
A Self-Organising Infrastructure for
Chemical-Semantic Coordination:

Experiments in TuCSoN
Elena Nardini Mirko Viroli Matteo Casadei Andrea Omicini

ALMA MATER STUDIORUM – Università di Bologna
(elena.nardini, mirko.viroli, m.casadei, andrea.omicini)@unibo.it

Abstract—Recent works proposed the adoption of a nature-
inspired approach of chemistry for implementing service archi-
tectures suitable for pervasive applications [34]. In particular,
[31] proposes a chemical-semantic tuple-space model where
coordination of data, devices and software agents – representing
the services of the pervasive computing application – are reified
into proper tuples managed by the coordination infrastructure.
Service coordination is enacted by chemical-like reactions that
semantically match those tuples accordingly enacting the desired
interaction patterns (composition, aggregation, competition, con-
textualisation, diffusion and decay).

After showing and motivating the proposed coordination
approach for situated, adaptive, and diversity-accomodating
pervasive computing systems, in this paper we outline how it is
possible to concretise the approach on the TuCSoN coordination
infrastructure, which can been suitably enhanced with modules
supporting fuzzy semantic-coordination and execution engine for
chemical-inspired coordination laws.

I. INTRODUCTION

The advent of ubiquitous wireless connectivity and comput-
ing technologies like pervasive services and social networks
will re-shape the Information and Communication Technology
(ICT) landscape. In particular, new devices with increasing
interaction capabilities will be exploited to create services
able to inject and retrieve data from any location of the very
dynamic and dense network that will pervade our everyday
environments. Such a scenario calls for infrastructures promot-
ing a concept of pervasive “eternality”: changes in topology,
device technology, and continuous injection of new services
have to be dynamically incorporated with no significant re-
engineering costs at the middleware level [35], [34]. In this
context, self-organisation – supporting situatedness, adaptivity
and long-term accommodation of diversity – will increas-
ingly be required as a key system-property for the system-
component coordination.

Among the available metaphors – e.g. physical, chemical,
biological, social [34] – used as a source of inspiration for
self-organising computational mechanisms, here we focus on
chemistry. In particular, we adopt the concept of chemical-
semantic tuple-spaces introduced in [31] as a coordination
model, extending the standard tuple space model that is fre-
quently adopted in middleware for situated and adaptive per-
vasive computing [28], [12], [19], [20]. In chemical-semantic
tuple-spaces, tuples are seen as sort of species in a population,

and coordination laws taking the form of chemical reactions
semantically apply to such tuples and evolve them over time.
Such an evolution behaviour promotes the exploitation of
(natural or idealised) chemical reactions that are known to
make interesting self-organisation properties emerge [31].

This paper focusses on how a distributed architecture for
chemical-semantic tuple-spaces can be implemented, namely,
in terms of a coordination infrastructure providing the fabric
of chemical tuples along with the stochastic and semantic ap-
plication of chemical-like laws. As a basis for this implemen-
tation we start from the TuCSoN coordination infrastructure
[24] supporting the notion of semantic tuple-centre [21], i.e.
programmable semantic tuple-space. In particular, TuCSoN
promotes a view of the tuple space as a set of facts in a logic
theory, and its program as a set of rules dictating how the
tuple set should evolve as time passes and as new interaction
events occur. TuCSoN appears a suitable means to enact the
two basic ingredients necessary to implement chemical tuple-
spaces in TuCSoN: (i) chemical-inspired stochastic evolution
of tuples, which is achieved by implementing the well-known
Gillespie’s exact simulation algorithm [16] as a tuple space
program, and (ii) fuzzy semantic-matching of chemical laws
against tuples in the space obtained seeing a tuple as an
individual of an ontology, and a reactant in the chemical
reaction as a concept of the ontology [17].

The remainder of this paper is organised as follows. Section
II motivates the proposed approach. Section III introduces the
chemical-semantic coordination model and provides abstract
examples of coordination laws. Section IV describes how the
TuCSoN coordination infrastructure can be tailored to support
the proposed model. Finally, Section V outlines related works
in coordination and middleware for self-adaptive and self-
organising systems, and Section VI concludes discussing a
roadmap towards completing the development of the infras-
tructure.

II. CHEMICAL-SEMANTIC TUPLE-SPACES FOR PERVASIVE
SERVICES

In order to better explain the motivation behind the model
presented in this paper, we rely on a case study, which we
believe well represents a large class of pervasive computing
applications in the near future. We consider a pervasive display

infrastructure, used to surround our environments with digital
displays, from those in our wearable devices and domestic
hardware, to wide wall-mounted screens that already pervade
urban and working environments [13]. In particular, as a
reference domain, we consider an airport terminal filled with
wide screens mounted in the terminal area, i.e in the shops, in
the corridors and in the gates, down to tiny screens installed
in each seat of the gate areas or directly on passengers’ PDAs.

Situatedness. Information should be generally displayed
based on the current state of the surrounding physical and
social environment like surrounding temperature sensors or
passenger profiles/preferences. Hence, services should be able
to interact with the surrounding physical and social world,
accordingly adapting their behaviour.

Adaptivity. Complementary to the above, the display
infrastructure, and the services within it, should be able
to automatically adapt to changes and contingencies in an
automatic way. For instance, when a great deal of new
information to be possibly displayed emerges, the displayed
information should overall spontaneously re-distribute and
re-shape across the set of existing local displays.

