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Abstract—Wireless Sensor Networks (WSNs) are currently 
emerging as one of the most disruptive technologies enabling and 
supporting next generation ubiquitous and pervasive computing 
scenarios. In particular, Wireless Body Sensor Networks 
(WBSNs) are conveying notable attention as their real-world 
applications aim at improving the quality of human beings life by 
enabling continuous and real-time non-invasive assistance at low 
cost. This paper proposes a high-level programming approach 
based on the agent-oriented model to flexibly design and 
efficiently implement WBSNs applications. The approach is 
exemplified through a case study concerning a real-time human 
activity monitoring system which is developed through two 
different agent-based frameworks: MAPS (Mobile Agent 
Platform for Sun SPOT) and AFME (Agent Factory Micro 
Edition). The programming effectiveness of MAPS and AFME 
with respect to the developed systems is finally discussed. 

Keywords - Mobile agent platforms; wireless body sensor 
networks; Java Sun SPOT; finite state machines; human activity 
monitoring 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) [1] are collection of 

tiny, low-cost devices with sensing, computing, storing, 
communication and possibly actuating capabilities. Every 
sensor node is programmed to interact with the other ones and 
with its environment, constituting a unique distributed and 
cooperative system aiming at reaching a global behavior and 
result. WSNs are a powerful technology for supporting a lot of 
different real-world applications, and for a demonstration it is 
worth noting that in the last decade this new technology has 
emerged in a wide range of different domains including health-
care, environment and infrastructures monitoring, smart home 
automation, emergence management, and military support, 
showing a great potential for numerous other applications.  

When a WSN is specifically used for being applied to the 
human body we deal with Wireless Body Sensor Network 
(WBSN) [2] which involves wireless wearable physiological 
sensors for strictly medical or non medical purposes. For 
example, they can be very effective for providing continuous 
monitoring and analysis of physiological or physics parameters 
very useful, among the others, in medical assistance, in motion 
and gestures detection, in emotional recognition, etc. 

Unfortunately, designing such networks is not an easy work 
because it implies knowledge from many different areas, 
ranging from low-level aspects of the sensor nodes hardware 

and radio communication to high-level concepts concerning 
final user applications. Overcoming these difficulties by 
providing a powerful yet simple software development tool is a 
fundamental step for better exploiting current sensor platforms. 
It is quite evident that middleware supporting high-level 
abstraction model can be adopted for addressing these 
programming problems and assisting users in a fast and 
effective development of applications. For this reason, 
programming abstractions definition is one of the most 
fermenting research areas in the context of sensor networks, 
demonstrated by the several high-level programming 
paradigms proposed during the last years.  

The main focus of this paper is to show how the agent-
based programming model is an effective, easy and fast 
approach for developing WBSN applications, with particular 
emphasis on two Java-based agent platforms running on Sun 
SPOT sensors: MAPS (Mobile Agent Platform for Sun SPOTs) 
[12, 13] and AFME (Agent Factory Micro Edition) [14, 15]. 

The rest of this paper is structured as follows. In Section II, 
we first briefly review several programming paradigms for 
WSNs, most of which can be easily applicable in the context of 
WBSNs. Section III is devoted to a description of the main 
characteristics of a WBSN. Agent-oriented application design 
and implementation using MAPS and AFME are described in 
Section IV whereas a WBSN real-time human activity 
monitoring system, developed through the two aforementioned 
agent platforms, is described in Section V. Finally, concluding 
remarks are drawn. 

II. PROGRAMMING PARADIGMS FOR WSN 
The basic functions required by high-level programming 

tools are (1) to provide standard system services to easily 
deploy current and future applications and (2) to offer 
mechanisms for an adaptive and efficient utilization of system 
resources. Such tools embrace a wide range of software 
systems that can be categorized in different classes, each of 
which characterized by specific features so that, although most 
WSN applications have common requirements, many different 
solutions [3] have been proposed in the last years, differing on 
the basis of the model assumed for providing the high-level 
programming abstractions. On the basis of the literature so far, 
it emerges that none of the proposed application development 
methodologies can be considered the predominant one. Part of 
them has peculiar features specifically conceived for particular 
application domains but lacks in other contexts. However, 



among the different programming methodologies, we believe 
that the exploitation of the agent-oriented programming 
paradigm to develop WBSN applications could provide the 
required effectiveness, flexibility and development easiness as 
demonstrated by the application of agent technology in several 
other key application domains [24]. In the following, several 
programming paradigms along with their brief descriptions are 
provided. 

