
A Multi-Agent System for the automated handling
of experimental protocols in biological laboratories

Alessandro Maccagnan∗, Tullio Vardanega∗, Erika Feltrin†, Giorgio Valle†, Mauro Riva‡, Nicola Cannata§
∗Department of Pure and Applied Mathematics, University of Padua, via Trieste 63, 35121 Padova, Italy

†CRIBI Biotechnology Centre, University of Padua, viale G. Colombo 3, 35121 Padova, Italy
‡BMR Genomics, Via Redipuglia 21/a, 35131 Padova, Italy

§School of Sciences and Technologies, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy

Abstract—Software-based Laboratory Information Manage-
ment Systems can handle samples, plates, instruments, users,
potentially up to the automation of whole workflows. One
frustrating element of this predicament is that Life Sciences
laboratory protocols are normally expressed in natural languages
and thus are scarcely amenable to real automation. We want to
defeat this major limitation by way of a project combining Model-
Driven Engineering, Workflows, Ontologies and Multiagent sys-
tems (MAS). This paper describes the latter ingredient. Our MAS
has been implemented with JADE and WADE to automatically
interpret and execute a structured representation of laboratory
protocols expressed in XPDL+OWL. Our work has recently been
tested on a real test case and will shortly be deployed in the field.

I. INTRODUCTION

Following the explosion of automation technologies in life
science experimentation, biological laboratories are drown-
ing in data to handle, store, and analyze. High-throughput
”-omics” experiments permit to rapidly characterize whole
populations of molecules (e.g. genes, transcripts, proteins,
metabolites) in different samples at varying physiologi-
cal/pathological/environmental conditions. Automatic process-
ing of samples has therefore become essential in modern
life sciences. For decades, Information Technology supports
laboratories by means of LIMS (Laboratory Information Man-
agement Systems), software for the management of sam-
ples, plates, laboratory users and instruments and for the
automation of work flow. Furthermore, formal representation
of experimental knowledge is increasingly used, so that ”robot-
scientists” [1] could even automatically infer new knowledge
and plan subsequent experimental steps in order to confirm
experimental hypotheses [2].

In natural sciences a protocol is a predefined procedural
method, defined as a sequence of activities, used to design
laboratory experiments and operations. In general they are
still commonly described, published and exchanged in nat-
ural language and come therefore accompanied by intrinsic
ambiguity, lack of structure and ”disconnection” from the
surrounding execution environment. This make experiments
hardly repeatable, not machine-understandable, even not easily
comprehensible by a laboratory expert and most definitively
not directly automatable and unfit for automated reasoning. We
have therefore undertaken we have proposed to combine the

unambiguous semantic of ontologies with the expressive power
of workflows for formalizing protocols adopted in biological
laboratories [3]. By means of workflows, protocols can be
intuitively and visually represented and can be stored and
shared using the XPDL standard interchange language [4]. By
means of ontologies the knowledge related to the laboratory
environment is directly incorporated into the workflow model
and can be exchanged using the standard OWL model [5].

Building on this formal foundations (we named this meta-
model COW - Combining Ontologies and Workflows) to
represent laboratory knowledge and procedures we envision
a Next Generation LIMS as logically composed of three
main building blocks (see Fig.1): a Protocol Visual Editor,
a Compiler, and a MAS Runtime Environment.

The Protocol Visual Editor allows end-users, expert of bio-
logical laboratory domain, to easily design their experiments
by using controlled, well-defined domain terms to describe
samples, equipments and experimental actions. End users are
not required to have particular programming skills and the
specifications they devise, that on the visual editor are rendered
as intuitive workflows, are stored in the COW format. The
editor, built on the underlying meta-model, is semantically
”cultured”, and therefore able to interpret the constructs of the
meta-model. Hence, the protocols designed with the editor are
syntactically and semantically correct, as the editor prevents
the introduction of statements not conforming to the meta-
model rules.

The end-user specification is then automatically translated

Fig. 1. The components of a Next Generation LIMS, built upon the COW
meta-model



Fig. 2. The Model Driven Engineering paradigm, used in combination with software agents, for interfacing laboratory resources

by a Compiler into a runtime specification ready to be di-
rectly interpreted by a suitable execution environment. This
step is analogous to the compilation process in programming
languages. A program, written in a higher level programming
language, perhaps RAD-designed by means of a visual editor,
is translated into a lower level code that can be interpreted by
a suitable runtime environment.

