
Peer-to-Peer Delegation for Accessing Web Services

Michele Tomaiuolo, Paola Turci
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma, Parma, Italy
{michele.tomaiuolo, paola.turci}@unipr.it

Abstract — Hierarchical collaborations between cooperative,
rational agents are quite naturally achieved through goal
delegation. In the context of a service-oriented architecture,
agents responsible for workflow management can subdivide their
goals in sub-goals, generate a utility function from each sub-goal
and set up a negotiation process with the agents associated to one
or more Web services and responsible for the interaction with
them. However, such delegations cannot come into effect unless
they are associated with a corresponding delegation of privileges,
which are needed to access some resources and achieve desired
goals. In this paper we present a security mechanism for
SOAP-style and REST-style Web services that allows the
distribution of the delegation of access rights among different
services and clients.

Security; delegation; authorization; Web services.

I. INTRODUCTION

A number of architectures and systems are being proposed
as a ground for improved interoperability among diverse
systems, mainly exploiting the idea of a service-oriented
architecture. There are two preferred ways of realizing a
service-oriented architecture based on Web services, i.e.
SOAP-style and REST-style. REST Web Services have been
enjoying increasing popularity in the last years. The rationale,
upon which REST is based, is quite simple, i.e. the use of long-
established Web technologies instead of new standard
specifications. In particular, REST-style Web services are a
design paradigm in which web services are viewed as resources
and can be identified by their URLs. On the other hand, SOAP-
style Web services may be more appropriate when a formal
contract must be established to describe the interface offered by
web services or when developers must address complex
nonfunctional requirements. Therefore, depending on the
particular application scenario, one has to decide the best
approach to use.

The adoption of a service-oriented paradigm based on Web
services has definitely many benefits, but security is still a
great concern. A lot of efforts, by various standards groups
such as W3C, WS-I, OASIS, etc. have been devoted to web
service security standards in recent years. A basic way of
achieving security is relying on a secure transport layer,
typically HTTPS and TLS. However, a message-level security
is required in the case of architectures in which intermediaries
can manipulate messages on their way. This was the rationale
for the definition of new specifications, such as WS-Security
[23]. WS-Security, by using the XML-signature and XML-

encryption specifications, defines a standard way to secure
SOAP messages, independent from the underlying transport
protocol. As far as the REST-style is concerned, the security
model is not as highly-developed as the security model for
SOAP. Nevertheless, in both cases the focus is on individual
Web services and the access issues in composed services or in
the case of the presence of intermediaries between the requester
and the resources have not been taken into consideration. The
problem becomes more complex when the use of workflows
involves many layers of services.

Let us consider, for instance, a heterogeneous society of
agents, where different members have different internal
complexity. In such a heterogeneous society, hierarchical
collaboration between reasoning capable agents is achieved
mainly through goal delegation. From the perspective of this
example, the most interesting types of agents composing the
society could be: the WS-manager agent and the workflow
manager agent. Each WS-manager agent is associated to one or
more Web services and is responsible for the interaction with
them. Workflow managers have the goal of supporting users in
the process of building workflows, composing external Web
services and monitoring their execution. The workflow
manager agent assumes the role of the delegate agent in a goal
delegation protocol, subdivides its goal in sub-goals, generates
a utility function from each sub-goal and sets up a negotiation
process with the WS- manager agents. In such a scenario, these
delegations cannot come into effect unless they are associated
with a corresponding delegation of privileges, which are
needed to access some resources and complete delegated tasks,
or achieve desired goals.

In this paper we present a security mechanism for SOAP-
style and REST-style Web services that allows the distribution
of the delegation of access rights among different services and
clients. This paper is organized as follows. In Section 2 we give
background information on WS-* and RESTful Web services
with particular attention to security issues. The third section
briefly discusses the related work. Then, in Section 4, the
basics of peer-to-peer delegation are introduced and in the
following section a generic library and some services
implementing those basic mechanisms are presented. Finally,
in the last section, some conclusions are drawn about this work.

II. SERVICES ON THE WEB: SECURITY ISSUES

REST-style and SOAP-style Web services are not mutually
exclusive nor is one better than the other. Both are valid
approaches to solving real problems, each with its strengths

and weaknesses. The choice of which approach to use should
be based on the characteristics of the application being
developed.

