
A Methodology to Extend Imperative Languages
with AgentSpeak Declarative Constructs

Loris Fichera
University of Catania – Engineering Faculty

Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: loris.fichera@gmail.com

Daniele Marletta
Scuola Superiore di Catania

Via S. Nullo 5/i — 95123 – Catania, ITALY
EMail: damarletta@ssc.unict.it

Vincenzo Nicosia
Scuola Superiore di Catania – Laboratorio sui Sistemi Complessi

Via S. Nullo 5/i — 95123 – Catania, ITALY
EMail: vincenzo.nicosia@ct.infn.it

Corrado Santoro
University of Catania – Dept. of Mathematics and Computer Science

Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: santoro@dmi.unict.it

Abstract—This paper presents a novel technique for the
support of declarative constructs of AgentSpeak in a imperative
language. Starting from an analysis of the characteristics and
semantics of AgentSpeak, as well as the requirements of an
AgentSpeak implementation, the paper proposes a framework
which, by exploiting object-orientation and operator overload-
ing, is able to enrich an imperative language with declarative
constructs suitable to represent and write AgentSpeak programs.
A concrete implementation of the proposed framework is then
given by presenting PROFETA (Python RObotic Framework for
dEsigning sTrAtegies), a tool written in Python which adds to
this language the capability to write and execute AgentSpeak
plans. A case-study shows how PROFETA can be used to easily
write strategies for an autonomous mobile robot, designed by the
authors for the “Eurobot 2010” international robotic competitio n.

I. I NTRODUCTION

Software agents are an abstraction for autonomous entities
which have a certain amount of knowledge, interact with
an environment and play a given role in order to achieve a
goal. They have been used in the last decade as a reference
model for the solution of a variety of problems in different
fields, from automatic reasoning to data mining, from search
in semantic web to simulation of social behaviours. The
adaptability of agent–oriented modelling and the possibility
to represent different problems as agent–based systems have
produced a proliferation of agent models, such as reflex–
based agents, goal–based agents, utility–based agents, learn-
ing agents [3], [20], [14], [16], each of them with peculiar
characteristics which make it useful for the solution of a

specific class of problems. At the same time many agent–
oriented programming languages (Soar [21], NetLogo [17],
3APL [6], GOAL [7]) and agent–based platforms (JADE [1],
MASON [10], Repast [18], Swarm [19]) have been developed
in the last decade, in order to give programmers powerful and
easy–to–use tools to model, develop and maintain agent–based
software.

An increasing interest has been recently devoted to ex-
ploit goal–based agent models for the realization of intelli-
gent autonomous systems [11], [15]. One of the proposed
paradigms for goal–oriented agents is the Belief–Desire–
Intention (BDI) [13], which models the knowledge as a set of
beliefsabout environment and internal state of the agent, then
represents asdesiresthe goals to be achieved, which expand
into a set ofintentions, i.e. atomic actions to be performed
in order to achieve a desire. There exists a reference abstract
language for BDI agents, which is called AgentSpeak(L) [12],
and defines a declarative syntax to express desires and in-
tentions in a way which is much similar to rule-based logic
programming: beliefs are treated asfacts while desires and
intentions respectively correspond toconditions and body
of rules. The only existing implementation of AgentSpeak
semantic is Jason [9], which is an interpreter, written in Java,
for an extended AgentSpeak syntax written. Jason lets the
programmer write its AgentSpeak statements in a separate file
and requires actions and event handlers to be implemented
by Java classes. Unfortunately, all the AgentSpeak program
is completely separated from action implementation, whileit

ag ::= bs ps

bs ::= at1, . . . , atn. (n ≥ 0)
at ::= P(t1, . . . , tn) (n ≥ 0)
ps ::= p1, . . . , pn. (n ≥ 1)
p ::= te : cd < − h.

te ::= +at | − at | + g | − g

cd ::= true | l1 & . . . & ln (n ≥ 1)
h ::= true | f1 ; . . . ; fn (n ≥ 1)
l ::= at | not at

f ::= A(t1, . . . , tn) | g | u (n ≥ 0)
g ::= !at | ?at

u ::= +at | − at

Fig. 1. Basic AgentSpeak Syntax

would be very useful to preserve a declarative AgentSpeak
model into the same programming environment.

This paper shows that it is possible to embed an AgentS-
peak semantic into any imperative language which allow
operator overloading, and proposes an example of such em-
bedding in Python. The developed tool is calledPROFETA
(for Python RObotic Framework for dEsigning sTrAtegies),
and has been successfully used to implement agent–based
intelligent autonomous systems to drive robots in dynamic
environments [5].