The MAS Runtime Environment is able to execute, con-
stantly monitoring it, the (translated) protocol, acting as an
interface and a virtualized representation of the real laboratory
environment, in which the protocol will physically take place.
Automated stations or human operators will be automatically
invoked at runtime and they will be required to execute the
actions planned in the workflows. The execution is actually
delegated to a Multi Agent System, the most natural solution
for a complex environment characterized by autonomous,
distributed entities that need to be coordinated.

The Next Generation LIMS that we propose exploits the
Model Driven Engineering paradigm [6]. The end users (see
Fig.2) is able to describe the experiment model in its own
language. The corresponding formal specification (in the COW
meta-model) produced by the Visual Editor is then automat-
ically translated into an executable specification that will be
executed by a system of software agents. The product of the
transformation is a set of Java classes that can be compiled
and used directly in the runtime system. The transformation
preserves the requirements and the constrainst specified by the
end-users at design time.

The main requirements set on the system from a laboratory
point of view are:

• traceability of the processes applied to the samples;
• automation of the laboratory processes;
• integration of heterogeneous systems and devices used in

the laboratory.

Our project aims at simplifying the work of laboratory
operators. With the drastic increment of formalization and
automation, the room for man-made errors will be greatly
reduced and all the bookkeeping activities will not absorb any
more the staff time.

In this paper we introduce the Executable model of a
protocol that can be interpreted by a MAS and then we con-
centrate our attention on the MAS Runtime Environment itself,
describing its architecture, its components and its coordination.
The paper is organized as follows: Section II presents the
Executable model of a protocol; Section III describes the
architecture of the Multi Agent System Runtime Environment
supporting the execution of the protocols; Section IV presents
a demo case study; Section V concludes with final remarks
and possible future improvements.

II. EXECUTABLE MODEL OF A PROTOCOL

In this section we describe the Executable model of a
protocol, that we have defined for coding executable protocols
in our Next Generation LIMS. An essential issue in LIMS is
the necessity of monitoring a protocol during its execution,
saving both the information on data and on procedures. It
must be underlined that the executable protocol is not the one
defined by the end-user by mean of the Visual Editor and
stored in the COW format, but its translation generated by the
Compiler.

A laboratory protocol can be seen as the composition of
precisely defined activities [7]. The executors of the activities
could be instruments (e.g. a centrifuge) or laboratory staff.
As an example of the huge quantity of data produced by an
activity we could cite the mass of raw data generated by a
single DNA sequencing experiment, that is nowadays in the
order of the Terabytes. Beside the data, all the procedural
steps must be tracked. Returning to the DNA sequencing



Fig. 3. XML schema for an Action

laboratory example, the protocol would probably require to
execute also ”virtual” operations like converting the raw data
into DNA sequences and subsequently assemble them by
means of alignment algorithms.

In the typical protocol we can found three kind of activities,
depending on their performer:

• those performed by a physical device, like a liquid
handler workstation (e.g. Biomek FX);

• those performed by a virtual device, like an assembling
software;

• those performed by a human operator, like shaking a plate
or taking a sample of DNA through a swab.

Starting from these considerations we have defined a general
notion of activity, called Action. An Action is defined by a
name and a list of parameters. Each parameter is characterized
by a name, a type and by the mode in which it is passed (read-
only, read/write, write-only) (Fig.3). An Action is an atomic
step in our execution model and could be seen as the simplest
instruction that our MAS is able to interpret and execute

Referring again to the programming language metaphor we
can assimilate an Action in the Executable model of a protocol
to a single machine instruction in a machine code program. A
single machine instruction can be directly executed by the pro-
cessor. The definition of Action is general enough to include
the three cases above mentioned. Given the heterogeneity and
the complexity of the laboratory environment, this solution
represents a good trade-off between the need of describing a
protocol with enough granularity and the need of having a
common interface for every activity involved.