A. Database model 
The database model lets users view the whole sensor 

network as a virtual relational distributed database system 
allowing a simple and easy communication scheme between 
network and users. Through the adoption of easy-to-use 
languages the latter have the ability to make intuitive queries 
for extracting the data of interest from the sensors. The most 
common way for querying networks is making use of a SQL-
like language, a simple declarative-style language. This model 
is mainly designed to collect data streams, with the problem 
that it provides only approximate results and also, it is not able 
to support real-time applications because it lacks of time-space 
relations between events. TinyDB [4], Cougar [5] and SINA 
[6] are examples of middleware adopting this approach. 

B. Macroprogramming model 
This model considers the global behavior for wireless 

sensor network, rather than single actions related to individual 
nodes. The need for this approach arises when developers 
have to deal with WSNs constituted by a quite large number of 
nodes, such that the complexity resulting from the task to 
coordinate their actions makes applications impossible to be 
designed in an effective way. Macroprogramming generally 
have some language constructs for abstracting embedded 
systems’ details, communication protocols, nodes 
collaboration, and resource allocation. Moreover, it provides 
mechanisms through which sensors can be divided into logical 
groups on the basis of their locations, functionalities, or roles. 
Then, programming task decreases in complexity because 
programmers have only to specify what kind of collaborations 
exist between groups, whereas the underlaying execution 
environment is in charge of translating these high-level 
conceptual descriptions into actual node-level actions. ATaG 
[7], Kairos [8] and Regiment [9] are based on the 
macroprogramming model. 

C. Agent-based model 
The agent-based programming model is associated with 

the notion of multiples, desirable lightweight, agents migrating 
from node to node performing part of a given task, and 
collaborating each other to implement a global distributed 
application. Mobile agents are software processes able to 
migrate among computing nodes by retaining their execution 
state. An agent could read sensor values, actuate devices, and 
send radio packets. The users do not have to define any per-
node behaviors, but only an arbitrary number of agents with 
their logics, specifying how they have to collaborate for 
accomplishing the tasks needed to form the global application 
on the network. Middleware according to this model provides 
users with high-level constructs of a formal language for 
defining agents’ characteristics, hiding how collaboration and 

mobility are actually implemented. The reasons in adopting 
such a model is mainly due to the need for building 
applications that can be reconfigured and relocated. Moreover, 
the key of this approach is that applications are as modular as 
possible to facilitate their distribution trough the network 
using mobile code. Agilla [10], ActorNet [11], MAPS [12, 13] 
and AFME [14, 15] are the main agent-based solutions for 
WSN. 

D. Virtual machine model 
Virtual machines (VM) have been generally adopted for 

software emulating a guest system running on top of a host 
real one. In the WSN context, VMs are used for allowing a 
vastly range of applications to run on different platforms 
without worrying of the actual architecture characteristics. 
User applications are coded with a simple set of instructions 
that are interpreted by the VM execution environment. 
Unfortunately, this approach suffers from the overhead that 
the instructions interpretation introduces. Maté [16] is an 
example of VM-based middleware. 

E. Event-based model 
In the context of wireless sensor networks where nodes 

mobility and failures are very common, the event-based 
middleware solutions are the effective way to support reactive 
and instantaneous responses to network changes. In a context 
where continuing data collecting and monitoring take place 
among a large number of nodes, a traditional request/response 
communication paradigm is not suitable at all, as it could be 
happen that some nodes (e.g. a data source node or a sink 
node) are not available. As a consequence, a client that 
continuously needs information updates could make requests 
without receiving any response, and this is not acceptable 
because energy is a scarce resource and also, this could bring 
to network congestion. Rather, the asynchronous event-driven 
communication with support for a publish/subscribe 
mechanism, allows a strong decoupling between sender and 
receiver, resulting in a more suitable approach. A client 
subscribes particular events so that it receives a message only 
when one of them occurs and also, data processing execution 
takes place only when necessary. Mires [17] and DSWare [18] 
are two examples of event-based middleware. 

