
Towards a Flexible Development Framework
for Multi-Agent Systems

Agostino Poggi
Dipartimento di Ingegneria dell'Informazione

University of Parma
Parma, Italy

agostino.poggi@unipr.it

Abstract—In this paper, we present a software framework, called
HDS (Heterogeneous Distributed System), that tries to simplify
the realization of distributed applications and, in particular, of
multi-agent systems, by: i) abstracting the use of different
technologies for the realization of distributed applications on
networks of heterogeneous devices connected through a set of
different communication transport protocols, ii) merging the
client-server and the peer-to-peer paradigms, and iii)
implementing all the interactions among the processes of a
system through the exchange of typed messages that allow the
implementation of a large set of communication protocols and
languages.

Keywords - software framework; layered framework; typed
message, composition filter.

I. INTRODUCTION
In the early 1990s, Multi-Agent Systems (MAS) were put

forward as a promising paradigm for the realization of complex
distributed systems. Over the years, MAS researchers have
developed a wide body of models, techniques and
methodologies for developing complex distributed systems,
have realized several effective software development tools, and
have contributed to the realization of several successful
applications. However, even if today’s software systems are
more and more characterized by a distributed and multi-actor
nature, that lends itself to be modeled and realized taking
advantage of MAS techniques and technologies, very few
space in software development is given to the use of such
techniques and technologies.

 It is due to several reasons [1][2][3][4][5]. One of the
most important reasons is that the large part of software
developers have few knowledge about MAS technologies and
solutions: it is mainly because of the lack of references to the
results of MAS research outside the MAS community.
Moreover, even when there is a good knowledge about MAS,
software developers do not evaluate the possibility of their use
because: i) they believe that multi-agent approaches are not
technically superior to traditional approaches (i.e., there are not
problems where a MAS approach cannot be replaced by a non-
agent approach), and ii) they consider MAS approaches too
sophisticated and hard to understand and to be used outside the
research community.

 Therefore, it is possible to state that the MAS
community has yet to demonstrate the significant benefits of
using agent-oriented approaches to solve complex problems,
but also that some efforts should be done for facilitating the use
and the integration of MAS technologies and solutions in
mainstream software development technologies and solutions.

In particular, MAS developers should avoid to consider
MAS solutions a “panacea” for all the kinds of system.
Therefore, a MAS should be realized only when the
components of a system must express the typical features (i.e.,
proactiveness, sociality and goal) that distinguish a software
agent from another software component.

The case when a new MAS is realized and must be
embedded and integrated with an existing software
environment, where other software systems are running and
interact with each other, deserves particular attention. In this
case, MAS developers usually try to propose, as most effective
integration solution, the “agentification” of the other software
systems even if this kind of integration, besides requiring the
burden of encapsulating the interface of a non-agent based
system with a code that generates and processes messages of
the agent communication language (ACL) used by the MAS,
often might not guarantee the level of performance, security
and transactionality required in such a software environment. It
is because the majority of the MAS community has still the
belief that agents are the best means for supporting software
interoperability. This belief comes from the first important
works on MAS [6][7] and was partially supported by the
specifications for agent interoperability defined by FIPA [8];
however, in the last ten years the advent and the success of
Web services and service-oriented architecture have shown that
what software customers and developers want is a solution that
simply renew the traditional ways of integrating systems,
avoiding any solution that might be considered too complex or
that might reduce the quality of the system.

 In this paper, we present a software framework, called
HDS (Heterogeneous Distributed System), whose goal is to
simplify the realization of distributed applications taking
advantage of multi-agent model and techniques and providing
an easy way for the integration between MAS and non-agent
based systems. The next section describes the main features of
the HDS software framework. Section three discusses about the
experimentation of such a framework for the realization of both

MAS and non-agent based systems. Finally section four
concludes the paper sketching some future research directions.

II. HDS
HDS (Heterogeneous Distributed System), is a software

framework that has the goal of simplifying the realization of
distributed applications by merging the client-server and the
peer-to-peer paradigms and by implementing all the
interactions among the processes of a system through the
exchange of typed messages. In particular, HDS provides both
proactive and reactive processes (respectively called actors and
servers) and an application can be distributed on a
(heterogeneous) network of computational nodes (from now on
called runtime nodes).

The HDS software framework model is based on two layers
called, respectively; concurrency and runtime layers. While the
first layer defines the elements that an application developer
must directly use for realizing applications, the second layers,
besides providing the services that enable the creation of the
elements of the concurrency layer and their interaction,
abstracts the use of different technologies for realizing
distributed applications on nets of heterogeneous devices
connected through a set of different communication transport
protocols.

A. Concurrency Layer
The concurrency layer is based on six main elements:

process, description, selector, message, content and filter.