Fig.4 shows the XML document describing a ”centrifugate”
Action. A centrifugate Action is defined by three parameters.
The parameter named ”performed”, is of boolean type and its
mode is OUT, so that it is actually an output parameter of the
action, representing whether the action has been successfully
performed. The second and the third parameters are inputs of
integer type representing respectively the g-force to be applied
in the centrifugation and the centrifugation time.

It must be recalled that an Executable Action has a semantic
counterpart in the Action concept, formally defined in the lab-
oratory domain ontology of the COW meta-model supporting
the Next Generation LIMS [3].

In the Executable model, a Protocol is an articulated flow
of Actions. A Valid Protocol is a protocol that our runtime
environment is able to interpret and to execute. A Protocol
in the model could be composed using different Actions
available in the runtime environment or loaded from external

Fig. 4. XML document for a centrifugate action

libraries. We use the XPDL [4] meta-model to describe the
execution and the orchestration of different actions. In XPDL
a process is a structured composition of piece of works, called
Activities, that could be of various type [8]. In our system a
Valid Protocol is a XPDL compliant model with some minor
limitations and differences.

In order to guarantee the correct interpretation of a COW
protocol we do require that every piece of work must be
described by means of an Action concept. In this manner
the COW meta-model is semantically enriched and we want
to preserve at runtime the ontological constraints defined
at design-time. In XPDL the notion of ”piece of work” is
described by the concept of Activity. Hence we impose that
every Activity is allowed to invoke only Actions. In order to
satisfy this condition in the Executable model, we imposed
two restrictions to the XPDL meta-model.

The first one is to limit the types of Activity only to Route
and SubFlow. The Route activity performs no work and simply
supports routing decisions among the incoming transitions
and/or among the outgoing transitions. The SubFlow activity
enables the reuse of processes and could be usefully used to
encapsulate parts of protocols in self-contained modules.

Second, we provide a specific SubFlow (ExecuteActionW)
around an invocation of an Action. The ExecuteActionW
SubFlow (Fig.5) simply invokes the execution of the Action
and checks if it is performed with or without errors. Actions
can be executed only encapsulated within such construct.

Using only Route and SubFlow activities and using the
ExecuteActionW SubFlow we can therefore ensure that every
piece of work is backed by an Action concept. In the next
section we will describe how we have built a MAS runtime
system able to execute a Valid Protocol.

III. MAS RUNTIME ENVIRONMENT

The enactment of workflows using multiagent systems has
already been proposed in the literature [9], [10], including



Fig. 5. The ExecuteActionW SubFlow that encapsulate the execution of
actions

the development [11], [12] of workflow management systems
based on the popular open source MAS platform JADE [13].

Recently, a new software platform has been proposed as
an extension to JADE by the JADE development group itself.
WADE (Workflow and Agent Development Environment) has
been developed on top of JADE, with the implementation
of new features for supporting the use of workflows in the
deployment of multi-agent applications [14]. WADE includes
a micro-engine embedded in a set of dedicated agents which
are specifically developed for the execution of workflows
defined in an extended version of XPDL. Doing this, the new
engine permits to directly execute the Java code associated to
a specific workflow activity. Moreover, this new tool allows
to choose and assign secondary agents for the execution of
subflows. Additional components have been also defined in
WADE in order to manage administration and fault tolerance
issues.

The main challenge in WADE consists in bringing the
workflow approach from the business process level to the level
of system internal logics [15]. In other words, the objective
is not to support an orchestration of services provided by
different systems at high level, but to implement the internal
behavior of the single systems.

The new functionality offered by WADE is of special
importance for us. The capabilities to run a slightly different
model of XPDL workflows fits with our requirements. We
hence decided to build our MAS on top of the JADE/WADE
framework.

The architecture of the MAS Runtime Environment is
designed to closely resemble the laboratory environment, with
the additional capability of being able to interpret and execute
Actions as described in Section II. The Executable Model of a
protocol involves one main kind of entities. These entities are
heterogeneous and distributed resources that actually expose
and, on request, performs Actions. We therefore dedicated
one class of agent to these entities, the Device Agent (DA).
Another distinctive characteristic of the Runtime Environment
is an entity that does read an executable protocol and handles
its execution. A Protocol Manager agent (PM) is appointed to
control this aspect. A user interface agent (APE) is designed
for loading new protocols in the MAS. A Reporter Agent
(RA) is built specifically as a User Interface for mobile

devices.

