
Playing Nomic using a Controlled Natural Language

John J. Camilleri, Gordon J. Pace and Michael Rosner
University of Malta

Abstract Controlled natural languages have been used in a variety of domains,
to enable information extraction and formal reasoning. One major challenge is
that although the syntax is restricted to enable processing, without a similar re-
stricted domain of application, it is typically difficult to extract useful results. In
this paper we look at the development of a controlled natural language to reason
about contractual clauses. The language is used to enable human players to play
a variant of Nomic — a game of changing contracts, whose very nature makes it
extremely challenging to mechanise. We present the controlled natural language
with its implementation in the Grammatical Framework, and an underlying de-
ontic logic used to reason about the contracts proposed by the players.

1 Introduction

The use of controlled natural languages (CNLs) to enable processing of and formal reas-
oning about statements in a particular domain is a rather well-established approach. By
constraining the language, together with the structural complexity of the grammar, one
obtains a language to make statements about the underlying domain, without moving
too far off from a natural language description. In identifying an appropriate domain-
specific CNL, one faces two primary challenges — that of identifying the basic under-
lying concepts in the domain, and secondly that of selecting an appropriate and suffi-
ciently rich grammar through which to combine these basic concepts. Going further,
and enabling formal reasoning and manipulation of statements made in the CNL is fur-
ther hindered by the fact that typically, relating the basic concepts together requires
much tedious and error-prone work.
One area in which CNLs have been applied is that of contracts — agreements between
two or more parties regulating their behaviour. Typically contracts state obligations,
permissions and prohibitions of actions or states. Contracts have been used in a variety
of settings, ranging from game rules and user-level agreements to national legislation
and international directives. For instance, a particular game may include clauses in its
rules, such as ‘Players take turns in a counter-clockwise direction’, and ‘Upon starting
their turn, the player throws two dice’.
In practice, using a CNL for contracts requires not only semantics of the language
operators, but also the underlying implicit concepts (for instance, a player may give the
dice to the next player at the end of his or her turn, but may not give his or her counter
to another player). In this paper we investigate the use of a CNL to describe game rules.
In particular, to enable interesting cases, and the need for consistency checking of the
rules, we apply the technique to implement a variant of the game of Nomic — a game
in which changing the rules is part of the game itself.

2 Nomic and BanaNomic

Nomic is a game of self-amendment [Sub90] — starting with an initial rule set, each
player takes their turn changing the game’s rules through a system of rule proposals
and player voting. What makes Nomic so particular is that everything is theoretically
up for amendment during the game, including the voting system itself and what players
need to do to win. Despite the popularity of the game, only one Nomic variant could be
found which uses automated rule processing. The game is encoded and played directly
in Perl [PB05], and circumvents the contract specification and processing by identifying
the contract with the Perl program governing the voting process — what the program
accepts (or rejects) is considered to be the semantics of the program. Encoding the
full game of Nomic with natural language contracts is particularly challenging, since it
combines challenges in natural language analysis and formal reasoning about contracts.
The major challenges in Nomic playing using natural language contracts are twofold:
(i) formulating a language in which the contract clauses are expressed — rich enough to
be able to reason about notions such as permission and obligation; and (ii) the contracts
frequently refer to statements about the real world which require a strong semantic
framework (‘Players wearing glasses cannot propose amendments to clauses labelled
by a prime number’). The former problem we have addressed by developing a CNL,
which we discuss more concretely in the next section, and the latter was circumvented
by reducing the domain of the game to a simpler setting.
BanaNomic is a more concrete version of Nomic, in which players represent monkeys
living in a tree, fighting to pick bananas and defend their stash. The constitution corres-
ponds to the rules of the jungle — and can refer to the state of affairs (e.g. how many
bananas a player owns) and actions possible in this limited setting (e.g. climbing up
the tree). The rules cannot be violated, but the monkeys are allowed to add and remove
rules at will. During each turn, the players may carry out actions and modify the con-
stitution. The game is governed by banana-time, thus enabling constitution clauses to
refer to time.

3 A deontic contract language for BanaNomic

The contract grammar devised for BanaNomic is based on the deontic logic we have
explored in [PR10]. The deontic logic is based on three fundamental deontic modal op-
erators: obligation O, permission P and prohibition F, and is action-based, in that all
the deontic operators act on action expressions. Furthermore, all actions are tagged by
their subject and object (if relevant) e.g. the action throwBanana takes both the name
of the monkey throwing the banana, and the monkey at whom it is being thrown —
throwBanana(Michael,Gordon). To enable quantification over actors, rather than intro-
ducing explicit quantifiers, we borrow the notation used for polymorphic type place-
holders from type systems, and enable quantification by using a name placeholder *
e.g.: F(throwBanana(∗, John)) would be the statement saying that everyone is forbid-
den from throwing a banana at John. Ideally, in such a logic we would allow for different
variable names, allowing us to unify different actors in a statement, but for the sake of
a more direct mapping to and from the CNL, we assume that the instances of * all refer
to different variables.

Player Rule enacted

1. George F(pickBanana(Paul))
Paul is forbidden to pick a banana

2. Paul ♦ [0, 9]O(throwBanana(φ,George))
At some point before time 9 every player is obliged to throw a banana at George

3. George F(abolish(Paul, ∗) /P(enact(George, ∗, ∗)) .Ok
If George is permitted to enact a rule then Paul is forbidden to abolish any rule

4. Paul � [0,∞]F(enact(George, ∗, ∗))
At all times George is forbidden to enact a rule

Table 1: Example of the rules enacted during a four-turn sequence of BanaNomic,
showing rule clauses in formal notation along with their natural language linearisations.
Other turn actions are omitted.