At a fundamental level the difference between REST-style
and SOAP-style Web service is ascribable to the difference
between resource-oriented and activity-oriented services.
Resource-oriented services focus on a collection of resources
upon which a set of basic operations can be performed. The
operations that can be performed are defined by the HTTP
specification, i.e. retrieving, creating, modifying and deleting
resources. In other words, this means working directly with the
HTTP interface down at the transport layer, rather than
addressing system-specific interfaces and using messages for
sending the invocation details of Web services. On the other
hand, an activity-oriented service focuses on actions that one
can perform. Actions are the center of the attention, as opposed
to resource-oriented services where operations that can be
performed remain basically constant regardless of the type of
resources. After all, in the REST perspective the Web is seen as
the means for publishing globally accessible resources and for
delivering services to clients, whereas in the SOAP context the
HTTP protocol is only exploited as a binding transport protocol
and the selection of the operation to be performed is specifyed
in the SOAP message. Such differences have obvious
consequences on the way security is implemented in the two
approaches

The Web service specifications (WS-*), taking advantage
the SOAP header as an extensible container for message
metadata, provides developers with a set of optional
specifications including those which cover the security issues.
The WS-* specifications are designed in order to be composed
with each other. WS-Security provides a level of abstraction
which allows different systems, using different security
technologies, to communicate securely using SOAP in a way
which is independent from the underlying transport protocol.
This level of abstraction allows developers to use existing
security infrastructure but also to incorporate new security
technologies. It provides a set of security features, built on
established industry standards for authentication and XML
encryption and signing, which supports the definition of
security tokens inside SOAP messages, the use of XML
Security specifications to encrypt and sign these tokens and to
sign and encrypt other parts of a SOAP message. Recent
specifications provide further SOAP-level security
mechanisms. WS-SecureConversation defines security
contexts, which can be used to secure sessions between two
parties. WS-Trust specifies how security contexts are issued
and obtained. It includes methods to issue, validate, renew and
forwarding security tokens, to exchange policies and trust
relationships between different parties. Finally, WS-Policy
allows organizations, exposing Web Services, to specify the
security requirements of their services. This specification
provides a general purpose model and the corresponding syntax
to describe the requirements and constraints of a Web service
as policies, using policy assertions.

No framework for advanced security, equivalent to that
provided by WS-*, has been proposed for REST. The
simplicity of REST if compared with SOAP and WS-* stack is
real until it is carried out an ad hoc integration over the Web,

but if advanced functionalities, as those delivered by WS-*, are
needed, it is not so simple to extend REST-style Web services
in order to support them in an interoperable manner. For less
demanding scenarios, both REST and SOAP styles take
advantage of the basic guarantees provided by protocols such
as HTTPS and TLS.

III. RELATED WORK

The Web Services access control is already becoming an
important topic of many recent researches. The various security
standards proposed and most of the studies carried out in the
context of Web services focus mainly on the access control
policies for single web services [4][5][6]. In particular, in [5]
the authors address the problem of securing sequences of
SOAP messages exchanged between web services and their
clients. By constructing formal models they investigate the
security guarantees offered by the specifications WS-Trust and
WS-SecureConversation, which provide mechanisms allowing
communicating parties to establish shared security contexts and
to use them to secure SOAP-based sessions.

A few research works have dealt with security issues
related to composed services.

She et al. [29] propose a delegation-based security model to
address problems such as how much privilege to delegate, how
to confirm cross-domain delegation, how to delegate additional
privilege. The proposed model extends the basic security
models and supports flexible delegation and evaluation-based
access control. But all web services participating in this
composition have to agree on a single token-based
authorization mechanism, i.e. a hierarchical access control
framework is provided.

In [9] a delegation framework which allows delegation of
access rights in multi-domain service compositions is
presented. The approach is based on an abstraction layer,
called abstract delegation, which harmonises the management
of heterogeneous access control mechanisms and offers a
unified user experience hiding the details of different access
control mechanisms. Our approach differs from this because
we consider each service or resource as a trust domain based
on a certificate chain access control mechanism.