• DA: controls a resource (physical or virtual)
• PM: executes a protocol in the MAS
• APE: allows the loading of new protocols
• RA: user interface for mobile devices
The RA agent is created at the boot of the system. For

each resource in the laboratory environment that should be
automatically managed from the LIMS, it is then created a
DA Agent counterpart. One APE is also created in the boot
phase, however two (or more) instances can co-exist without
any problem. The same apply for the RA. A PM agent instead
is created dynamically on user demand, being responsible
for the execution of a particular protocol. Once completed
the protocol, the PM agents automatically disappear from the
system.

A. Device Agent

In the past years the literature recognized the need to explic-
itly embody the notion of resource in a MAS [16], [17]. A well
known approach is to use the notion of “artifact”. Artifacts
can be considered as complementary abstractions to agents
populating a MAS. While agents are goal-oriented pro-active
entities, artifacts are a general abstraction to model function-
oriented passive entities. MAS designers employs artifacts to
encapsulate some kind of functionality, by representing (or
wrapping) existing resources or instruments mediating agent
activities [18]. The purpose is to encapsulate functionalities
and services in suitable first class abstractions at the agent level
[16]. Artifacts could be used for wrapping existing resources
and therefore are a suitable model for our purpose. Particularly
fitting is the Agent and Artifact model [16], in which an
Artifact is structured as a set of operations.

We therefore propose a combination of a Driver and an
Agent in order to make available in the MAS a service that
can be executed by a physical or virtual resource. A Driver in
our model actually performs the communication with a legacy
resource as a centrifuge or a robotized station. Since our model
is inspired from the A&A model, our Driver is structured in
terms of Actions. The similarity with the model lies on the fact
that a Driver represents a resource in the MAS environment
(Artifact in the A&A model). The main difference is that we
strictly bind an instance of a Driver with exactly one instance
of a DA. As a consequence every request of Actions must be
posed to a specific DA that acts as a proxy to the driver and
therefore to the resource.

A Resource exposes a set of Actions, one for every function-
ality. In the Centrifuge example the Centrifuge is the resource
itself, and it is described by means of the functionalities it
exposes and hence by a set of different Actions i.e. the actions
it can actually perform (e.g. ”centrifugate” or ”open lid”). A
DA is responsible for executing the single actions, therefore
it needs to knows how to physically communicate with the
related resource. It needs also to communicate with other
agents in order to satisfy any request for its functionalities. We
therefore structured a DA in two layers as depicted in Fig.6.



Fig. 6. Layers of the Device Agent

The bottom layer is responsible the communication with the
resource using a specific driver. The top layer possesses the
normal agents duties as behaviors and social capabilities.

1) Bottom layer: The bottom layer is to load, extract the
related metadata, and it uses a resource specific driver. In the
development of such a complex and heterogeneous system like
a biological laboratory, the design of a new driver can become
a hard bottleneck. Hence we made some effort to simplify the
process of driver creation. In our approach, a driver could be
any piece of Java code. This choice enables the reuse of legacy
code as well as direct interfacing with the instrument. The only
added requirement for a developer is to declare which services
the driver does expose. This is done via the Java annotation
mechanism, which allows to add metadata to the code.

We provide a set of annotations like @Action and @Par.
Every method that is going be exposed as a first class entity
in the system (Action) must be annotated with the @Action
tag. In case of parameters the @Par tag should be used. As
illustrated in Fig.7 the method centrifugate is promoted to an
Action entity in the MAS. Two parameters are declared plus
an extra one for the return value of the method. The XML
document of Fig.4 it is actually created from the annotated
centrifugate Java method of Fig.7.

Using a driver manager the Device Agent is able to load
and extract the metadata for a driver that fulfill these re-

Fig. 7. Example of a method annotated with an @Action tag

quirements. During the initialization phase the agent loads the
driver, analyzes the metadata and fills a set of Action objects
compliant to our model. The set of these objects provides the
descriptions of the capabilities of the Device agent. The last
step of the initialization phase is to register itself (with the
exposed capabilities) in the MAS.