F. Application-driven model 
Middlewares belonging to this model aim to provide 

services to applications according to their needs and 
requirements, especially for QoS and reliability of the 
collected data. They allow programmers to directly access the 
communication protocol stack for adjusting network functions 
to support and satisfy requested requirements. MiLAN [19] is 
an example of middleware based on this approach. 

III. WIRELESS BODY SENSOR NETWORKS 
WSNs applied to the human body are usually called 

Wireless Body Sensor Networks (WBSNs) [2] involving 
wireless wearable physiological sensors for strictly medical or 
non medical purposes. WBSNs are conveying notable 
attention as their real-world applications aim at improving the 
quality of human beings life by enabling continuous and real-
time non-invasive assistance at low cost. Applications where 
WBSNs could be greatly useful include early detection or 



prevention of diseases (e.g. heart attacks, Parkinson, diabetes, 
asthma), elderly assistance at home (e.g. fall detection, pills 
reminder), e-fitness, rehabilitation after surgeries (e.g. knee or 
elbow rehabilitation), motion and gestures detection (e.g. for 
interactive gaming), cognitive and emotional recognition (e.g. 
for driving assistance or social interactions), medical 
assistance in disaster events (e.g. terrorist attacks, earthquakes, 
wild fires), etc. 

Designing and programming applications based on 
WBSNs are complex tasks. That is mainly due to the 
challenge of implementing signal processing intensive 
algorithms for data interpretation on wireless nodes that are 
very resource limited and have to meet hard requirements in 
terms of wearability and battery duration as well as 
computational and storage resources. This is challenging 
because WBSNs applications usually require high sensor data 
sampling rates which endanger real-time data processing and 
transmission capabilities as computational power and 
available bandwidth are generally scarce. This is especially 
critical in signal processing systems, which usually have large 
amounts of data to process and transmit. WBSNs generally 
rely on a star-based network architecture, which is organized 
into a coordinator node (PDA, laptop or other) and a set of 
sensor nodes (see Fig. 1). The coordinator (often requiring a 
basestation node for the necessary communication 
capabilities) manages the network, collects, stores and 
analyzes the data received from the sensor nodes, and also can 
act as a gateway to connect the WBAN with other networks 
(e.g. Internet) for remote data access. Sensor nodes measure 
local physical parameters and send raw or pre-processed data 
to the coordinator. 

 
Figure 1.  A typical WBSN architecture. 

IV. JAVA-BASED AGENT PLATFORMS FOR WBSN 
In the last years, several software frameworks have been 

designed for supporting WBSN. Some examples are CodeBlue 
[20], Titan [21], and SPINE [22] which aim at decreasing 
development time and improving interoperability among 
signal processing intensive applications based on WBSNs 
while fulfilling efficiency requirements. In particular, they are 
developed in TinyOS [23] at the sensor node side and in Java 
at the coordinator node side. Despite the fact that the 
aforementioned frameworks represent good systems for 
developing WBSN applications, in this paper we want to 
underline how mobile agents, in the context of distributed 
computing systems and highly dynamic distributed 
environments, are a suitable and effective computing 
paradigm for supporting the development of distributed 

applications, services, and protocols as demonstrated by the 
application of agent technology in several key application 
domains [24]. For more details regarding how agents can 
support WSN applications and address typical WSN problems, 
the authors remand to [27]. Among the WSN agent platforms 
(see Section II.C), MAPS and AFME can provide more 
flexibility and extendibility thanks to the Java language 
through which they are implemented. While MAPS was 
specifically conceived for Sun SPOTs [26], AFME was 
developed on J2ME currently supported by Sun SPOTs. In the 
following we describe and compare MAPS and AFME with 
respect to their architecture, features and programming model. 