IV. DELEGATION

The traditional approach for inter-domain security is based
on centralized or hierarchical certification authorities and
public directories of names [13][14][16]. In contrast with this
hierarchical approach, other solutions are possible, where the
owner of local resources is considered as the ultimate source of
trust about them, and he is provided with means to carefully
administer the flow of delegated permissions [7][8][18]. Trust
management principles argue that no a-priori trusted parties
should be supposed to exist in the system, as this would imply
some “obligated choice” of trust for the user, and without
choice, there is no real trust. Moreover, the presence of some
third party as a globally trusted entity implies that all systems
participating in the global environment have to equally trust it.

Nowadays, new technologies, in the form of protocols and
certificate representations, are gaining momentum. They allow

a different approach towards security in global environments,
an approach which is paradoxically founded on the concept of
“locality”. Federation of already deployed security systems is
considered the key to building global security infrastructures.
In this way, users are not obliged to adopt some out of the box
solution for their particular security issues, to rebuild the whole
system or to make it dependent upon some global authority, in
order to gain interoperability with others.

Instead they are provided with means to manage the trust
relations they build with other entities operating in the same,
global environment. In the same manner as people collaborate
in the real world, systems are being made interoperable in the
virtual world. Cooperation and agreements among companies
and institutions are making virtual organizations both a reality
and a necessity. But they will never be very successful if
existing technologies will not match their needs.

The Simple Digital Security Infrastructure (SDSI)
[1][15][28], which eventually became part of the SPKI
proposal [10], showed that local names could not only be used
on a local scale, but also in a global, Internet-wide,
environment. In fact local names, defined by a principal, can be
guaranteed to be unique and valid in its namespace, only.
However, local names can be made global, if they are prefixed
with the public key (i.e. the principal) defining them. There's
no limitation to the number of subjects (keys or other names)
which can be made valid meanings for a name. So in the end, a
name certificate defines a named group of principals. Some
authors interpret these named groups of principals as
distributed roles [19][20][21]. The case where a group contains
other groups is interpreted as a role-subroles relation. While the
SPKI proposal was based on s-expressions for representing
certificates, the theory on which the proposal is based doesn't
force a particular representation.

Recently, the SAML language emerged as the standard for
representing security assertions [24]. Since the specifications
allow a quite wide range of assertion types to be issued, it is
also possible to use SAML to represent delegation certificates
based on trust management principles and on the SPKI theory.

The generic structure of a SAML assertion makes evident it
is very similar to what is usually called a “digital certificate”.
Like in every other certificate, an issuer attests some properties
about a subject, digitally signing the document to prove its
authenticity and to avoid tampering. Conditions can be added
to limit the validity of the certificate. As usual, a time window
can be defined. Moreover, it can be limited to a particular
audience or to a one-time use. Conditions can also be put on
the use of the certificate by proxies who want to sign more
assertions on its basis.

Being designed to allow interoperability among very
different security systems, SAML offers a variety of schemes
to format security assertions. One interesting possibility is to
use a SubjectConfirmation object to represent a subject directly
by its public key, which resembles the basic concepts of SPKI,
where, at the end, principals “are” always public keys.

The possibility to link local namespaces in a global scale,
paves the way for a new paradigm for distributed security. This
paradigm is sometimes named dRBAC, distributed Role-based

Access Control. In particular, some authors [12] argue that
dRBAC should add some new features to previous approaches:

• Third-Party delegations allow some entities to delegate
roles in different namespaces. This mechanism, related to the
“speaks for” relationship in the Taos system, does not add any
new functionality, as the same results can be obtained using
anonymous intermediate roles, but improves the expressiveness
and manageability of the system.

• Valued attributes allow to add attributes and
corresponding numeric values to roles. This way, access rights
for sensible resources can be modulated according to some
attributes. The same result could be obtained by defining
different roles for different levels of access rights, but this
would multiply the number of needed roles.

• Continuous monitoring allows to verify the actuality of
trust relationships. Typically, this feature is based on a
publish/subscribe protocol to advertise the status updates of
relevant credentials, which can be either revocable or short-
lived.