2) Top Layer: This layer is responsible for the interaction
with other agents in the MAS, responding to to request of
Actions. The main capability consists in being able to execute
the ExecuteActionW SubFlow (see Fig.5). A different agent,
intending to execute an action available on the interfaced
device, should first retrieve the corresponding Action object.
Then, this agent should ask to the DA to perform the Execute-
ActionW SubFlow using as parameter the Action object and
the actual parameters (if any) of the action. The DA then tries
to execute the action, communicating with the resources by
means of the driver. If some error occurs the caller is notified.
In case of no errors, the resulting output parameters are filled
in the Action object and the caller is notified.

B. Protocol Manager agent

The Protocol Manager agent is responsible for the correct
execution of a protocol. It incorporates the capabilities to
execute a restricted (according to Section II) XPDL protocol.
Since the restriction imposed to XPDL in our Executable
Model are minor, a normal WADE agent could be used. In
order to develop a protocol directly in the MAS system it is
therefore possible to use the WOLF tool [19]. However, in
the future, we intend to translate a protocol, structured in the
COW meta-model, directly in the underlying Java code.

On the launch of a new protocol a new PM is created. The
first step performed by a PM is to check if the protocol can run
on the current environment. Therefore the PM tries to verify
the existence of every Action used in the protocol before ac-
tually starting the execution. Only if that control is successful
then the execution of the protocol can take place. When the
PM agent encounters an Action invocation it first finds which
DA is actually able to perform it. The search is performed
using the classic yellow pages system of Jade. Then, the agent
delegates the execution of the ExecuteActionW SubFlow to
the proper DA. The standard WADE mechanism used to enact
distribuited workflow execution is applied.

If multiple protocols require the same action, the requests
are queued and acted upon by the DA. The requests are then
executed on FIFO bases (first in first out). In the future, using
a separate scheduler more complex policies could be applied.

C. Agent Protocol Environment

The APE agent provides a user interface [UI] to laboratory
operators in order to load new protocols. A protocol is
enclosed in a package that contain three different categories
of elements:

• main protocols as well as the sub-protocols used in them;
• local resources like images or spreadsheet files required

by the activities of the protocols;



• specific external libraries used to obtain some extra
feature like PDF documents generation.

APE loads a package and does visualize the content to the
operator. It then extracts all the resources and does deploy
them into the runtime system. It is also responsible for creating
a new PM agent and to charge it with the execution of the
loaded protocol.

D. Reporter Agent

A Reporter Agent has been built specifically to handle
requests from mobile devices that provide GUIs to laboratory
operators. We currently support ANDROID [20] based mobile
devices using the peer-to-peer approach proposed by [21].

The RA is able to query the system and to provide informa-
tion about the state of a sample processed in the laboratory.
It interacts with the other agents of the runtime system and
queries the database in order to determine detailed information
like:

• the customer order that activate the laboratory analysis;
• the type of the biological analysis in which the sample is

involved;
• the current phase of processing reached by the sample;
• the relationship with other samples produced in the

laboratory for the same customer order.
Finally, after collecting all pieces of information, the RA is

able also to produce a report and to send it to the operator’s
GUI on its mobile device.

IV. A DEMO CASE STUDY

The Paternity Test aims at establishing if a man is the
biological father of an individual. A customer, willing to
perform the test, places an order through a website. Afterward,
DNA samples belonging to the individual and to the supposed
child are collected, usually by means of buccal swabs, and
sent to the analysis laboratory. When the material reaches the
laboratory, some biological analysis can actually be executed,
according to the protocol described in Fig.8. Through several
sub-protocols, the samples are processed and, at every step,
transformed into specific types of succeeding samples. In the
final steps of the protocol, by DNA sequencing techniques,
some data results are obtained. The DNA sequencing output
is then used to compute the profile of the individuals involved
in the specific test and finally a medical report that explain
the results is produced by an expert.

Each action of the protocol is currently activated manually
by a laboratory operator, following the workflow. In different
phases of the process the operator is bounded to fill some
digital resources and execute some bioinformatics analysis.

