
A Self-Organising System for Resource Finding in
Large-Scale Computational Grids

Fabrizio Messina, Giuseppe Pappalardo, Corrado Santoro
University of Catania

Dept. of Mathematics and Informatics
Viale Andrea Doria, 6 - 95125 - Catania (ITALY)

EMail: {messina, pappalardo, santoro}@dmi.unict.it

Abstract—This paper presents a novel approach for resource
finding and job allocation in a computational Grid. The proposed
system is calledHYGRA, for HYperspace-based Grid Resource
Allocation. The basic principle involves the construction of a
virtual hyperspace in which the available amount of each resource
type is used as ageometric coordinate, making each Grid node
representable as apoint in this virtual hyperspace. A distributed
overlay construction algorithm aims at connecting each node
with the nearest k nodes w.r.t. the euclidean distance defined
in the hyperspace. In this system, a job request, which can
be also represented as a point, navigates the hyperspace, from
node to node, following the overlay links which minimize the
euclidean distance between the current node and the target point
representing the job itself. The paper describes the algorithms
for overlay construction and resource finding and assesses their
validity and performances by means of a simulation approach.

I. I NTRODUCTION

Computational Grids [3], [5] are computer systems whose
infrastructure, in terms of software architecture and protocols,
must feature very important characteristics, such asfault-
tolerance, scalability and efficiency. These systems are made
of thousands CPUs, therefore the operations provided must
strongly take into account the size of the system. Such an
aspect is particularly important for operations like job sub-
mission: this operation implies to find a Grid node featuring
a desired amount of certain resources, such as number of
CPUs, CPU time, RAM and disk space, network bandwidth,
software libraries, etc.; when the overall system is composed
of thousands of nodes, a properfast and efficientnode finding
algorithm is mandatory, since a brute-force approach involving
all nodes is obviously neither opportune nor sound.

A typical solution to the problem above involves the use
of a hierarchy of special repositories, holding a distributed
database which stores the information about each Grid node
and its kind and amount of available resources. This is
the technique employed by theMonitoring and Discovery
System[9], [6], [1], provided by the Globus Toolkit1, the
de-facto standard software tool for building interoperable
computational Grids. But even if MDS is widely used, it
suffers of peculiar problems, well known to MDS designers,
which seriously affect its performances: the most important
problem is a possiblelack of consistencyof stored information,
which is due to the unavoidable latencies between the instant

1http://www.globus.org

in which a node changes its state (i.e. some resources become
available or unavailable) and the instant in which the MDS
database is updated; during this time period, the MDS database
contains information which do not reflect the real node’s state,
thus affecting the validity of the resource finding phase; if
the system size grows, in terms of number of Grid nodes,
the probability of the occurrence of such an inconsistency
increases.

A possible approach for solving the problem above, which
has been studied in [4], [7], [2], foresees to directly querythe
nodes about their resource availability, instead of contacting
“someone else” which could not have fresh information. Since
querying all nodes is not a viable solution, the cited ap-
proaches consider the employment ofpeer-to-peertechniques,
which aim at organising the nodes in a proper overlay network
in order to make the query and match process easier.

With these concepts in mind, this paper proposes a P2P
approach, calledHYGRA (for HYperspace Grid Resource
Allocation), strongly based on concepts proper of spatial
computing [8]. The proposed solution, which iscompletely
decentralised(no central or aggregated repositories, or super-
peers), models the entire Grid asn-dimensional hyperspace
in which resource types, with their availability, represent
coordinates: each node thus virtually occupies a specificpoint
in the hyperspace. Following this abstraction, nodes with
resource availability close to each other featurepoints, in the
hyperspace, that are near to each other; therefore, to find a
node able to offer a certain amount of resources for a job
implies to locate a specific region of the hyperspace and
discover (one of or the best of) the nodes occupying that
region.

To make this possible, HYGRA organises the Grid nodes
in anoverlay network, where each node is virtually connected
to some other nodes and interactions among nodes can occur
only following such links; overlay construction is performed
by means of a decentralised algorithm in which each node/peer
aims at ensuring that the node is always kept linked withat
mostk of the “nearest” nodes in the hyperspace.