Diversity. The service infrastructure should not limit the
number and classes of services potentially provided, but
rather taking advantage of the injection of new services by
exploiting them to improve and integrate existing services
whenever possible. For example, the display infrastructure
also should be able to allow users – other than display owners
– to upload information, like user private-content uploaded
from her/his PDA, to displays so as to enrich the information
offer or adapt it to their own needs.

As it is shown in many proposals for pervasive computing
environments and middleware infrastructures, situatedness and
adaptiveness are promoted by the adoption of shared virtual
spaces for services and component interaction [28], [12], [19],
[20], [31]. Among the various shared-virtual-space models
proposed in literature, we adopt the chemical tuple-space
model [31], in which tuples – containing semantic information
about the “entities” to be coordinated (services, devices, data)
– evolve in a stochastic and spatial way through coordination
laws resembling chemical reactions. We observe that this
model can properly tackle the requirements sought for adaptive
pervasive services.

Concerning situatedness, the current situation in a system
locality is represented by the tuples existing in the tuple
space. Some of them can act as catalysts for specific chemical
reactions, thus making system evolution intrinsically context-
dependent. Concerning adaptivity, it is known from biology
that some complex chemical systems are auto-catalytic (i.e.
they produce their own catalyst), providing positive-negative
feedbacks that induce self-organisation [11] and lead to the
spontaneous toleration of environment perturbations. Such sys-
tems can be modelled by simple idealised chemical reactions

– e.g. prey-predator systems, Brussellator, and Oregonator
[16] – regarded as a set of coordination laws for pervasive
services. Finally, considering diversity, we note that chemical
reactions follow a simple pattern: they have some reactants
(typically 1 or 2) which combine, resulting in a set of products,
through a propensity (or rate) dictating the likelihood for
this combination to actually happen. Similarly to the natural
chemistry, in our framework this generates chemical reactions
that can be instantiated for the specific and unforeseen services
that will be injected in the system over time, using semantic
matching.

Though key requirements seem to be supported in principle,
designing the proper set of chemical reactions to regulate
system behaviour is crucial. Without excluding the appropri-
ateness of other solutions, in this paper we mostly rely on
chemical reactions resembling laws of population dynamics as,
e.g. the prey-predator system [16], [7]. This kind of idealised
chemical reactions has been successfully used to model auto-
catalytic systems manifesting self-organisation properties: but
moreover, they can also nicely fit the “ecological” metaphor
that is often envisioned for pervasive computing systems [5],
[30], [1], [34], [35]—namely, seeing pervasive services as
spatially situated entities living in an ecosystem of other
services and devices.

III. THE COORDINATION MODEL OF
CHEMICAL-SEMANTIC TUPLE-SPACES

In this section, first we informally introduce the coordination
model of chemical-semantic tuple-spaces (Section III-A), then
describe some example applications in the context of compet-
itive pervasive services (Section III-B).

A. Coordination Model

The chemical-semantic tuple-space model is an extension
of standard LINDA settings with multiple tuple spaces [15].
A LINDA tuple space is simply described as a repository
of tuples (structured data chunks like records) for the
coordination of external “agents”, providing primitives used
respectively to insert, read, and remove a tuple. Tuples
are retrieved by specifying a tuple template—a tuple with
wildcards in place of some of its arguments. The proposed
model enhances this basic schema with the following
ingredients.

Tuple concentration and chemical reactions. We attach an
integer value called “concentration” to each tuple, measuring
the pertinence/activity value of the tuple in the given tuple
space: the higher such a concentration, the more likely
and frequently the tuple will be retrieved and selected
by the coordination laws to influence system behaviour.
Tuple concentration ‘spontaneously” evolves, as typically
the pertinence of system activities is. This is achieved by
coordination rules in the form of chemical reactions—the
only difference with respect to standard chemical reactions is
that they now specify tuple templates instead of molecules.
For example, a reaction “X + Y

0.1−−→ X +X” would mean

that tuples x and y matching X and Y are to be selected, get
combined, and as a result one concentration item of y turns
into x—concentration of y decreases by one, concentration
of x increases by one. According to [16], this transition is
modelled as a Poisson event with average rate (i.e. frequency)
0.1 × #x × #y (#x is the concentration of x). This model
makes a tuple space running as a sort of exact chemical
simulator, picking reactions probabilistically: external agents
observing the evolution of tuples would perceive something
equivalent to the corresponding natural/artificial chemical
system described by those reactions.

Semantic matching. It is easy to observe that standard
syntactic matching for tuple spaces can hardly deal with the
openness requirement of pervasive services, in the same way as
syntactic match-making has been criticised for Web services
[25]. This is because we want to express general reactions
that apply to specific tuples independently of their syntactic
structure, which cannot be clearly foreseen at design time.
Accordingly, semantic matching can be considered as a proper
matching criterion for our coordination infrastructure [25], [4],
[9].

It should be noted that matching details are orthogonal
to our model, since the application at hand may require a
specific implementation of them—e.g. it strongly depends on
the description of application domain. As far as the model is
concerned, we only assume that matching is fuzzy [9], i.e.
matching a tuple with a template returns a “vagueness” value
between 0 and 1, called match degree. Vagueness affects the
actual application rate of chemical reactions: given a chemical
reaction with rate r, and assume reactants match some tuples
with degree 0.5, then the reaction can be applied to those
tuples with an actual rate of 0.5 ∗ r, implying a lower match
likelyhood—since match is not perfect. Namely, the role of
semantic matching in our framework is to allow for coding
general chemical laws that can uniformly apply to specific
cases—appropriateness influences probability of selection.

