
Programming Wireless Body Sensor Network
Applications through Agents

Giancarlo Fortino, Stefano Galzarano
Department of Electronics, Informatics and Systems (DEIS)

University of Calabria (UNICAL)
Rende (CS), ITALY

fortino@unical.it, galzarano@si.deis.unical.it

Abstract—Wireless Sensor Networks (WSNs) are currently
emerging as one of the most disruptive technologies enabling and
supporting next generation ubiquitous and pervasive computing
scenarios. In particular, Wireless Body Sensor Networks
(WBSNs) are conveying notable attention as their real-world
applications aim at improving the quality of human beings life by
enabling continuous and real-time non-invasive assistance at low
cost. This paper proposes a high-level programming approach
based on the agent-oriented model to flexibly design and
efficiently implement WBSNs applications. The approach is
exemplified through a case study concerning a real-time human
activity monitoring system which is developed through two
different agent-based frameworks: MAPS (Mobile Agent
Platform for Sun SPOT) and AFME (Agent Factory Micro
Edition). The programming effectiveness of MAPS and AFME
with respect to the developed systems is finally discussed.

Keywords - Mobile agent platforms; wireless body sensor
networks; Java Sun SPOT; finite state machines; human activity
monitoring

I. INTRODUCTION
Wireless Sensor Networks (WSNs) [1] are collection of

tiny, low-cost devices with sensing, computing, storing,
communication and possibly actuating capabilities. Every
sensor node is programmed to interact with the other ones and
with its environment, constituting a unique distributed and
cooperative system aiming at reaching a global behavior and
result. WSNs are a powerful technology for supporting a lot of
different real-world applications, and for a demonstration it is
worth noting that in the last decade this new technology has
emerged in a wide range of different domains including health-
care, environment and infrastructures monitoring, smart home
automation, emergence management, and military support,
showing a great potential for numerous other applications.

When a WSN is specifically used for being applied to the
human body we deal with Wireless Body Sensor Network
(WBSN) [2] which involves wireless wearable physiological
sensors for strictly medical or non medical purposes. For
example, they can be very effective for providing continuous
monitoring and analysis of physiological or physics parameters
very useful, among the others, in medical assistance, in motion
and gestures detection, in emotional recognition, etc.

Unfortunately, designing such networks is not an easy work
because it implies knowledge from many different areas,
ranging from low-level aspects of the sensor nodes hardware

and radio communication to high-level concepts concerning
final user applications. Overcoming these difficulties by
providing a powerful yet simple software development tool is a
fundamental step for better exploiting current sensor platforms.
It is quite evident that middleware supporting high-level
abstraction model can be adopted for addressing these
programming problems and assisting users in a fast and
effective development of applications. For this reason,
programming abstractions definition is one of the most
fermenting research areas in the context of sensor networks,
demonstrated by the several high-level programming
paradigms proposed during the last years.

The main focus of this paper is to show how the agent-
based programming model is an effective, easy and fast
approach for developing WBSN applications, with particular
emphasis on two Java-based agent platforms running on Sun
SPOT sensors: MAPS (Mobile Agent Platform for Sun SPOTs)
[12, 13] and AFME (Agent Factory Micro Edition) [14, 15].

The rest of this paper is structured as follows. In Section II,
we first briefly review several programming paradigms for
WSNs, most of which can be easily applicable in the context of
WBSNs. Section III is devoted to a description of the main
characteristics of a WBSN. Agent-oriented application design
and implementation using MAPS and AFME are described in
Section IV whereas a WBSN real-time human activity
monitoring system, developed through the two aforementioned
agent platforms, is described in Section V. Finally, concluding
remarks are drawn.

II. PROGRAMMING PARADIGMS FOR WSN
The basic functions required by high-level programming

tools are (1) to provide standard system services to easily
deploy current and future applications and (2) to offer
mechanisms for an adaptive and efficient utilization of system
resources. Such tools embrace a wide range of software
systems that can be categorized in different classes, each of
which characterized by specific features so that, although most
WSN applications have common requirements, many different
solutions [3] have been proposed in the last years, differing on
the basis of the model assumed for providing the high-level
programming abstractions. On the basis of the literature so far,
it emerges that none of the proposed application development
methodologies can be considered the predominant one. Part of
them has peculiar features specifically conceived for particular
application domains but lacks in other contexts. However,

among the different programming methodologies, we believe
that the exploitation of the agent-oriented programming
paradigm to develop WBSN applications could provide the
required effectiveness, flexibility and development easiness as
demonstrated by the application of agent technology in several
other key application domains [24]. In the following, several
programming paradigms along with their brief descriptions are
provided.