The overlay network built so far is exploited by the resource
finding algorithm which is thus reduced to a “geometric
problem”: given that we know the coordinates of the region
holding candidate nodes (and this can be obtained from job’s
requirements), the query can start fromany nodeand follow

the links leading to nodes with minimum distance from the
target region. Also in this case, the approach is completely
decentralised, since the peer receives the query, checks itand,
if necessary, forwards it to a linked node until the target can
be found.

The paper is structured as follows. Section II introduces the
basic concepts and symbols used later on in the description
of the HYGRA. Section III describes the system architecture.
Section IV details the working scheme of HYGRA, reporting
and explaining the overlay construction and resource finding
algorithms. Section V discusses the result of a simulation study
about the performances of HYGRA. Section VI concludes the
paper.

II. BASIC HYGRA MODEL

To better explain the technique proposed in this paper,
we first introduce a mathematical formulation with a set
of symbols and relations that are used to model the Grid
environment and the hyperspace, and helps the understanding
of the HYGRA algorithms.

A. Model of Resource and Job Request

We consider a Grid composed ofn nodes; for each nodei,
let si denote itsstate, meant to describe resource availability
on i, at a certain time instant; assuming that, in the overall
Grid, all nodes offersm different types of resources (say,
CPU, memory, disk space, network, OS type, etc.), the state
si of a node will be a vector(ri,1, ri,2, . . . , ri,m); here each
componentri,j represents the amount of resourcej available
at nodei.

Let us define resourcedomainsD1,D2, . . . ,Dm, mean-
ing that ri,j∈Dj for i=1 . . . n, j=1 . . . m. If a resource is
measured by aquantity, such as RAM, disk space, network
bandwidth or CPU time,Dj will be a numeric interval, ranging
from a minimum to the maximum admissible resource amount
over all nodes. If the resource is of a different kind, such as
the presence of a certain library or the availability of a certain
library version,Dj will be a set of values each describing a
potential resource instance.

In this system model, a job submission request, which
carries job’s requirements, is represented as the tupleq =
((f1, q1), (f2, q2), . . . , (fm, qm)), where qj is the amount of
the resource of typej requested by the job, andfj is a
predicateused to match the requirement with the availability:
we say that noden∗ can host a job carrying requestq iff
fj(rn∗,j , qj) = true,∀j ∈ 1, . . . ,m. We assume, without loss
of generality, that predicatefj can be either the= or the≥
relation: the former means that the request and availability
must exactly match, while, in the latter case, the predicate
succeeds if the resource availability is greater than the resource
requested2.

Let us introduce an example to better explain the practical
usage of the symbols provided. We consider a Grid whose
nodes possess the following resources: amount of RAM,

2These two predicates cover most cases of job allocation requests in a Grid.

number of CPU cores and GCC library version; let us sup-
pose that there cannot be more than 8 GBytes RAM and
8 cores per node, and that some nodes offer glibc version
2.10.2 while others offer version 2.9.1. For this Grid, resource
domains will beD1 = 0 . . . 8192 (assuming RAM is specified
in Megabytes),D2 = 0 . . . 8 and D3 = {2.9.1, 2.10.2}.
In this system, a request for a job that needs 3 cores, at
least 25 MBytes of RAM and glibc version 2.10.2 can be
represented as{(≥, 25), (=, 3), (=, 2.10.2)}.

B. Model of the Hyperspace

The hyperspace model used by HYGRA starts from the
formulation introduced above, provided that a transformation
is applied to domains not featured by a numeric value: for each
domainDj which is a finite set of known values, we associate
a (natural) number to each of such values; as instance, domain
D3 = {2.9.1, 2.10.2} of the example above can be remapped
to D3 = {1, 2} = [1, 2] ⊂ N.

After this transformation, each domain is indeed a subset
of N or R, therefore we can construct ametric space(S, d),
whereS = D1 ×D2 × . . .×Dm, elements are vectorsv ∈ S,
and the metricd is theeuclidean distance. Each Grid nodei
features a statesi which (provided again the proper domain
transformation) becomes a vector of the metric spacesi ∈ S:
in other words, we can say that a nodei of the Grid, according
to its state, represents apoint in the hyperspaceS.

