A Methodology to Extend Imperative Languages
with AgentSpeak Declarative Constructs

Loris Fichera
University of Catania — Engineering Faculty
Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: loris.fichera@gmail.com

Daniele Marletta
Scuola Superiore di Catania
Via S. Nullo 5/i — 95123 — Catania, ITALY
EMail: damarletta@ssc.unict.it

Vincenzo Nicosia
Scuola Superiore di Catania — Laboratorio sui Sistemi Cesgil
Via S. Nullo 5/i — 95123 — Catania, ITALY
EMail: vincenzo.nicosia@ct.infn.it

Corrado Santoro
University of Catania — Dept. of Mathematics and Computdeige
Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: santoro@dmi.unict.it

Abstract—This paper presents a novel technique for the specific class of problems. At the same time many agent—
support of declarative constructs of AgentSpeak in a imperatie oriented programming languages (Soar [21], NetLogo [17],
language. Starting from an analysis of the characteristics and 3APL [6], GOAL [7]) and agent-based platforms (JADE [1]

semantics of AgentSpeak, as well as the requirements of an
AgentSpeak implementation, the paper proposes a framework MASON [10], Repast [18], Swarm [19]) have been developed

which, by exploiting object-orientation and operator overload- iN the last decade, in order to give programmers powerful and
ing, is able to enrich an imperative language with declarative easy—to—use tools to model, develop and maintain agerebas
constructs suitable to represent and write AgentSpeak program. software.

A concrete implementation of the proposed framework is then ; ; ; _
given by presenting PROFETA (Python RObotic Framework for An increasing interest has been recemly d.eVOted ..to ex
dEsigning STrAtegies), a tool written in Python which adds to ploit goal-based agent models for the realization of intell

this language the capability to write and execute AgentSpeak gent autonomous systems [11], [15]. One of the proposed
plans. A case-study shows how PROFETA can be used to easilyparadigms for goal-oriented agents is the Belief~Desire—

write strategies for an autonomous mobile robot, designed by the |ntention (BDI) [13], which models the knowledge as a set of
authors for the “Eurobot 2010” international robotic competitio n. beliefsabout environment and internal state of the agent, then
represents adesiresthe goals to be achieved, which expand
into a set ofintentions i.e. atomic actions to be performed
Software agents are an abstraction for autonomous entitiesorder to achieve a desire. There exists a reference abstra
which have a certain amount of knowledge, interact witltanguage for BDI agents, which is called AgentSpeak(L) [12]
an environment and play a given role in order to achieveaad defines a declarative syntax to express desires and in-
goal. They have been used in the last decade as a refereiections in a way which is much similar to rule-based logic
model for the solution of a variety of problems in differenprogramming: beliefs are treated &scts while desires and
fields, from automatic reasoning to data mining, from searahtentions respectively correspond tmwnditions and body
in semantic web to simulation of social behaviours. Thef rules. The only existing implementation of AgentSpeak
adaptability of agent—oriented modelling and the possibil semantic is Jason [9], which is an interpreter, written ivaja
to represent different problems as agent-based systenes Hav an extended AgentSpeak syntax written. Jason lets the
produced a proliferation of agent models, such as refleprogrammer write its AgentSpeak statements in a separate fil
based agents, goal-based agents, utility—based ageants; leand requires actions and event handlers to be implemented
ing agents [3], [20], [14], [16], each of them with peculiaby Java classes. Unfortunately, all the AgentSpeak program
characteristics which make it useful for the solution of & completely separated from action implementation, while

I. INTRODUCTION

ag u= bsps « te is theevent triggering the ruleit can be the addition

bs u= aty,...,aty,. (n >0) or removal of a belief {at or —at), or the request to
at u= P(t1,...,tn) (n=0) achieve (or no more achieve)gmal (+!at or —lat);
ps n= Pi,eee,Dn (n=>1) « cd is the conditiort, that is made of a set of beliefs
p u= te:ed <— h that must be all true in order to trigger the plan. The
te n= +tat| —at| +g| —g specified beliefs may contain ground terms or variables,
cd n= true |l & ... &, (n=>1) and express the knowledge the agent must have when the
h u= truel| fi; ... fa (n>1) eventte fires in order to trigger the plan.

Il == at | notat « h is a set ofatomic actionswhich are executed, in
foou= Alt,.. . t) [g u (n > 0) sequence, following plan triggering. They include, once
g u= lat|?at again, addition or removal of a belief-@t or —at),

u = +at| —at request to achieve or no more achieve a (sub-)ge&iy(

or —lat), or the execution of a user-defined action. With
the exception of the last case (user-defined action), all the
other actions, when executed, generate the relevant trigge
event causing the possible selection of another plan.