A. MAPS: Mobile Agent Platform for Sun SPOTs 
MAPS [12, 13] is an innovative Java-based framework 

expressly developed on Sun SPOT technology for enabling 
agent-oriented programming of WSN applications. It has been 
defined according to the following requirement: 
- Component-based lightweight agent server architecture to 

avoid heavy concurrency and agents cooperation models. 
- Lightweight agent architecture to efficiently execute and 

migrate agents. 
- Minimal core services involving agent migration, agent 

naming, agent communication, timing and sensor node 
resources access (sensors, actuators, flash memory, and 
radio). 

- Plug-in-based architecture extensions through which any 
other service can be defined in terms of one or more 
dynamically installable components implemented as single 
or cooperating (mobile) agents. 

- Use of Java language for defining the mobile agent 
behavior. 

MAPS architecture (see Fig. 2) is based on several 
components interacting through events and offering a set of 
services to mobile agents, including message transmission, 
agent creation, agent cloning, agent migration, timer handling, 
and an easy access to the sensor node resources. In particular, 
the main components are the following: 
- Mobile Agent (MA). MAs are the basic high-level 

component defined by user for constituting the agent-based 
applications. 

- Mobile Agent Execution Engine (MAEE). It manages the 
execution of MAs by means of an event-based scheduler 
enabling lightweight concurrency. MAEE also interacts 
with the other services-provider components to fulfill 
service requests (message transmission, sensor reading, 
timer setting, etc) issued by MAs. 

- Mobile Agent Migration Manager (MAMM). This 
component supports agents migration through the Isolate 
(de)hibernation feature provided by the Sun SPOT 
environment. The MAs hibernation and serialization involve 
data and execution state whereas the code should already 
reside at the destination node (this is a current limitation of 
the Sun SPOTs which do not support dynamic class loading 
and code migration). 

- Mobile Agent Communication Channel (MACC). It enables 
inter-agent communications based on asynchronous 



messages (unicast or broadcast) supported by the 
Radiogram protocol. 

- Mobile Agent Naming (MAN). MAN provides agent naming 
based on proxies for supporting MAMM and MACC in 
their operations. It also manages the (dynamic) list of the 
neighbor sensor nodes which is updated through a 
beaconing mechanism based on broadcast messages. 

- Timer Manager (TM). It manages the timer service for 
supporting timing of MA operations. 

- Resource Manager (RM). RM allows access to the resources 
of the Sun SPOT node: sensors (3-axial accelerometer, 
temperature, light), switches, leds, battery, and flash 
memory. 

 

 
Figure 2.  MAPS software architecture. 

The dynamic behavior of a mobile agent (MA) is modeled 
through a multi-plane state machine (MPSM). Each plane may 
represent the behavior of the MA in a specific role so enabling 
role-based programming. In particular, a plane is composed of 
local variables, local functions, and an automaton whose 
transitions are labeled by Event-Condition-Action (ECA) rules 
E[C]/A, where E is the event name, [C] is a boolean 
expression evaluated on global and local variables, and A is 
the atomic action. Thus, agents interact through events, which 
are asynchronously delivered and managed by the MAEE 
component. 

It is worth noting that the MPSM-based agent behavior 
programming allows exploiting the benefits deriving from 
three main paradigms for WSN programming: event-driven 
programming, state-based programming and mobile agent-
based programming. 

B. AFME: Agent Factory Micro Edition 
AFME [14, 15] is an open-source lightweight J2ME MIDP 

compliant agent platform based upon the preexisting Agent 
Factory framework and intended for wireless pervasive 
systems. Thus, AFME has not been specifically designed for 
sensor networks but, thanks to a recent support of J2ME onto 
the Sun SPOT sensor platform, it can be adopted for 
developing agent-based WSN applications. 

AFME is strongly based on the Believe-Desire-Intention 
(BDI) paradigm, in which agents follow a sense-deliberate-act 
cycle. To facilitate the creation of BDI agents the framework 
supports a number of system components which developers 
have to extend when building their applications: perceptors, 
actuators, modules, and services. Perceptors and actuators 
enable agents to sense and to act upon their environment 
respectively. Modules represent a shared information space 

between actuators and perceptors of the same agent, and are 
used, for example, when a perceptor may perceive the 
resultant effect of an actuator affecting the state of an object 
instance internal to the agent. Services are shared information 
space between agents used for data agent exchange. 