A. Database model
The database model lets users view the whole sensor

network as a virtual relational distributed database system
allowing a simple and easy communication scheme between
network and users. Through the adoption of easy-to-use
languages the latter have the ability to make intuitive queries
for extracting the data of interest from the sensors. The most
common way for querying networks is making use of a SQL-
like language, a simple declarative-style language. This model
is mainly designed to collect data streams, with the problem
that it provides only approximate results and also, it is not able
to support real-time applications because it lacks of time-space
relations between events. TinyDB [4], Cougar [5] and SINA
[6] are examples of middleware adopting this approach.

B. Macroprogramming model
This model considers the global behavior for wireless

sensor network, rather than single actions related to individual
nodes. The need for this approach arises when developers
have to deal with WSNs constituted by a quite large number of
nodes, such that the complexity resulting from the task to
coordinate their actions makes applications impossible to be
designed in an effective way. Macroprogramming generally
have some language constructs for abstracting embedded
systems’ details, communication protocols, nodes
collaboration, and resource allocation. Moreover, it provides
mechanisms through which sensors can be divided into logical
groups on the basis of their locations, functionalities, or roles.
Then, programming task decreases in complexity because
programmers have only to specify what kind of collaborations
exist between groups, whereas the underlaying execution
environment is in charge of translating these high-level
conceptual descriptions into actual node-level actions. ATaG
[7], Kairos [8] and Regiment [9] are based on the
macroprogramming model.

C. Agent-based model
The agent-based programming model is associated with

the notion of multiples, desirable lightweight, agents migrating
from node to node performing part of a given task, and
collaborating each other to implement a global distributed
application. Mobile agents are software processes able to
migrate among computing nodes by retaining their execution
state. An agent could read sensor values, actuate devices, and
send radio packets. The users do not have to define any per-
node behaviors, but only an arbitrary number of agents with
their logics, specifying how they have to collaborate for
accomplishing the tasks needed to form the global application
on the network. Middleware according to this model provides
users with high-level constructs of a formal language for
defining agents’ characteristics, hiding how collaboration and

mobility are actually implemented. The reasons in adopting
such a model is mainly due to the need for building
applications that can be reconfigured and relocated. Moreover,
the key of this approach is that applications are as modular as
possible to facilitate their distribution trough the network
using mobile code. Agilla [10], ActorNet [11], MAPS [12, 13]
and AFME [14, 15] are the main agent-based solutions for
WSN.

D. Virtual machine model
Virtual machines (VM) have been generally adopted for

software emulating a guest system running on top of a host
real one. In the WSN context, VMs are used for allowing a
vastly range of applications to run on different platforms
without worrying of the actual architecture characteristics.
User applications are coded with a simple set of instructions
that are interpreted by the VM execution environment.
Unfortunately, this approach suffers from the overhead that
the instructions interpretation introduces. Maté [16] is an
example of VM-based middleware.

E. Event-based model
In the context of wireless sensor networks where nodes

mobility and failures are very common, the event-based
middleware solutions are the effective way to support reactive
and instantaneous responses to network changes. In a context
where continuing data collecting and monitoring take place
among a large number of nodes, a traditional request/response
communication paradigm is not suitable at all, as it could be
happen that some nodes (e.g. a data source node or a sink
node) are not available. As a consequence, a client that
continuously needs information updates could make requests
without receiving any response, and this is not acceptable
because energy is a scarce resource and also, this could bring
to network congestion. Rather, the asynchronous event-driven
communication with support for a publish/subscribe
mechanism, allows a strong decoupling between sender and
receiver, resulting in a more suitable approach. A client
subscribes particular events so that it receives a message only
when one of them occurs and also, data processing execution
takes place only when necessary. Mires [17] and DSWare [18]
are two examples of event-based middleware.

F. Application-driven model
Middlewares belonging to this model aim to provide

services to applications according to their needs and
requirements, especially for QoS and reliability of the
collected data. They allow programmers to directly access the
communication protocol stack for adjusting network functions
to support and satisfy requested requirements. MiLAN [19] is
an example of middleware based on this approach.

III. WIRELESS BODY SENSOR NETWORKS
WSNs applied to the human body are usually called

Wireless Body Sensor Networks (WBSNs) [2] involving
wireless wearable physiological sensors for strictly medical or
non medical purposes. WBSNs are conveying notable
attention as their real-world applications aim at improving the
quality of human beings life by enabling continuous and real-
time non-invasive assistance at low cost. Applications where
WBSNs could be greatly useful include early detection or

prevention of diseases (e.g. heart attacks, Parkinson, diabetes,
asthma), elderly assistance at home (e.g. fall detection, pills
reminder), e-fitness, rehabilitation after surgeries (e.g. knee or
elbow rehabilitation), motion and gestures detection (e.g. for
interactive gaming), cognitive and emotional recognition (e.g.
for driving assistance or social interactions), medical
assistance in disaster events (e.g. terrorist attacks, earthquakes,
wild fires), etc.