The paper is organised as follows. Section II provides an
overview of AgentSpeak(L) syntax and semantics. Section III
explains the methodology used to embed AgentSpeak(L) se-
mantic into imperative languages through operator overload-
ing. Section IV describes the implementation of PROFETA.
Section V illustrates a case-study of PROFETA in a real
application. Section VI reports conclusions and future works.

II. A GENTSPEAK: REQUIREMENTS FOR ITS

IMPLEMENTATION

A. Overview of AgentSpeak

AgentSpeak(L) [13], [12] (or simply AgentSpeak) is an
abstract declarative language designed many years ago to
program BDI agents. According to its basic syntax, first
introduced in [13], [12] and then extended in [2], which is
reported in Figure 1, an agent program is made of a set of
beliefsand a set ofplans.

Beliefs represent theknowledgeof the agent and are ex-
pressed using atomic formulae made of a predicate symbol
P and a set of zero or moreground terms. The same syntax
(predicate with ground terms) is also used to representgoals,
which are the AgentSpeak abstractions for desires. Two types
of goals are provided:(i) achievement goal, expressed as
!at, meaning that the agent wants to make true formulaat

(i.e., ensure thatat is a known belief); and(ii) test goal,
expressed as?at, intended to verify whether formulaat is
true (i.e., check ifat is a known belief).

Plans are thetasks that the agent has to execute and are
expressed by means of rules in the formte : cd < − h;
here:

• te is theevent triggering the rule; it can be the addition
or removal of a belief (+at or −at), or the request to
achieve (or no more achieve) agoal (+!at or −!at);

• cd is the condition1, that is made of a set of beliefs
that must be all true in order to trigger the plan. The
specified beliefs may contain ground terms or variables,
and express the knowledge the agent must have when the
eventte fires in order to trigger the plan.

• h is a set of atomic actionswhich are executed, in
sequence, following plan triggering. They include, once
again, addition or removal of a belief (+at or −at),
request to achieve or no more achieve a (sub-)goal (+!at

or −!at), or the execution of a user-defined action. With
the exception of the last case (user-defined action), all the
other actions, when executed, generate the relevant trigger
event causing the possible selection of another plan.

As the reader can understand, an AgentSpeak program is a
set of rules in the formevent-condition-action(s); events may
come from the perception of the agent’s environment (in this
case they are calledexternal events) or be generated by an
action (internal events), such as the achievement of a sub-goal.
On the basis of event type, the way in which it is processed
differs, according to the specific semantics of the language
which is described in [12], [9], [4].

An example of an AgentSpeak program running in a mobile
robot is given in Figure 2. Let us consider that the robot
aims at grabbing two types of objects, balls and cylinders, and
that, to accomplish this task, it has two different mechanical
arms, one for each type of object. A camera, with a proper
artificial vision software, is used to detect the presence of
an object to be picked. Two predicates are used for beliefs:
object_seen, which is asserted by the artificial vision
software when an object of a certain type is detected in
a given (x, y) position, andarm_deployed, representing
which one of the two arms is currently in the deployed
configuration (and thus able to pick the object of the same
kind). According to the program in Figure 2, when the camera
detects an object, the proper belief is asserted causing the
first plan to be triggered and executed; this plan contains the
achievement of three goals: first the proper arm has to be
deployed, then the position of the detected object has to be
reached so that finally the object can be picked. In achieving
the first goal (prepare_arm), we check if an arm not able
to pick the recognised object is currently deployed and, if
this is the case, we retract the current arm and deploy the
other one. We suppose that such retract/deploy actions, during
their execution, change the belief set by properly updatingthe
arm_deploy belief2. The second goal aims at reaching the
target position and, as the source code reports, triggers the
actions needed to orientate the robot towards the target point
and then to go to it. The last goal performs object picking by
activating the corresponding mechanical arm.

1AgentSpeak uses the term “context”, but we prefer “condition” because it
is more appropriate for the real meaning of thecd part of the plan.

2This is in accordance with AgentSpeak model.

+object_seen(Type, X, Y) : true <-
+!prepare_arm(Type);
+!reach_object(X, Y);
+!pick_object(Type).

+!prepare_arm(ball) :
arm_deployed(cylinder) <-

retract_arm(cylinder);
deploy_arm(ball).