In order to test the potential of our system the protocol
described above has been formalized in the COW meta-model.
The graphical representation of the workflow of Fig.8 is
rendered using the WOLF tool [19] of the WADE framework.
Every depicted activity block could represent either a normal
SubFlow or an Action invocation by means of the ExecuteAc-
tionW SubFlow.

Fig. 8. The protocol formally describing the Paternity Test

Fig.9 shows a subprotocol that describes the steps involved
in the PCR SubFlow. In it we can see a use of the centrifugate
action of Fig.4. In the PCRCycle Action the DNA material
is amplified by means of the Polymerase Chain Reaction so
that its quantity becomes sufficient for the following steps
of the analysis. It can be noticed that the protocols does
include not only the physical processing of samples but also
the management of the produced data and of the history of
the sample (e.g. by mean of the DBReg Action, that interacts
with a database). Doing so permits to support existing legacy
systems without changing their structure.

It is worth underlining that since the PCR sub-protocol
is self-contained in the SubFlow is possible to reuse it in
other contexts without writing a single line of code. This
drastically reduces the time needed for the implementation of
new protocols.

Using the proposed approach an explicit knowledge of the
concepts involved protocol exists in the system. The MAS is
therefore able to interpret this knowledge and to act correctly
depending on the real environment. In the case study of the
paternity test only the tracking activities have been totally
automated. The operator is therefore notified when he can start
the physical steps, to be executed from a device. Nevertheless,
with propers drivers and proper hardware, also physical actions
could be automated. The system notifies with the next steps
to be performed. In the example the operator is notified to
perform a PCR on some specific samples. After the sequencing
phase an automatically analysis is performed and the results
are delivered to the laboratory operator.

In our test case a total of 31 activities are included to define
the paternity protocol (included the sub-protocol SwabExtrac-
tion, PCR, Sequencing and Analysis). Using our model we
automatized 12 of those activities. Once automatized these
activities become transparent to the end user and they could
be also easily reused in other protocols with minimal effort.

On respect of the initial requirement of traceability, automa-
tion and integration our test case show promising results. The
requirement of traceability is easily guaranteed, and all the
related - and heavy - duties are now transparent to the end
user.

The second requirement of automation is met. In our
test case only some activities have been automatized. The
bottleneck is the legacy environment and the development of
the drivers. However, also without producing drivers for the
specific hardware, we automated 12 of the 31 initial activities



Fig. 9. The PCR subprotocol of the paternity protocol

(38%).
The last requirement is met under the constraint to produce

specific drivers for the specific devices used in the laboratory.

V. CONCLUSION

In our vision a Next Generation LIMS will ease the man-
agement of a biological laboratory. The laboratory knowledge,
including the procedural one, would be formalized and would
become easy, for automatic systems, to exchange, control,
analyze and exploit. On the other hand, laboratory protocols
would become easy to specify, read and maintain also by
domain experts.

Protocols could be statically validated in a given execution
environment (i.e. “MAS interfaced” laboratory) according to
specifications to be met. In this way it will be possible
to know if the environment is able to execute the protocol
ensuring the expected quality of service respecting all the
critical constraints.

A Scheduler agent could also perform a dynamic validation
and optimization of a protocol at runtime. In this way it will
be possible to effectively and efficiently answer to possible
sudden changes in the environment, like e.g. the breakdown
of a resource. The actions to be taken in order to recover
from abnormal situations could be based on a set of rules.
The agents should perform some reasoning upon that rules in
order to react in a proper and fast way to the changes of the
environment.

It could also dynamically schedule groups of samples acting
on the current state of the resources, in order to optimize the
resource consumption.

The system will permit an easier tracking of all the transfor-
mations applied to the analyzed samples, including the virtual
(i.e. digital) ones. Automation will be naturally enhanced:
physical devices will undergo a direct control performed by
software agents, in turn controlled by protocol “instructions”.
The integration of heterogeneous systems and instruments,
including the communications with laboratory operators, also
via mobile platforms, will thus become possible.

REFERENCES

[1] R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton,
D. Kell, and S. Oliver, “Functional genomic hypothesis generation and
experimentation by a robot scientist,” Nature, vol. 427, pp. 247–252,
2004.

