
A Multi-Agent Implementation of Social Networks

Enrico Franchi
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Parma, Italy

efranchi@ce.unipr.it

Abstract—In this paper, we present a multi-agent system
implementing a fully distributed Social Network System
supporting user profiles as FOAF profiles. This system is built
around the idea that users should be the sole owners of the
information they provide (either consciously or unconsciously)
and addresses privacy issues by design, also minimizing the
amount of information users have to disclose in order to make
new friends. Users are represented by agents that both mediate
access to private data and proactively negotiate with other agents
in order to extend their user’s social network. We also present
the distributed connection discovery algorithm used by the agents
and detail the representation of data in the users’ profiles used to
support the algorithm. The design is rather agnostic about the
layer responsible for the communication technology; here we
present a possible implementation on the top of the HDS software
framework.

Keywords; Middleware for distributed social systems, social
networks, multi-agent systems

I. INTRODUCTION
In social sciences, a social network is a structure of

individuals connected with some kind of relationship; the focus
is placed almost entirely on relations and individuals
themselves are often just represented as tiny dots in a graph [1].
However, from our point of view, these tiny dots are rich of
important information; information at least as important as
relations since it can be used to discover the relations
themselves. Therefore, we define a Social Network (SN) as a
connected graph of public and/or semi-public profiles. A
profile represents a user in the network and connections
between users are represented as labeled edges in the graph. A
profile is public if all the information therein contained is
accessible to all users in the system or to all users that have a
connection with the profile owner. A profile is semi-public if
there are restrictions on the pieces of information that are
available to other users. Fully private profiles are of no interest:
if no information were accessible at all, we would not even
know that the user is registered.

A Social Network System (SNS) is a software system that
supports the persistent storage of SNs and that provides means
to update, to add and to query information. This definition is
roughly equivalent to the one used in [2], which describes a
SNS as a site allowing users to: i) construct a public or semi-
public profile within a bounded system; ii) articulate a list of
other users with whom they share a connection; iii) view and
traverse their list of connections and those made by users
within the system. We also expect a SNS to suggest proactively
possible acquaintanceships among users, using the information

in user profiles (or other user provided data) according to user
specified policies. This is indeed the main service a SNS offers:
it gathers information on users’ social contacts, construct a
large interconnected social network and reveal to users how
they are connected to others in the network.

In traditional SNSs most profile entries are related to
hobbies and interests, such as music and sports [3]. Other
features commonly found in traditional SN profiles provide
information about education and past jobs; some well-known
SNSs (e.g., LinkedIn [4]) are entirely centered on the latter
kind of data.

In order to discover the connections, traditional SNSs store
every possible piece of information. The huge amount of
recorded data can raise privacy concerns and, even though
most SNSs have rather acceptable privacy policies (e.g., [5]),
visibility rules on contents is more geared towards protecting
content from other users than from the system itself (or its
advertising partners). For example, in Orkut [6] it is possible to
define which parts of the user profile are visible to: i) the user
himself; ii) his friends; iii) friends of friends; iv) everyone.
Another serious problem regards the ownership of inserted
data. Some communities make it clear that the sole owner
remains the original user [7], while in other systems the issue is
foggy. On the other hand, in a completely distributed system,
the user is the sole owner and, by design, has full control of his
data.

In this paper, we present a multi-agent system
implementing a fully distributed SNS. This system is built
around the idea that users should be the sole owners of the
information they provide (either consciously or unconsciously)
and addresses privacy issues by design, also minimizing the
amount of information users have to disclose in order to make
new friends.

In Section II we briefly review the results in the field of
social networks; in Section III the abstract design of our system
is detailed, especially detailing: i) the connection discovery
algorithm we devised in order to discover acquaintanceships
between users, without resorting to any centralized omniscient
entity; ii) the semantic structure of user profiles. In Section IV
the HDS framework is introduced and in Section V we present
how the system described in Section III can be built on top of
HDS. Eventually, in Section VI we draw some conclusions and
we propose some future research directions based on the
current work.