+!prepare_arm(cylinder) :
arm_deployed(ball) <-

retract_arm(ball);
deploy_arm(cylinder).

+!prepare_arm(X) :
arm_deployed(X) <-

true.

+!reach_object(X,Y) : true <-
orientate_towards(X,Y),
go_to(X,Y).

+!pick_object(X) : true <-
activate_arm(X).

Fig. 2. An object picking robot

B. From Theory to Practice: Architecture of an AgentSpeak
Interpreter

AgentSpeak represents a very flexible language to express
the behaviour of agents using a goal-oriented approach; in
order to allow the development of such agents, a proper
interpreter needs to be designed and implemented. To this
aim, we could imagine three different design approaches:
totally declarative, a mix of declarative and imperative, totally
imperative.

The first approach,totally declarative, requires the exten-
sion of AgentSpeak with additional statements in order to
derive a complete programming language. These statements
include constructs to modify variables and to apply them
mathematical/logical operators, as well as proper general-
purpose library functions to interact with the environment
(i.e., sensorsand actuators). Obviously, all the additional
statements and constructs must obey to the declarative/goal-
oriented paradigm which is the basis of AgentSpeak; while
this aim can be easily achieved for variable assignment and
mathematical/logical operators (which could be, for instance,
borrowed from Prolog), the same is not straightforward to
be achieved for functions. After all, what is a “function”
in AgentSpeak? Given that in imperative programming a
“function” is the evolution of the concept of “subroutine”,in
a goal-oriented language like AgentSpeak the execution of a
function can be viewed as the achievement of a “sub-goal”.

Indeed, AgentSpeak semantics specifies that the presence ofa
goal achievement statement+!at in a plan implies tosuspend
the execution of the plan,perform sub-goal achievementand
then resume the plan; such a behaviour is therefore quite
similar to that of subroutine execution. Starting from these
considerations, a totally declarative approach seems a viable
solution, even if its validity, effectiveness and efficiency has
to be verified. Nevertheless, extending AgentSpeak to make it
a complete declarative language is beyond the scope of this
paper.

The second approach,a mix of declarative and imperative
paradigms, is the easiest solution and implies the use of an
imperative language to build the interpreter of the AgentSpeak
program and then write, using the imperative language itself,
all the parts which cannot be implemented in AgentSpeak,
i.e. specific agent actions and event catching and signalling.
This is the approach exploited by Jason [9], the most widely
known AgentSpeak implementation which is written in Java3.
In Jason, agent’s behaviour has to be written using AgentSpeak
syntax (in a separate source file), while a set of specific classes,
to be developed in Java, are required to implement all the
atomic actions specified in the AgentSpeak file as well as
the computations needed to poll and generate external events.
While this approach is valid and effective, even if a bit naı̈ve, it
has some drawbacks. Indeed, there are two different “worlds”,
the declarative one with its syntax, semantics, objects and
identifiers, and the imperative one, with adifferentsyntax and
semantics, somewhat “glued” to the declarative part in order to
allow the access to and manipulation of the knowledge-base
(beliefs). This is unfavourable for both program design and
execution: the former aspect forces a programmer to handle
different source files with different semantics while the latter
requires proper transformations to pass data between the two
domains which undoubtedly affect performances. Moreover,
the AgentSpeak file cannot be compiled, thus impeding to
deploy only binary files in a live system.

The third approach,totally imperative, at first sight sounds
quite weird: how can we provide declarative semantics only
using imperative constructs? Indeed, to execute an AgentSpeak
program, a properprocessing engineneeds to be written, and
this can be done in an imperative language4; the same engine
could provide an API with proper function calls able to define
beliefs, goals and plans by using the imperative language
itself. Surely, a skilled software engineer can easily verify that
such an approach is even worse than mixing imperative and
declarative paradigms: the resulting source file could easily
become unreadable and hard to maintain since the declarative
semantics would be somewhat “hidden” in the API function
calls. But if the language isobject-orientedand supports
operator overloading, such features can be exploited to solve
the problems above and provide an “all-in-one” environment.
This is described, in details, in the following Sections.

3and probably, the sole AgentSpeak implementation at the time this paper
has been written.

4After all, the Jason engine is written in Java!

III. E MBEDDING DECLARATIVE CONSTRUCTS INTO AN

IMPERATIVE LANGUAGE

Let us suppose we have an imperative language, let us call
it host language, and let us consider that we want to have
the possibility of writing AgentSpeak statements in the host
language, without changing the compiler and the (standard)
runtime library, and without introducing something like a pre-
processor able to suitably perform a syntactic transformation
of the declarative code5. The question to answer is: could we
write (and execute), for example in C, something like this?