 A process is a computational unit able to performs one
or more tasks taking, if necessary, advantage of the tasks
provided by other processes. To facilitate the cooperation
among processes, a process can advertize itself making
available to the other processes its description. Usually a
description contains the process identifier, the process type and
the data that have been used for its initialization; however, a
process may introduce some additional information in its
description.

 A process can be either an actor or a server. An actor is a
process that can have a proactive behavior and so can start the
execution of some tasks without the request of other processes.
A server is a reactive process that is only able to perform tasks
in response of the request of other processes.

 A process can interact with the other processes through
the exchange of messages based on one of the following three
types of communication: i) synchronous communication, the
process sends a message to another process and waits for its
answer; ii) asynchronous communication, the process sends a
message to another process, performs some actions and then
waits for its answer and iii) one-way communication, the
process sends a message to another process, but it does not wait
for an answer. In particular, while an actor can start all the
three previous types of communication with all the other
processes, a server can either respond to the requests of the
other processes or can delegate the execution of such requests
to some other processes.

 Taking advantage of the registry service provided by the
runtime layer, a process has also the ability of discovering the

other processes of the application. In particular, a process can:
i) check if an identifier is bound to a process of the application,
ii) get the identifiers of the other processes of its runtime node,
and iii) get the identifiers of the processes of the application
whose description satisfies some constraints. The last
capability is possible, because, a process can create a special
type of object, called selector, that define some constraints on
the information maintained by the process descriptions (e.g.,
the process must be of a specific type, the process identifier
must have a specific prefix or suffix), then the process sends
such a selector to the registry service provided by the runtime
layer, and the registry service applies the constraints defined by
the selector on the information of the registered process
descriptions and sends to the processes the identifiers of the
processes that satisfy the constraints defined by the selector.

 As we wrote above, processes interact with each other
through the exchange of messages. A message contains the
typical information used for exchanging data on the net, i.e.,
some fields representing the header information, and a special
object, called content, that contains the data to be exchanged.
In particular, the content object is used for defining the
semantics of messages (e.g., if the content is an instance of
the Ping class, then the message represents a ping request and
if the content is an instance of the Result class, then the
message contains the result of a previous request). In
particular, the message model defined by the concurrency layer
allows the implementation of a large set of communication
protocols and languages. In fact, the traditional client-server
protocol can be realizing associating the request and response
data to the message content element and the most known agent
communion language, i.e., KQML and FIPA ACL [9], can be
realized by using the content element for the representation of
ACL messages.

 Normally, a process can interact with all the other
processes of the application and the sending of messages does
not involve any operation that is not related to the delivery of
messages to the destination; however, the presence of message
filters can modify the normal delivery of messages. A message
filter is a composition filter [10] whose primary scope is to
define the constraints on the reception/sending of messages;
however, it can also be used for manipulating messages (e.g.,
their encryption and decryption) and for the implementation of
replication and logging services.

The runtime layer associates two lists of message filters
with each process: the ones of the first list, called input
message filters, are applied to the input messages and the
others, called output message filters, are applied to the output
messages. When a new message arrives or must be sent, the
relative message filters are applied to it in sequence until a
message filter fails; therefore, such a message is stored in the
input queue or is sent only if all the message filters have
success.

B. Runtime Layer
The main goal of the runtime layer is to allow the use of

different technologies for realizing distributed applications on
nets of heterogeneous devices connected through a set of
different communication transport protocols, but abstracting

such technologies through a tiny API towards the concurrency
layer. In particular, the runtime layer defines a set of services
that can be used by the concurrency layer and a set of
interfaces that must be implemented for integrating a new
technology and using it for providing the services provided by
the runtime layer.

The main element of the runtime layer is the reference. A
reference is a proxy of the process that makes transparent the
communication respect to the location of the process and the
technologies connecting the reference with its process. The
duty of a reference is to allow the insertion of messages in the
queue of its process. Therefore, when a process wants to send a
message to another process, it must obtain the reference to such
a process and then use it for putting the message in the input
queue of the other process.

The access to the reference of a process is possible through
the use of the registry service. This service is provided by the
runtime layer to the processes of an application and allows: the
binding and unbinding of the processes with their identifiers,
description, and references, the retrieval of a reference on the
basis of the process identifier and the listing of sets of
identifiers of the processes of an application by using, if
necessary, some selectors..

The runtime layer has also the duty of creating processes
and their related references. In fact, it provides a factory
service that allows a process of an application to create other
processes by proving to the runtime layer the qualified name of
the class implementing the process and its initialization list.

Finally, the runtime layer provides a filtering service that
allow the management of the list of message filters associated
with the processes of an application. In fact a process cannot
modify any list of message filters. Therefore, taking advantage
of the filterer service, a process can modify the lists of its
message filters, but can also drive the behavior of some other
processes by modifying their message filter lists.