Designing and programming applications based on
WBSNs are complex tasks. That is mainly due to the
challenge of implementing signal processing intensive
algorithms for data interpretation on wireless nodes that are
very resource limited and have to meet hard requirements in
terms of wearability and battery duration as well as
computational and storage resources. This is challenging
because WBSNs applications usually require high sensor data
sampling rates which endanger real-time data processing and
transmission capabilities as computational power and
available bandwidth are generally scarce. This is especially
critical in signal processing systems, which usually have large
amounts of data to process and transmit. WBSNs generally
rely on a star-based network architecture, which is organized
into a coordinator node (PDA, laptop or other) and a set of
sensor nodes (see Fig. 1). The coordinator (often requiring a
basestation node for the necessary communication
capabilities) manages the network, collects, stores and
analyzes the data received from the sensor nodes, and also can
act as a gateway to connect the WBAN with other networks
(e.g. Internet) for remote data access. Sensor nodes measure
local physical parameters and send raw or pre-processed data
to the coordinator.

Figure 1. A typical WBSN architecture.

IV. JAVA-BASED AGENT PLATFORMS FOR WBSN
In the last years, several software frameworks have been

designed for supporting WBSN. Some examples are CodeBlue
[20], Titan [21], and SPINE [22] which aim at decreasing
development time and improving interoperability among
signal processing intensive applications based on WBSNs
while fulfilling efficiency requirements. In particular, they are
developed in TinyOS [23] at the sensor node side and in Java
at the coordinator node side. Despite the fact that the
aforementioned frameworks represent good systems for
developing WBSN applications, in this paper we want to
underline how mobile agents, in the context of distributed
computing systems and highly dynamic distributed
environments, are a suitable and effective computing
paradigm for supporting the development of distributed

applications, services, and protocols as demonstrated by the
application of agent technology in several key application
domains [24]. For more details regarding how agents can
support WSN applications and address typical WSN problems,
the authors remand to [27]. Among the WSN agent platforms
(see Section II.C), MAPS and AFME can provide more
flexibility and extendibility thanks to the Java language
through which they are implemented. While MAPS was
specifically conceived for Sun SPOTs [26], AFME was
developed on J2ME currently supported by Sun SPOTs. In the
following we describe and compare MAPS and AFME with
respect to their architecture, features and programming model.

A. MAPS: Mobile Agent Platform for Sun SPOTs
MAPS [12, 13] is an innovative Java-based framework

expressly developed on Sun SPOT technology for enabling
agent-oriented programming of WSN applications. It has been
defined according to the following requirement:
- Component-based lightweight agent server architecture to

avoid heavy concurrency and agents cooperation models.
- Lightweight agent architecture to efficiently execute and

migrate agents.
- Minimal core services involving agent migration, agent

naming, agent communication, timing and sensor node
resources access (sensors, actuators, flash memory, and
radio).

- Plug-in-based architecture extensions through which any
other service can be defined in terms of one or more
dynamically installable components implemented as single
or cooperating (mobile) agents.

- Use of Java language for defining the mobile agent
behavior.

MAPS architecture (see Fig. 2) is based on several
components interacting through events and offering a set of
services to mobile agents, including message transmission,
agent creation, agent cloning, agent migration, timer handling,
and an easy access to the sensor node resources. In particular,
the main components are the following:
- Mobile Agent (MA). MAs are the basic high-level

component defined by user for constituting the agent-based
applications.

- Mobile Agent Execution Engine (MAEE). It manages the
execution of MAs by means of an event-based scheduler
enabling lightweight concurrency. MAEE also interacts
with the other services-provider components to fulfill
service requests (message transmission, sensor reading,
timer setting, etc) issued by MAs.

- Mobile Agent Migration Manager (MAMM). This
component supports agents migration through the Isolate
(de)hibernation feature provided by the Sun SPOT
environment. The MAs hibernation and serialization involve
data and execution state whereas the code should already
reside at the destination node (this is a current limitation of
the Sun SPOTs which do not support dynamic class loading
and code migration).

- Mobile Agent Communication Channel (MACC). It enables
inter-agent communications based on asynchronous

messages (unicast or broadcast) supported by the
Radiogram protocol.