V. IMPLEMENTATION AND DISCUSSION

In the following the implementation of security
mechanisms for web services, based on peer-to-peer
delegation, will be presented. In particular, a generic library
has been developed, which allows issuing and verifying chains
of delegation certificates and thus allows associating a
particular request with some roles and permissions.
Furthermore, a SOAP based security service has been
developed, responsible for allowing the creation of a security
session on a platform, so that a client can send his chain of
delegation certificates just once, and then possibly access the
services provided on that platform. A quite similar service has
also been developed according to the RESTful paradigm.
Finally, an extension of our delegation framework is proposed,
with the aim of taking into account the OpenID protocol.

A. Delegation library

The first step to develop a security infrastructure for web
services consisted in the realization of a software library
implementing core functionalities, i.e. allowing the creation
and validation of delegation certificates and certificate chains.
This software library can be used to manipulate SAML and
XACML structures. Unfortunately, probably due to the relative
novelty of relevant standards (especially for their latest
versions), the software park is not particularly vast.

With regards to SAML, the choice falls on the OpenSAML
library. In fact, while still being in a development phase, it is
the only one supporting all functionalities of SAML 2.0 and,
above all, allowing the definition of new classes with relative
simplicity. Extensibility is in fact particularly important, in our
case, to realize a “glue” level between SAML and XACML
[25], embodied by the XACMLPolicyStatement element.

About XACML, instead, the choice of Sun's XACML
Implementation was obliged, in practice, as it is the only valid
open source tool to deal with the language.

Then, it was decided to give a standard structure to our
library, realizing its API like a Java security provider. The Java
Cryptographic Architecture (JCA) foresees in fact the
possibility to realize packages, called security provider, which
provide JDK with a concrete implementation of a subset of
Java cryptograohic functionalities. For developers wanting to
use the library, the main advantage of this choice is the
availability of a set of API with a well known and collaudated
structure. Moreover, this will allow the use of certificates and
paths which will be realized with normal Java API, without
duplicating their functionalities. In fact, in principle any
component (also external ones), operating on a Java certificate,
will be able to operate on a certificate of the new library, too.

To realize an extension of the Cryptographic Architecture,
first of all it was necessary to extend Java basic data types,
which in our case are represented by certificates and paths;
then engine classes had to be realized, which specify
algorithms to be implemented. Finally, a master class for the
provider had to be implemented, which is necessary to register
new classes and allow them to be used by Java.

To represent certificates, Java cryptographic APIs define an
abstact class: Certificate. Within it, all basic methods to
manage public key certificates can be found. Extending this
class, an abstract class has been realized, containing the
common methods of its derived classes, representing name
certificates and authorization certificates.

An algorithm to evaluate the correctness of a certificate
chain is described in the original SPKI proposal. To this aim, a
subclass of CertPathValidator had to be developed,
implementing this validation algorithm (see Fig.1). Parameters
of the validation process are represented as
ValidatorParameters objects, containing the list of keys trusted
by the principal operating the verification, and possibly
additional parameters.

A further operation to be offered by the library is that of
validating a request to access a local resource. The request
itself is represented by an instance of the AuthorizationRequest
interface. Users of the library can provide different
implementations of the interface, according to their needs.

Apart from the request, the algorithm with the list of
authorization certificates to use and the list of trusted keys
needed during the certificate verification process must be
provided. Finally, in the case some additional conditions exist,
it could be necessary to specify additional parameters for the
verification process.

The validation happens through the creation of a Policy
Decision Point (PDP). The Sun's XACML library provide the
methods for creating such a decision block. However, to be

able to obtain all needed policies, to validate the request, the
PDP class of XACML uses various finder modules allowing to
retrieve information. It was thus necessary to develop a finder
module, called AuthzPolicyFinderModule, which is in charge
of retrieving policies from authorization certificates provided
as parameters.

During the process of creation of a PDP it is possible to
insert additional finder modules. Such modules can be
specified in the phase of construction of the
AuthorizationEvaluator object and allow to extend the object's
capabilities to search for information. Moreover, this way it is
possible to provide the validation module with a series of local
policies which are not stored within SPKI authorization
certificates.

The final result of the operation is a list of
AuthorizationResponse objects, one for each resource which
was asked to be accessed. Each instance contains in its
structure an identifier of the resource which it refers to, a
decision value and a status code.