+!reach_object(X,Y) : true <-
orientate_towards(X,Y);
go_to(X,Y).

The answer is obviously“No!” , since syntax and semantics
are not in accordance with C rules. However, we could
reformulate the question as follows: could we try to modify
something, in the code above, in order to make it writable (and
executable), in an imperative language such as C? Let’s deal
with such a problem by taking into account syntax first, and
then semantics.

From the syntactical point of view, the construct above
has three main problems, due to the presence of the
symbols “:”, “ <-” and “.”. Indeed, “+” and “!”
are valid operators, andreach_object(X,Y), true,
orientate_towards(X,Y) andgo_to(X,Y) are valid
constructs (functions calls and symbol/variable evaluation).
Therefore, let us reasonably replace non-recognisable symbols
with other symbols which conform to C syntax. To this aim,
since symbol “:” can be interpreted as “such that”, a candidate
replacement is “|”; in a similar way, symbol “<-”, whose
meaning is a sort of implication, can be replaced with “<<”.
The last symbol, the dot “.”, is employed to signal the ending
of the sequence of actions to be performed following plan
activation; in this case, its replacement entails to find a proper
way to represent asequenceor block of actions: the C block,
i.e. { ... }, is worth to be used in this case.

According to such modifications, the AgentSpeak plan
above can be rewritten as:

+!reach_object(X,Y) | true <<
{

orientate_towards(X,Y);
go_to(X,Y);

}

While this “syntactical replacement” has been quite straight-
forward, dealing with semantics surely implies more problems.
The first remark is related to the symbol<< which, from
semantic point of view, is anoperator and thus needs two
valid expressionat both left-hand and right-hand side; while
for the LHS this is true, it is not the same for the RHS, since it
is a block of code, not an expression. But even if we could be
able to overcome the problem above, and thus find a suitable
construct to transform a block of code into an expression, the

5For instance, we do not want something like “SQL embedded in C”.

Plan ::= “(” Head “)” “ <<” “ (” ActionList “)”

Head ::= “(” Event “)” “ |” “ (” Condition “)”
| “(” Event “)” “ |” “ (” Belief “)”

Condition ::= Belief “&” Belief

| Condition “&” Belief

Event ::= GoalEvent

| BeliefEvent

GoalEvent ::= “+” “ !” Belief

| “-” “ !” Belief

BeliefEvent ::= “+” Belief

| “-” Belief

ActionList ::= ActionList “,” Event

| ActionList “,” AtomicAction

Fig. 3. Example of Operator Grammar for the Host Language

question remains themeaningof operators: “+” is the unary-
plus in C, but it should behave as“transform the belief or
goal into the related event”; similarly, “!” is the not operator,
while, in the AgentSpeak view, it should be interpreted as
“achieve the goal represented by the belief”. This “change of
meaning” for operators is completely not allowed in C, but
if we think to C++ or, more generally, to an object-oriented
language, theoperator overloadingfeature6 can surely help
us.

Starting from these considerations, all the actors of a plan,
namelybeliefs, goalsandactions, should become expressions
evaluating toproper objects, whose class declarations include
the proper operator redefinition, suitably allowing the desired
“change of meaning”. Someoperators and a grammar are
needed, in order to guide a designer to properly write the
code for operator overloading, which must obviously be in
accordance with AgentSpeak syntax. A reference grammar is
shown in Figure 3; it can be also used to derive the operators
needed to be redefined in the host language, together with their
meaning which are summarized in Figure 4.

On the basis of the grammar and operators described, an
AgentSpeak plan such as:

+object_seen_at(300,400) | true <<
{
orientate_towards(300,400);
go_to(300,400);

}

would be rewritten as:

class Belief {
// provide operator overloading here

};

6if supported by the language

Operator Type Symbol used Meaning
in Figure 3

Add event unary + Transform a belief or an achievement goal into an addition event
Delete event unary - Transform a belief or an achievement goal into a deleting event

Achieve unary ! Transform a belief into an achievement goal
Logical and binary & Concatenate beliefs to represent the condition
Such that binary | Relate the event with the condition

Implication binary << Relate the head of the plan (event + condition) with the list of actions
List construct binary , Concatenate actions to represent the body of the plan

Fig. 4. Operators Needed an Their Meaning

class Condition {
// provide operator overloading here

} ;

class Action {
// provide operator overloading here

} ;

class object_seen_at : public Belief {
// provide belief-specific methods
// and attributes

} ;

class true : public Condition {
// this is be the TRUE condition

} ;

class orientate_towards :
public Action {

void execute(void) {
// the code for the action

} ;
} ;

class go_to : public Action {
void execute(void) {

// the code for the action
} ;

} ;

...