Fig. 1. Basic AgentSpeak Syntax

would be very useful to preserve a declarative AgentSpeak
modelinto the same programming environment. As the reader can understand, an AgentSpeak program is a
This paper shows that it is possible to embed an AgentSet of rules in the fornevent-condition-action(slevents may
peak semantic into any imperative language which allo@pme from the perception of the agent's environment (in this
operator overloading, and proposes an example of such etése they are calledxternal evenjsor be generated by an
bedding in Python. The developed tool is callBROFETA action {nternal eventy such as the achievement of a sub-goal.
(for Python RObotic Framework for dEsigning sTrAtegiesOn the basis of event type, the way in which it is processed
and has been successfully used to implement agent-badéi@rs, according to the specific semantics of the language
intelligent autonomous systems to drive robots in dynamihich is described in [12], [9], [4].
environments [5]. An example of an AgentSpeak program running in a mobile
The paper is organised as follows. Section Il provides #@fbot is given in Figure 2. Let us consider that the robot
overview of AgentSpeak(L) syntax and semantics. Sectibn Rims at grabbing two types of objects, balls and cylinderd, a
explains the methodology used to embed AgentSpeak(L) $at, to accomplish this task, it has two different mechalnic
mantic into imperative languages through operator overloaarms, one for each type of object. A camera, with a proper
ing. Section IV describes the implementation of PROFETArtificial vision software, is used to detect the presence of
Section V illustrates a case-study of PROFETA in a reah object to be picked. Two predicates are used for beliefs:
application. Section VI reports conclusions and futureksor obj ect _seen, which is asserted by the artificial vision
software when an object of a certain type is detected in

Il. AGENTSPEAK: REQUIREMENTS FOR ITS a given (z,y) position, andar m depl oyed, representing
IMPLEMENTATION which one of the two arms is currently in the deployed
A. Overview of AgentSpeak configuration (and thus able to pick the object of the same

. . kind). According to the program in Figure 2, when the camera
AgentSpeak(L) [13], [12] (or simply AgentSpeak) is aryoiacts an object, the proper belief is asserted causing the

abstract declarative language designed many years agoy, plan to be triggered and executed; this plan contaies th

brogram BPI agents. According to its bagic syntax_, ﬁr,sa{chievement of three goals: first the proper arm has to be
mtroduceq |n_[13], [12] and then extende_:d in [2], which '%it?ployed, then the position of the detected object has to be
rep_orted in Figure 1, an agent program is made of a set ®ached so that finally the object can be picked. In achieving
bellef_sand a set oplans the first goal pr epar e_ar nj, we check if an arm not able
Beliefs re_present Fhknowledgeof the agent an.d are €x-44 pick the recognised object is currently deployed and, if
pressed using atomic formulae made of a predicate symtaglls is the case, we retract the current arm and deploy the
P anq a set .Of Z€ro or mor@roynd terms The same syntax other one. We suppose that such retract/deploy actiongglur
(predicate with ground terms) is also used to repregeats their execution, change the belief set by properly updatieg
which are the Ager_1tSpe_ak ab_stractions for desires. TWOStypfr m depl oy Belie?. The second goal aims at reaching the
of goals are provided{(i) achievement goalexpressed as target position and, as the source code reports, triggers th
lat, meaning that the agent wants to make true formia actions needed to orientate the robot towards the target poi

(ie., ensgregtha@t is 3 ld<nown t?e”ef)k?] ar?diz testlgoz_;ll and then to go to it. The last goal performs object picking by
expressed a at’. mt_en ed to verlfy whether formulat is activating the corresponding mechanical arm.
true (i.e., check ifat is a known belief).

Plans are thaasksthat the agent has to execute and arelAgentSpeak uses the term “context”, but we prefer “condftioecause it

expressed by means of rules in the fotm: cd < — h; s more appropriate for the real meaning of thpart of the plan.
here: 2This is in accordance with AgentSpeak model.

+obj ect _seen(Type, X, Y) : true <-
+! prepare_arnm(Type) ;
+!reach_object (X, Y);
+! pi ck_obj ect (Type) .