Tuple transfer. We add a mechanism by which a (unit of con-
centration of a) tuple can be allowed to move towards the tuple
space of a neighbouring node, thus generating a computational
field, namely, a data structure distributed through the whole
network of tuple spaces. Accordingly, we introduce the notion
of “firing” tuple (denoted t), which is a tuple (produced
by a reaction) scheduled for being sent to a neighbouring
tuple space—any will be selected non-deterministically. For
instance, the simple reaction “X 0.1−−→ X ” is used to transfer
items of concentration of any tuple matching X out from the
current tuple space.

B. Examples

We now discuss some examples of chemical reactions
enacting general coordination patterns of interest for pervasive
service systems.

Local competition. We initially consider a scenario in which a
single tuple space mediates the interactions between pervasive
services and their users in an open and dynamic system. We
aim at enacting the following behaviour: (i) services that do
not attract users fade until eventually disappearing from the
system, (ii) successful services attract new users more and
more, and accordingly, (iii) overlapping services compete one
another for survival, so that some/most of them eventually
come to extinction.

An example protocol for service providers can be as follows.
A tuple service is first inserted in the space to model pub-
lication, specifying service identifier and semantic description
of the service content. Dually, a client inserts a specific request
as a tuple request—insertion is the (possibly implicit) act
of publishing user preferences. The tuple space is charged with
the role of matching a request with a reply, creating a tuple
toserve(service,request), combining a request and
a reply semantically matching. Such tuples are read by the
service provider, which collects information about the request,
serves it, and eventually produces a result emitted in the space
with a tuple reply, which will be retrieved by the client. The
abstract rules we use to enact the described behaviour are as
follows:

(USE) SERV+ REQ
u7−→ SERV+ SERV+

toserve(SERV,REQ)

(DECAY) SERV
d7−→ 0

On the left side (reactants), SERV is a template meant to
match any service tuple, REQ a template matching any request
tuple; on the right side (products), toserve(SERV,REQ)
will create a tuple having in the two arguments the service
and request tuples selected, while 0 means there will be
no product. Rule (USE) has a twofold role: (i) it first
selects a service and a request, it semantically matches them
and accordingly creates a toserve tuple, and dynamically
removes the request; and (ii) it increases service concentration,
so as to provide a positive feedback—resembling the prey-
predator system described by Lotka-Volterra equations
[7], [16]. We refer to use rate of a couple service/request
as u multiplied by the match degree of those reactants
when applying (USE) law, as described in the previous
section: as a result, it can be noted that the higher the
match degree, the more likely a service and a request
are combined. On the other hand, rule (DECAY) makes
any concentration item of the service tuple disappear at
rate d, contrasting the positive feedback of (USE): here,
the overall decay rate of a service is d multiplied by the
match degree—with no match, we would have no decay at all.

Spatial competition. This example can be extended to a
network of tuple spaces, so as to emphasise the spatial and
context-dependent character of competing services. Suppose
each space is programmed with (USE,DECAY) reactions plus
a simple diffusion law for service tuples:

(DIFFUSE) SERV
m7−→ SERV

The resulting system can be used to coordinate a pervasive
service scenario in which a service is injected into a node
of the network (e.g. the node where service is more urgently
needed, or where the producer resides), and accordingly starts
diffusing around on a step-by-step basis until possibly covering
the whole network—hence becoming a global service. This
situation is typical in the pervasive display infrastructure, since
a frequent policy for visualisation services would be to show
them on any display of the network—although more specific
policies might be enacted to make certain services only locally
diffuse.

In this system, we can observe the dynamics by which
the injection of a new and improved service may eventu-
ally result in a complete replacement of previous versions—
spatially speaking, the region where the new service is active is
expected to enlarge until covering the whole system, while the
old service diminishes. In the context of visualisation services,
for instance, this would amount to the situation where an
existing advertisement service is established, but a new one
targeted to the same users is injected that happens to have
greater use rate, namely, it is more appropriate for the average
profile of users: we might expect this new service to overcome
the old one, which accordingly extinguishes.

IV. AN ARCHITECTURE BASED ON THE TuCSoN
INFRASTRUCTURE

In this section we show that an infrastructure for the chemi-
cal tuple space model can be implemented on top of an existing
tuple space middleware, such as TuCSoN. In particular, after a
general overview of TuCSoN (Section IV-A), we describe how
the two basic additional ingredients of the proposed model can
be supported on top of TuCSoN: semantic matching (Section
IV-B) and chemical engine (Section IV-C).

A. Overview of TuCSoN

TuCSoN (Tuple Centres Spread over the Network) [24]
is a coordination infrastructure that manages the interaction
space of an agent-based system by means of ReSpecT [23]
tuple centres, which are Linda tuple spaces [15] empowered
with the ability to define their behaviour in response / re-
action to communication events. Other than supporting the
notion of tuple centre, TuCSoN also extends Linda model
from the topology viewpoint. Differently from the [15] tuple
space model, TuCSoN has been conceived for providing
a suitable infrastructural support for engineering distributed
application scenarios [24]. In particular, tuple centres are
distributed through the network, hosted in the nodes of the
infrastructure, and organised into articulated domains, each
characterised by a gateway node and a set of nodes called
places. A place is meant to host tuple centres for the specific
applications/systems, while the gateway node is meant to
host tuple centres used for domain administration, keeping
information on the places.

As discussed in [33], TuCSoN supports features that
are key for implementing self-organising systems, some of
which are here recapped that are useful for implementing the

chemical tuple space model:

Topology and locality. Tuple centres can be created locally
to a specific node, and the gateway tuple centre can be
programmed to keep track of which tuple centres reside in
the neighbourhood—accessible either by agents or by tuple
centres in current node.