B. SOAP services

The objective of this first sub-project was to create a
security mechanism for web services based on the SOAP
protocol. The mechanism had to allow the distributed
delegation of access rights among different services and clients.
Instead of attaching a certificate chain to each service request, a
generic security service was designed. This service had to
accept and verify a certificated chain attached to a signed
authentication request. After a successful authentication, the
client had to be associated with a security session, which it
could then mention when trying to access services on a
particular platform. The session id had to be obtained
according to the WS-Trust specifications and it had to be used
as a meaningful security token to be associated with WS-
Security enriched messages.

The sub-project has been implemented using the Axis
framework, and resulted in a generic authentication service, a
dummy service which needs proper authorization to be
accessed, and a prototype client (see Fig.2).

All three parties are associated with their own couple of
private and public keys, and can manage chains of delegation
certificates encoded as SAML assertions. Moreover all parties
leverage Rampart to generate signed SOAP messages
conforming to WS-Security specifications.

Thus, the project effectively uses a number of technologies
which have already been tested, and can work together to
realize more complex scenarios than the ones foreseen in their
specifications.

Figure 1. Delegation chain

The realized security Web Service can effectively handle
authentication requests, i.e. verify the message signature, verify
the chain of delegation certificates, and eventually generate a
security session and return a session identifier to the client. It is
not yet associated with an explicit security policy, as defined
by the WS-Policy specifications. Instead, the client has to
possess a-priori knowledge of security requirements.

The client is built as an example and illustrates all the steps
that a user application has to complete, to use the delegation
mechanism.

The dummy service, finally, has an associated Axis
Handler to manage the session abstraction and verify the
proper authorization before granting access to the service.
Under the hood, the handler contacts the security service to
receive a list of distributed roles associated with the public key
and session id of the client, and then it uses an XACML policy
to verify the association of the roles with the required
permissions.

C. RESTful services

This sub-project replies in large part the previous one, but
in a RESTful environment. The main actors are still a client, a
security service, to handle authentication requests and sessions,
and a dummy service, which exploits the security service to
implement its access control mechanisms (see Fig.2).

Some differences, though, derive directly from the different
stack of involved protocols. The RESTful approach is much
simplified with respect to the SOAP approach. Messages are
plain HTTP messages, and security is limited to TLS and
HTTPS. In our scenario, we also introduced some variations, to
exploit the specific features of the REST environment. First of
all, the client was reduced to a plain web browser, which
generates all requests and takes care of the cryptography. For
this purpose, we installed a private/public key pair (encoded
into self-signed PKCS#12 certificates) in Firefox and enabled
the not very popular policy of mutual authentication, allowed
by HTTPS. Another difference we introduced was to send the

chain of certificates not directly in the request body, but as urls
of signed SAML documents available as resources on the web.
This way, the composition of the request is simplified for the
user, and moreover this opens up the possibility of renewing
the delegation certificates automatically, and making the most
recent issue available in a well known location.

The framework used, for the development of the RESTful
web services themselves, is Jersey. The internal functioning of
the services remains the same as in the previous sub-project,
but the APIs change for adhering to the chosen paradigm. For
implementing the dummy service, a Filter was created, which
takes care of contacting the security service and matching the
acknowledged roles with the required permissions.

D. Integration with OpenID

Installing certificates in a browser is not always possible or
desirable. It may be practical for accessing services from a
personal device, but this would limit the integration of the
application in the web at large.

OpenID [26] is a decentralized digital identity system, in
which any user’s online identity is given by URL (such as for a
blog or a home page) and can be verified by any server running
the protocol.

The main motivation for OpenID is to avoid Internet users,
in particular users of blogs, wikis and forums, to create and
manage a new account for every site they intend to contribute
in. Instead, on OpenID enabled sites, users only need to
provide their home url, so that the authentication process can
be completed with their own identity provider.

A limitation which has been often highlighted, is that
OpenID does not allow to describe the authentication and login
mechanism explicitly. When the knowledge of used
mechanism is needed by a relying party, before accepting a
remote authentication notification, it must be obtained by other
means. This is the case of access to sensitive data, for example
in the context of e-banking applications, which require the use
of strong authentication mechanisms. To solve this issue, the

Figure 2. Using delegation certificates for accessing Web services

integration of OpenID with SAML has been proposed. In this
case, SAML can be used to provide explicit information about
the authentication context.