C. Implementation
The HDS software framework has been realized taking

advantage of the Java programming language. While the
runtime layer has been implemented for providing the remote
delivery of messages through both Java RMI [11] and JMS
[12] communication technologies, the concurrency layer
provides: i) a message implementation, ii) four abstract classes
that implement the application independent parts of actors,
servers, selectors and filters, and iii) a set of abstract and
concrete content classes useful for realizing the typical
communication protocols used in distributed applications. In
particular, HDS provides a client-server implementation of all
the protocols used by processes for accessing to the services of
the runtime layer and a complete implementation of the FIPA
ACL coupled with an abstract implementation of the "roles"
involved in the FIPA interaction protocols. Moreover, for
simplified the deployment of application, current HDS
implementation provides a software tool that allows the
deployment of applications through the use of a set of
configuration files.

III. EXPERIMENTATION
A first experimentation of the HDS software framework

has been and is still now done and is oriented to demonstrate
that i) such a software framework is suitable to realize complex
applications and MAS, and ii) makes easy the reuse of the
typical models and techniques, that are exhibited in MAS (i.e.,
the interaction protocols), in other kinds of software systems.

 The experimentation of the software framework as
means for realizing complex system consists in the
development of an environment for the provision of
collaborative services for social networks and, in particular, for
supporting the sharing of information among users. The current
release of such an environment allows the interaction among
users that are connected through heterogeneous networks (e.g.,
traditional wired and wireless computer networks and GSM
and UMTS phone networks), devices (e.g., personal computers
and smart phones), software (e.g., users can interact either
through a Web portal or through specialized application, and
users can have at their disposal applications that are able to
either visualize and modify or only visualize documents) and
rights (e.g., some users have not the right of performing a
subset of the actions that are possible in the environment). The
experimentation is still in the first phase, but has been already
sufficient to realize that the integration between actors, servers
and message filters is a profitable solution for the realization of
adaptive and pervasive applications.

 The experimentation of the use of multi-agent typical
models and techniques and of the use of such a software
framework for realizing MAS started with the development of
an abstract implementation of the BDI agent architecture [13],
and then continued on the parallel development of two
prototypes of a market place application: both the prototypes
are based on the HDS implementation of FIPA interaction
protocols, but only the first realize the prototype as a MAS by
taking advantage of realized BDI agent abstract architecture.
The abstract BDI agent architecture was realized in few time
by simply extending the abstract actor class with: i) a working
memory, where maintaining the beliefs, desires and intentions
of the agent, ii) a plan library, where maintaining the set of
predefined plans and iii) an interpreter able to select the plan
that must be used to achieve the current goal, and then able to
execute it. Therefore, starting from this abstract
implementation, a concrete BDI agent can be obtained by
providing the code for initializing and updating the working
memory and for filling the plan library.

 After the realization of such abstract agent architecture,
we start the parallel development of the prototypes of a market
place where agents can buy and sell goods through the use of
English and Dutch auctions.

This experimentation was done by two groups of master
students: the students of the first group had a good knowledge
about artificial intelligence and agent-based systems, because
they followed two courses on those topics, and the students of
the second group had few knowledge about such topics,
because they did not follow any related course. In few words,
the results of the experimentation were that: all the students
had not difficulties to obtain a good implementation of the
version of the application without the use of the BDI agents

that, however, take advantages of the typical multi-agent
interaction protocols, but while the students without any
knowledge about artificial intelligence and agent-based system
had great difficulties for realizing the version of the application
based on the use of BDI agents and realized some prototypes
that do not completely exploit the characteristic of BDI agents,
the other students did it obtaining more flexible prototypes than
the ones without BDI agents, but spending a lot of time in their
implementation.

IV. CONCLUSIONS
This paper presented a software framework, called HDS,

that has the goal of simplifying the realization of distributed
applications by merging the client-server and the peer-to-peer
paradigms and by implementing the interactions among all the
processes of a system through the exchange of typed messages.

 HDS is implemented by using the Java language and its
use simplify the realization of systems in heterogeneous
environments where computers, mobile and sensor devices
must cooperate for the execution of tasks. Moreover, the
possibility of using different communication protocols for the
exchange of messages between the processes of different
computational nodes of an application opens the way for a
multi-language implementation of the HDS framework
allowing the integration of hardware and software platforms
that do not provide a Java support.

 HDS can be considered a software framework for the
realization of any kind of distributed system. Some of its
functionalities derive from the one offered by JADE
[14][15][16], a software framework that can be considered one
of the most known and used software framework for the
developing of MAS. This derivation does not depend only on
the fact that some of the people involved in the development of
the HDS software framework were involved in the
development of JADE too, but because HDS tries to propose a
new view of MAS where the respect of the FIPA specifications
are not considered mandatory and ACL messages can be
expressed in a way that is more usable by software developers
outside the MAS community. This work may be important not
only for enriching other theories and technologies with some
aspects of MAS theories and technologies, but also for
providing new opportunities for the diffusion of both the
knowledge and use of MAS theory and technologies.