On-line character and time. TuCSoN supports the so called
“on-line coordination services”, executed by reactions that are
fired in the background of normal agent interactions, through
timed reactions.

Probability. Probability is a key feature of self-organisation,
which is necessary to abstractly deal with the unpredictability
of contingencies in pervasive computing. In TuCSoN this is
supported by drawing random numbers and using them to drive
the reaction firing process, that is, making tuple transformation
be intrinsically probabilistic.

B. Semantic Matching

We now describe the extension of the tuple centre model
that allows us to perform semantic reasoning over tuples,
namely, the ability of matching a tuple with respect to a
template not only syntactically as usual, but also semantically.
In spite some approaches have been proposed to add semantic
reasoning to tuple spaces [22], we here introduce a different
model, which is aimed at smoothly extending the standard
settings of tuple spaces [21].

Abstract model. From an abstract viewpoint, a tuple centre
can be seen as a knowledge repository structured as a set
of tuples. According to a semantic view, such knowledge
represents a set of objects occurring in the application domain,
whose meaning is described by an ontology, that is, in terms
of concepts and relations among them.

In order to formally define the notions of domain ontol-
ogy and objects, the literature makes available a family of
knowledge representation formalisms called Description Log-
ics (DL) [2]—we rely on SHOIN(D) Description Logic, which
represents the theoretical counterpart of W3C’s standard OWL
DL [17]. In DL, an ontology component called TBox is first
introduced that includes the so-called terminological axioms:
concept descriptions (denoting meaningful sets of individuals
of the domain), and role descriptions (denoting relationships
among individuals). Concepts can be of the following kinds:
> is the set of all objects, ⊥ the void set, C tD is union of
concepts, C uD intersection, ¬D negation, {i1, . . . , in} is a
set of individuals, ∀R.C is the set of objects that are in relation
(through role R) with only objects belonging to concept C,
∃R.C is the set of objects that are in relation (through role R)
with at least one object belonging to concept C, and ≤ nR
is the set of objects that are in relation (through role R) with
no more than n objects (and similarly for concepts ≥ nR and
= nR). Given these constructs, the TBox provides axioms

for expressing inclusion of concepts (C v D). For instance, a
TBox for a car domain [9] can provide the following assertions

MaxSpeed v {90km/h,180km/h,220km/h,
280km/h}

Car v (= 1hasMaxSpeed)
(= 1hasMaxSpeed) v Car

> v ∃ hasMaxSpeed .MaxSpeed
SlowCar v Car u (∃ hasMaxSpeed .{90km/h})
CityCar v SlowCar

which respectly: (i) defines the concept MaxSpeed as including
4 individuals, (ii) defines the concept Car and states that all
its objects have precisely one maximum speed value, (iii)
conversely states that any object with one maximum speed
value is a car, (iv) states that maximum speed value is an
object of MaxSpeed, (v) defines SlowCar as a new concept
(sub-concept of Car) such that its individuals have 90km/h
as maximum speed, and finally (vi) defines a CityCar as a kind
of slow car—possibly to be completed with other features, e.g.
being slow, compact and possibly featuring electric battery.
By these kinds of inclusion, which are typical of the OWL
standard approach, one can flexibly provide suitable definitions
for concepts of sport cars, city cars, and so on.

Another component of DL is the so-called ABox, defining
axioms to assert specify domain objects and their properties:
they can be of kind C(a), declaring individual a and the
concept C it belongs to, and of kind R(a, b), declaring
that role R relates individual a with b. Considering the car
domain example, the ABox could include axioms Car(f40),
Car(fiat500), hasMaxSpeed(f40,280km/h), and
hasMaxSpeed(fiat500,90km/h).

Semantic reasoning of DL basically amounts – among the
others – to check whether an individual belongs to a concept,
namely, the so-called semantic matching. As a simple example,
a DL checker could verify that fiat500 is an instance of
CityCar. This contrasts syntactic matching, which would have
failed since Car and CityCar are two “types” that do not
syntactically match—they rather semantically match due to
the definitions in the TBox.

Given the above concepts of DL, we design the semantic
extension of tuple centres by the following ingredients, which
will be described in more detail in turn: (ontologies) an
ontology has to be attached to a tuple centre, so as to ground
the definition of concepts required to perform semantic
reasoning; (semantic tuples) a semantic tuple represents an
individual, and a language is hence to be introduced to
specify individual’s name, the concept it belongs to, and
the individuals it is related to by roles; (tuple templates)
templates are to be used to flexibly retrieve tuples, hence we
link the semantic tuple template notion with that of concept in
the ontology, and accordingly introduce a template language;
(matching mechanism) matching simply amounts to check
whether the tuple is an instance of the concept described
by the template, providing a match factor in between 0 and
1. In order to give a “fuzzy” notion of matching we take

inspiration from the work shown in [9] – describing a fuzzy
extension of DL – introducing the notion of degree (a number
in between 0 and 1) into the language of tuples and templates.

Ontology language. In our implementation we adopt the
OWL [17] ontology language in order to define domain
ontologies in TuCSoN. OWL is an XML-based ontology
language introduced by W3C for the Semantic Web: relying
on a standard language for ontologies is key for the openness
aims of the application domains considered in this paper,
and moreover, standard automated reasoning techniques can
be exploited relying on existing open source tools—like e.g.
Pellet reasoner [29]. Accordingly, each tuple centre carries
an OWL ontology describing the TBox, and that internal
machinery can be easily implemented so as to query and
semantically reason about it.