- Mobile Agent Naming (MAN). MAN provides agent naming
based on proxies for supporting MAMM and MACC in
their operations. It also manages the (dynamic) list of the
neighbor sensor nodes which is updated through a
beaconing mechanism based on broadcast messages.

- Timer Manager (TM). It manages the timer service for
supporting timing of MA operations.

- Resource Manager (RM). RM allows access to the resources
of the Sun SPOT node: sensors (3-axial accelerometer,
temperature, light), switches, leds, battery, and flash
memory.

Figure 2. MAPS software architecture.

The dynamic behavior of a mobile agent (MA) is modeled
through a multi-plane state machine (MPSM). Each plane may
represent the behavior of the MA in a specific role so enabling
role-based programming. In particular, a plane is composed of
local variables, local functions, and an automaton whose
transitions are labeled by Event-Condition-Action (ECA) rules
E[C]/A, where E is the event name, [C] is a boolean
expression evaluated on global and local variables, and A is
the atomic action. Thus, agents interact through events, which
are asynchronously delivered and managed by the MAEE
component.

It is worth noting that the MPSM-based agent behavior
programming allows exploiting the benefits deriving from
three main paradigms for WSN programming: event-driven
programming, state-based programming and mobile agent-
based programming.

B. AFME: Agent Factory Micro Edition
AFME [14, 15] is an open-source lightweight J2ME MIDP

compliant agent platform based upon the preexisting Agent
Factory framework and intended for wireless pervasive
systems. Thus, AFME has not been specifically designed for
sensor networks but, thanks to a recent support of J2ME onto
the Sun SPOT sensor platform, it can be adopted for
developing agent-based WSN applications.

AFME is strongly based on the Believe-Desire-Intention
(BDI) paradigm, in which agents follow a sense-deliberate-act
cycle. To facilitate the creation of BDI agents the framework
supports a number of system components which developers
have to extend when building their applications: perceptors,
actuators, modules, and services. Perceptors and actuators
enable agents to sense and to act upon their environment
respectively. Modules represent a shared information space

between actuators and perceptors of the same agent, and are
used, for example, when a perceptor may perceive the
resultant effect of an actuator affecting the state of an object
instance internal to the agent. Services are shared information
space between agents used for data agent exchange.

The agents are periodically executed using a scheduler,
and in particular four functions are performed during agent
execution. First, the perceptors are fired and their sensing
operations generate beliefs, which are added to the agent’s
belief set. A belief is a symbolic representation of information
related to the agent’s state or to the environment. Second, the
agent’s desires are identified using resolution-based reasoning,
a goal-based querying mechanism commonly employed within
Prolog interpreters. Third, the agent’s commitments (a subset
of desires) are identified using a knapsack procedure. Fourth,
depending on the nature of the commitments adopted, various
actuators are fired.

In AFME agents are defined through a mixed
declarative/imperative programming model. The declarative
Agent Factory Agent Programming Language (AFAPL),
based on a logical formalism of belief and commitment, is
used to encode an agent’s behavior by specifying rules
defining the conditions under which commitments are
adopted. The imperative Java code is instead used to encode
perceptors and actuators. A declarative rule is expressed in the
following form:

b1, b2, …, bn > doX;
where b1… bn represent beliefs, whereas doX is an action. The
rule is evaluated during the agent execution, and if all the
specified beliefs are currently included into the agent’s beliefs
set, the imperative code enclosed into the actuator associated
to the symbolic string doX is executed.

The AFME platform architecture is shown in Fig. 3. It
comprises a scheduler, a group of agents, and several platform
services needed for supporting, among the others, agents
communication and migration.

Figure 3. AFME software architecture.

To improve reuse and modularity within AFME, actuators,
perceptors, and services are prevented from containing direct
object references to each other. Actuators and perceptors
developed for interacting with a platform service in one
application can be used, without any changes to their
imperative code, to interact with a different service in a
different application. In the other way round, the
implementation of platform services can be completely
modified without having to change the actuators and the
perceptors. Additionally, a same platform service may be used
within two different applications to interact with a different set
of actuators and perceptors. So, all system components of the
AFME platform are interchangeable because they interact
without directly referencing one another.

V. AN AGENT-BASED REAL-TIME HUMAN ACTIVITY
MONITORING SYSTEM

The main aims of this section are (1) to demonstrate the
effectiveness of agent-based platforms to support
programming of WBSN applications and (2) to show how
differently the two Java-based platforms, MAPS and AFME,
allow defining the agent behavior in a real context. For these
purposes a signal processing in-node system specialized for
real-time human activity monitoring has been designed and
implemented. In particular, the application is able to recognize
postures (e.g. lying down, sitting and standing still) and
movements (e.g. walking) of assisted livings. The architecture
of the system, shown in Fig. 4, is constituted of one
coordinator and two sensor nodes.