Following the same abstraction, in a job requestq =
((f1, q1), (f2, q2), . . . , (fm, qm)), vector q = (q1, q2 . . . , qm)
is also an element ofS, and q, due to the presence of
the predicates, determines apartition of S (or a semispace),
S(q) ⊂ S, made of all elements inS that satisfy predicates
fj :

S(q) = {v ∈ S : fj(vj , qj) = true ∀j ∈ 1, . . . ,m}

We callS(q) theadmissible regionfor job q since any Grid
nodei such thatsi ∈ S(q) is able to host the job. The aim of
HYGRA is to provide a decentralised approach to allow the
discovery of the nodes belonging to the admissible region of
a given job that needs to be allocated and executed.

III. HYGRA A RCHITECTURE

From the software architecture point of view, HYGRA is
made by means of a multi-agent system. Since the overall
structure is based an overlay network, each Grid node runs
a NODEAGENT holding three kind of information:(i) the
state si of the node; (ii) the set of referencesof other
NODEAGENTs, which belong todirectly linked nodesof the
overlay3; and (iii) the statesj of each nodej relevant to
directly linked NODEAGENTs.

Each NODEAGENT can communicate with other
NODEAGENTs by exchanging the following types of
messages:

3Of course such a reference may be an IP address, a couple IP/port, a FIPA
agent name, etc. This is a matter of the implementation and its choice does
not affect the architecture or the validity of the approach.

1) Job Allocation Requestq. This message is sent from a
NODEAGENT, which is not able to allocate the job, to
a linked NODEAGENT selected according to a proper
forwarding policy detailed in Section IV.

2) State Change Notification. It is sent from the
NODEAGENT of a node i to all the linked
NODEAGENTs when node’s statesi changes tos′i
(due to a new job arrival or the termination of the
execution of a running job); the message obviously
carries information about the new states′i.

3) 2-hop Status Query. This is a query message sent
from the NODEAGENT of a node i to all its linked
NODEAGENTs and aims at obtaining the statesk of each
node linked to all the nodes directly linked withi. A
proper2-hop Status Replymessage is expected following
the transmission of this query.

4) Link Creation Notification. It is sent from a
NODEAGENT i to a NODEAGENT j to inform
the latter thati wants to be connected withj. After the
reception of this message, NODEAGENT j updates its
set of directly linked agents by including alsoi.

5) Link Cut Notification. It is sent from a NODEAGENT i
to a (connected) NODEAGENT j to inform the latter that
the link i/j has to be destroyed. After the reception of
this message, NODEAGENT j updates its set of directly
linked agents by removingi.

These messages are exchanged during the two main activ-
ities of the NODEAGENTs, (i) overlay construction, which
aims at (self-)organising the overlay network in order to
ensure certain neighborhood properties; and(ii) job allocation,
in which a job request has to be fulfilled by checking the
availability of resources of a node and, if this is not the case,
properly forwarding the request to a linked NODEAGENT. The
details and algorithms of such activities are described in the
following Section.

IV. HYGRA WORKING SCHEME

As reported above, the working scheme of HYGRA is based
on organising the Grid nodes in an overlay network featuring,
in the metric space(S, d), a neighbourhood property based on
the euclidean distance. In particular, for each nodei, given
the setL(i) of the nodes directly connected withi, these
nodes are those which feature theminimal euclidean distance
d(si, sk),∀k ∈ L(i). In other words, for each nodei the
following property holds:

∀k ∈ L(i), 6 ∃sh ∈ S, h 6= k, h 6∈ L(i) : d(si, sh) < d(si, sk)
(1)

If the property above holds, the resulting overlay network
is a topological graph that can be traversed by means of e.g.
a minimal path algorithm in order to find nodes belonging to
the admissible region.

A. Construction of the Overlay Network

The overlay construction technique is based on an
algorithm run by the NODEAGENTs which is regulated

by two parameters,degmin and degmax, respectively
the minimum and maximum degree of each node4;
therefore degmin, degmax ∈ N, degmin < degmax and
degmin ≤ |L(i)| ≤ degmax,∀i. The basic algorithm run by
the NODEAGENT of a generic nodei can be summarised in
the following steps:

Algorithm 1 Overlay Construction

1) by sending2-hop Status Messagesto each node ofL(i),
build the setL′(i) = (L(i)∪(∪∀j∈L(i)L(j)))−{i}, that
is the set of directly linked and 2-hop linked nodes ofi;

2) since the NODEAGENT now knows all the states of
nodes inL′(i) (i.e. theircoordinatesin the hyperspace),
order nodes inL′(i) according to the distance toi (in
ascendant order), i.e.d(si, sk),∀k ∈ L′(i);

3) build the setL
′′

(i) by taking at mostthe degmax first
nodes fromL′(i); these will be the nodes inL′(i) which
are the nearestto i;

4) if L(i) = L
′′

(i), i is still connected to the nearest
possible nodes, thus property (1) holds and the algorithm
stops here.

