
Towards a Process-Line for MDPLE

Maider Azanza1, Josune de Sosa2, Salvador Trujillo2, Oscar Díaz1

1 University of the Basque Country. San Sebastian, Spain
{maider.azanza, oscar.diaz}@ehu.es

2 IKERLAN Research Centre. Mondragon, Spain
{jdesosa, strujillo}@ikerlan.es

Abstract. The conception and design of software-intensive systems is
an inherently complex endeavor. We experienced this complexity our-
selves while engineering a wind turbine control system. Such complex-
ity was faced by the combined use of Software Product Line Engineer-
ing and Model-Driven Engineering. However, the application of both
paradigms demanded considerable changes in the software development
process. This position paper focuses on the process we followed in engi-
neering the system and reports some experience. Overall, this experience
advocates for the explicit de�nition of Model-Driven Product-Line En-
gineering based Processes. In certain domains, such processes need to be
�ne-tuned to accommodate speci�c customer or project needs and thus
the notion of process-line for MDPLE is introduced.

1 Introduction

The software industry remains largely reliant on the craftsmanship of skilled
individuals engaged in labor intensive manual tasks. However, growing pressure
to reduce cost and time to market, and to improve software quality, may catalyze
a transition to more automated methods [9]. Model Driven Engineering (MDE)
and Software Product Line Engineering (SPLE) are two paradigms aimed at
industrializing the software development process.

The main focus of MDE are models, which will then be transformed to con-
crete implementations [8]. MDE raises the level of abstraction, thus permiting
developers to concentrate on the essential domain concepts, decoupling them
from concrete implementation details. As for SPLE, it aims at building a set of
related products out of a common set of core assets.

The bene�ts of MDE and SPLE have been widely reported, including di�er-
ent industrial case studies [3,5]. Being complementary in nature, the combination
of both, which is referred to as Model Driven Product Line Engineering (MD-
PLE), integrates the advantages of both [18]. Hence, MDPLE has been subject
of research in the recent years [1,14].

Nevertheless, the adoption of MDE and SPLE, and furthermore MDPLE,
requires considerable changes in the manner software development is carried
out, which is translated into an up-front investment that needs to be considered.
An assesment of the implications of the adoption is essential [17].

3



In this sense, the de�nition of a rigorous process that speci�es how to realize
these paradigms is necessary to fully exploit their advantages [7]. As a case in
point, in a previous work we reported the challenges MDPLE brings for assembly
processes [2].

In this paper we report our experience when developing wind turbine con-
trol systems in the wind power industry [19,20]. Such a system is subject to
a growing market and technology challenges, which motivated its reengineering
following MDPLE principles. We describe the general process we followed and
motivate the need for a explicit and systematic process if MDPLE is to achieve
its full potential. Nonetheless, di�erent projects or domains may have di�erent
requirements. Thus, the need for a variable process that can be �ne-tuned to
each of them is explained and the variability sources we identi�ed in our case
study are described. A process line is introduced as possible solution to manage
such variability.

2 Motivating Case Study

2.1 General motivation

Software has evolved from relatively small and simple products to systems with a
considerable size and a high degree of complexity. Extensibility and customiza-
tion to each customer are nowadays a requirement more than a wish. At the
same time, the product's desired time-to-market is ever decreasing. To tackle
these needs, advanced software paradigms have emerged. Model Driven Engi-
neering (MDE) and Software Product Line Engineering (SPLE) are two cases
in point.

MDE raises the level of abstraction, de�ning models that capture the speci-
�cs of the application at hand, which will then be transformed into the actual
application code implementation. MDE leads to conceptual simplicity: clear ar-
chitecture, e�cient implementation, higher scalability and greater �exibility [4].

As for SPLE, it aims at building a set of related products out of a common
set of core assets. Unlike MDE, now the stress is not so much on the abstraction
level at which software is speci�ed, but on conceiving programs as pre-planned
variations from core assets. The de�nition of a set of related products in the
form of a product family increases reuse and reduces the cost of each of them.