II. SOCIAL NETWORKS AND MULTI-AGENT SYSTEMS
Social networks have been studied for at least 50 years; one

of the earliest and more important results is Milgram’s small
world phenomenon [8] [9]; the small world phenomenon is a
basic statement about the abundance of short paths in a graph
whose nodes are people, with links joining pairs who know one
another. The chains of acquaintance are also known as “six
degrees of separation”, since six is their average length. The
results of Milgram’s original experiment have been reproduced
in recent years using emails [10].

Social network structure has been thoroughly studied [11]
and mathematical models have been devised in order to explain
the small world phenomenon and the “searchability” of social
networks [12] [13] [14], i.e., the fact that people with mostly
local information are able to route messages to people they
don’t know. Essentially, the social networks feature some
individuals that have a number of contacts above average and
these individuals work as “hubs” connecting different groups
of people. Moreover, there are some “non local” links, which
allow connections between otherwise distant groups.

While early web communities were centered around shared
hobbies and interests, the recent advent of modern social
network sites changed entirely the focus: people preferred to be
linked with people they know in real life [2].

Among the early works on software agents supporting
social networks the papers on Yenta [15] and on ReferralWeb
[16] are particularly relevant. These early systems mined
various public and private (such as email archives) resources to
build social networks, but were intended primarily as an
“expert-finding tool” and secondarily to form interest-based
communities. Yenta also had the idea of “sending a message to
a group”, which can be regarded as a key feature of modern
SNSs. However, the focus was still on common interests rather
than real life acquaintance.

More recently a social network navigation and analysis tool
called Flink [17] has been developed. Flink uses FOAF profiles
and other public data to present and analyze the social network
of the semantic web community. Polyphonet [18] is another
social network mining system tailored to facilitate
communication and mutual understanding for an academic
community. Differently from Yenta [15] and ReferralWeb
[17], these are centralized systems.

None of these systems is a SNS, even though each solved
issues similar to ours, such as: i) the extraction of relations
from profiles and ii) the idea of building social networks from
sparse data.

III. SYSTEM DESIGN
This section briefly explains the challenges of designing a

completely distributed social network system (DSNS) along
with the adopted solutions. The design is rather agnostic about
the layer responsible for the communication technology. We
essentially assume that agents have a unique identifier and can
receive and send synchronous and asynchronous messages. A
proactive software agent represents every user and his tasks

are: i) it mediates access to user’s data; ii) it actively negotiates
with agents in its social network to enrich with new
connections the social network itself. The negotiation is
performed using data stored in the user’s profile, according to
user specified rules.

In the following subsections, we detail the connection
discovery algorithm used to negotiate new friendships and the
representation of profiles containing user information.

A. The connection discovery algorithm
The main problem is that as soon as we break the system

unity into multiple autonomous agents, things get more
complicated: each agent accesses only its users data and there
is no “omniscient” third party which draws the connections
among users. A distributed algorithm to discover connection in
a way that privacy is not violated is a mandatory requirement
of such a system: even if the same amount of data is present in
the system, it is up to the agents to discover the acquaintance
information implied by the data in user profiles. We say that a
link is latent if a pair of users would like to be connected
provided they were aware of the other user’s existence in the
system. A connection is active if the user’s respective agents
are actually connected.

Here we present a distributed algorithm that aims at
activating most latent connections. In order to simplify the
presentation, we say that two connected agents are friends,
even though the system supports fine-grained semantic
connections, which express the true kind of relationship
between users. In fact, every pair of users may be linked
through multiple connections (and probably should).

We assume that some agents are already connected, for
example because their user manually connected when they
have been invited to the system. The problem is that the active
connections are a minimal part of the latent connections, while
our goal is that all latent connections become active. In order to
reach our goal, the connection discovery algorithm let each
agent provide some personal information to the agents it is
already linked to and allows them to broker new links with
their respective friends.