(+object_seen_at(300,400) | true()) <<
(orientate_towards(300,400),
go_to(300,400));

According to the code snippet above, when the expression
defining the plan is evaluated, first theobject_seen_at
object is created and the operator unary-“+”, redefined in the
Belief class, is applied to it; the result (which will surely be
another proper object) is then passed, together with thetrue
object, to the code for operator “|”; finally, the result of the
last expression will be the first operand for operator “<<”,

whose RHS is an object of theAction class.
This expression evaluation, which is performed when the

corresponding instruction of host language code contain-
ing the plan is executed, from the declarative model point
of view does not correspond to plan execution, but to
plan definition: indeed, the real actions corresponding to
orientate_towards andgo_to must be executed when
the beliefobject_seen_at(300,400) is “somewhat as-
serted”.

This separation betweendefinition and executionof plans
has two major consequences. The first one is the need of
a properprocessing engineas a part of the overall runtime
system; this engine has to embed structures to represent the
knowledge baseand theplan library, also providing an API
for their manipulation: the code present in operator redefinition
methods will add the objects representing the plan, returned
by the plan expression evaluation, into theplan library;
subsequently, the generation of an external event, such as
assertion of a new belief, triggered by means of a suitable
API function/method call, will instruct the engine to find the
associated plan in the plan library and then really execute the
action: this is the reason for the presence of theexecute
method—forlate execution—in the Action class.

The second important consequence is the role ofvariables
in a plan. If we would like to make the piece of code more
general, we should replace constants with variables, that is,
something like:

(+object_seen_at(X,Y) | true()) <<
(orientate_towards(X,Y),
go_to(X,Y));

However, variablesX and Y are interpreted by the host
language during plan definition, and thus they not only need
to be defined but also bound to specific values. This is
quite undesirable since, according to the declarative paradigm,
variable binding must be done during plan execution: like
actions need late execution, alate binding feature should
be provided for variables. To this aim, we cannot use the
variables provided by the host languages, which do not permit
late binding, and, also in this case, we have to replace them
with proper “variable objects”. Therefore, by supposing the

definition of a classv to represent a variable, the code above
becomes:

(+object_seen_at(v("X"),v("Y")
| true()) <<
(orientate_towards(v("X"),v("Y")),
go_to(v("X"),v("Y")));

Proper binding and interpretation of such variables in the
context of the execution of a plan is thus a task of the
processing engine. This and other implementation aspects will
be dealt with in the next Section.

IV. A RCHITECTURE OFPROFETA

We applied the implementation methodology described in
the Section above in the design of PROFETA, a framework
that allows programmers to define and executeplansexpressed
in an AgentSpeak semantic, but written in a bare Python.
This was made possible by the extended operator overloading
facilities given by Python itself. In principle, any object–
oriented language which provides operator overloading could
be used to implement PROFETA, and it is in our plans to
translate it also to C++, but Python proved to be very useful to
obtain a working proof–of–concept implementation in a couple
of weeks.

The main components of the architecture of PROFETA
are presented in Figure 5. PROFETA provides the class
Attitude and its subclassesBelief and Goal that rep-
resent the corresponding concepts of the BDI model (the
mental attitudesof the Agent). The terms of an attitude are
stored in theself._terms attribute.Condition models
the condition of a plan, i.e. a set of beliefs separated by ‘&’.
As described in the grammar, the behaviour of this operator
is overloaded so that it concatenates the beliefs, storing them
in the self.__conditions attribute.Action is just a
convenience abstract class: every agent’s action must derive
Action and implement theexecute() method by speci-
fying the instructions to actually perform the action. As for
the attitudes, all the parameters of an Action are stored in the
self._terms attribute.

An Intention, as defined in the original BDI model, is
composed by a list of Actions and does not require a class
on itself. Conversely, the classIntentions is a collection
of all active Intentions, i.e. of all the plans which have been
instantiated and can be executed since their triggering event
has happened and the corresponding condition is satisfied.