Both MDE and SPLE depart from one-o� development to provide an in-
frastructure where di�erent (though related) products can be obtained. The
bene�ts of applying them separately in an industrial setting have been reported
in the literature [3,5]. Their complementary nature permits their combination in
MDPLE that brings even greater bene�ts. We have experienced this ourselves
[19,20].

However, MDPLE requires considerable changes in an organization and in
the processes that yield each product. Compared to traditional development
processes, new activities, tasks and artifacts emerge, which need to be explicitly
de�ned beforehand if all the expected bene�ts are to be obtained.

4



The following section brie�y describes the speci�c challenges related to the
process when engineering wind turbine control systems.

2.2 Case Study: Green Energy Control Systems

In many domains, the general motivation outlined above occurs. Indeed, this
is the case when developing wind turbine control systems in the wind power
industry [19,20]. A multidisciplinary team of engineers work together in the
development of the embedded control system [12]. Such system is subject to a
growing market and technology challenges. Some of them impact directly on the
process.

� Stringent Time-to-market. The challenge is twofold: new wind turbine mod-
els and customizations of wind turbine models for speci�c systems are needed.
In the �rst place, the required time between releases to market models is re-
ducing. Hence, there is a need to accelerate the process to conceive and design
newer system models. In the second place, there are di�erent customer ex-
pectations and needs for each system, that have to be ful�lled. Both trends
introduce pressures to the acceleration of the development process.

� Industrialize the process. Raise e�ciency, automate and industrialize the de-
velopment of systems. The growing sector of alternative energies is facing a
continuous growth together with an internationalization of operations world-
wide. Hence, there is not only a unique product to be managed, but a whole
family in di�erent geographical locations. The challenge is to industrialize
and geographically distribute the process to create and customize control
systems worldwide.

� Scalability and Teamwork. The size and number of elements to be controlled
is growing. The knowledge is distributed among di�erent engineers from
di�erent disciplines. Hence, the need to organize workteams, de�ne roles
and responsibilities, and explicitly de�ne a process.

In general, all these challenges call for the need to explicitly de�ne a process for
model-driven product-lines. Besides, there is a growing need to customize such
process to the needs of di�erent systems or even application domains.

First, we describe the process we followed. Then, we argue on the variability
of such process.

3 An MDPLE-Based Process

A general overview of the process to create a product following MDPLE is given
in this section. The process that realizes each activity has to be detailed next. As
an example, the process that builds the model driven infrastructure is presented.

3.1 Overview

We describe the general MDPLE process next. First, the general development
process was divided into coarse grained activities. Note that the development

5



process required several iterations, if new features had to be incorporated or
errors were discovered the activity had to be executed again. A brief description
of the activities we identi�ed follows:

� The Art of Decisión Making (DEC). Given the requirements of a certain
project, a �nancial assessment is made and the necessary resources are al-
located. It is a managerial activity, which has a direct impact on but does
not per-se belong to the software development process, but an evaluation of
whether the up-front investment an MDPL requires is worthwhile is essential.

� Family Management for the Infrastructure (M2PL). The bene�ts of SPLE
can be extended beyond the product family. The development of metamodels
and transformations is a cumbersome task which can bene�t of increasing
reuse. This activity de�nes a family of metamodels and transformations that
permit to increase reuse by applying SPLE techniques [22,25]. The resulting
products of this activity will be the MDE infrastructures (i.e. metamodels
and transformations), that will later permit to obtain the actual products.
This activity corresponds to domain engineering applied to MDE infrastruc-
tures. Note that the e�ort needed to develop a family may not pay o� in all
cases (e.g. when metamodels and transformations have no variability). This
is an indication that some of the activities in the process are optional.

� Build the Infrastructure (M2Dev). The aim of this activity is to obtain the
concrete metamodels and transformations (i.e. the model-driven infrastruc-
ture) that will be later used to create individual products. In this case, it
corresponds to application engineering for the MDE infrastructure. We detail
this activity in the following section.

� Adapting the Infrastructure to the Speci�c System Domain (M2Adapt). Re-
quirements that are not accounted for in the shared metamodel and trans-
formations may be accommodated by this adaptation activity that tailors
them to the speci�c domain's needs [6].

� Family Management for the System (M1PL). This activity refers to the tra-
ditional domain engineering. It involves identifying commonalities and vari-
ability between product family members, and implementing a set of core
assets liable to be reused along di�erent products.