In Fig. 1, the connection discovery algorithm is presented,
assuming that agent A is linked to agent B with a connection of
type L and wants to make friends with agents connected to B
through a connection of type L. A sends a FindConnection(L,
ex) to B, where ex is a list of agents A does not want to connect
with (for example, because it is already connected with) and
where A is sure that each agent in ex is known to B. B chooses
a subset of its friends connected with a link of type L disjoint
with ex and sends each of them a RequestConnection(A, L)
message, meaning that A may want their friendship. At this
point, C decides whether a connection with A is desirable or
not. If so, A answers B with an AcceptConnection(A, L)
message and consequently B sends A an
AcceptedConnection(C, L) message to A. Eventually, A
finalizes the link with C with an AcceptedConnection(A, L)
message. If C prefers not to connect with A, it issues a
RefuseConnection(A, L) to B. In the latter case, A will not be
aware of C existence. Moreover, B could record C answer and

consequently exclude C from successive connection requests
from A.

The algorithm is designed to propagate the least possible
amount of information needed to establish new connections.
The FindConnection(L, ex) message in fact propagates no new
information at all: A simply allows to share some information
(on A) that B already has. A can create the ex list with the
identifiers of agents suggested by B through a previous
AcceptedConnection message (both in case A did accept the
connection or it did not).

The RequestConnection(A, L) message does propagate
information: before that message, C could not even know about
A existence (not that A had something to do with L or it knew
B). However, this cannot be avoided. Some information must
be shared in order to create a connection. With our algorithm
the ones who want to make new friends are the only ones that
start sharing information and are perfectly in control of what
kind and amount of information they are willing to share. Of
course, the more information they share, the more likely they
connect with new agents.

AcceptConnection/RefuseConnection messages do not
share new information: once again, they simply allow B to
propagate information it already has and that is strictly needed
to establish the connection. The information propagation is due
to the AcceptedConnection messages, but they are strictly
necessary.

In order to prove that the information provided is minimal,
suppose we would like to provide less information. The only
messages that increase the amount of information shared with
someone are the RequestConnection and the
AcceptedConnection. Firstly, without RequestConnection, C
could not approve a friendship with someone he does not even
know (and is guaranteed that if he refuses, A will not know
anything); secondly, without AcceptedConnection, B could not
inform A that a new friend is found.

B. The representation of profiles
In social network systems users enter data in a variety of

ways. The most structured part is their user profile: this is

essentially filled through some web form with fields for
relevant entries; the exact nature of the data users put in their
profiles is related with the kind of social network, e.g., whether
oriented towards career [4] or hobbies [6] [3]. Users provide
data in many other ways: for example users may add pictures,
posts, comments, video, and audio-clips. Even more data can
be gathered saving the search queries the user more frequently
uses, his browsing habits (in the social network system) and
similar statistical data. In principle, this huge amount of data is
gathered in order to offer better suggestion to the user, meaning
both “more” contacts and “better” advertising.

In fact, since all this information is available to the software
agents, we expect they can use it as effectively as a centralized
system, although with less privacy concerns. Semantic
structure can be obtained from textual comments and articles
like in [19] through systems such as Lucene [20]. Semantic
processing of images is an active research subject (e.g., [21]);
however, satisfactory results can be obtained by means of
manual “tagging”, which is a standard practice in existing
social networks.

However, from an abstract point of view, we prefer to use
the non restrictive assumption that all the relevant information
is in a profile written using the Resource Description
Framework (RDF) [22] [23]. The assumption is non restrictive
because we could simply add every datum gathered with other
means to such RDF profile.

Friend Of A Friend (FOAF) [24] is a widespread machine-
readable ontology describing persons, their activities and their
relations to other people and objects; moreover, FOAF is
extensible. We use the popular extensions Description Of A
Career (DOAC) [25] and Description Of A Project (DOAP)
[26]. In essence, FOAF is a descriptive vocabulary expressed
using RDF and the Web Ontology Language (OWL) [27].