The agents are periodically executed using a scheduler, 
and in particular four functions are performed during agent 
execution. First, the perceptors are fired and their sensing 
operations generate beliefs, which are added to the agent’s 
belief set. A belief is a symbolic representation of information 
related to the agent’s state or to the environment. Second, the 
agent’s desires are identified using resolution-based reasoning, 
a goal-based querying mechanism commonly employed within 
Prolog interpreters. Third, the agent’s commitments (a subset 
of desires) are identified using a knapsack procedure. Fourth, 
depending on the nature of the commitments adopted, various 
actuators are fired. 

In AFME agents are defined through a mixed 
declarative/imperative programming model. The declarative 
Agent Factory Agent Programming Language (AFAPL), 
based on a logical formalism of belief and commitment, is 
used to encode an agent’s behavior by specifying rules 
defining the conditions under which commitments are 
adopted. The imperative Java code is instead used to encode 
perceptors and actuators. A declarative rule is expressed in the 
following form: 

b1, b2, …, bn > doX; 
where b1… bn represent beliefs, whereas doX is an action. The 
rule is evaluated during the agent execution, and if all the 
specified beliefs are currently included into the agent’s beliefs 
set, the imperative code enclosed into the actuator associated 
to the symbolic string doX is executed. 

The AFME platform architecture is shown in Fig. 3. It 
comprises a scheduler, a group of agents, and several platform 
services needed for supporting, among the others, agents 
communication and migration. 

 

 
Figure 3.  AFME software architecture. 

To improve reuse and modularity within AFME, actuators, 
perceptors, and services are prevented from containing direct 
object references to each other. Actuators and perceptors 
developed for interacting with a platform service in one 
application can be used, without any changes to their 
imperative code, to interact with a different service in a 
different application. In the other way round, the 
implementation of platform services can be completely 
modified without having to change the actuators and the 
perceptors. Additionally, a same platform service may be used 
within two different applications to interact with a different set 
of actuators and perceptors. So, all system components of the 
AFME platform are interchangeable because they interact 
without directly referencing one another. 



V. AN AGENT-BASED REAL-TIME HUMAN ACTIVITY 
MONITORING SYSTEM 

The main aims of this section are (1) to demonstrate the 
effectiveness of agent-based platforms to support 
programming of WBSN applications and (2) to show how 
differently the two Java-based platforms, MAPS and AFME, 
allow defining the agent behavior in a real context. For these 
purposes a signal processing in-node system specialized for 
real-time human activity monitoring has been designed and 
implemented. In particular, the application is able to recognize 
postures (e.g. lying down, sitting and standing still) and 
movements (e.g. walking) of assisted livings. The architecture 
of the system, shown in Fig. 4, is constituted of one 
coordinator and two sensor nodes. 

 

 
Figure 4.  Architecture of the Real-time Activity Monitoring System. 

The coordinator is an enhancement of the Java-based 
coordinator developed in the context of the SPINE project 
[22]. Differently from it, the new one has been re-designed 
around an agent developed through the JADE platform [25], 
which encapsulates the already implemented SPINE Manager 
and SPINE Listener. In particular, the SPINE Manager is used 
by end-user applications (e.g. the Real-time Activity 
Monitoring Application) for sending commands to the sensor 
nodes and for being notified with higher-level events and 
message content coming from the nodes. Then, the SPINE 
Manager communicates with the nodes by relying on the 
SPINE Listener, which integrates several sensor platform-
specific SPINE communication modules. A SPINE 
communication module is composed of a send/receive 
interface and some components that implement such interface 
according to the specific sensor platform and that encapsulate 
the high-level SPINE messages into sensor platform-specific 
messages. In addition to the already implemented TinyOS and 
Z-Stack modules, not illustrated in Fig. 4, the MAPS and 
AFME modules have been integrated into the listener. The 
JADE agent coordinator also incorporates the logic for 
managing the synchronization of the two sensor agents. 