+! prepare_armbal |)
arm depl oyed(cyl i nder) <-
retract _arn{cylinder);

Indeed, AgentSpeak semantics specifies that the preserce of
goal achievement statemesntat in a plan implies tasuspend
the execution of the plarmgerform sub-goal achievemeand
then resumethe plan; such a behaviour is therefore quite
similar to that of subroutine execution. Starting from thes
considerations, a totally declarative approach seems ldevia
solution, even if its validity, effectiveness and efficigritas

to be verified. Nevertheless, extending AgentSpeak to ntake i

depl oy_arm(bal I'). a complete declarative language is beyond the scope of this
paper.

The second approach, mix of declarative and imperative
paradigms is the easiest solution and implies the use of an
imperative language to build the interpreter of the Agentdp
program and then write, using the imperative languagef,tsel
all the parts which cannot be implemented in AgentSpeak,
+'prepare_arnm(X) : i.e. specific agent actions and event catching and siggallin

arm depl oyed(X) <- This is the approach exploited by Jason [9], the most widely
true. known AgentSpeak implementation which is written in Java
In Jason, agent’s behaviour has to be written using AgeaiSpe
syntax (in a separate source file), while a set of specifisels
to be developed in Java, are required to implement all the
atomic actions specified in the AgentSpeak file as well as
the computations needed to poll and generate externalsvent
While this approach is valid and effective, even if a bituaa it
has some drawbacks. Indeed, there are two different “wbrlds
the declarative one with its syntax, semantics, objects and
identifiers, and the imperative one, wittddferentsyntax and
semantics, somewhat “glued” to the declarative part inotae
allow the access to and manipulation of the knowledge-base
B. From Theory to Practice: Architecture of an AgentSpea(l?e“efs.)' This Is unfavourable for both program design and
Interpreter executlon. the former gspe.ct forces a programmer to handle
different source files with different semantics while théda

AgentSpeak represents a very flexible language to expregguires proper transformations to pass data between e tw
the behaviour of agents using a goal-oriented approach;ddmains which undoubtedly affect performances. Moreover,
order to allow the development of such agents, a propgle AgentSpeak file cannot be compiled, thus impeding to
interpreter needs to be designed and implemented. To thisploy only binary files in a live system.
aim, we could imagine three different design approaches:The third approachtotally imperative at first sight sounds
totally declarative a mix of declarative and imperativetally quite weird: how can we provide declarative semantics only
Imperative using imperative constructs? Indeed, to execute an AgeatSp

The first approaChtOtaIIy d8C|arative requires the exten- program, a propeprocessing engineeeds to be written, and
sion of AgentSpeak with additional statements in order mis can be done in an imperative |angu%gbe same engine
derive a complete programming language. These statemes¥gid provide an API with proper function calls able to define
include constructs to modify variables and to apply themeliefs, goals and plans by using the imperative language
mathematical/logical operators, as well as proper genergelf. Surely, a skilled software engineer can easilyfyehat
purpose library functions to interact with the environmerdych an approach is even worse than mixing imperative and
(i.e., sensorsand actuatory. Obviously, all the additional declarative paradigms: the resulting source file couldlgasi
statements and constructs must obey to the declarative/gg@come unreadable and hard to maintain since the deckarativ
oriented paradigm which is the basis of AgentSpeak; whilgmantics would be somewhat “hidden” in the API function
this aim can be eaSily achieved for variable aSSignment a@is But if the |anguage i$biect_orientedand Supports
mathematical/logical operators (which could be, for ins&8 gperator overloadingsuch features can be exploited to solve

borrowed from Prolog), the same is not straightforward ige problems above and provide an “all-in-one” environment
be achieved for functions. After all, what is a “function"Thjs is described, in details, in the following Sections.

in AgentSpeak? Given that in imperative programming a

function . is the evolution (.)f the concept of SUbrOUtm_eh‘ Sand probably, the sole AgentSpeak implementation at the tilseptiper
a goal-oriented language like AgentSpeak the execution of,& peen written.

function can be viewed as the achievement of a “sub-goal”#After all, the Jason engine is written in Java!

+! prepare_arn(cylinder)
arm depl oyed(bal I) <-
retract_arm(ball);
depl oy_arnm(cyl i nder).

+!'reach_object (X Y) : true <-
orientate towards(XY),
go_to(XY).

+! pi ck_object(X) : true <-
activate_arm(X).