The idea behind FOAF is that there should not be any
centralized database. However, a minor problem in the model
FOAF proposes is that every profile is meant to be entirely
public, while we prefer to let the agent decide which portions
are accessible to whom. This issue has already been addressed

Figure 1. The sequence diagram presenting the connection discovery algorithm.

alt

A : Agent B : Agent C : Agent

1: FindConnection(L, ex)
1.1: RequestConnection(A, L)

2: AcceptConnection(A, L)

2.1: AcceptedConnection(C, L)

2.2: AcceptedConnection(A, L)

3: RefuseConnection(A, L)

[if C "likes" A]

[else]

in some systems [28] [29], although their main focus appears to
be distributed authentication.

In a FOAF profile, the owner is put in relation with other
entities, such as the Schools and Universities where he studied,
the companies he worked for, sport societies or clubs he
frequents. The idea behind the connection discovery algorithm
is to use this data to find similarities and possible
acquaintances among users. For example, if a user attended a
given university, he is likely to know other people who
attended the same school of university. The connection
essentially uses a third entity, which differentiates different
connections between the same users; with a small abuse of
language we say that the connection is “typed”. For example,
two persons may be connected through an “attended University
of Parma” link. In Fig. 2 users P1 and P2 both hold a degree in
Computer Engineering at the University of Parma and this is
the type of their connection. This way it is possible to derive
relationships among users from elements in their profile.

This is the principal way to form new connections in our
distributed social network system. However, the standard way
people can be related to other people directly in FOAF is
through the “knows” term [30]; the FOAF specification
requires that the term should be used only if some kind of
reciprocity exists (especially mentioning stalking as a limit
case of not knowing). However, since each user owns and
controls his FOAF profile, our system cannot enforce the
requirement. In other words, we cannot automatically remove
knows-entries from user profiles if the user claiming the
acquaintance is not connected to the other user. We believe that
users are the sole owners and responsible party of their profile;
consequently, we do not edit them against their will, even if
they are doing wrong.

If a white-pages service mapping foaf:Person’s to Agent
IDs exists, it is possible to use foaf:knows terms to establish
new connection in a more direct way than using the connection
discovery algorithm. This step can also be used in order to
create some more connections to bootstrap the connection
discovery algorithm itself. In this case the white-pages service
can be used as a broker.

Suppose that A has a knows-entry in its profile for Person
B. Then A can ask the white-pages service for the id of the

agent corresponding to Person B. The service sends a message
RequestConnection(A, knows) to Agent B and then the
negotiation can proceed as in the usual case.

More precise kinds of relationships have been part of the
FOAF ontology, but they were removed because “they were
somewhat awkward to actually use, bringing an inappropriate
air of precision to an intrinsically vague concept” [30].
However, extensions [31] have been proposed.

IV. HDS
HDS (Heterogeneous Distributed System) [32] [33] is a

software framework merging the client-server and the peer-to-
peer paradigms, whose goal is to simplify the realization of
distributed applications. HDS implements all the interactions
among the system processes through the exchange of typed
messages. In particular, HDS provides both active and passive
processes (respectively called actors and servers) and an
application can be distributed on a (heterogeneous) network of
computational nodes (from now on called runtime nodes).

The software architecture of a HDS application can be
described through the three different models:

• the concurrency model, which describes how the
processes of a runtime node can interact and share
resources.

• the runtime model, which describes the services
available for managing the processes of an application.

• the distribution model, which describes how the
processes of different runtime nodes can communicate.

A. Concurrency Model
A process can interact with the other processes through the

exchange of messages based on one of the following three
types of communication: i) synchronous communication, the
process sends a message to another process and waits for its
answer; ii) asynchronous communication, the process sends a
message to another process, performs some actions and then
waits for its answer; iii) one-way communication, the process
sends a message to another process, but it does not wait for an
answer.