Notice that the intentions stored intoIntentions are a
subset of thePlan Library, which contains the set of all
plans written aste|cd >> h, according to the grammar
previously defined7.

On the basis of the proposed methodology, triggering events
are defined as follows: the ‘+’ and ‘-’ operator have been over-

7With respect to the grammar in Figure 3, we replaced operator “<<”
with “>>” since we argue that it is more appropriate for the concept of
“implication”.

<<Singleton>>

Engine

-knowledge_base

-plan_library

-intentions

+process_event()

+evaluate_condition()

+allocate_plans()

+generate_external_event()

Condit ion

-conditions

+evaluate()

At t i tude

-condition

-terms

+set_condition()

+set_terms()

+get_terms()

+unify()

Belief

+create_event()

+is_ground()

+match()

+match_name()

Goal

+set_origin()

+create_event()

KnowledgeBase

+add_belief()

+delete_belief()

+exists()

+belief_like()

Plan Library

+add_plan()

In tent ions

+execute_intentions()

Action

-terms

+execute()

Fig. 5. PROFETA class diagram

loaded so that when they precede the instance of an Attitude,
an internal field is set accordingly. The corresponding trigger-
ing event can be obtained by invokingcreate_event().
The overloaded ‘|’ operator creates a newCondition ob-
ject, and store it in theself._condition attribute of
Attitude. Finally, the body of the plan is simply a Python
list whose elements are actions and/or triggering events. The
whole plan is added to the Plan Library using the overloaded
“>>” operator.

When plans need variables, those will be bound to actual
values on the basis of the content of the knowledge base, and a
proper syntax is employed. In PROFETA, the special function
_(..) can be used to denote avariable within the scope of
a plan, e.g. to denote the variableX we will write _("X").

Class Engine represents theprocessing enginewhich
implements the functionalities described in Section III. It holds
a reference to the agent’s Plan Library and Knowledge Base,
implemented in two suitable classes. TheKnowledgeBase
class exposes an appropriate interface that allows to:(i) modify
the set of beliefs,(ii) test the presence of a particular belief,
(iii) obtain a specific subset of beliefs.

The basic working scheme ofEngine is to run a contin-
uous loop that(i) checks if an event has occurred,(ii) selects
an appropriate plan,(iii) evaluates the condition verifying

whether it is true,(iv) executes the plan8. While internal events
(i.e. events specified in the Body of a plan) are directly handled
by Engine, external events that are bound, for example, to
perception made by sensors must be notified to theEngine,
so that it can reason about them and determine the appropriate
plan(s)—if any. In this case, to let theEngine know that an
event has occurred, thegenerate_external_event()
method has to be used.

V. CASE STUDY

This Section shows how PROFETA has been actually used
to definestrategiesfor an autonomous mobile robot taking
part in the Eurobot robotic contest [5].

Robots taking part to Eurobot are required to imple-
ment a strategy which usually consists in repetitively(i)
approach/recognise an object,(ii) pick the object and store it,
(iii) put the object in an appropriate place. Objects are usually
of different type and colour, and thus need to be sorted, put
in different containers or in specific sequences to gain more
points, etc. For instance, in the 2010 edition, robots had tocol-
lect and store orange and red balls (representing, respectively,
orangesand tomatoes) and white cylinders (representingears
of corn). Game matches are played by two robots at the same
time, on a shared game table: in order not to get penalties,
robots have to avoid each other. Moreover, matches have a 90
seconds time limit. Awinning game strategy should take into
account all the issues stated above and also foresee and handle
all the different unexpected situations that could happen during
the match.

Figure 6 reports a fragment of an actual game strategy
written using PROFETA: during the first part of the match, we
wanted our robot to collect ears of corn. According to Eurobot
2010 rules, objects can be found on the game table in fixed,
a priori known, positions. We havehardcodedsuch positions
in a global accessible table and enumerated game elements—
e.g. all ears of corn have been given a code like “c0”, “c1”,
and so on—so that such codes can be used as keys to retrieve
the position of the specified object. There exists two kinds of
ears of corn: good and fake ones, the formers are painted in
white, the latter are painted in black. We wanted—of course—
the robot to collect good ones and to discard the others. On
this basis, the employed strategy aims at(i) detecting colour
configuration,(ii) picking the first three ears near the starting
area (called “c0”, “c3” and “c6”),(iii) depositing them into
the basket,(iv) picking other three ears near the basket,(v)
depositing the objects picked. In picking the ears, we have to
pay attention to their colour, and skip it if it is fake (black).