Semantic tuple language. Instead of completely depart-
ing from the syntactic setting of TuCSoN, where tu-
ples are expressed as first-order terms, we design a
smooth extension of it, so as to capture a rather
large set of situations. The car domain example de-
scribed above would be expressed by the semantic tuple
fiat500:’Car’(hasMaxSpeed:’90km/h’). Namely,
the tuple describes individual name, concept name, and list
of role fillers—extending the case of first-order tuples, where
each tuple is basically the specification of a “type” (functor
name) followed by an ordered list of parameters. By exploiting
the definition of degree introduced in [9], we can also write:

f40:’SportCar’->0.8(
hasMaker : ferrari->0.8,
hasMaxSpeed : ’285km/h’,
hasColour in {red->0.3,

black->0.7})

where “->N” represents the degree of belonging of an
individual to a concept or to a relationship with other
individuals. Where a “->N” is not defined, the degree is 1.
Note that semantic tuples are basically first-order terms with
the introduction of few infix binary functors (“:”, “in” and
“->”).

Semantic templates language. Another aspect to be faced
concerns the representation of semantic tuple templates as
specifications of sets of domain individuals (concepts) among
which a matching tuple is to be retrieved. The grammar of
tuple templates we adopt basically turns DL concepts into a
term-like syntax (as in Prolog), extended with the possibility
to associate to each concept a degree representing how much
individuals belong to a particular concept and to describe a

weighted sum of concepts, as shown in [9]:

C ::= ’$ALL’ | ’$NONE’ | cname | C,C | C;C |
not(C) | {inamelist} | CR | C− > N |
C− > N1 + ...+ C− > Nn
(whereN1 + ...+Nn = 1)

CR ::= [exists|only](pname in C) |
R N : pname

Elements cname, iname, and pname are constants terms,
expressing names of concepts, individuals and properties. Fol-
lowing the grammar, concepts orderly express all individuals,
no individual, a concept name, intersection, union, negation, an
individual list, or a concept specified via role-fillers. Examples
of the latter include: “exists P in C” (meaning ∃ P.C),
“only P in C”, (meaning ∀ P.C), “P in C”(meaning
∃ P.C u ∀ P.C), “# ≥ 2:P” (meaning ≥ 2P). Ad-
ditional syntactic sugar is used: “exists P:i” stands for
“exists P in {i}”, and “C(CR1,..,CRn)” stands
for “C,CR1,..,CRn”. Examples of semantic templates are
as follows:

’Car’->0.9(exists hasMaxSpeed:
{’90km/h’,’280km/h’})

’Car’(#>1:hasEnergyPower),
((hasMaker:ford)->0.9;
(hasMaker:ferrari)->0.6)

The former specifies those individuals that are cars with a
degree 0.9, having either 90km/h or 280km/h maximum
speed, the latter those cars that come with at least two choices
of energy power and that have either ford or ferrari
maker, respectively with degree 0.9 and 0.6.

Semantic matching. In order to enable semantic support in
TuCSoN, a tuple centre has to be related to an ontology,
to which semantic tuples refer to. In order to encapsulate
an ontology, tuple centres exploit the aforementioned Pellet
reasoner [29]—an open-source DL reasoner based on OWL
and written in Java likewise TuCSoN. In particular, Pellet can
load an OWL TBox and an ABox, and provides the Jena-API
in order to add and remove individuals by its own ABox.

Hence, each semantic tuple is carried not only in the tuple
space likewise syntactic tuples, but also in the ontology
ABox, after it has been defuzzificated, in order to support
reasoning. The reasoner is internally called each time we
are checking for a semantic match: the semantic template is
decomposed and converted into a set of SPARQL queries
(the language used by Jena-API). Each query corresponds to
a concept defined in the semantic template. The results of the
set of SPARQL queries is combined with the operators used
in the semantic template and for each individual obtained by
the combination a degree (a number in between 0 and 1) is
calculated by exploiting the fuzzy operators defined in [9].
Then, a set of individuals with a degree associated is retrieved.
This behaviour is embedded in the tuple centre, such that

each time a semantic template is specified into a retrieval
operation, any semantic tuple can actually be returned—
namely, the standard behaviour is still non-deterministic.
With the classical operations in and rd, the individual
with maximum degree is retrieved, but by exploiting the
programmability of tuple centres, it is also possible to retrieve
a ranked list of the individuals that satisfy a semantic template.

C. Chemical Reactions

We now describe how a TuCSoN tuple centre can be
specialised to act as a chemical-like system where semantic
tuples play the role of reactants, which combine and transform
over time as occurring in chemistry.

Coding reactants and laws. Tuples modelling reactant
individuals are kept in the tuple space in the form
reactant(X,N), where X is a semantic tuple representing
the reactant and N is a natural number denoting concentration.
Laws modelling chemical reactions are expressed by tuples of
the form law(InputList,Rate,OutputList), where
InputList denotes the list of the reacting individuals,
and Rate is a float value specifying the constant rate of
the reaction. As a reference example, consider the chemical
laws resembling (USE,DECAY) rules in previous section:
S+ R

10.0−−→ S+ S and S
10−→ 0, where S and R represent

semantic templates for services and requests. Such laws can be
expressed in TuCSoN by tuples law([S,R],10,[S,S])
and law([S],10,[]). On the other hand, tuples
reactant(sa,1000), reactant(sb,1000) and
reactant(r,1000) represent reactants for two semantic
tuples (sa and sb) matching S, and one (ra) matching R.
The set of enabled laws at a given time is conceptually
obtained by instantiating the semantic templates in
reactions with all the available semantic tuples. In the
above case they would be law([sa,r],r1a,[sa,sa]),
law([sb,r],r1b,[sb,sb]), law([sa],r2a,[])
and law([sb],r2b,[]). The rate of each enabled
reaction (usually referred to as global rate) is obtained as
the product of chemical rate and match degree as described
in Section III. For instance, rate r1a can be calculated
as 10.0 × #sa × #r × µ(S + R,sa + r), where µ is
the function returning the match factor between the list of
semantic reactants and the list of actual tuples.