Actors can start communication of all the three types with

Figure 2. A link between users based on information in their FOAF profile.

<doac:Degree>
<doac:title>Computer
Engeneer<doac:title>
<doac:organization>University
of Parma
</doac:org…></doac:Degree>

<foaf:Person>
<foaf:name>P1</foaf:name>
<doac:education>
<doac:Degree>
<doac:title>Computer Engineer
</doac:title></doac:organization>
University of Parma
<doac:organization>
</doac:Degree>
</doac:education>
</foaf:Person>

<foaf:Person>
<foaf:name>P2</foaf:name>
<doac:education>
<doac:Degree>
<doac:title>Computer Engineer
</doac:title></doac:organization>
University of Parma
<doac:organization>
</doac:Degree>
</doac:education>
</foaf:Person>

every other process, while servers can only answer to requests
and compose services provided by other servers through
synchronous communication.

Processes delegate the task of exchanging messages with
the other processes to a mailer. Mirroring the distinction
between actors and servers, there are actor mailers and server
mailers. Mailers both send the messages and keep a queue of
received messages. These messages are rich objects, with
header fields and a special content object holding the actual
payload of the message. The content also determines the “type”
of the message (much in an object oriented sense).

HDS features message filters that can: i) modify the normal
delivery of messages; ii) manipulate the messages themselves
(e.g., encrypt and decrypt); iii) provide additional capabilities,
such as replication or logging services. Message filters are
essentially composition filters [34]. Each agent has two lists of
message filters: the ones of the first list, called input message
filters, are applied to the input messages and the others, called
output message filters, are applied to the output messages.
When a new message arrives or is sent, the message filters of
the appropriate list are applied to it in sequence until a message
filter fails; therefore, such a message is stored in the input
queue or is sent only if all the message filters have success.

B. Runtime Model
The runtime model defines the basic services provided by

the middleware to the processes of an application. This model
is based on four main elements: registry, processer, filterer and
porter.

The registry is the runtime service responsible for the
discovery of the processes of the application: i) it binds and
unbinds the processes with their identifiers; ii) it provides a list
of process identifiers; iii) it returns a reference on the basis of
the process identifier. References are essentially proxies of the
process; they make transparent the communication with respect
to the process location. In order to send a message to another
process, it is mandatory to obtain that process reference.

The processer is the runtime service responsible for the
creation of new processes (and the related mailer) in the local
runtime node. The creation is performed on the basis of the
qualified name of the class implementing the process and a list
of initialization parameters.

Since processes cannot directly modify the lists of message
filters, the services of a filterer are needed. A filterer allows the
creation and modification of the lists of message filters
associated with the processes of the local runtime node.

Finally, a porter is a runtime service responsible for the
creation of ports, which are special objects allowing an external
application to use the services implemented by a server of the
local runtime node. In essence, a port wraps a server and can: i)
limit access to the process functionalities; ii) hide the use of
some its services; iii) add some constraints on the use of some
of its services.

C. Distribution Model
The distribution model defines the software infrastructure

that allows the communication of a runtime node with the other

nodes of an application, possibly through different types of
communication supports, thus guaranteeing a transparent
communication among their processes. This model is based on
three kinds of element: distributor, connector and connection.

A distributor manages the connections with the other
runtime nodes of the application. Each distributor manages
connections that can be realized with different kinds of
communication technology through the use of different
connectors. Moreover, a pair of runtime nodes can be
connected through different connections. A connector is a
connection handler that manages the connections of a runtime
node using a specific communication technology and allows
the exchange of messages between the processes of the
accessible runtime nodes that support such a communication
technology.

A connection is a mono-directional communication channel
that provides the communication between the processes of two
runtime nodes through the use of remote references. In
particular, a connection provides a remote lookup service
offering the listing of the remote processes and the access to
their remote references.

V. SYSTEM IMPLEMENTATION
Given the extremely modest platform requirements of the

system described in Section III, nearly any middleware
framework could be used. We chose HDS because of its
simplicity.