Figure 4. Architecture of the Real-time Activity Monitoring System.

The coordinator is an enhancement of the Java-based
coordinator developed in the context of the SPINE project
[22]. Differently from it, the new one has been re-designed
around an agent developed through the JADE platform [25],
which encapsulates the already implemented SPINE Manager
and SPINE Listener. In particular, the SPINE Manager is used
by end-user applications (e.g. the Real-time Activity
Monitoring Application) for sending commands to the sensor
nodes and for being notified with higher-level events and
message content coming from the nodes. Then, the SPINE
Manager communicates with the nodes by relying on the
SPINE Listener, which integrates several sensor platform-
specific SPINE communication modules. A SPINE
communication module is composed of a send/receive
interface and some components that implement such interface
according to the specific sensor platform and that encapsulate
the high-level SPINE messages into sensor platform-specific
messages. In addition to the already implemented TinyOS and
Z-Stack modules, not illustrated in Fig. 4, the MAPS and
AFME modules have been integrated into the listener. The
JADE agent coordinator also incorporates the logic for
managing the synchronization of the two sensor agents.

The sensor nodes are two Sun SPOT respectively
positioned on the waist and the thigh of the monitored person.
In particular, MAPS or AFME runtime systems are resident on
the sensor nodes and support the execution of the
WaistSensorAgent and the ThighSensorAgent. The two agents
have the following similar step-wise cyclic behavior:

1. Sensing on the 3-axial accelerometer sensor
according to a given sampling time (ST);

2. Computation of specific features (Mean, Max and
Min functions) on the acquired raw data according to
the window (W) and shift (S) parameters. In
particular, W is the sample size on which features are
computed whereas S is the number of new acquired
sample data for calculating a new feature. Usually S
is set to 50% of W;

3. Features aggregation and transmission to the
coordinator; Goto 1.

The agents differ in the specific computed features even
though the W and S parameters are equally set. In particular,
while the WaistSensorAgent computes the mean values for
data sensed on the XYZ axes, the min and max values for data
sensed on the X axis, the ThighSensorAgent calculates the
min value for data sensed on the X axis. The interaction
diagram depicted in Fig. 5 shows the interaction among the
three agents constituting the real-time system:
CoordinatorAgent, WaistSensorAgent and ThighSensorAgent.

Figure 5. Agents interaction of the Real-time Activity Monitoring System.

In particular, the CoordinatorAgent first sends an
AGN_START event to each sensor agent for configuring them
with the sensing parameters (W, S and ST); then, it broadcasts
the START event to start the sensing activity of the sensor
agents. Sensor agents send the DATA event to the
CoordinatorAgent as soon as features are computed. If the
CoordinatorAgent detect that the agents are not synchronized
anymore (i.e. agent data are received with significant time
difference due to different processing tasks), it sends the
RESYNCH event to resynchronize them, for not affecting the
real-time monitoring (see [28] for more details).

After having described the general architecture of the
system, in the following subsections we describe the
implementation of the WaistSensorAgent carried out with
MAPS and AFME and, then, we compare the implemented
solutions.

A. WaistSensorAgent implementation through MAPS
As previously discussed, MAPS agents are modeled

through a multi-plane state machine. The behavior of the
WaistSensorAgent is specified through the 1-plane reported in
Fig. 6 (the behavior of the ThighSensorAgent has the same
structure but the computed features are different), whereas the
most relevant parts of the Java code related to this plane are
shown in Fig. 7. In particular, global variables (GV), local
variables (LV), actions and related local functions (LF) are
detailed.

Figure 6. 1-plane behavior of the MAPS-based WaistSensorAgent model.

In the following, the agent behavior is described. The
AGN_START event, issued by the coordinator agent, triggers
the action A0. This action includes code for initializing some
variables (see initVars function), along with (see
initSensingParamsAndBuffers function) the necessary sensing
parameters (W, S, ST) and buffers such as the data acquisition
buffers for XYZ channels of the accelerometer sensor
(windowX, windowY, windowZ) and the data buffers for
features calculation (windowX4FE, windowY4FE,
windowZ4FE). After that, the sensing plane goes into the
WAIT4SENSING state.