As an additional kind of chemical law, it is also possible
to specify a transfer of molecules towards other tuple centres
by a law of the kind law([X],10,[firing(X)]).

ReSpecT engine. The actual chemical engine is defined
in terms of ReSpecT reactions, which can be classified
according to the provided functionality. As such, there are
reactions for (i) managing chemical laws and reactants, i.e.
ruling the dynamic insertion/removal of reactants and laws,
(ii) controlling engine start and stop, (iii) choosing the next
chemical law to be executed, and (iv) executing chemical laws.
For the sake of conciseness we only describe part (iii), which

is the one that focusses on Gillespie’s algorithm for chemical
simulations [16].

This computes the choice of the next chemical law to be
executed, based on the following ReSpecT reaction, triggered
by operation out(engine_trigger) which starts the en-
gine.

reaction(out(engine_trigger), endo, (
in(engine_trigger),
chooseLaw(law(IL,_,OL),Rtot),
rand_float(Tau),
Dt is round((log(1.0/Tau)/Rtot)*1000),
event_time(Time), Time2 is Time + Dt,
out_s(reaction(time(Time2),
endo, out(engine_trigger))),
out(execution(law(IL,_,OL),Time))

)).

First of all, a new law is chosen by the chooseLaw
predicate, which returns Rtot, the global rate of all the
enabled chemical laws, and a term law(IL _,OL)—IL
and OL are bound respectively to the list of reactants and
products in the chosen law, after templates are instantiated
to tuples as described above. Then, according to Gillespie
algorithm, time interval Dt – denoting the overall duration
of the chemical reaction – is stochastically calculated (in
milliseconds) as log(1/Tau)/Rtot, where Tau is a value
randomly chosen between 0 and 1 [16]. A new timed
reaction is accordingly added to the ReSpecT specifica-
tion and will be scheduled for execution Dt milliseconds
later with respect to Time, which is the time at which
out(engine_trigger) occurred: the corresponding reac-
tion execution will result in a new out(engine_trigger)
operation that keeps the chemical engine running. Finally, a
new tuple execution(law(IL,_,OL),Time) is inserted
so that the set of reactions devoted to chemical-law execution
can be activated.

The actual implementation of the Gillespie’s algorithm
regarding the choice of the chemical law to be executed is
embedded in the chooseLaw predicate, whose implementa-
tion is as follows:

chooseLaw(Law,Rtot):-
rd(laws(LL)),
semanticMatchAll(LL,NL,Rtot),
not(Rtot==0),
sortLaws(NL,SL),
rand_float(Tau),
chooseGillespie(SL,Rtot,Tau,Law).

After retrieving the list LL of the chemical laws defined for
the tuple centre, semanticMatchAll returns the list NL
of enabled chemical laws and the corresponding overall rate
Rtot, computed as the sum of the global rate of every en-
abled law. To this end, predicate semanticMatchAll relies
on predicate retrieve(+SemanticTemplateList,
-SemanticTupleList,-MatchFactor) already de-
scribed (properly extended to deal with lists of semantic tuples
and templates).

The chemical law to be executed is actually chosen via the
chooseGillespie predicate if Rtot > 0, i.e. if there are

enabled chemical laws. This choice is driven by a probabilistic
process: given n chemical laws and their global rates r1, ..., rn,
the probability for law i to be chosen is defined as ri/R, where
R =

∑
i ri. Consequently, law selection is simply driven by

drawing a random number between 0 and 1 and choosing a
law according to the probability distribution of the enabled
laws.

V. RELATED WORK

Coordination models. The issue we face in this article can
be framed as the problem of finding the proper coordination
model for enabling and ruling interactions of pervasive ser-
vices. Coordination models generated by the archetypal LINDA
model [15], which simply provides for a blackboard with asso-
ciative matching for mediating component interactions through
insertion/retrieval of tuples. A radical change is instead the
idea of engineering the coordination space of a distributed
system by some policy “inside” the tuple spaces as proposed
here, following the pioneer works of e.g. TuCSoN [24]—in
fact, as shown in this paper, TuCSoN can be used as a low-
level virtual platform for enacting the chemical tuple-space
model. As already mentioned, the work presented in this article
is based on [31], which was extended in [32] to deal with self-
composition of services, a concept that we can support in our
framework though it is not addressed in this paper.

Chemistry has been proposed as an inspiration for several
works in distributed computing and coordination over many
years, like in the Gamma language [10] and the chemical
abstract machine [6], which lead to the definition of some
general-purpose architectures [18]. Although these models
already show the potential of structuring coordination policies
in terms of chemical-like rewriting rules, we observe that
they do not bring the chemical metaphor to its full realisation
as we do here, as they do not exploit chemical stochastic rates.