Fig. 2. An object picking robot

I1l. EMBEDDING DECLARATIVE CONSTRUCTS INTO AN Plan == *(" Head")""<<"*(" ActionList *)"
IMPERATIVE LéNGUAG.E Head == *“(" Event")""“|"”"“(” Condition “)”"
Let us suppose we have an imperative language, let us ¢all | “(" Event “)"“| " “(" Belief “)"
it host languageand let us consider that we want to have
the possibility of writing AgentSpeak statements in thethos Condition ::= Belief “&" Belief
language, without changing the compiler and the (standard) | Condition “&" Belief
runtime library, and without introducing something like @p 5 o CoalE
processor able to suitably perform a syntactic transfdonat vent ‘_ BZZ@ fg:Snt
of the declarative code The question to answer is: could we
write (and execute), for example in C, something like this?| c i1 ppent == “+"*1" Belief
+Ireach _object(X,Y) : true <- | “-""1" Belief
ort ?nt)a(t e_towards(X, Y); Belief Event 1= “+" Belief
go_to(X, V). D By
The answer is obviouslyNo!” , since syntax and semantics o o
are not in accordance with C rules. However, we could Actionlist := ﬁ”t’lj‘”"i?“”t S i”‘”"? ot
reformulate the question as follows: could we try to modify | ctionList 7, ° AtomicAction

something, in the code above, in order to make it writablel (an ~ Fig. 3. Example of Operator Grammar for the Host Language
executable), in an imperative language such as C? Let’s deal
with such a problem by taking into account syntax first, and

then semantics. guestion remains thmeaningof operators: +” is the unary-
From the syntactical point of view, the construct abovBlUS in C, but it should behave asransform the belief or
has three main problems, due to the presence of #aal into the related evenf'similarly, “! ” is the not operator,

symbols “”, “<-" and “". Indeed, “*" and “” while, in the AgentSpeak view, it should be interpreted as
are valid op;erators and each_obj eci (X,Y), true “achieve the goal represented by the beliefhis “change of
ori ent at e tow/aréis(x Y) andgo to(X'Y) are valid Meaning” for operators is completely not allowed in C, but
constructs (functions calls and symbolivariable evatmgti If We think to C++ or, more generally, to an object-oriented
Therefore, let us reasonably replace non-recognisabl@aigm 2nguage, theoperator overloadingfeaturé can surely help

with other symbols which conform to C syntax. To this aim4S: i))

since symbol “ " can be interpreted as “such that”, a candidate Starting from these considerations, all the actors of a,plan
replacement is |*”: in a similar way, symbol &- ", whose namelybeliefs goalsandactions should become expressions
meaning is a sort’ of implication, can be replaced witx™ evaluating toproper objectswhose class declarations include
The last symbol, the dot *, is employed to signal the endingthe proper operatqr redefinition, suitably allowing theias

of the sequence of actions to be performed following plafh@nge of meaning”. Someperatorsand agrammar are
activation; in this case, its replacement entails to findgper "€€ded, in order to guide a designer to properly write the

way to represent aequencer block of actions: the C block, code for operator overloading, which must obviously be in

ie. { ... }, is worth to be used in this case. accordance with AgentSpeak syntax. A reference grammar is
According to such modifications, the AgentSpeak ma?pown in Figure 3;.it can be also used to derive the op(_erators
above can be rewritten as: needed to be redefined in the host language, together with the
meaning which are summarized in Figure 4.
+lreach_object (X Y) | true << On the basis of the grammar and operators described, an
{ AgentSpeak plan such as:
orientate_towards(XY); .
go_to(X Y); Erobj ect _seen_at (300,400) | true <<
}

ori entate_towards(300, 400);
While this “syntactical replacement” has been quite striaigh go_t o(300, 400);

forward, dealing with semantics surely implies more protde
The first remark is related to the symbgk which, from
semantic point of view, is amperator and thus needs two
valid expressiorat both left-hand and right-hand side; while

for the LHS this is true, it is not the same for the RHS, since it ¢| ass Belief {

is ablock of codenot an expression. But even if we could be /1 provide operator overloading here
able to overcome the problem above, and thus find a suitable} -

construct to transform a block of code into an expressioa, th

would be rewritten as:

S5For instance, we do not want something like “SQL embedded in C”. 8if supported by the language

Operator Type | Symbol used| Meaning
in Figure 3

Add event | unary + Transform a belief or an achievement goal into an additicanev
Delete event| unary - Transform a belief or an achievement goal into a deletinghieve

Achieve unary ! Transform a belief into an achievement goal

Logical and | binary & Concatenate beliefs to represent the condition

Such that | binary | Relate the event with the condition

Implication | binary << Relate the head of the plan (event + condition) with the Ifsaations
List construct| binary , Concatenate actions to represent the body of the plan

cl

}

c

Fig. 4. Operators Needed an Their Meaning

ass Condition {
/'l provide operator overloading here

ass Action {
/'l provide operator overloadi ng here

whose RHS is an object of th&ct i on class.