The MSG.START event allows starting the sensing
process by the execution of the action A1; in particular: (i) the
timer is set for timing the data acquisition according to the ST
parameter (see timerSetForSensing function) by using the
highly precise Sun SPOT timer; (ii) a data acquisition is
requested by submitting the ACC_CURRENT_ALL_AXES
event and by invoking the sense primitive (see doSensing
function). Once the data sample is acquired, the
ACC_CURRENT_ALL_AXES event is sent back with the
acquired data and the action A2 is executed; in particular: (i)
the buffers are circularly filled with the proper values (see
bufferFilling function); (ii) the sampleCounter is incremented
and the nextSampleIndex is incremented module W for the
next data acquisition; (iii) if S samples have been acquired,
features are to be calculated, thus sampleCounter is reset,
samples in the buffers are copied into the buffers for
computing features, calculation of the features is carried out
through the meanMaxMin function, and the aggregated results
are sent to the base station by means of the
MSG_TO_BASESTATION event appropriately constructed;
(iv) the timer is reset; (v) data acquisition is finally requested.

In the ACC_SENSED&FEAT_COMPUTED state the
MSG.RESYNCH might be received for resynchronization
purposes; it brings the sensing plane into the
WAIT4SENSING state. The MSG.RESTART brings the
sensing plane back to ACC_SENSED&FEAT_COMPUTED
state for reconfiguring and continuing the sensing process. The
MSG.STOP eventually terminates the sensing process.

Figure 7. Java code related to the WaistSensorAgent plane.

B. WaistSensorAgent implementation through AFME
The WaistSensorAgent specified trough the AFME design

model is depicted in Fig. 8 whereas a code excerpt, related to
the model implementation, is provide in Fig. 9. In particular,
the perceive method of the SensingPerceptor, the act method
of the ActivateSensorActuator and part of the
SharedDataModule are detailed. The AFME agent design is
constituted by the components described in the following:
• 2 Perceptors. MTSPerceptor checks for the arrival of a new

message coming from the coordinator whereas
SensingPerceptor checks that the necessary features
computation results are available, so that they can be sent
to the coordinator.

• 3 Actuators. ActivateSensorActuator allows activating the
sensing operation, ResetActuator resets the data buffer
after the reception of the resynch message, and
RequestActuator is used to send a request message to the
coordinator carrying the computed features.

• Rules. TerImplication contains the auto-generated Java
description of the agent behavior rules defined into a script
file (see below).

• 1 Module. SharedDataModule contains buffers storing the
data sensed from the three accelerometer channels, the
feature extraction buffers and parameters, and an activation
flag variable for enabling the sensing process.

• 1 Service. RadiogramMTS represents the message transport
service for data transmission to the coordinator.

Figure 8. AFME-based WaistSensorAgent model.

The rules defining the agent behavior are the following:
1. message(inform, sender(BaseStation,

addresses(BSAddress)), begin) > activateSensors(1);
2. sense(?val), !message(inform, sender(BaseStation,

addresses(BSAddress)), resynch) >
request(agentID(BaseStation,
addresses("radiogram://"+BSAddress)), ?val);

3. message(inform, sender(BaseStation,
addresses(BSAddress)), resynch) > reset;

The rule (1) enables the sensor reading operation on the
sensor node. In particular, this rules states that the belief
generated upon the reception of an inform message, having the
“begin” content and sent by the coordinator with address
BSAddress, triggers the action activateSensors(1), which fires
the ActivateSensorActuator. This actuator simply sets the
activation flag on: at first, the argument of the activateSensors
in the rule is provided to the actuator through the action.next

method, then the call to the aMan.actOn (see act method in
Fig. 9) causes the execution of the processAction in the
SharedDatamodule (the actual flag is represented by the
activated variable).

SensingPerceptor:

....
private PerceptionManager pMan;
....
public void perceive(){

FOS fos = pMan.perManage("shareddata", 1);
int activated= integer.parseInt(fos.toString());
if(activated == 1) {
 FOS fos2= pMan.perManage("shareddata",0);
 if(fos2!=null) {
 String fos2S= fos2.toString();

 adoptBelief("sense("+fos2S+")");
 }
}

}
....

ActivateSensorActuator:
....
private AffectManager aMan;
....
public boolean act(FOS arg0) {

FOS arg= action.next();
aMan.actOn("shareddata", 1, null); return true;

}
....