The sensor nodes are two Sun SPOT respectively 
positioned on the waist and the thigh of the monitored person. 
In particular, MAPS or AFME runtime systems are resident on 
the sensor nodes and support the execution of the 
WaistSensorAgent and the ThighSensorAgent. The two agents 
have the following similar step-wise cyclic behavior: 

1. Sensing on the 3-axial accelerometer sensor 
according to a given sampling time (ST); 

2. Computation of specific features (Mean, Max and 
Min functions) on the acquired raw data according to 
the window (W) and shift (S) parameters. In 
particular, W is the sample size on which features are 
computed whereas S is the number of new acquired 
sample data for calculating a new feature. Usually S 
is set to 50% of W; 

3. Features aggregation and transmission to the 
coordinator;  Goto 1. 

 
The agents differ in the specific computed features even 
though the W and S parameters are equally set. In particular, 
while the WaistSensorAgent computes the mean values for 
data sensed on the XYZ axes, the min and max values for data 
sensed on the X axis, the ThighSensorAgent calculates the 
min value for data sensed on the X axis. The interaction 
diagram depicted in Fig. 5 shows the interaction among the 
three agents constituting the real-time system: 
CoordinatorAgent, WaistSensorAgent and ThighSensorAgent.   
 

 
Figure 5.  Agents interaction of the Real-time Activity Monitoring System. 

In particular, the CoordinatorAgent first sends an 
AGN_START event to each sensor agent for configuring them 
with the sensing parameters (W, S and ST); then, it broadcasts 
the START event to start the sensing activity of the sensor 
agents. Sensor agents send the DATA event to the 
CoordinatorAgent as soon as features are computed. If the 
CoordinatorAgent detect that the agents are not synchronized 
anymore (i.e. agent data are received with significant time 
difference due to different processing tasks), it sends the 
RESYNCH event to resynchronize them, for not affecting the 
real-time monitoring (see [28] for more details). 

After having described the general architecture of the 
system, in the following subsections we describe the 
implementation of the WaistSensorAgent carried out with 
MAPS and AFME and, then, we compare the implemented 
solutions. 



A. WaistSensorAgent implementation through MAPS 
As previously discussed, MAPS agents are modeled 

through a multi-plane state machine. The behavior of the 
WaistSensorAgent is specified through the 1-plane reported in 
Fig. 6 (the behavior of the ThighSensorAgent has the same 
structure but the computed features are different), whereas the 
most relevant parts of the Java code related to this plane are 
shown in Fig. 7. In particular, global variables (GV), local 
variables (LV), actions and related local functions (LF) are 
detailed. 

 

 
Figure 6.  1-plane behavior of the MAPS-based WaistSensorAgent model. 

In the following, the agent behavior is described. The 
AGN_START event, issued by the coordinator agent, triggers 
the action A0. This action includes code for initializing some 
variables (see initVars function), along with (see 
initSensingParamsAndBuffers function) the necessary sensing 
parameters (W, S, ST) and buffers such as the data acquisition 
buffers for XYZ channels of the accelerometer sensor 
(windowX, windowY, windowZ) and the data buffers for 
features calculation (windowX4FE, windowY4FE, 
windowZ4FE). After that, the sensing plane goes into the 
WAIT4SENSING state. 

The MSG.START event allows starting the sensing 
process by the execution of the action A1; in particular: (i) the 
timer is set for timing the data acquisition according to the ST 
parameter (see timerSetForSensing function) by using the 
highly precise Sun SPOT timer; (ii) a data acquisition is 
requested by submitting the ACC_CURRENT_ALL_AXES 
event and by invoking the sense primitive (see doSensing 
function). Once the data sample is acquired, the 
ACC_CURRENT_ALL_AXES event is sent back with the 
acquired data and the action A2 is executed; in particular: (i) 
the buffers are circularly filled with the proper values (see 
bufferFilling function); (ii) the sampleCounter is incremented 
and the nextSampleIndex is incremented module W for the 
next data acquisition; (iii) if S samples have been acquired, 
features are to be calculated, thus sampleCounter is reset, 
samples in the buffers are copied into the buffers for 
computing features, calculation of the features is carried out 
through the meanMaxMin function, and the aggregated results 
are sent to the base station by means of the 
MSG_TO_BASESTATION event appropriately constructed; 
(iv) the timer is reset; (v) data acquisition is finally requested. 