5) connect nodei with all nodes inL
′′

(i); to this aim,
disconnect, fromi, nodes inL(i) − L

′′

(i), by sending
them aLink Cut Notificationmessage and connecti with
nodes inL

′′

(i)−L(i), by sending them aLink Creation
Notificationmessage; then updateL(i) = L′′(i).

6) restart from step 1.

The basic principle of the overlay construction algorithm
should be quite clear: given any configuration of the overlay
network, at each step of the algorithm each node tends to be
connected to nodes that are nearer; this should be enough to
ensure that, sooner or later, property (1) will be met. In such
a case, condition in step 4 of algorithm 1 holds, meaning that
the node has reached a stability; no more runs of the algorithm
are needed unless the statesi of the node changes due to the
arrival of a new job or the termination of a running job: in
this case, since the node has changed its coordinates in the
hyperspace, property (1) could no more hold and the right
links need to be re-created.

Bootstrapping the overlay network is also a simple opera-
tion: a new nodex which wants to join must know only one
existing node of the network,k: it has to link itself withk
and nodes inL(k), thusL(x) = k ∪ L(k), and immediately
run Algorithm 1; at the first run, property (1) could not hold,
but as soon as some steps of the construction algorithm are
executed, a stable condition can be reached.

In order to understand the behaviour of the overlay con-
struction technique, we built a software simulator, which is
then described in Section V. Figure 1 shows some screenshots
taken during the construction of the overlay following the
algorithm described and using a Grid featuring two types
of resources (in order to allow the representation of the

4According the literature on graphs, the degree of a node (or vertex) is the
number of its links (edges) or its connected nodes.

(a) Initial condition (random) (b) After one step (c) Stable condition (after five steps)

Fig. 1. Overlay network construction from a random initial condition

network in two dimensions). The degree coefficients,degmin

and degmax, are respectively set to6 and 15. The initial
condition of the network, in which all links are randomly set,
is shown in Figure 1a, while Figure 1b and Figure 1c shows
the network condition after respectively 1 and 5 iterationsof
Algorithm 1: the ability of the system to self-organise and to
meet property (1) is quite evident.

Step 4 of Algorithm 1 reports a condition which, if met, en-
sures that the network, for what the single node is concerned,
has reached a stability. The question is: can we ensure that
sooner or later this condition will hold? Or, in other words,
does the algorithm terminate? While, by looking the individual
behaviour of the single node, at first sight the answer could be
positive, the situation is much more complex when themutual
influencebetween linked nodes is considered. Indeed, since the
same linkconnects two nodes, sayi1 andi2, operations made
by the algorithm ini1 affect the behaviour ofi2 and vice-
versa. If we take into account such a mutual influence, on the
basis of the topological configuration of the nodes, during step
5 of Algorithm 1 the following situations may happen:

1) i2 ∈ L
′′

(i1) ∧ deg(i2) = degmax; according to the first
condition, the algorithm ini1 should connecti1 to i2,
however, since the degree ofi2 is alreadydegmax, a new
connection would cause an overcome of the maximum
degree limit;

2) i2 ∈ L(i1) − L
′′

(i1) ∧ deg(i2) = degmin; the link
betweeni1 andi2 should be removed, but this operation
would cause the degree ofi2 to go belowdegmin;

3) i2 ∈ L(i1) − L
′′

(i1) ∧ i1 ∈ L
′′

(i2); in this case,
the same link is considered completely different by each
node since it needs to be removed fori1 but added fori2;
the result is a sort of “local oscillation” of the algorithm.

A simple check on the degree of each node inL
′′

(i)—resp.
L(i)−L

′′

(i)—is able to easily solve situations 1 and 2: if the
resulting degree is not betweendegmin anddegmax, the node
is not connected—resp. disconnected.