Each agent in our system has two main tasks: a) it uses
information in the profile in order to discover new friendships
and acquaintances on his owner's behalf and b) it mediates
access to the profile information, allowing or refusing queries
from other agents. While task b) does not need a full-fledged
software agent, since a simple rule-based strategy suffices, task
a) exhibits a typical proactive behavior, as agents actively
pursue their owner's goal, without direct human intervention.

Task a) is accomplished using the connection discovery
algorithm and has been implemented with three HDS
processes: process i) searches new connections and friendships
according to the data available; process ii) brokers connections
between possibly mutual friends; process iii) accepts/refuses
connections proposed by the first two processes. Processes i)
and ii) are proactive, since they have to actively contact other
agents, thus i) and ii) are HDS actors. Process iii), as well as
the process implementing task b), are server processes.

In Section III, communication among agents is already
described using typed messages. Those abstract messages can
be mapped upon HDS typed messages, defining an appropriate
Java class for each message.

In HDS every agent can query the registry to obtain a
resource in order to send messages to it, but we require that
only connected agents could communicate. The solution is to
provide each agent with a pair of public/private keys. Every
valid message is encrypted with the receiver’s public key and
signed with the sender’s private key. Public keys are sent along
with AcceptedConnection messages; consequently, only
connected agents are able to communicate.

VI. CONCLUSION
In this paper we have presented a fully distributed social

networking site, supporting user profiles stored as FOAF
profiles. We presented an algorithm that suggests connections
to the users, essentially constructing a social network through
the information stored in their FOAF profile. Privacy is
respected since: i) users can easily specify which data shall be
used to construct their social network; ii) no central unit needs
to access data in the user profile; iii) the amount of information
that is propagated to users not directly connected is minimal;
iv) the users receiving new information are friends of a friend
and not total strangers. Moreover, we proposed the design of an
implementation based on the HDS framework [33].

An experimental study will be carried out: i) to verify the
effective construction of a user’s social network, possibly using
also foaf:knows terms and ii) to gather data for a more formal
mathematical study. If the results would show that the
information in the FOAF profile were not sufficient to activate
a reasonable quantity of latent links, we propose to adapt the
algorithms described in [35] to multi-agent systems,
considering how the user can control both the quantity and the
quality of information he actually shares (and with whom).

Eventually, we want to study algorithms to send messages
to distant users using the social network constructed using the
above techniques and examine the feasibility of a P2P file
sharing application internal to the social network system, using
the social network itself to route messages and files.

ACKNOWLEGMENTS
Stimulating discussions with Profs. A. Poggi and F.

Bergenti are gratefully acknowledged.

REFERENCES
[1] B. Wellman and S. D. Berkowitz, Social structures: a network approach,

Jan 1997, JAI Press, p. 508.
[2] D. M. Boyd and N. B. Ellison, “Social Network Sites: Definition,

History, and Scholarship,” Journal of Computer-Mediated
Communication, 13(1), article 11.

[3] Facebook. http://www.facebook.com/.
[4] LinkedIn. http://www.linkedin.com/.
[5] Facebook Policy. http://www.facebook.com/policy.php.
[6] Orkut. http://www.orkut.com.
[7] Orkut Content Ownership Policy.

http://www.google.com/support/orkut/bin/answer.py?answer=57439.
[8] S. Milgram, “The Small-World Problem,” Psychology Today, vol 1.,

May 1967, pp 61-67.
[9] J. Travers and S. Milgram," An experimental study of the small world

problem," Sociometry, vol 3, Dec 1969, pp 425-443.
[10] P. Dodds, R. Muhamad, and D. Watts, “An Experimental Study of

Search in Global Social Networks,” Science, vol. 301, no. 5634, Aug
2003, p. 827.

[11] S. Wasserman and K. Faust, Social network analysis: Methods and
applications, Cambridge University Press, 1994.