This expression evaluation, which is performed when the
corresponding instruction of host language code contain-
ing the plan is executed, from the declarative model point
of view does not correspond to plan executiobut to
plan definition indeed, the real actions corresponding to

} o ori entate_towards andgo_t o must be executed when
the beliefobj ect _seen_at (300, 400) is “somewhat as-
cl ass object_seen_at public Belief { serted”.

/1 provide belief-specific nethods
/1 and attributes

This separation betweedefinition and executionof plans
has two major consequences. The first one is the need of

. a properprocessing engin@s a part of the overall runtime
_ o system,; this engine has to embed structures to represent the
class true : public Condition { knowledge basand theplan library, also providing an API

cl

// this is be the TRUE condition

ass orientate_towards :
public Action {
voi d execute(void) {
/1 the code for the action

for their manipulation: the code present in operator redefm
methods will add the objects representing the plan, returne
by the plan expression evaluation, into tipdan library;
subsequently, the generation of an external event, such as
assertion of a new belief, triggered by means of a suitable
API function/method call, will instruct the engine to findeth
associated plan in the plan library and then really exedwe t

. action: this is the reason for the presence of ¢éxecut e
. method—forlate executior-in the Act i on class.
)) The second important consequence is the rolgasiables
class go_to : public Action { in a plan. If we would like to make the piece of code more

}

(+obj ect _seen_at (300, 400) |

voi d execute(void) {
/!l the code for the action

b

true()) <<
(orientate_towards(300, 400),
go_to(300, 400));

general, we should replace constants with variables, #at i
something like:

(+obj ect _seen_at(X,Y) | true()) <<
(orientate_towards(X Y),
go_to(XY));

However, variablesX and Y are interpreted by the host
language during plan definition, and thus they not only need
to be defined but also bound to specific values. This is

According to the code snippet above, when the expressiquite undesirable since, according to the declarativedigma
defining the plan is evaluated, first tldj ect _seen_at variable binding must be done during plan execution: like
object is created and the operator unaty;“redefined in the actions need late execution, late binding feature should

Bel i ef class, is applied to it; the result (which will surely bebe provided for variables. To this aim, we cannot use the
another proper object) is then passed, together with thee variables provided by the host languages, which do not germi
object, to the code for operatof ™ finally, the result of the late binding, and, also in this case, we have to replace them
last expression will be the first operand for operatgx™, with proper “variable objects”. Therefore, by supposing th

. e . Si et
definition of a clasw to represent a variable, the code above engine
becomes:

-know edge_base
-plan_library
. -intentions
(+0b] ect _S een_at (V("X) s V("y) +process_event ()
+eval uate_condition()
| t rue_()) << +al | ocate_pl ans()
(ori ent at e_t owar dS(V("X) , V("y)) s +generat e_ext er nal _event ()

go_to(v("X"),v("Y")));

v v

Proper binding and interpretation of such variables in the KnowledgeBase| [Plan Library Intentions
context of the execution of a plan is thus a task of the T T e eTon D
processing engine. This and other implementation aspeltts w +del ete_bel i ef () -
be dealt with in the next Section. —ies e

IV. ARCHITECTURE OFPROFETA ——

We applied the implementation methodology described in — Action
the Section above in the design of PROFETA, a framework terms Sl =
that allows programmers to define and exeqiégmsexpressed oY
in an AgentSpeak semantic, but written in a bare Python. +get_terms() o>
This was made possible by the extended operator overloading MUY
facilities given by Python itself. In principle, any object ZF
oriented language which provides operator overloadinddcou
be used to implement PROFETA, and it is in our plans to
translate it also to C++, but Python proved to be very useful t Belief Goal Condition
obtain a working proof—-of—concept implementation in a deup +create_event () *set_origin() -condi tions
of weeks. +i s_ground() +create_event () +eval uate()

+mat ch()

The main components of the architecture of PROFETA +mat ch_name()
are presented in Figure 5. PROFETA provides the class
Attitude and its subclasseBel i ef and Goal that rep- Fig. 5. PROFETA class diagram

resent the corresponding concepts of the BDI model (the
mental attitudesof the Agent). The terms of an attitude are

stored in thesel f. _t er ms attribute.Condi ti on models loaded so that when they precede the instance of an Attitude,

the condition of a plan, i.e. a set of beliefs separated by ‘&, intemal field is set accordingly. The correspondinggetg
As described in the grammar, the behaviour of this operatﬁzgiJ event can be obtained by invokirng eat e_event ().