 HDS is a suitable software framework for the realization
of pervasive applications. Some of its features introduced
above (i.e., the Java implementation, the possibility of using
different communication protocols and the possibility a multi-
language implementation) are fit for such kinds of application.
However, the combination of multi-agent and aspect-oriented
techniques might be one of the best solutions for providing an
appropriate adaptation level in a pervasive application. In fact,
this solution allows to couple the power of multi-agent based
solutions with the simplicity of compositional filters solutions
guaranteeing both a good adaptation to the evolution of the
environment and a limited overhead to the performances of the
applications.

 Current and future research activities are dedicated,
besides to continue the experimentation and validation of the
HDS software framework in the realization of collaborative
services for social network, to the improvement of the HDS
software framework. In particular, current activities are
dedicated to: i) the implementation of more sophisticated
adaptation services based on message filters taking advantages
of the solutions presented by PICO [17] and by PCOM [18], ii)
the automatic creation of the Java classes representing the
typed messages from OWL ontologies taking advantage of the
O3L software library [19], and iii) the extension of the software
framework with a high-performance software library to support
the communication between remote processes, i.e., MINA [20].

REFERENCES
[1] V. Maříka and J. Lažanský. Industrial applications of agent technologies.

Control Engineering Practice, 15(11):1364-1380, 2007.
[2] L. Braubach, A. Pokahr and W. Lamersdorf. A Universal Criteria

Catalog for Evaluation of Heterogeneous Agent Development Artifacts.
In Proc. of the Sixth Int.Workshop "From Agent Theory to Agent Im-
plementation" (AT2AI-6), pp. 19-28, Estoril, Portugal, 2008.

[3] J. McKean, H. Shortery, M. Luckz, P. McBurneyx and S. Willmott.
Technology diffusion: analysing the diffusion of agent technologies,
Autonomous Agents and Multi-Agent Systems, 17(2):372-396, 2008.

[4] S. A. DeLoach. Moving multi-agent systems from research to practice.
Agent-Oriented Software Engineering, 3(4):378-382, 2009.

[5] D. Weyns, A. Helleboogh and T. Holvoet. How to get multi-agent
systems accepted in industry? Agent-Oriented Software Engineering,
3(4):383-390, 2009.

[6] M. R. Genesereth and S. P. Ketchpel. Software Agenta,
Communications of ACM, 37(7):48-63, 1994.

[7] J. M. Bradshaw. An introduction to software agents. in, Jeffrey M.
Bradshaw, Ed, Software Agents, pp. 3-46, MIT Press, Cambridge, MA,
1997.

[8] FIPA Specifications. Available from http://www.fipa.org.
[9] Y. Labrou, T. Finin, and Y. Peng. Agent Communication Languages:

The Current Landscape. IEEE Intelligent Systems, 14(2):45-52. 1999.
[10] L. Bergmans and M. Aksit. Composing crosscutting concerns using

composition filters. Communications of ACM, 44(10):51-57, 2001.
[11] E. Pitt and K. McNiff. Java.rmi: the Remote Method Invocation Guide.

Addison-Wesley, 2001.
[12] R. Monson-Haefel and D. Chappell. Java Message Service. O'Reilly &

Associates, 2000.
[13] A. S. Rao and M. P. Georgeff: BDI Agents: From Theory to Practice. In

Proc. of the First International Conference on Multiagent Systems, pp.
312-319, San Francisco, CA, 1995.

[14] F. Bellifemine, A. Poggi and G. Rimassa. Developing multi agent
systems with a FIPA-compliant agent framework. Software Practice &
Experience, 31:103-128, 2001.

[15] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa. JADE: a Software
Framework for Developing Multi-Agent Applications. Lessons Learned.
Information and Software Technology Journal, 50:10-21, 2008.

[16] JADE. Available from http://jade.tilab.com.
[17] M. Kumar, B. A. Shirazi, S. L. Das, B. Y. Sung, D. Levine, and M.

Singhal. PICO: A Middleware Framework for Pervasive Computing.
IEEE Pervasive Computing, 2(3):72-79, 2003.

[18] C. Becker, M. Hante, G. Schiele and K. Rotheemel. PCOM - a
component system for pervasive computing. In Proc. of the 2nd IEEE
Conf. on Pervasive Computing and Communications (PerCom 2004),
Orlando, FL, 67-76, 2004.

[19] A. Poggi. Developing Ontology Based Applications with O3L. WSEAS
Trans. on Computers 8(8):1286-1295, 2009.

[20] MINA. Available from: http://mina.apache.org.