As reported in Figure 6, we defined the beliefs
white_corn and black_corn, to represent a ear of
corn of the given colour;corns_in_robot, to count
the number of ears that the robot has already picked; and
no_more_corns to signal that, according to the strat-
egy, we are not interested in picking more ears. Three

8Indeed, the real working scheme of a BDI engine is quite more complex
that described; due to space restrictions, we reported onlya simplified version;
interested readers may refer to [12], [8].

goals are defined:go, which is the goal triggering the
starting of the overall game strategy;grab_corn, aim-
ing at reaching and picking a specified ear of corn; and
deposit_corns, which instructs the robot to release the
picked ears in the proper basket. Finally, required actionsare:
detect_configuration, which instructs the vision sys-
tem to recognise the colour of the various ears and assert the
properwhite_corn/black_corn beliefs;reach_corn,
triggering the robot to move in order to reach the position of
a specified ear;pick_corn, driving the mechanical arms to
pick the ear from the table (thus properly updating the number
of objects inside the robot);reach_deposit_zone, mak-
ing the robot to reach the basket; andopen_tank, which
drives the actuators to open the tank and release the objects
(this action also resets the number of ears of corn in robot).

As for the strategy, defined in functionsetup_strategy,
the first goal (go) implies to detect the corn colours, grab the
first three ears and then go to deposit them. Thegrab_corn
goal is subject to the condition related to ear colour: if it is
white, it can be picked, otherwise no action is needed. Goal
deposit_corns is instead subject to a condition on the
number of ears the robot has picked: if it is less than two9, it
could be worth to try to pick other ears (and thus save time)
before going to the basket. If we have instead an adequate
number of ears of corn, we can reach the basket, deposit them,
and then go to pick the other ears.

Notice that the strategy example reported in Figure 6 is
written in bare Python. Operator overloading does all the
magic, making it possible to express all the strategy with a
pure declarative syntax. This approach allows to put strategies
in a separate Python module or in the same module where
Actions are defined, according to programmer’s preferences.
Moreover, the preferred strategy can be easily selected before
each match just by calling the corresponding function, which
loads all the rules and initial beliefs into the engine, without
the need to recompile of parse again any source file.

VI. CONCLUSIONS ANDFUTURE WORK

This paper has described an approach to seamless embed
declarative constructs able to write AgentSpeak programs
into an imperative object-oriented language. By exploiting
operator overloading, a feature proper of many object-oriented
languages, and a suitable software architecture, the proposed
approach allows a programmer to design, deploy and run a
complete agent system, based on a goal-oriented paradigm, us-
ing a single programming language and runtime environment.
As a proof of concepts, the paper has presented an imple-
mentation of the proposed approach in a Python framework,
called PROFETA(Python RObotic Framework for dEsigning
sTrAtegies). As it has been described in the case-study, the tool
developed has proved its effectiveness in a typical real case,
which is the design and implementation of an autonomous
mobile robot.

9because at least two ears among “c0”, “c3” and “c6” are black

class white_corn(Belief):
pass

class black_corn(Belief):
pass

class corns_in_robot(Belief):
pass

class no_more_corns(Belief):
pass

class go(Goal):
pass

class grab_corn(Goal):
pass

class deposit_corn(Goal):
pass

class detect_configuration(Action):
def execute(self):

...

class reach_corn(Action):
def execute(self):

...

class pick_corn(Action):
def execute(self):

...

class reach_deposit_zone(Action):
def execute(self):

...

class open_tank(Action):
def execute(self):

...

def setup_strategy():
(+∼go()) >> [detect_configuration(), +∼grab_corn("c0"), +∼grab_corn("c3"),

+∼grab_corn("c6"), +∼deposit_corns()]

(+∼grab_corn(_("X")) | (white_corn(_("X")))) >> [reach_corn(_("X")), pick_corn()]
(+∼grab_corn(_("X")) | (black_corn(_("X")))) >> []

(+∼deposit_corns() | (corns_in_robot(_("X")) & (lambda : X > 1))) >>
[reach_deposit_zone(), open_tank(), +∼deposit_corns()]

(+∼deposit_corns() | (corns_in_robot(_("X")) & (lambda : X <= 1) & no_more_corns())) >>
[# second part of the game ...]