is overloaded so that it concatenates the beliefs, stohiamt 1o overloaded | operator creates a ne@ondi ti on ob-
in the sel f.__condi ti ons attrlbute.Ac,;t lon Is Just @ jact and store it in thesel f. condition attribute of
convenience abstract class: every agent's action mustedefi; t'i { yde. Finally, the body of the plan is simply a Python
Action and implement thexecut e() method by Speci- it whose elements are actions and/or triggering evertts. T

fying t_he instructions to actually perform _the action. AS_ fophole plan is added to the Plan Library using the overloaded
the attitudes, all the parameters of an Action are storeden t._» operator.

sel f. _terns attribute.) ,
- When plans need variables, those will be bound to actual

An Intention, as defined in the original BDI model, is | h i< of th f the k |
composed by a list of Actions and does not require a clay@lues on the basis of the content of the knowledge base, and a

on itself. Conversely, the clagat ent i ons is a collection PTOPEr syntax is employed. In PROFETA, the special function
of all active Intentions, i.e. of all the plans which have ibee-(- -) ¢an be used to denotevariable within the scope of
instantiated and can be executed since their triggeringtev@ Plan. €.9. to denote the variablewe will write _(" X") .
has happened and the corresponding condition is satisfied. Class Engi ne represents theprocessing enginewhich
Notice that the intentions stored intat ent i ons are a implements the functionalities described in Section tihdlds
subset of thePl an Li br ary, which contains the set of all a reference to the agent's Plan Library and Knowledge Base,
plans written astelcd >> h, according to the grammarimplemented in two suitable classes. Tikieowl edgeBase
previously definetl class exposes an appropriate interface that allow)totodify
On the basis of the proposed methodology, triggering evetite set of beliefs(ii) test the presence of a particular belief,
are defined as follows: the* and ‘- * operator have been over- (iii) obtain a specific subset of beliefs.

. - The basic working scheme &ngi ne is to run a contin-
With respect to the grammar in Figure 3, we replaced operatet’ “

with “>>" since we argue that it is more appropriate for the concept dfous loop tha(i) chec.lﬁs if an event has Occurr_e(d) selchs
“implication”. an appropriate plan(iii) evaluates the condition verifying

whether it is true(iv) executes the pl&nhWhile internal events goals are definedgo, which is the goal triggering the
(i.e. events specified in the Body of a plan) are directly theohd starting of the overall game strateggr ab_corn, aim-
by Engi ne, external events that are bound, for example, fag at reaching and picking a specified ear of corn; and
perception made by sensors must be notified toEhgi ne, deposit_corns, which instructs the robot to release the
so that it can reason about them and determine the appm®prigitked ears in the proper basket. Finally, required actames
plan(s)—if any. In this case, to let tHengi ne know that an det ect _confi gur ati on, which instructs the vision sys-
event has occurred, thgener at e_ext ernal _event () tem to recognise the colour of the various ears and assert the
method has to be used. properwhi t e_cor n/bl ack_cor n beliefs;r each_corn,
V. CASE STUDY triggeri.n'g the ropot to move iq qrder to reach the position of
' a specified eampi ck_cor n, driving the mechanical arms to
This Section shows how PROFETA has been actually usgk the ear from the table (thus properly updating the numbe
to define strategiesfor an autonomous mobile robot takingof objects inside the robot);each_deposit _zone, mak-
part in the Eurobot robotic contest [5]. ing the robot to reach the basket; angen_t ank, which
Robots taking part to Eurobot are required to implegrives the actuators to open the tank and release the objects
ment a strategy which usually consists in repetitivély (this action also resets the number of ears of corn in robot).
approach/recognise an obje() pick the object and store it, as for the strategy, defined in functisret up_st r at egy,
(iii) put the object in an appropriate place. Objects are usuajh first goal go) implies to detect the corn colours, grab the
of different type and colour, and thus need to be sorted, Bifst three ears and then go to deposit them. hab_cor n
in different containers or in specific sequences to gain Moggy is subject to the condition related to ear colour: ifsit i
points, etc. For instance, in the 2010 edition, robots hamto \ypite, it can be picked, otherwise no action is needed. Goal
lect and store orange and red balls (representing, respbgti deposit _corns is instead subject to a condition on the
orangesandtomatoey and white cylinders (representi®@rs number of ears the robot has picked: if it is less than®jito
of corr). Game matches are played by two robots at the sag&id be worth to try to pick other ears (and thus save time)
time, on a shared game table: in order not to get penaltiggfore going to the basket. If we have instead an adequate

robots have to avoid each other. Moreover, matches have andfinber of ears of corn, we can reach the basket, deposit them,
seconds time limit. Avinning game strategy should take intogng then go to pick the other ears.