[12] D. Watts, P. Dodds, and M. Newman, “Identity and search in social
networks,” Science, vol. 296, May 2002, pp 1302-1305.

[13] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, June 1998, pp. 440-442.

[14] J. Kleinberg, “The small-world phenomenon: an algorithm perspective,”
Proceedings of the 32nd annual ACM on Theory of computing, 2000,
pp 163-170.

[15] L. N. Foner, “Yenta: a multi-agent, referral-based matchmaking
system,” Proceedings of the First international Conference on
Autonomous Agents, 1997, pp 301-307.

[16] H. Kautz, B. Selman, and M. Shah. “Referral Web: combining social
networks and collaborative filtering,” Communication of the ACM, vol.
40, Mar 1997, pp. 63-65

[17] P. Mika, “Flink: Semantic Web technology for the extraction and
analysis of social networks,” Web Semantics, vol. 3, 2005, pp. 211-223.

[18] Y. Matsuo, J. Mori, M. Hamasaki, T. Nishimura, H. Takeda, K. Hasida,
and M. Ishizuka, “POLYPHONET: An advanced social network
extraction system from the Web.” Web Semantics. vol 5 (4), Dec. 2007,
pp. 262-278.

[19] D. Shoujian and X. Youming, “Design and Implementation of Semantic
Retrieval Model Based on Ontology and Lucene,” Modern Electronics
Technique, 2009.

[20] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action, 2nd
ed., Manning Publications, 2008.

[21] M. Lux and S. Chatzichristofis, “Lire: lucene image retrieval: an
extensible java CBIR library,” Proceeding of the 16th ACM on
Multimedia, 2008, pp.1085-1088.

[22] D. Beckett and B. McBride, “RDF/XML syntax specification (revised),”
W3C recommendation, 2004.

[23] F. Manola, E. Miller, and B. McBride, “RDF primer,” W3C
recommendation, 2004.

[24] D. Brickley and L. Miller, Friend Of a Friend (FOAF),
http://xmlns.com/foaf/spec/.

[25] R. Antonio, Description of a Career, http://ramonantonio.net/doac.
[26] E. Dumbhill, Description of a Project, http://trac.usefulinc.com/doap.
[27] G. Antoniou and F. Harmelen, “Web ontology language: Owl”,

Handbook on ontologies, Springer, 2009, pp 91-110.
[28] S. Kruk, A. Gzella, and S. Grzonkowski, “D-FOAF-Distributed Identity

Management based on Social Networks,” Proceedings of the 3rd
European Semantic Web Conference (ESWC2006), 2006.

[29] H. Story, B. Harbulot, I. Jacobi, and M. Jones, “FOAF+SSL: RESTful
Authentication for the Social Web,” in European Semantic Web
Conference, Workshop: SPOT2009, Heraklion, Greece, 2009.

[30] D. Brickley and L. Miller, “FOAF ‘knows’ specification,”
http://xmlns.com/foaf/spec/#term_knows.

[31] E. Vitiello, “A module for defining relationships in FOAF,
http://www.perceive.net/schemas/20021119/relationship/.

[32] F. Bergenti, E. Franchi and A. Poggi, “Using HDS for realizing
Multiagent Applications,” Proceeding of the Third International
Workshop on Languages, Methodologies and Development Tools for
Multi-Agent Systems (LADS'010), Lyon, France, In press.

[33] A. Poggi and M. Tomaiuolo, “Use and Reuse of Multi-Agent Models
and Techniques in a Distributed Systems Development Framework,” in
Seventh International Symposium “From Agent Theory to Agent
Implementation,” pp. 477-482, Vienna, Austria, 2010.

[34] L. Bergmans and M. Aksit, “Composing crosscutting concerns using
composition filters,” Communications of the ACM, vol. 44, Oct 2001,
pp 51-57.

[35] M. Makrehchi and M. Kamel, “Learning social networks using multiple
resampling method,” International Conference on Systems, Man and
Cybernetics, Oct 2007, pp. 406-411.