Another limitation is associated with the very idea of
completely “open” authentication, as in fact a malicious user or
software agent can provide its own authentication server. Thus
the whole mechanism does not improve security in any way.
As a consequence, “open” authentication soon turned into
federation among authentication domains, using white or black
lists of known OpenID providers.

Yet, the main problem is that, even if integrated this way
with SAML or used into a federation of security domains,
OpenID still remains focused on authentication, thus its
usefulness and applicability is confined to very simple
applications, where trust relationships are not built among
users, with delegation of access rights, but instead based on
federation of identity providers. However, in the generic
context of service composition, above all in open peer to peer
networks, identity information alone (especially if it is
provided by some remote host) is not sufficient to take
decisions whether to grant access to a local resource or a
service, or not.

The next sub-project, which we are working on, in the
context of this research deals with the integration of OpenID
into a trust management environment. The goal is to substitute,
in the last ring of a delegation chain, the public key with an
OpenID url to authenticate the final user of the service. In this
way, on the one hand, the remote identity is associated with
distributed roles and thus to local access rights. On the other
hand, an identity provider is trusted when it is included into a
chain of delegation, thus eventually allowing to avoid the
global white and black lists of identity providers.

This sub-project will have to overcome some problems
related to the secure communication of the credentials, but
above all it will have to deal with (and probably live with)
important differences between the paradigms: one completely
decentralized, the other one based on a unique hierarchy of
names (urls) and on globally trusted third parties to assure the
secure communication among all peers.

VI. CONCLUSION

While the traditional approach for inter-domain security is
based on centralized or hierarchical certification authorities and
public directories of names, new solutions are appearing. Trust
management systems do not assume, a-priori, the existence of
some globally trusted parties. A number of emerging
technologies, including SAML and XACML, can enable this
kind of solutions in the context of web services. This work
analyzed the use of peer-to-peer delegation mechanisms in the
context of SOAP services and RESTful services, using the
relevant standards defined for the two different approaches.
The results of this work include a generic library for issuing
and verifying delegations chains, a security service with a
SOAP interface, a security service with a RESTful interface,
plus prototype components representing clients and final
services to be deployed in an open environment.

REFERENCES
[1] Abadi, M. (1998). On SDSI’s Linkd Local Name Spaces. Journal of

Computer Security, 6 (1-2), 3-21.

[2] Anderson, A., Lockhart, H. (2004). SAML 2.0 profile of XACML.
Retrieved April 20, 2009, from http://docs.oasis-
open.org/xacml/access_control-xacml-2.0-saml_profile-spec-cd-02.pdf

[3] Aura, T. (1998). On the structure of delegation networks. In Proc. 11th
IEEE Computer Security Foundations Workshop (pp. 14-26). IEEE
Computer Society Press.

[4] Bertino E., Squicciarini A. C., Paloscia I., and Martino L. (2006). Ws-
AC: a fine grained access control system for web services. World Wide
Web. Vol. 9. No. 2. pp. 143-171.

[5] Bhargavan, K., C. Fournet, C., Gordon, A.D., Corin, R. (2007). Secure
sessions for web services. ACM Transactions on Information and
System Security. Vol. 10. Issue 12. 2007.

[6] Bhatti R., Joshi J. B. D., Bertino E., Ghafoor A., (2003). Access Control
in Dynamic XML-based Web-Services with XRBAC, In proceedings of
The First International Conference on Web Services, Las Vegas.

[7] Blaze, M. , Feigenbaum, J., Lacy, J. (1996). Decentralized trust
management. In Proc. of the 17th Symposium on Security and Privacy
(pp. 164-173). IEEE Computer Society Press.

[8] Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A. (1999). The
KeyNote Trust-Management System Version 2. IETF RFC 2704,
September 1999. Retrieved April 20, 2009, from
http://www.ietf.org/rfc/rfc2704.txt

[9] Bussard, L., Nano, A., Pinsdorf, U. (2009). Delegation of access rights
in multi-domain service compositions. IDIS Journal (Identity in the
Information Society), volume 2, n. 2, p. 137-154. Springer Netherlands.