account all the issues stated above and also foresee anig ha”q\lotice that the strategy example reported in Figure 6 is
all the different unexpected situations that could happeind \yjtten in bare Python. Operator overloading does all the

LS Imatch. magic, making it possible to express all the strategy with a
Figure 6 reports a fragment of an actual game strategye geclarative syntax. This approach allows to put giiese
written using PROFETA: during the first part of t'he match, wg, 5 separate Python module or in the same module where
wanted our rob_ot to collect ears of corn. According to E_U“?bsl\ctions are defined, according to programmer's preferences
2010 rules, objects can be found on the game table in fixqoreover, the preferred strategy can be easily selectentéef
a priori known, positions. We haveardcodedsuch positions e4ch match just by calling the corresponding function, Whic

in a global accessible table and enumerated game elemenigays 4l the rules and initial beliefs into the engine, with

e.g. all ears of corn have been given a code like “c0”, “cl’t’he need to recompile of parse again any source file.
and so on—so that such codes can be used as keys to retrieve
the position of the specified object. There exists two kinfls o

ears of corn: good and fake ones, the formers are painted in

white, the latter are painted in black. We yvanted—of course—Thjs paper has described an approach to seamless embed
the robot to collect good ones and to discard the others. @Bc|arative constructs able to write AgentSpeak programs
this basis, the employed strategy aimg(iatdetecting colour jnto an imperative object-oriented language. By explgitin
configuration,(ii) picking the first th__ree ears near the St_artinﬁperator overloading, a feature proper of many objectrbeie
area (called “c0”, “c3” and “c6")iii) depositing them into |angyages, and a suitable software architecture, the peapo
the basket(iv) picking other three ears near the baskg}, approach allows a programmer to design, deploy and run a
depositing the objects picked. In picking the ears, we have domplete agent system, based on a goal-oriented paradggm, u
pay attention to their colour, and skip it if it is fake (black ing a single programming language and runtime environment.

As reported in Figure 6, we defined the beliefag 5 proof of concepts, the paper has presented an imple-
white_corn and bl ack_corn, to represent a ear of mentation of the proposed approach in a Python framework,
corn of the given colour;,corns_i n_robot, to count cajled PROFETA(Python RObotic Framework for dEsigning
the number of ears that the robot has already picked; agfiategies As it has been described in the case-study, the tool
no_more_corns to signal that, according to the stratgeveloped has proved its effectiveness in a typical rea,cas
egy, we are not interested in picking more ears. Thrggich is the design and implementation of an autonomous
mobile robot.

VI. CONCLUSIONS ANDFUTURE WORK

8Indeed, the real working scheme of a BDI engine is quite more ®mp
that described; due to space restrictions, we reportedasimplified version;
interested readers may refer to [12], [8]. 9pecause at least two ears among “c0”, “c3” and “c6” are black

class white_corn(Belief):
pass

class bl ack_corn(Belief):
pass

class corns_in_robot (Belief):
pass

class no_nore_corns(Belief):
pass

cl ass go(CGoal):
pass

class grab_corn(Goal):
pass

cl ass deposit_corn(Goal):
pass

cl ass detect_configurati on(Action):
def execute(self):
#H ...

class reach_corn(Action):
def execute(self):
#it ...

class pick_corn(Action):
def execute(self):
#H ..

cl ass reach_deposit_zone(Action):
def execute(self):
#it ...

cl ass open_tank(Action):
def execute(self):
...

def setup_strategy():
(+~go()) >> [detect_configuration(), +~grab_corn("c0"), +~grab_corn("c3"),
+~grab_corn("c6"), +~deposit_corns()]

| (white_corn(>> [reach_corn(_("X")), pick_corn()]

) —("X")))
) | (black_corn(_("X")))) >>[]

(+~grab_corn(
(+~grab_corn(

xX X

_("X")
_("X")
(+~deposit_corns() | (corns_in_robot(_("X")) & (lanbda : X > 1))) >>
[reach_deposit_zone(), open_tank(), +~deposit_corns()]
(+~deposit_corns() | (corns_in_robot(_("X")) & (lanbda : X <= 1) & no_nore_corns())) >>
[# second part of the game ...
(+~deposit_corns() | (corns_in_robot(_("X"')) & (lambda : X <= 1))) >>
[+~grab_corn("cl1"), +~grab_corn("c12"),
+~grab_corn("cl13"), +no_nore_corns(), +~deposit_corns()]

def start():
setup_strategy()
Engi ne. i nstance() . generate_external _event(+~go())