SharedDataModule:
....
 // variables and data structures declaration
....
// Perceptor processing
public FOS processPer(int id)throws MalformedLogicExcep{
....
 if(id==0) {

IAccelerometer3D acceleratorSensor=
 EDemoBoard.getInstance().getAccelerometer();
try {

 windowX[this.windowCounter]=
acceleratorSensor.getAccelX();

 windowY[this.windowCounter]=
acceleratorSensor.getAccelY();

 windowZ[this.windowCounter]=
 acceleratorSensor.getAccelZ();

this.windowCounter=
 ((this.windowCounter +1)%this.WINDOW_SIZE);

 this.shiftCounter++;
}catch(IOException e){e.printStackTrace();}
if (shiftCounter == SHIFT_SIZE){

double meanX = meanMaxMin(this.windowX)[0];
double meanY = meanMaxMin(this.windowY)[0];
double meanZ = meanMaxMin(this.windowZ)[0];
double maxY = meanMaxMin(this.windowY)[1];
double minY = meanMaxMin(this.windowY)[2];
String returnValues = this.timestamp+"|"+meanX+"|"+

meanY+"|"+meanZ+"|"+maxY+"|"+minY;
 this.timestamp=

((this.timestamp +1)%this.MAX_TIMESTAMP);
this.shiftCounter= 0;
return FOS.createFOS(returnValues);

}else return null;
 }else if(id==1){

String s= String.valueOf(activated);
return FOS.createFOS(s);

 }
....
}
// Actuator processing
public FOS processAction(int id, FOS data)

throws MalformedLogicExcep{
....

if(id==1){
String s= data.toString();

 activated= Integer.parseInt(s);
}

....
}
....

Figure 9. Java code from the AFME-based WaistSensorAgent.

The rule (2) regulates the agent behaviour during the
sensing phase. If a new sense-belief is generated (i.e. features
computation has been carried out on sensed data) and a
message-belief, generated upon reception of the resynch
message sent by the coordinator, does not exist, the request
action is carried out so that a new message containing the
computed features is sent to the coordinator. In particular, the
sensing operation and the features computation are driven by
the SensingPerceptor (see perceive method in Fig. 9) which, if
the flag is on (activated==1), calls the pMan.perManage
method with parameter “0” that in turns causes the execution
of the processPer in the SharedDataModule (more precicely
the code related to the condition id==0). This code performs
the data reading from the accelerometer and the features
computation, returning the results in the form of a belief (see
sense(?val) in rule 2). Finally, the rule (3) allows
resynchronizing the sensor agent. In particular, it states that if
the belief message is generated upon reception of the resynch

message, the reset action, which re-initializes all the data
structures in SharedDataModule, is executed.

C. MAPS and AFME: programming model differences
The development of MAPS and AFME agents is based on

different approaches. MAPS uses state machines to model the
agent behavior and directly the Java language to program
conditions and actions. AFME uses a more complex model
centered on perceptors, actuators, rules, modules, and services
for defining the mobile agents. They are both effective in
modeling agent behavior even though MAPS is more
straightforward as it relies on a programming style based on
state machines widely known by programmers of embedded
systems. Moreover, differently from AFME, MAPS is
specifically designed for WSNs and fully exploits the release
5.0 red of the Sun SPOT library to provide advanced
functionality of communication, migration, sensing/actuation,
timing, and flash memory storage. Finally, MAPS allows
developers to program agent-based applications in Java
according to its rules so no translator and/or interpreter need to
be developed and no new language has to be learnt. See [28]
for experimental results comparing the two agent platforms.

VI. CONCLUSION
In this paper we have presented the agent-oriented

approach for high-level programming of WBAN applications.
The agent approach is not only effective during the design of a
WBAN application but also during the implementation phase.
In particular, we have described two Java-based agent
platforms, MAPS and AFME, allowing for a more rapid
prototyping of sensor node code than low-level APIs which
can be effectively used only by sensor node skilled
programmers having knowledge of sensor drivers,
communication and energy mechanisms. The higher level
software abstractions provided by MAPS and AFME are
suitable for a fast and easy real WBSN applications
development as demonstrated by the proposed case study
concerning a real-time human activity monitoring system.

ACKNOWLEDGMENT
Authors wish to thank the members of the Plasma Group at

University of Calabria and in particular, Francesco Aiello,
Alessio Carbone, Raffaele Gravina, and Antonio Guerrieri, for
their excellent support and valuable contributions in terms of
ideas, discussions and implementation efforts.

REFERENCES
[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network

survey,” Comput. Netw., vol. 52, pp. 2292-2330, August 2008.
[2] G.-Z. Yang, Body Sensor Networks, Springer 2006.
[3] Salem Hadim and Nader Mohamed, “Middleware: Middleware

challenges and approaches for wireless sensor networks,” IEEE
Distributed Systems Online, vol. 7, March 2006.

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, pp.122-173, 2005.