[10] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.
(1999). SPKI certificate theory. IETF RFC 2693, September 1999.
Retrieved April 20, 2009, from http://www.ietf.org/rfc/rfc2693.txt

[11] Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the
grid-enabling scalable virtual organizations. International Journal of
High Performance Computing Applications, 15(3), 200-222.

[12] Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V. (2002).
dRBAC: Distributed Role-based Access Control for Dynamic Coalition
Environments. icdcs, pp.411, 22nd IEEE International Conference on
Distributed Computing Systems (ICDCS'02), 2002.

[13] Gutmann, P. (2004). How to build a PKI that works. 3rd Annual PKI
R&D Workshop. NIST, Gaithersburg MD. April 12-14, 2004.

[14] Gutmann, P. (2000). X.509 Style Guide. Retrieved April 20, 2009, from
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[15] Halpern, J. van der Meyden, R. (1999). A Logic for SDSI’s Linked
Local Name Spaces. In Proc. 12th IEEE Computer Security Foundations
Workshop (pp.111-122).

[16] Housley, R., Polk, W., Ford, W., Solo, D. (2002). Internet X.509 Public
Key Infrastructure Certificate and CRL Profile. IETF RFC 3280, April
2002. Retrieved April 20, 2009, from http://www.ietf.org/rfc/rfc3280.txt

[17] Khare, R., Rifkin, A. (1997). Weaving a web of trust. World Wide Web
Journal, 2 (3), 77-112.

[18] Lewis, J. Reinventing PKI: Federated Identity and the Path to Practical
Public Key Security. 1 March 2003. Retrieved April 20, 2009, from
http://www.burtongroup.com/

[19] Li, N., Grosof, B. N., Feigenbaum, J. (2003). Delegation logic: a logic-
based approach to distributed authorization. ACM Transactions on
Information and System Security. Vol. 6. No. 1. pp. 128-171. 2003.

[20] Li, N. (2000). Local names in SPKI/SDSI. In Proc. 13th IEEE Computer
Security Foundations Workshop (pp. 2-15). IEEE Computer Society
Press.

[21] Li, N., Grosof, B. (2000). A practically implementable and tractable
delegation logic. Proc. 2000 IEEE Symposium on Security and Privacy
(pp. 29-44). IEEE Computer Society Press.

[22] Moses, T. (2005). eXtensible Access Control Markup Language
(XACML) Version 2.0. Retrieved April 20, 2009, from http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[23] OASIS. Web Services Security: SOAP Message Security 1.1.
http://www.oasis-open.org/committees/download.php/16790/wssv1.1-
spec-os-SOAPMessageSecurity.pdf. Feb., 2006.

[24] OASIS Security Services (SAML) TC. http:// www.oasis-
open.org/committees/security/.

[25] OASIS eXtensible Access Control Markup Language (XACML) TC.
http://www.oasis-open.org/committees/xacml/.

[26] OpenID (2007). OpenID Authentication 2.0, December 5, 2007.
Retrieved April 20, 2009, from http://openid.net/specs/openid-
authentication-2_0.html

[27] Ragouzis, N., Hughes, J., Philpott, R., Maler, E., Madsen, P., Scavo, T.
(2008). Security Assertion Markup Language (SAML) V2.0 Technical
Overview. Retrieved April 20, 2009, from http://www.oasis-

open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-
cd-02.pdf

[28] Rivest, R.L., Lampson, B. (1996). SDSI - A Simple Distributed Security
Infrastructure. September 15, 1996. Retrieved April 20, 2009, from
http://people.csail.mit.edu/rivest/sdsi11.html

[29] She, W, Thuraisingham, B, Yen, I-L. (2007). Delegation-based security
model for web services. In: Proceedings of 10th IEEE High Assurance
Systems Engineering Symposium (HASE ’07). IEEE Computer Society.
p. 82–91. ISBN:978-0-7695-3043-7.

[30] Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Tuecke,
S., Gawor, J., Meder, S., Siebenlist, F. (2004): X.509 Proxy Certificates
for Dynamic Delegation. Proceedings of the 3rd Annual PKI R&D
Workshop. Gaithersburg MD, USA, NIST Technical Publications.