The third situation is more hard to tackle: indeed both nodes
are in accordance with the algorithm and there is no way to
choose if the link must be removed or preserved. It should be
noted that such a local oscillation does not provoke a loss of
consistency of the overlay network: indeed property (1) is not
violated but the problem is only with a lack of efficiency due

to a wasting of computational power since Algorithm 1 runs
continuously without converging to a stable condition.

The solution we employed to avoid this problem is based
on running a cycle of Algorithm 1 according to a certain
probability; exploiting a model similar to that of simulated
annealing, we associate to each node avirtual temperatureti,
which is initially set to a maximum valueTmax and decreases
at each cycle (till reaching0) unless the node changes its
state: in this case,ti is reset again toTmax. Therefore, a
cycle of Algorithm 1 runs with a probabilityPi = ti

Tmax
, thus

ensuring that, even if the algorithm starts locally oscillating,
sooner or later (if the node does not changes its state) this
oscillation terminates and a stability is reached. According to
this optimisation, the final behaviour of each NODEAGENT is
described by the Algorithm 2 below:

Algorithm 2 Overlay Construction with Optimisation

1) Setti = Tmax;
2) ComputePi = ti

Tmax
;

3) Run one cycle of Algorithm 1 with probabilityPi;
4) if node i has changed its statesi (due to job arrival or

job termination), setti = Tmax;
5) otherwise setti = ti − 1, unlessti is still 0;
6) go to step 2;

B. Resource Finding and Job Allocation Algorithm

The overlay construction algorithm described so far aims at
organising the network in order to ease the resource finding
phase. Indeed, the resource finding algorithm is quite simple
and is based oncheck-and-forwardpolicy: roughly speaking,
once a node receives a job submission request, it checks if it
can fulfill it (i.e. the node belongs to the admissible region),
otherwise the node forwards the request to the linked node
which is the nearest, according to its state, to the admissible
region. The real algorithm is based on the principle above and
applies some peculiar strategies for the choice of the next node
(when more than one of it are candidates) and for the recovery
when a path leading to a “dead end” (i.e. a wrong path which
cannot lead to the admissible region) is followed.

A request, which is carried by aJob Allocation Request
is represented by the tuple(q, P), where P is the ordered
sequence of nodes visited till now. The request is submittedto

any NODEAGENT of the Grid with P initially set to empty;
when a NODEAGENT receives such a message, the following
algorithm is executed:

Algorithm 3 Resource Finding

1) on the arrival of a job request(q, P), check if the node
can host the job, that is iffj(ri,j , qj) = true,∀j ∈
1, . . . ,m;

2) if the condition is met, allocate the job in nodei and
terminate the algorithm with success;

3) if the previous condition is not met, build the setL(i)−P
and check if the setN = (L(i)−P)∪S(q) is not empty,
i.e. determine the set of nodes inL(i)−P which belong
to the admissible region;

4) if such a set is empty, select a nodei′ in L(i)−P which
minimises the distanced(si′ , q);

5) if setN is not empty, select a nodei′ in N on the basis
of an heuristicH(N) which is detailed below;

6) if one of the previous two steps is successful, and thus
nodei′ exists, we are approaching the admissible region,
therefore updateP ′ = P ⊕ {i′} by concatenatingi′ to
sequenceP , and forward the request(q, P ′) to nodei′;

7) if L(i) − P = ∅ there is no node that can allow the
request to approach the admissible region since all linked
nodes have been already visited and the algorithm would
end in a infinite circular loop; in this case there are two
possible causes:(i) the admissible region contains no
nodes, or(ii) the path followed led to “local minimum”.
Indeed, with the current knowledge, the NODEAGENT

has no way to understand the real cause and it can only
supposethat the path is wrong: maybe making a different
choice could help in finding the target, therefore we
find, in the sequenceP , the position ofi and select the
previous nodei′′. If such a node exists, the NODEAGENT

forwards the request toi′′, otherwise (that is,i is thefirst
node inP) the algorithm terminates with a “node not
found” message, meaning that the job request cannot be
fulfilled.