In the ACC_SENSED&FEAT_COMPUTED state the 
MSG.RESYNCH might be received for resynchronization 
purposes; it brings the sensing plane into the 
WAIT4SENSING state. The MSG.RESTART brings the 
sensing plane back to ACC_SENSED&FEAT_COMPUTED 
state for reconfiguring and continuing the sensing process. The 
MSG.STOP eventually terminates the sensing process. 
 
 

 
Figure 7.  Java code related to the WaistSensorAgent plane. 



B. WaistSensorAgent implementation through AFME 
The WaistSensorAgent specified trough the AFME design 

model is depicted in Fig. 8 whereas a code excerpt, related to 
the model implementation, is provide in Fig. 9. In particular, 
the perceive method of the SensingPerceptor, the act method 
of the ActivateSensorActuator and part of the 
SharedDataModule are detailed. The AFME agent design is 
constituted by the components described in the following: 
• 2 Perceptors. MTSPerceptor checks for the arrival of a new 

message coming from the coordinator whereas 
SensingPerceptor checks that the necessary features 
computation results are available, so that they can be sent 
to the coordinator. 

• 3 Actuators. ActivateSensorActuator allows activating the 
sensing operation, ResetActuator resets the data buffer 
after the reception of the resynch message, and 
RequestActuator is used to send a request message to the 
coordinator carrying the computed features. 

• Rules. TerImplication contains the auto-generated Java 
description of the agent behavior rules defined into a script 
file (see below). 

• 1 Module. SharedDataModule contains buffers storing the 
data sensed from the three accelerometer channels, the 
feature extraction buffers and parameters, and an activation 
flag variable for enabling the sensing process. 

• 1 Service. RadiogramMTS represents the message transport 
service for data transmission to the coordinator. 

 

 
Figure 8.  AFME-based WaistSensorAgent model. 

The rules defining the agent behavior are the following: 
1. message(inform, sender(BaseStation, 

addresses(BSAddress)), begin) > activateSensors(1); 
2. sense(?val), !message(inform, sender(BaseStation, 

addresses(BSAddress)), resynch)  > 
request(agentID(BaseStation, 
addresses("radiogram://"+BSAddress)), ?val); 

3. message(inform, sender(BaseStation, 
addresses(BSAddress)), resynch) > reset; 

 

The rule (1) enables the sensor reading operation on the 
sensor node. In particular, this rules states that the belief 
generated upon the reception of an inform message, having the 
“begin” content and sent by the coordinator with address 
BSAddress, triggers the action activateSensors(1), which fires 
the ActivateSensorActuator. This actuator simply sets the 
activation flag on: at first, the argument of the activateSensors 
in the rule is provided to the actuator through the action.next 

method, then the call to the aMan.actOn (see act method in 
Fig. 9) causes the execution of the processAction in the 
SharedDatamodule (the actual flag is represented by the 
activated variable). 

 
SensingPerceptor: 

.... 
private PerceptionManager pMan; 
.... 
public void perceive(){ 

FOS fos = pMan.perManage("shareddata", 1); 
int activated= integer.parseInt(fos.toString()); 
if(activated == 1) { 
 FOS fos2= pMan.perManage("shareddata",0); 
 if(fos2!=null) { 
  String fos2S= fos2.toString();  

  adoptBelief("sense("+fos2S+")"); 
 } 
} 

} 
.... 

ActivateSensorActuator: 
.... 
private AffectManager aMan; 
.... 
public boolean act(FOS arg0) { 

FOS arg= action.next(); 
aMan.actOn("shareddata", 1, null);  return true; 

} 
.... 