Situatedness. In many proposals for pervasive computing
environments and middleware infrastructures, the idea of
“situatedness” has been promoted by the adoption of shared
virtual spaces for services and components interactions. Gaia
[28] introduces the concept of active spaces, a middleware
infrastructure enacting distributed active blackboard spaces
for service interactions. Later on, a number of proposals
have extended upon Gaia, to enforce dynamic semantic
pattern-matching for service composition and discovery
[14] or access to contextual information [12]. Other related
approaches include: X-KLAIM [8], proposing tuple space
as a coordination media with the explicit use of localities
for accessing data or computational resources; Egospaces
[19], exploiting a network of tuple spaces to enable location-
dependent interactions across components; LIME [27],
proposing tuples spaces that temporarily merge based on
network proximity, to facilitate dynamic interactions and
exchange of information across mobile devices; and TOTA
[20], enacting computational gradients for self-awareness in
mobile networks. Our model shares the idea of conceiving
components as “living” and interacting in a shared spatial

substrate (of tuple spaces) where they can automatically
discover and interact with one another. Yet, our aim is
broader, namely, to dynamically and systemically enforce
situatedness, service interaction, and data management with a
simple language of chemical reactions, and most importantly,
enacting an ecological behaviour thanks to the support of
diversity in the long term.

Self-organisation. Several recent works exploit the lessons of
adaptive self-organising natural and social systems to enforce
self-awareness, self-adaptivity, and self-management features
in distributed and pervasive computing systems. At the level of
interaction models, these proposals typically take the form of
specific nature- and socially inspired interaction mechanisms
[3] (e.g. pheromones [26] or virtual fields [20]), enforced
either at the level of component modelling or via specific
middleware-level mechanisms. We believe our framework in-
tegrates and improves these works in two main directions: (i)
it tries to identify an interaction model that is able to represent
and subsume the diverse nature-inspired mechanisms via a
unifying self-adaptive abstraction (i.e. the semantics chemical
reactions); (ii) the “ecological” approach we undertake goes
beyond most of the current studies that limit to ensembles
of homogeneous components, supporting the vision of novel
pervasive and Internet scenarios as a sort of cyber-organisms
[1].

VI. ROADMAP AND CONCLUSION

In this paper we described research and development chal-
lenges in the implementation of the chemical tuple space
model in TuCSoN. These are routed in two basic dimensions,
which are mostly – but not entirely – orthogonal.

On the one hand, the basic tuple centre model is to be
extended to handle semantic matching, which we support
by the following ingredients: (i) an OWL ontology (a set
of definitions of concepts) stored into a tuple centre which
grounds semantic matching; (ii) tuples (other than syntactic
as usual) can be semantic, describing an individual of the
application domain (along with the concept it belongs to
and the individuals it is linked to through roles); and (iii)
a matching function implemented so as to check whether a
tuple is the instance of a concept, returning the corresponding
match factor.

On the other hand, the coordination specification for the tu-
ple centre should act as a sort of “online chemical simulator”,
evolving the concentration of tuples over time using the same
stochastic model of chemistry [16], so as to reuse existing
natural and artificial chemical systems (like prey-predator
equations); at each step of the process: (i) the reaction rates of
all the chemical laws are computed, (ii) one is probabilistically
selected and then executed, (iii) the next step of the process
is triggered after an exponentially distributed time interval,
according to the Markov property.

The path towards a fully featured and working infrastructure
has been paved, but further research and development is

required to tune several aspects:

Match factor. Studying suitable fuzzy matching techniques
is currently a rather hot research topic, e.g. in the Semantic
Web context. Our current support trades off simplicity for
expressive power, but we plan to extend it using some more
complete approach and in light of the application to selected
cases—e.g. fully relying on [9].

Performance. The problem of performance was not
considered yet, but will be subject of our future investigation.
Possible bottlenecks include the chemical model and its
implementation as a ReSpecT program, but also semantic
retrieval, which is seemingly slower than standard syntactic
one. We still observe that in many scenarios of pervasive
computing this is not a key issue.

Chemical language. Developing a suitable language for
semantic chemical laws is a rather challenging issue. The
design described in this paper supports limited forms of
service interactions that will likely be extended in the future.
For instance, a general law X + Y → Z is meant to combine
two individuals into a new one, hence the chemical language
should be able to express into Z how the semantic templates
X and Y should combine—aggregation, contextualisation,
and other related patterns of self-organising pervasive systems
are to be handled at this level.

Application cases. The model, and correspondingly the im-
plementation of the infrastructure, are necessarily to be tuned
after evaluation of selected use cases can be performed.
Accordingly, the current version of the infrastructure is meant
to be a prototype over which initial sperimentation can be
performed. A main application scenario we will considered for
actual implementation is a general purpose pervasive display
infrastructure.

REFERENCES

[1] G. Agha. Computing in pervasive cyberspace. Commun. ACM, 51(1):68–
70, 2008.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[3] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M.
Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor,
and T. Urnes. Design patterns from biology for distributed computing.
ACM Trans. Auton. Adapt. Syst., 1(1):26–66, 2006.

[4] A. Bandara, T. R. Payne, D. D. Roure, N. Gibbins, and T. Lewis.
A pragmatic approach for the semantic description and matching of
pervasive resources. In Advances in Grid and Pervasive Computing,
volume 5036 of LNCS, pages 434–446. Springer, 2008.

[5] A. P. Barros and M. Dumas. The rise of web service ecosystems. IT
Professional, 8(5):31–37, 2006.

[6] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, apr 1992.

[7] A. A. Berryman. The origins and evolution of predator-prey theory.
Ecology, 73(5):1530–1535, October 1992.

[8] L. Bettini, R. De Nicola, and M. Loreti. Implementing Mobile and
Distributed Applications in X-Klaim. Scalable Computing: Practice and
Experience, Special Issue: Software Agent Mobility, 7(4):13–35, 2006.

[9] F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description
logic reasoner. In 2008 International Conference on Fuzzy Systems
(FUZZ-08), pages 923–930. IEEE Computer Society, 2008.