The contract is modelled as a function from the natural numbers to clauses, and is
interpreted as the conjunction of all clauses. The clauses can be (i) deontic statements
over action expressions; (ii) temporal operators — �[b, e]C says that from time b to
time e clause C will always be enforced and ♦[b, e]C says that at some time between
time b and e, clause C will hold; (iii) choice operators — C1 + C2 says that one of C1
and C2 must hold and C1 // q ..C2 checks whether query q holds (queries are boolean
expressions over the state of the game — how many bananas each player has, the height
in the tree where each player can be found, etc) and enacts C1 or C2 accordingly; (iv) a
consequence operator C1/DE.C2 which checks for the existence of deontic clause DE
and enacts clause C1 or C2 accordingly; and (v) the conjunction of two clauses C1∧C2.
The syntax of the logic is as follows:

ActionExp ::= Action | ActionExp; ActionExp | ActionExp + ActionExp

DeonticExp ::= O(ActionExp) | F(ActionExp) | P(ActionExp)

Clause ::= Ok | Fail | DeonticExp | Clause ∧ Clause | Clause + Clause

| Clause //Query ..Clause | Clause/DeonticExp.Clause

| � [Time,Time] Clause | ♦ [Time,Time] Clause

Two of the basic actions which can be used in action expressions are enact and abolish,
which refer to a particular player enacting or abolishing an existing clause. When used
in conjunction with the deontic operators, one can express clauses about power e.g.
F(enact(John, ∗, ∗)) says that John is not allowed to enact any clause anywhere in the
contract. Using the logic defined above, a few example contracts and their natural lan-
guage readings are given in table 1.

4 BanaL, a CNL for BanaNomic user input

We have developed BanaL — a CNL for BanaNomic, designed as an application-
specific method of natural language representation based on the syntax of the logic.

This has the effect of making the conversion from contract logic to natural language
and back (linearisation and analysis, respectively) very simple and deterministic. The
Grammatical Framework (GF) was adopted for the guided-input methods it facilitates
(see below), and its support for sophisticated forms of language generation — thus
future-proofing the design so that subsequent versions of BanaL could easily be exten-
ded to include much more intelligent natural language realisation choices.
GF is a specialised functional language for defining grammars, having separate ab-
stract/concrete syntax rules, a strong type system, and inherent support for multilin-
guality. GF grammars are declarative in nature, with a primary focus on the linearisa-
tion of syntax trees. By writing an abstract GF grammar and defining how it should be
expressed in one or more natural languages (concrete grammars), GF is able to derive
both a generator and a parser for each of those languages [Ran04].
Given the declarative nature of GF grammars, the abstract syntax of BanaNomic could
very easily be implemented on the basis of its formal logic. For example, the abstract
GF equivalent for the definition of the Clause category would be as follows:
cat

DeonticExp ; Time ; Clause ;

fun

C_Deontic : DeonticExp -> Clause ;

C_Always : Time -> Time -> Clause -> Clause ;

C_Conditional : DeonticExp -> Clause -> Clause -> Clause ;

...

For the design of the concrete grammar, each of the functions from the abstract syntax
is given a template-like linearisation. While suitable for many cases, certain constructs
required a better approach in order to produce phrases which still sound natural. Nested
phrases were particularly problematic to express unambiguously (‘Paul is allowed to
pick a banana and climb the tree or climb down the tree’), and the use of pronouns was
avoided altogether.
A major part of GF is its partial evaluation algorithm (or incremental parser), which
gives rise to interesting guided-input possibilities. By presenting the user with a list
of possible words which may come next in a partial sentence, they are able to con-
struct grammatical sentences in an auto-complete fashion. This is highly useful as it
ensures that only syntactically-correct phrases are entered first-time round, and will
avoid user frustration of trying to construct parseable sentences in free-text. The guided
input methods developed for BanaNomic are based on the drop-down suggestions (fig-
ure 1a) and the “fridge magnets” (figure 1b) — developed by the GF team. These input
methods are of particular interest to the area of CNLs, as they help avoid the problem
of users having to know what is grammatical in a particular CNL.
BanaNomic was concretely deployed as an online game and a number of non-technical
persons played it over a period of time, to provide feedback on the naturalness of the
generated BanaL phrases as well as the usefulness of the guided input methods. Overall,
the players found the expressiveness of the CNL to be adequate to hold their interest,
although further evaluation remains necessary to assess whether the limitations of the
CNL constrained the actions the players would have otherwise made.

(a) Drop-down suggestions (b) Fridge magnets

Figure 1: Guided input methods used in BanaNomic

5 Conclusions

One of the primary challenges we have found when supporting reasoning through the
use of a CNL is the domain to which the language is applied — controlling the structure
of the sub-language ensures that a mapping to and from the operators of the formal
underlying representation is possible. On the other hand, if the domain of the basic
terms is not carefully controlled, the reasoning one can perform is strictly limited. In
this paper we have investigated the use of a controlled domain of application for BanaL,
a CNL to specify contract clauses as input to the game BanaNomic, in which the basic
actions and state queries are limited. The CNL has been used as a front end input to a
web-based version of BanaNomic, with players taking turns to change the constitution
and take actions — as regulated by the current contract. We are currently looking into
ways to extend the syntactic and semantic domain of the logic whilst keeping a hold on
the naturalness aspect of the CNL.

References

[PB05] Mark E. Phair and Adam Bliss. PerlNomic: Rule Making and Enforcement in Digital
Shared Spaces. In Online Deliberation 2005 / DIAC-2005, Stanford, CA, USA, 2005.

[PR10] Gordon J. Pace and Michael Rosner. A Controlled Language for the Specification of
Contracts, volume 5972 of LNAI. 2010.

[Ran04] Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming, 14(02):145–189, 2004.

[Sub90] Peter Suber. Nomic: A Game of Self-Amendment. Peter Lang Publishing, 1990.