If step 2 succeeds, the job has to be allocated on nodei and
the amount of resources needed by the job must be granted
to it; in this case, the state of nodei changes fromsi to s′i,
the node occupies another point in the hyperspace, it becomes
“hot” and overlay construction algorithm restarts in orderto let
the network to re-organise itself. In a similar way, when a job
terminates its execution on a node, it releases all the resources
needed: also in this case the state of the node changes and a
restart of the overlay construction algorithm is triggered.

Step 5 of Algorithm 3 entails to select the next node
according to an heuristic; it is employed when, in proximity
of the admissible region, the setL(i)−P contains more than
one node belonging toS(q), so the question iswhich oneof
such nodes we have to select. To this aim, we have proposed
and tested two different strategies:

1) MaxFree, it selects the node that has thehighest amount

of free resources; in order words, thefurther node, with
respect toq, is chosen;

2) BestFit, it selects the node thatbest fitsthe allocation,
leaving the amount free resources nearer to zero; in other
words, we choose thenearestnode, with respect toq.

Admissible region for the request

Request submission

Local minimum

Fig. 2. A local minimum during resource finding

A final remark is needed to explain step 7. As it has been
detailed in Algorithm 3, since there is no global knowledge
or view of the network, there is no way, for a NODEAGENT,
to understand if the admissible region is empty; the only fact
which can be deducted is that the NODEAGENT is no more
able to proceed further. However, as it is depicted in Figure2,
experimental results proved that such a condition occurs also
in some extreme cases in which nodes are placed in points
such that a path, for a certain job request,seemsto lead
to the admissible region, but indeed reaches a “dead end”
or, in other words, what we call alocal minimum. To solve
such conditions, a second choice is given to the algorithm
by backtracing to a previous node of the path followed: a
different branch of the graph is selected thus increasing the
probability to exit from the local minimum and reach the
admissible region. Obviously, if the admissible region is really
empty, all the alternative branches selected would end in nodes
still visited and, sooner or later, the first node of the path
will be reached again: after this, no choices will be left and
therefore the algorithm will end with a failure indication (by
high probability).

V. PERFORMANCEEVALUATION

A. The Simulator

In order to study the performance of HYGRA, we imple-
mented a software simulator. It is a time-driven simulation
tool which is able to represent the behaviour of Grid nodes,
modeling both the overlay construction and the resource
finding algorithm, also simulating job allocation and execution.
The tool is capable to simulate the flow of time by means of
discrete “ticks”. For each timer ticka) a step of theoverlay
construction algorithmis executed on all nodes;b) a step of
the resource finding algorithmis executed for all the requests
circulating in the network;c) a bunch ofnew job requestsis
generated, on the basis of a frequency parameter specified in
the configuration file (see below);d) a check on the execution

TABLE I
CRITICAL SIMULATION PARAMETERS

System Load
-Parameter- -Admitted values-

(a) Req.N.distribution Poissonor Random
(b) Res.X.distribution Poissonor Random
(c) Req.X.distribution Poissonor Random

Algorithm Behaviour
-Parameter- -Admitted values-
(d) strategy Backtrackingor Stop

(e) node-selection ByID or ByCoordinates

of the allocated job is performed, deallocating from the node
terminated jobs.

The simulator takes various parameters as inputs and pro-
duces some indexes, briefly explained below, in order to
evaluate the goodness of the proposed technique. Table I
summarises a subset of the input parameters (the most im-
portant ones) that affect the average load of the system and
the behaviour of the algorithm.

Parameter (a) specifies the probability distribution by which
the number of requests per tick will be sampled, while param-
eter (b) specifies the distribution of the amount of resources
over the overlay network5. Parameter (c) is very similar to the
previous but specifies the distribution of the specific resource
when a job submission request is generated. A well-tuning of
the parameters (a-c) would induce different load conditions
in the Grid and thus permits the evaluation of the approach
on the basis of different system configurations. Parameter (d)
is strictly bound to the behaviour of the resource finding
algorithm. If set to “backtracking” the simulator is forcedto
adopt the backtracking strategy whenever a local minimum is
found; on the other hand, by specifying “Stop” the simulator
is forced to conclude the journey of the request whenever no
choices are available6.