[10] J.-P. Bonâtre and D. Le Métayer. Gamma and the chemical reaction
model: Ten years after. In Coordination Programming, pages 3–41.
Imperial College Press London, UK, 1996.

[11] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-Organization in Biological Systems. Princeton
Studies in Complexity. Princeton University Press, Princeton, NJ, USA,
2001.

[12] P. D. Costa, G. Guizzardi, J. P. A. Almeida, L. F. Pires, and M. van Sin-
deren. Situations in conceptual modeling of context. In Tenth IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC
2006), 16-20 October 2006, Hong Kong, China, Workshops, page 6.
IEEE Computer Society, 2006.

[13] A. Ferscha, A. Riener, M. Hechinger, and H. Schmitzberger. Building
pervasive display landscapes with stick-on interfaces. In CHI Workshop
on Information Visualization and Interaction Techniques, April 2006.

[14] C.-L. Fok, G.-C. Roman, and C. Lu. Enhanced coordination in sensor
networks through flexible service provisioning. In J. Field and V. T.
Vasconcelos, editors, Coordination Languages and Models, volume 5521
of LNCS, pages 66–85. Springer-Verlag, June 2009. 11th International
Conference (COORDINATION 2009), Lisbon, Portugal, June 2009.
Proceedings.

[15] D. Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

[16] D. T. Gillespie. Exact stochastic simulation of coupled chemical
reactions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[17] I. Horrocks, P. F. Patel-Schneider, and F. V. Harmelen. From shiq and
rdf to owl: The making of a web ontology language. Journal of Web
Semantics, 1:2003, 2003.

[18] P. Inverardi and A. L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine model. IEEE
Trans. Software Eng., 21(4):373–386, 1995.

[19] C. Julien and G.-C. Roman. Egospaces: Facilitating rapid development
of context-aware mobile applications. IEEE Trans. Software Eng.,
32(5):281–298, 2006.

[20] M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications: the TOTA approach. ACM Trans. Software
Engineering and Methodology, 18(4), 2009.

[21] E. Nardini, M. Viroli, and E. Panzavolta. Coordination in open and
dynamic environments with TuCSoN semantic tuple centres. In S. Y.
Shin, S. Ossowski, M. Schumacher, M. Palakal, C.-C. Hung, and
D. Shin, editors, 25th Annual ACM Symposium on Applied Computing
(SAC 2010), volume III, pages 2037–2044, Sierre, Switzerland, 22–
26 Mar. 2010. ACM. Awarded as Best Paper.

[22] L. j. b. Nixon, E. Simperl, R. Krummenacher, and F. Martin-recuerda.
Tuplespace-based computing for the semantic web: A survey of the state-
of-the-art. Knowl. Eng. Rev., 23(2):181–212, 2008.

[23] A. Omicini. Formal ReSpecT in the A&A perspective. Electronic
Notes in Theoretical Computer Sciences, 175(2):97–117, June 2007.

[24] A. Omicini and F. Zambonelli. Coordination for Internet application
development. Autonomous Agents and Multi-Agent Systems, 2(3):251–
269, Sept. 1999.

[25] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic
matching of web services capabilities. In International Semantic Web
Conference, volume 2342 of LNCS, pages 333–347. Springer, 2002.

[26] H. V. D. Parunak, S. Brueckner, and J. Sauter. Digital pheromone
mechanisms for coordination of unmanned vehicles. In Autonomous
Agents and Multiagent Systems (AAMAS 2002), volume 1, pages 449–
450. ACM, 15–19 July 2002.

[27] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda meets
mobility. In The 1999 International Conference on Software Engineering
(ICSE’99), pages 368–377. ACM, 1999. May 16-22, Los Angeles (CA),
USA.

[28] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt. Gaia: a middleware platform for active spaces. Mobile
Computing and Communications Review, 6(4):65–67, 2002.

[29] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

[30] M. Ulieru and S. Grobbelaar. Engineering industrial ecosystems in a
networked world. In 5th IEEE International Conference on Industrial
Informatics, pages 1–7. IEEE Press, June 2007.

[31] M. Viroli and M. Casadei. Biochemical tuple spaces for self-organising
coordination. In J. Field and V. T. Vasconcelos, editors, Coordina-
tion Languages and Models, volume 5521 of LNCS, pages 143–162.
Springer-Verlag, June 2009. 11th International Conference (COORDI-
NATION 2009), Lisbon, Portugal, June 2009. Proceedings.

[32] M. Viroli and M. Casadei. Chemical-inspired self-composition of
competing services. In S. Y. Shin, S. Ossowski, M. Schumacher,
M. Palakal, C.-C. Hung, and D. Shin, editors, 25th Annual ACM
Symposium on Applied Computing (SAC 2010), volume III, pages 2029–
2036, Sierre, Switzerland, 22–26 Mar. 2010. ACM.

[33] M. Viroli, M. Casadei, and A. Omicini. A framework for modelling
and implementing self-organising coordination. In 24th Annual ACM
Symposium on Applied Computing (SAC 2009), volume III, pages 1353–
1360. ACM, 8–12 Mar. 2009.

[34] M. Viroli and F. Zambonelli. A biochemical approach to adaptive service
ecosystems. Information Sciences, 180(10):1876–1892, 2010.

[35] F. Zambonelli and M. Viroli. Architecture and metaphors for eternally
adaptive service ecosystems. In IDC’08, volume 162/2008 of Studies in
Computational Intelligence, pages 23–32. Springer Berlin / Heidelberg,
September 2008.