[5] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database
systems,” in MDM '01: in Proc. of the 2nd Int. Conference on Mobile
Data Management, pp. 3-14, London, UK, 2001. Springer-Verlag.

[6] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen.,
“Sensor information networking architecture,” in Proc. of the
International Workshop on Parallel Processing (ICPP), pp. 23, 2000.

[7] A. Bakshi, V. K. Prasanna, J.Reich, and D. Larner, “The abstract task
graph: a methodology for architecture-independent programming of
networked sensor systems,” in EESR '05: Proceedings of the 2005
workshop on End-to-end, sense-and-respond systems, applications and
services, pp. 19-24, Berkeley, CA, USA, 2005. USENIX Association.

[8] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos,” in International Conference on
Distributed Computing in Sensor Systems (DCOSS), 2005.

[9] R. Newton, G. Morrisett, and M. Welsh, “The regiment
macroprogramming system,” in Proc. of the 6th international
Conference on Information Processing in Sensor Networks (IPSN '07,
Cambridge, Massachusetts, USA, April 2007), pp. 489-498.

[10] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent
middleware for self-adaptive wireless sensor networks,” ACM Trans.
Auton. Adapt. Syst., vol. 4, pp 1-26, 2009.

[11] Y Kwon, S. Sundresh, K. Mechitov, and G. Agha, "ActorNet: An Actor
Platform for Wireless Sensor Networks," in Proc. of the 5th Int’l Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 1297-1300, 2006.

[12] F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, “A Java-based Agent
Platform for Programming Wireless Sensor Networks,” The Computer
Journal, pp. 1-28, 2010. doi: 10.1093/comjnl/bxq019.

[13] Mobile Agent Platform for Sun SPOT (MAPS), documentation and
software at: http://maps.deis.unical.it/ (2010).

[14] C. Muldoon, G. M. P. O Hare, R.W. Collier, and M. J. O’Grady, “Agent
Factory Micro Edition: A Framework for Ambient Applications,” in
Proc. of Intelligent Agents in Computing Systems, Lecture Notes in
Computer Science, vol. 3993, pp. 727-734, Reading, UK, Springer 2006.

[15] Agent Factory Micro Edition (AFME), documentation and software at
http://sourceforge.net/projects/agentfactory/files/ (2010).

[16] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” SIGARCH Comput. Archit. News, vol. 30, pp. 85-95, 2002.

[17] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, and C.
Ferraz, “A message-oriented middleware for sensor networks,” in
Proceedings of the 2nd workshop on Middleware for pervasive and ad-
hoc computing (MPAC '04), pp. 127-134, New York, NY, USA, 2004.

[18] S. Li, S. Son, and J. Stankovic, “Event detection services using data
service middleware in distributed sensor networks,” Telecommunication
Systems, vol. 26, pp. 351-368, 2004.

[19] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, and M.A. Perillo,
“Middleware to support sensor network applications,” IEEE Network
Magazine Special Issue, vol. 18, pp. 6-14, January 2004.

[20] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “CodeBlue: An
Ad Hoc Sensor Network Infrastructure for Emergency Medical Care,” in
Proc. of MobiSys 2004 Workshop on Applications of Mobile Embedded
Systems (WAMES 2004), June 2004.

[21] C. Lombriser, D. Roggen, M. Stager, and G. Troster, “Titan: A Tiny
Task Network for Dynamically Reconfigurable Heterogeneous Sensor
Networks,” in Verteilten Systemen (KiVS 2007), Bern, Switzerland..

[22] Signal Processing In-Node Environment (SPINE), documentation and
software at http://spine.tilab.com (2010).

[23] TinyOS website, www.tinyos.net (2010).
[24] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent

technology: towards next generation computing,” Autonomous Agents
and Multi-Agent Systems, vol. 9, pp. 203–252, November 2004.

[25] JADE, documentation and software at http://jade.tilab.com/ (2010).
[26] Sun™ Small Programmable Object Technology (Sun SPOT),

http://www.sunspotworld.com/ (2010).
[27] F. Aiello, G. Fortino, A. Guerrieri, “Using mobile agents as an effective

technology for wireless sensor networks,” in Proc. of the Second
IEEE/IARIA International Conference on Sensor Technologies and
Applications (SENSORCOMM 2008), Aug 25-31, Cap Esterel, France,
2008.

[28] F. Aiello, G. Fortino, S. Galzarano, R. Gravina, A. Guerrieri, “Signal
processing in-node frameworks for Wireless Body Sensor Networks:
from low-level to high-level approaches", Wireless Body Area
Networks: Technology, Implementation and Applications. Pan Stanford
publishing, 2010. To appear.