It’s worth observing that the backtracking strategy is gen-
erally affected by the dynamics of the overlay network, i.e.,
by the unexpected changing of coordinates and the subsequent
reorganization of links. Indeed, once the request has reached
a local minimum, one or more node previously saved in
its history (the traversed path) could have changed its own
coordinates due to a resource allocation or releasing. In this
case, our choice was to end the journey of the request and
signaling a failure, exactly as the totality of nodes in the path
were visited back and no any alternative paths were found.
We call this case thehole-in-historyexception. However, we
verified it occurs by very low probability, thus measuring and
discussing it anymore it’s probably not worth.

The parameter (e) is concerned about the discerning of the
set of nodes already visited from those not yet traversed. When
“ByCoordinates” is specified, the comparison of the nodes
is based on their coordinates. In other words, the request

5X has to be replaced by the id of the resource
6The “Stop” variant is useful to assess the improvement provided by the

introduction of the backtracking strategy.

stores not only the list of IDs of the visited nodes, but
also the set of vectors corresponding to their coordinates.If
one or more nodes are found in the set of neighbours such
that their coordinates do not match with those stored in the
history, such nodes are eligible for the selection even if they
have been already visited. It is easy to understand that when
“ByCoordinates” is set, there is no proof that the algorithm
will terminate, i.e., the journey of the capsule will end.
However, the termination of the algorithm could be trivially
guaranteed by imposing a max value in the number of nodes
visited by each request. The motivation behind the introduction
of the variant “ByCoordinates” is still the dynamics of the
overlay network. In fact, basing the comparison on the ID of
nodes might be too restrictive because some nodes that have
changed their coordinates, will have reorganised their links.
Accordingly, they could take part in another path which might
be useful to find the way to the admissible region.

B. Experiments and Results

We made a series of experiments on a test-bed of 100 nodes
and two type of resources with a value ranging in the interval
[100, 200] by a uniform random distribution (see parameter
(b) of Table I). Moreover, the value ofdegm and degM for
the overlay construction are respectively set to8 and15, and
job requests are generated using a Poisson distribution, with
an average value ranging from 20 jobs/tick to 150 jobs/tick
(parameter (a) of Table I). The values for resources requested
(parameter (c) of Table I) by each job are sampled from the
Poisson distribution using an average of50. Job execution
duration is also randomly generated with a Poisson distribution
using an average value of 40 time ticks.

The results of the simulations are reported in Tables II
and III. NAlloc and NFails represent, respectively, the
number of requests successfully allocated, and the number of
failures of the algorithm, i.e. a candidate node exists but it
cannot be found. On the other hand,NRej is the number
of requests that cannot be allocated since there is no node
able to support them7. Anyway we show for shortness only
the ratio NFails

NAlloc
, which we sayFailRatio. The simulator

also produces two other interesting indexes,NSteps and
Optimality (Opt. in Tables II and III).NSteps represents
the number of hops (nodes) performed, in average, by the
allocation algorithm before a suitable node has been found.
The Optimality index let us to understand the “goodness”
of the algorithm and is evaluated as follows. Each time the
algorithm performs an allocation for a requestq, say nalloc

the node which has satisfied the request, theOptimality
is computed by using the formula1 − d(nalloc,nbestSelection)

max(dist(ni,nj))
,

wherenbestSelection is the best candidate node computed by
doing (i) a total ordering of all nodes basing on the selected
resource finding strategy (BestF it or MaxFree), and finally
(ii) selecting the best node from that ordering.

7Clearly, NAlloc + NRej = NReq.

C. Evaluation of Results

Table II and III show the results of the simulation study; here
we reported only the results of strategyMaxFree because, for
all the indexes evaluated, it behaves quite better thanBestF it.

The first and most important remark to highlight is that the
number of failuresin Table II is lower than that reported in
Table III, showing the advantages of applying the backtracking
strategy. Furthermore, the overall trend of fail-ratio in Table III
can even be considered low enough if compared to the total
number of requests (see “FailsRatio” in Table III).

The second interesting parameter is theaverage number of
stepsperformed by the allocation algorithm, which reasonably
increases with the increment of the job generation rate. We
have to remark also that the performances of the “Backtrack-
ing” strategy is comparable to that exploited by the “Stop”
strategy in term of number of steps, in average, necessary to
allocate a request.

The last performance parameter to take into account is the
Optimality, that in our experiments appears to be independent
of the job generation load8.

