tagged with
{QUALITATIVE, QUANTITATIVE} (cf. [10]). To provide sufficient flexibility
in expressing all possible spatial relations our idea is to allow more than one for-
mal relation to be connected to one linguistic relation, helped by a (probabilistic)
logical representation. The following examples illustrate this.

a)...and next to that left of that is my computer, perhaps a meter away.

Let X=my computer, Y=that, then a SpRL gives nextTo(X, Y), leftOf(X, Y), and a result-

ing spatial formalization is DC(X, Y), LEFT(X, Y), Distance(X, Y,′ value′) which in GUM

corresponds to leftprojectionexternal.

b) The car is between two houses.

SpRL: between(car, houses), spatial relations: left(car, houses) AND

right(car, houses) which corresponds to GUM’s Distribution.



c) The wheatfield is in line with crane bay.

SpRL: inline(wheatfield, cranebay), spatial relations: behind(wheatfield,

cranebay) XOR front(wheatfield, cranebay) GUM: RelativeNonProjectionAxial

Approach. The above mentioned examples show that a logical combination of
basic relations can provide the required level of expressivity in the language.
These annotations will enable learning probabilistic logical models relating lin-
guistic spatial information to relations in multiple spatial calculi. Afterwards
qualitative (or even probabilistic) spatial reasoning will be feasible over the pro-
duced output. The learned relations could be considered as probabilistic con-
straints about most probable locations of the entities in the text. Probabilistic
logical learning [3] provides a tool in which considerable amounts of (structured)
background knowledge can be used in the presence of uncertainty. The available
linguistic background knowledge and features includes i) the features of the first
step of spatial role labeling (syntactic, lexical and semantical information from
the text) and ii) linguistic resources such as WordNet, FrameNet, language mod-
els and word co-occurences [20]. These could be combined with visual features
extracted from visual resources in a multimodal environment for more specifi-
cation of spatial relations. Structured outputs (i.e. the mapping to formal rela-
tions) could be learned in a joint manner. By exploiting a joint learning platform,
annotating a corpus by aforementioned spatial semantics in addition to annotat-
ing by the final spatial relations (derived from spatial calculi) is less expensive
than annotating and learning the two levels independently. Implementing such
a learning setting is ongoing work.

4 Current Experiments

To start with empirical studies, we have performed experiments on the first
SpRL learning phase. We learn to identify spatial indicators and their arguments
trajector and landmark. We do not treat motion, path and frame of reference in
this paper, and focus solely on prepositions as spatial indicators here.
Spatial preposition. For unrestricted language it seems valuable to first recog-
nize whether there is any spatial indicator in the text. Since prepositions mostly
play key roles for the spatial information in the first step we examine whether
an existing preposition in a sentence conveys a spatial sense. Here we use lin-
guistically motivated features, such as parse and dependency trees and semantic
roles. We extracted these features from the training and test data of the TPP
data set and tested several classifiers. The current results are a promising start-
ing point for the spatial sense recognition and the extraction of spatial relations.
The selected features were evaluated experimentally and our final coarse-grained
MaxEntropy sense classifier outperformed the best system of the SemEval-2007
challenge by providing an F1 measure of about 0.874. We achieved an accuracy
of about 0.88 for the task of recognizing whether a preposition has a spatial
meaning in a given context.
Extraction of trajector and landmark. In the second SpRL step we ex-
tract the trajector and landmark arguments. Our features are inspired by those



in SRL. The main difference is that the pivot of the semantic relations here is
the preposition, and not the predicate. The features from the parse/dependency
tree and semantic role labeler are extracted from GUM examples. We labeled the
nodes in the parse tree with GUM labels trajector(locatum), landmark(relatum)
and spatial indicator (spatialModality).

Method F1(T) F1(L) Acc(All)

NBayes 0.86 0.70 0.94

MaxEnt 0.91 0.767 0.965

CRF 0.928 0.901 0.921

Table 1. Extraction of trajector
(T) and landmark (L)

We assume the spatial indicator (prepo-
sition) is correctly disambiguated and given,
i.e. we perform a multi-class classification of
parse tree nodes by trajector, landmark and
none, for which we employed standard classi-
fiers (naive Bayesian (NB), and maximum en-
tropy (MaxEnt)). In addition, we tagged the
sentences as sequences using the same features
and applied a simple sequence tagger based on conditional random fields (CRF).
The spatial annotations of GUM were altered in some instances to be able to
obtain more regular patterns for machine learning. We labeled the continuous
words (prepositions) and their modifiers as one spatial modality even if they
had been tagged as individual relations in GUM, and we do not tag implicit
trajectors/landmarks. In ongoing experiments we classify the headwords instead
of whole constituents [9]. Table 1 presents the preliminary results for “trajector”
(T) and “landmark” (L) recognition including overall accuracy evaluated by 10-
fold cross validation. The simple multi-class classification ignores the global cor-
relations between classes and as Table 1 indicates, more sophisticated CRF mod-
els can improve the results in particular for landmarks. Since the main sources
of errors are a lack of data and the dependency of spatial semantics on lexical
information, we will employ additional (lexical) features and ideally will use a
larger corpus in our future experiments. However the current results show the
first step of applying machine learning for SpRL and indicate a promising start
towards achieving the entire automatic mapping from language to spatial calculi.

5 Conclusion and Future Directions

We have introduced a model for mapping natural language to spatial calculi.
Both aspects of spatial role labeling and spatial formalizing have been described.
A number of related problems that cause difficulties and ambiguities were ad-
dressed, and we have shown preliminary results for experiments on SpRL and
the extraction of trajectors and landmarks. Our main idea for future work is to
obtain (i.e. create) a corpus which is labeled by holistic spatial semantics plus a
combination of spatial calculi. Each relation in the language can be connected
to a set of relations belonging to predefined spatial calculi. This gives a logical
representation of the language based on spatial calculi. We aim to learn sta-
tistical relational models for this. This enables adding probabilistic background
knowledge related to structural information and spatial semantic notions, and
supports (probabilistic) spatial reasoning over the learned models.
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