(+∼deposit_corns() | (corns_in_robot(_("X")) & (lambda : X <= 1))) >>
[+∼grab_corn("c11"), +∼grab_corn("c12"),

+∼grab_corn("c13"), +no_more_corns(), +∼deposit_corns()]

def start():
setup_strategy()
Engine.instance().generate_external_event(+∼go())

Fig. 6. An actual game strategy for Eurobot written in Python using PROFETA

Future work will aim at further improving the tool by intro-
ducing missing features, such astest goalandgoal deletion, as
well as at studying appropriate optimisations to speed up plan
selection and execution. Once all the features of PROFETA
will be implemented, next step will be the implementation of
PROFETA in another object–oriented language, such as C++.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Jade - a fipa-compliant agent
framework,” in Proceedings of the Practical Applications of Intelligent
Agents, 1999.

[2] R. Bordini, A. Bazzan, R. Jannone, D. Basso, R. Vicari, and V. Lesser,
“Agent-speak (xl): efficient intention selection in bdi agents via decision-
theoretic task scheduling,” inProceedings of the 1st International Joint
Conference on autonomous agents and multiagent systems. ACM New
York, NY, USA, 2002, pp. 1294–1302.

[3] J. M. Bradshaw, Ed.,Software Agents. AAAI Press/The MIT Press,
1997.

[4] M. d’Inverno and M. Luck, “Engineering agentspeak(l): A
formal computational model,”Journal of Logic and Computation,
vol. 8, no. 3, pp. 233–260, 1998. [Online]. Available:
http://eprints.ecs.soton.ac.uk/3846/

[5] L. Fichera, D. Marletta, V. Nicosia, and C. Santoro, “Flexible robot
strategy design using belief–desire–intention model,” inProceedings of
Eurobot Conference 2010, 2010.

[6] K. Hinddriks, F. de Boer, W. van der Hoek, and J. C. Meyer, “Agent
programming in 3apl,”Int. J. of Autonomous Agents and Multi-agent
Systems, vol. 2, pp. 357–401, 1999.

[7] ——, “Agent programming with declarative goals,” inIntelligent Agents
VII. Agent Theories, Architectures and Languages, ser. LNCS, vol. 1986.
Springer–Verlag, 2000.

[8] J. Hubner, R. Bordini, and M. Wooldridge, “Programming declarative
goals using plan patterns,”Lecture Notes in Computer Science, vol.
4327, p. 123, 2006.

[9] Jason Home Page, “http://www.jason.sourceforge.net/,” 2004.
[10] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “Mason:

a multi–agent simulation environment,”Simulation, vol. 81, no. 7, pp.
517–527, July 2005.

[11] V. Nicosia, C. Spampinato, and C. Santoro, “Software agents for
autonomous robots: The eurobot 2006 experience,” inProceedings of
the WOA 2006 Workshop, 2006.

[12] A. Rao, “AgentSpeak (L): BDI agents speak out in a logical computable
language,”Lecture Notes in Computer Science, vol. 1038, pp. 42–55,
1996.

[13] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” in
Proceedings of the first international conference on multi-agent systems
(ICMAS-95). San Francisco, CA, 1995, pp. 312–319.

[14] S. Russell and P. Norvig,Artificial Intelligence: A Modern Ap-
proach/Second Edition. Prentice Hall, 2003.

[15] C. Santoro, “An erlang framework for autonomous mobile robots,” in
Procedings of the 2007 ACM SIGPLAN Workshop on Erlang. ACM,
2007, pp. 85–92.

[16] R. Siegwart and I. Nourbakhsh,Introduction to Autonomous Mobile
Robots. MIT Press, 2004.

[17] E. Sklar, “Software review: Netlogo, a multi–agent simulation environ-
ment,” Artificial Life, vol. 13, pp. 303–311, 2007.

[18] E. Tatara, M. North, T. Howe, N. T. Collier, and J. Vos, “An intro-
duction to repast modelling using a simple predator–prey example,” in
Proceedings of Agents 2006 Conference on Social Agents: Results and
Prospects, 2006.

[19] P. Terna, “Simulation tools for social scientists: Building agent based
models with swarm,”Journal of Artificial Societies and Social Simula-
tion, vol. 1, no. 2, 1998.

[20] G. Weiss, Ed.,Multiagent Systems. The MIT Press, April 1999.
[21] R. Wray and R. Jones, “An introduction to soar as an agent architecture,”

in Cognition and Multi-Agent interaction: from Cognitive Modelling to
Social Simulation, R. Sun, Ed. Cambridge University Press, 2005, pp.
53–78.