SharedDataModule: 
.... 
   // variables and data structures declaration 
.... 
// Perceptor processing 
public FOS processPer(int id)throws MalformedLogicExcep{ 
.... 
 if(id==0) { 

IAccelerometer3D acceleratorSensor= 
             EDemoBoard.getInstance().getAccelerometer(); 
try { 

  windowX[this.windowCounter]= 
acceleratorSensor.getAccelX(); 

 windowY[this.windowCounter]=  
acceleratorSensor.getAccelY(); 

 windowZ[this.windowCounter]=  
   acceleratorSensor.getAccelZ(); 

this.windowCounter=  
    ((this.windowCounter +1)%this.WINDOW_SIZE); 

 this.shiftCounter++;     
}catch(IOException e){e.printStackTrace();} 
if (shiftCounter == SHIFT_SIZE){ 

double meanX = meanMaxMin(this.windowX)[0]; 
double meanY = meanMaxMin(this.windowY)[0]; 
double meanZ = meanMaxMin(this.windowZ)[0]; 
double maxY = meanMaxMin(this.windowY)[1]; 
double minY = meanMaxMin(this.windowY)[2]; 
String returnValues = this.timestamp+"|"+meanX+"|"+ 

meanY+"|"+meanZ+"|"+maxY+"|"+minY; 
 this.timestamp= 

((this.timestamp +1)%this.MAX_TIMESTAMP); 
this.shiftCounter= 0; 
return FOS.createFOS(returnValues); 

}else return null; 
 }else if(id==1){ 

String s= String.valueOf(activated); 
return FOS.createFOS(s); 

 } 
.... 
} 
// Actuator processing 
public FOS processAction(int id, FOS data) 

throws MalformedLogicExcep{ 
.... 

if(id==1){  
String s= data.toString(); 

 activated= Integer.parseInt(s); 
} 

.... 
} 
.... 

Figure 9.  Java code from the AFME-based WaistSensorAgent. 

The rule (2) regulates the agent behaviour during the 
sensing phase. If a new sense-belief is generated (i.e. features 
computation has been carried out on sensed data) and a 
message-belief, generated upon reception of the resynch 
message sent by the coordinator, does not exist, the request 
action is carried out so that a new message containing the 
computed features is sent to the coordinator. In particular, the 
sensing operation and the features computation are driven by 
the SensingPerceptor (see perceive method in Fig. 9) which, if 
the flag is on (activated==1), calls the pMan.perManage 
method with parameter “0” that in turns causes the execution 
of the processPer in the SharedDataModule (more precicely 
the code related to the condition id==0). This code performs 
the data reading from the accelerometer and the features 
computation, returning the results in the form of a belief (see 
sense(?val) in rule 2). Finally, the rule (3) allows 
resynchronizing the sensor agent. In particular, it states that if 
the belief message is generated upon reception of the resynch 



message, the reset action, which re-initializes all the data 
structures in SharedDataModule, is executed. 

C. MAPS and AFME: programming model differences 
The development of MAPS and AFME agents is based on 

different approaches. MAPS uses state machines to model the 
agent behavior and directly the Java language to program 
conditions and actions. AFME uses a more complex model 
centered on perceptors, actuators, rules, modules, and services 
for defining the mobile agents. They are both effective in 
modeling agent behavior even though MAPS is more 
straightforward as it relies on a programming style based on 
state machines widely known by programmers of embedded 
systems. Moreover, differently from AFME, MAPS is 
specifically designed for WSNs and fully exploits the release 
5.0 red of the Sun SPOT library to provide advanced 
functionality of communication, migration, sensing/actuation, 
timing, and flash memory storage. Finally, MAPS allows 
developers to program agent-based applications in Java 
according to its rules so no translator and/or interpreter need to 
be developed and no new language has to be learnt. See [28] 
for experimental results comparing the two agent platforms. 

VI. CONCLUSION 
In this paper we have presented the agent-oriented 

approach for high-level programming of WBAN applications. 
The agent approach is not only effective during the design of a 
WBAN application but also during the implementation phase. 
In particular, we have described two Java-based agent 
platforms, MAPS and AFME, allowing for a more rapid 
prototyping of sensor node code than low-level APIs which 
can be effectively used only by sensor node skilled 
programmers having knowledge of sensor drivers, 
communication and energy mechanisms. The higher level 
software abstractions provided by MAPS and AFME are 
suitable for a fast and easy real WBSN applications 
development as demonstrated by the proposed case study 
concerning a real-time human activity monitoring system. 
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