Fig. 6. An actual game strategy for Eurobot written in Pytheing PROFETA

Future work will aim at further improving the tool by intro-
ducing missing features, suchtast goalandgoal deletion as
well as at studying appropriate optimisations to speed ap pl
selection and execution. Once all the features of PROFETA
will be implemented, next step will be the implementation of
PROFETA in another object—oriented language, such as C++.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Jade - a fipa-caamplagent
framework,” in Proceedings of the Practical Applications of Intelligent
Agents 1999.

[2] R. Bordini, A. Bazzan, R. Jannone, D. Basso, R. Vicari &h Lesser,
“Agent-speak (xl): efficient intention selection in bdi e via decision-
theoretic task scheduling,” iRroceedings of the 1st International Joint
Conference on autonomous agents and multiagent systex@v New
York, NY, USA, 2002, pp. 1294-1302.

[3] J. M. Bradshaw, Ed.Software Agents AAAIl Press/The MIT Press,
1997.

[4] M. dInverno and M. Luck, “Engineering agentspeak(l): A
formal computational model,"Journal of Logic and Computation
vol. 8, no. 3, pp. 233-260, 1998. [Online]. Available:
http://eprints.ecs.soton.ac.uk/3846/

[5] L. Fichera, D. Marletta, V. Nicosia, and C. Santoro, “fl#e robot
strategy design using belief—desire—intention model Piaceedings of
Eurobot Conference 201@010.

[6] K. Hinddriks, F. de Boer, W. van der Hoek, and J. C. Meyégént
programming in 3apl,Int. J. of Autonomous Agents and Multi-agent
Systemsvol. 2, pp. 357-401, 1999.

[7] ——, “Agent programming with declarative goals,” intelligent Agents
VII. Agent Theories, Architectures and Languages. LNCS, vol. 1986.
Springer—Verlag, 2000.

[8] J. Hubner, R. Bordini, and M. Wooldridge, “Programming keative
goals using plan patternsf’ecture Notes in Computer Scienceol.
4327, p. 123, 2006.

[9] Jason Home Page, “http://www.jason.sourceforge’n2@04.

[10] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and Balan, “Mason:
a multi-agent simulation environmenSimulation vol. 81, no. 7, pp.
517-527, July 2005.

[11] V. Nicosia, C. Spampinato, and C. Santoro, “Software négjefor
autonomous robots: The eurobot 2006 experience Proceedings of
the WOA 2006 Workshp2006.

[12] A. Rao, “AgentSpeak (L): BDI agents speak out in a logaamputable
language,’Lecture Notes in Computer Scienaml. 1038, pp. 42-55,
1996.

[13] A. Rao and M. Georgeff, “BDI agents: From theory to preef in
Proceedings of the first international conference on maggent systems
(ICMAS-95) San Francisco, CA, 1995, pp. 312-319.

[14] S. Russell and P. NorvigAtrtificial Intelligence: A Modern Ap-
proach/Second Edition Prentice Hall, 2003.

[15] C. Santoro, “An erlang framework for autonomous mobileotsti in
Procedings of the 2007 ACM SIGPLAN Workshop on ErlangCM,
2007, pp. 85-92.

[16] R. Siegwart and |. Nourbakhshntroduction to Autonomous Mobile
Robots MIT Press, 2004.

[17] E. Sklar, “Software review: Netlogo, a multi-agent siation environ-
ment,” Artificial Life, vol. 13, pp. 303-311, 2007.

[18] E. Tatara, M. North, T. Howe, N. T. Collier, and J. Vos, fAntro-
duction to repast modelling using a simple predator—prey el@mp
Proceedings of Agents 2006 Conference on Social AgentsiltResd
Prospects 2006.

[19] P. Terna, “Simulation tools for social scientists: Rliilg agent based
models with swarm,Journal of Artificial Societies and Social Simula-
tion, vol. 1, no. 2, 1998.

[20] G. Weiss, Ed.Multiagent Systems The MIT Press, April 1999.

[21] R. Wray and R. Jones, “An introduction to soar as an agetitecture,”
in Cognition and Multi-Agent interaction: from Cognitive Malting to
Social SimulationR. Sun, Ed. Cambridge University Press, 2005, pp.
53-78.