Finally we have to report that even simulations were per-
formed also for the “ByCoordinates” variants, we do not
include the related results here, because the improvement in
term of performance is not so significant.

TABLE II
STRATEGY: BACKTRACKING / NODE-SELECTION: BYID

Jobs/Tick NFails Fails NSteps Opt. N.Req.
(avg) Ratio (avg) (avg)

20 0 0.0 6.26 0.61 4972
30 7 0.0014 35 0.66 5043
40 8 0.0016 67.52 0.66 4951
50 6 0.0012 57.32 0.63 4982
60 8 0.0017 94 0.63 4732
70 8 0.0016 86 0.61 5043
80 19 0.0040 99 0.59 4721
100 24 0.0048 113 0.66 4996
120 32 0.0064 102 0.61 5023
150 34 0.0068 112 0.65 5012

TABLE III
STRATEGY: STOP / NODE-SELECTION: BYID

Jobs/Tick Fails Fails NSteps Opt. N.Req.
(avg) Ratio (avg) (avg)

20 0 0.0 5 0.68 4978
30 12 0.002 38 0.67 5079
40 32 0.006 59 0.62 4951
50 30 0.009 65 0.64 4982
60 43 0.008 86 0.63 4732
70 54 0.0016 78 0.61 5043
80 72 0.0040 72 0.59 4721
100 112 0.022 88 0.61 4996
120 124 0.025 82 0.58 5023
150 145 0.029 95 0.63 5012

8Therefore the algorithm, as for optimality, does not suffer ofa performance
degradation due to increasing load conditions.

VI. CONCLUSIONS

This paper has described a novel technique, based on a self-
organising approach, for solving the problem of job alloca-
tion/resource finding in large scale computational Grids. The
proposed system, called HYGRA, exploits spatial computing
concepts and maps the entire Grid system into an hyperspace
where each node, according to the availability of its resources,
virtually occupies apoint in the hyperspace. A completely
decentralised algorithm, which exploits theeuclidean distance
among nodes, is able to self-organise an overlay network
where each node is virtually linked with some other nodes fea-
ture a specificneighbourhood property. A check-and-forward
algorithm is then employed during job submission to search,
by surfing the overlay network, the node able to host at best
the job, given its requirements. The proposed technique has
been evaluated by means of software tool, able to simulate not
only the behaviour of the algorithms but also the dynamics of
job generation, submission and termination. Simulation results,
provided in terms of computational cost, effectiveness and
sensitivity with respect to Grid load conditions, have shown
the validity of the HYGRA system.

REFERENCES

[1] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid In-
formation Services for Distributed Resource Sharing,” in10thIEEE
International Symposium on High-Performance DistributedComputing
(HPDC 2001), San Francisco, August 6-9 2001.

[2] A. Di Stefano and C. Santoro, “A Peer-to-Peer Decentralized Strategy
for Resource Management in Computational Grids,”Concurrency &
Computation: Practice & Experience, 2006.

[3] I. Foster and C. Kesselman, Eds.,The Grid (2nd Edition): Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 2004.

[4] A. Iamnitchi and I. Foster, “On Fully Decentralized Resource Discovery
in Grid Environments,” inInternational Workshop on Grid Computing
2001, Denver, CO, Nov. 2001.

[5] D. Minoli, A Networking Approach to Grid Computing. Wiley Inter-
Science, 2005.

[6] X. Z. J. Schopf, “Performance Analysis of the Globus Toolkit Monitoring
and Discovery Service, MDS2,” inInternational Workshop on Middleware
Performance (MP 2004) at IPCCC 2004, April 2004.

[7] D. Talia and P. Trunfio, “Toward a Synergy Between P2P and Grids,”
IEEE Internet Computing, vol. 7, no. 4, pp. 94–96, 2003.

[8] F. Zambonelli and M. Mamei, “Spatial Computing: an Emerging
Paradigm for Autonomic Computing and Communication,” in1st In-
ternational Workshop on Autonomic Communication, Berlin (Germany),
October 2004.

[9] X. Zhang, J. Freschl, and J. Schopf, “A Performance Study of Monitoring
and Information Services for Distributed Systems,” in12thIEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC
2003), Seattle, Washington, June 22-24 2003.