[2] R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey,
E. Byrne, M. Liakata, M. Markham, P. Pir, L. N. Soldatova,
A. Sparkes, K. E. Whelan, and A. Clare, “The Automation of Science,”
Science, vol. 324, no. 5923, pp. 85–89, 2009. [Online]. Available:
http://www.sciencemag.org/cgi/content/abstract/324/5923/85

[3] A. Maccagnan, M. Riva, E. Feltrin, B. Simionati, T. Vardanega,
G. Valle, and N. Cannata, “Combining ontologies and workflows
to design formal protocols for biological laboratories,” Automated
Experimentation, vol. 2, no. 1, p. 3, 2010. [Online]. Available:
http://www.aejournal.net/content/2/1/3

[4] Xml process definition language. [Online]. Available:
http://www.wfmc.org/xpdl.html

[5] Ontology web language. [Online]. Available:
http://www.w3.org/TR/owl-ref/

[6] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” FOSE ’07: 2007 Future of Software
Engineering, pp. 37–54, 2007.

[7] M. Courtot, W. Bug, F. Gibson, A. Lister, J. Malone, D. Schober,
R. Brinkman, and A. Ruttenberg, “The owl of biomedical investigations,”
in Proceedings of the Fifth OWLED Workshop on OWL: Experiences,
2008, xx 2008.

[8] R. Shapiro and M. Marin, Workflow Management Coalition Workflow
StandardProcess Definition Interface– XML Process Definition Lan-
guage, The Workflow Management Coalition, 99 Derby Street, Suite
200 Hingham, MA 02043 USA, October 2008.

[9] P. A. Buhler and J. M. Vidal, “Towards adaptive workflow enactment
using multiagent systems,” Inf. Technol. and Management, vol. 6, no. 1,
pp. 61–87, 2005.

[10] E. Bartocci, F. Corradini, and E. Merelli, “Enacting proactive workflows
engine in e-science,” in International Conference on Computational
Science (3), 2006, pp. 1012–1015.

[11] C. V. Trappey, A. J. Trappey, C.-J. Huang, and C. Ku, “The
design of a jade-based autonomous workflow management system
for collaborative soc design,” Expert Systems with Applications,
vol. 36, no. 2, Part 2, pp. 2659 – 2669, 2009. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V03-
4RV7Y9W-2/2/f933cced0e8af5448692818153bb1648

[12] G. Fortino, A. Garro, and W. Russo, “Distributed workflow enactment:
an agent-based framework,” in Atti del 7 Workshop dagli Oggetti agli
Agenti (WOA) Sistemi GRID, Peer-to-peer e Self-*, Catania (Italia).

[13] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE (Wiley Series in Agent Technology). Wiley, April
2007.

[14] G. Caire, D. Gotta, and M. Banzi, “Wade: a software platform to
develop mission critical applications exploiting agents and workflows,”
in AAMAS ’08: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.
29–36.

[15] A. Poggi and P. Turci, “An agent-based bridge between business process
and business rules,” in Decimo Workshop Nazionale Dagli Oggetti agli
Agenti, 2009.

[16] A. Ricci, M. Viroli, and A. Omicini, “The a&a programming model and
technology for developing agent environments in mas,” in ProMAS’07:
Proceedings of the 5th international conference on Programming multi-
agent systems. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 89–106.

[17] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the a&a meta-model
for multi-agent systems,” Autonomous Agents and Multi-Agent Systems,
vol. 17, no. 3, pp. 432–456, 2008.

[18] R. Kitio, O. Boissier, J. F. Hbner, and R. Ricci, “Organisational artifacts
and agents for open multi-agent organisations: giving the power back to
the agents.”

[19] G. Caire, M. Porta, E. Quarantotto, and G. Sacchi, “Wolf - an eclipse
plug-in for wade,” in WETICE ’08: Proceedings of the 2008 IEEE 17th
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 26–32.

[20] Android platform. [Online]. Available: http://code.google.com/android
[21] M. Ughetti, T. Trucco, and D. Gotta, “Development of agent-based, peer-

to-peer mobile applications on android with jade,” Mobile Ubiquitous
Computing, Systems, Services and Technologies, International Confer-
ence on, vol. 0, pp. 287–294, 2008.