� Build the individual System (M1Dev). This activity performs application
engineering. It yields the �nal system using both the metamodel and trans-
formations developed in M2Dev and the core assets that were produced in
M1PL.

3.2 M2Dev: Build the Infrastructure

The purpose of this section is to detail the subprocess Build the Infrastructure
(M2Dev) for our case study. The roles include: the chief engineer who takes the
decision to use the MDE paradigm, the chief architect who architects the overall
solution, the modeling engineer who analyzes the structure and abstractions of
the original code, the programmer for the alignment of the original system, the
metaware engineer who creates the metamodels and transformations, and the

6



Fig. 1. M2Dev process detail in SPEM

system developer in charge of the development of individual systems. Figure 1
sketchs an overview of the process using SPEM [13]. Next subsections outline
the activities.

Mining Once the paradigm was selected, the next step was a preliminary analy-
sis of the existing system. This is an important point. While there exist processes
that generate the system's software from scratch [11,15], in our experience it is
more usual to depart from an existing system that is already in operation. The
goal of this activity was to decide to which parts MDE can be applied. The �rst
step was to identify parts of homogeneous or potentially repetitive code (code
clones). Note that already existing behavioural and structural models largely
supported our analysis. However, code was not automatically generated from
such models. The search and selection of candidate parts for automation was
based on the abstractions we manually found3. The chief architect led a mul-
tidisciplinary team to �nd those candidates. The mining resulted in a focus on
a subset of subsystems, whose implementation code was to be automated from
models. These parts largely changed among products due to customer require-
ments. Automating the code generation will ultimately reduce the development
and maintenance e�orts.

3 This was not automated since speci�c domain knowledge was required. Hence, fur-
ther work may investigate the automation of the extraction of these abstractions by
following an Architecture-Driven Modernization (ADM) approach.

7



Analysis A detailed analysis on selected parts was conducted to examine in
detail the code to be generated. The previously existing models played a pivotal
role. We actually enriched such models with further information needed to re-
ally generate executable code. For instance, it is not the same the de�nition of a
condition from a design perspective than the precise de�nition needed for such
condition to be executable. The modeling engineer was responsible for conduct-
ing the analysis of the structure, the behavior and the abstraction. The level of
detail in the models was largely increased from simple sketches to rather com-
plete models. We also completed the structure and behavior models for all code
parts.

Alignment The analysis provided a detailed knowledge on the models and code.
A last step was needed in our case before automating code generation. It involved
the alignment of the implementation code. For alignment, we understood for the
code to be implemented in the same way in similar situations. For example, we
detected that some statecharts were implemented following a switch-case style,
whereas others followed an if-else. This and other details were homogeneized.
In general, code was prepared to be always generated in the same way. This
impacted following the same structure, the same methods name, same conven-
tion to de�ne attributes, etc. This alignment of code and the uni�cation of the
programming style were critical to automate code generation. The programmer
was responsible of leading this task. A requisite in our project was to ensure
that engineers understood the generated code as they understood the previous
manually implemented code. Eventually, the alignment allowed the code to be
automatically generated from a model.

Models, Metamodels and Transformations (m,MM,MT) UML was also
used as a metamodel. Our models were mostly sketched as class and statechart
diagrams. In some cases, we also introduced some stereotypes to ease automatic
code generation [20]. The level of expressiveness drove such di�erent modeling
decisions [23].

Practice The completion of the infrastructure preceded its deployment for mod-
els, metamodels and transformations to be used in practice for the development
of individual systems. To attain this, the internal leadership is essential in the
customer organization. The system developer was in charge of this. Besides, a
detailed process was set in place. In our case, this leadership was possible by the
implication of the customer engineers in some tasks of the previous activities.
This enabled him to familiarize with the new way of working and the new tools.

4 Towards an MDPLE Process Line

This section analyzes whether the same process can be used for di�erent sys-
tems within the organization or even beyond the organizational boundaries. The

8



notion of process-line for MDPLE process as a product-line of process is intro-
duced.

4.1 Motivation

An MDPLE process has to be general enough to allow reuse in di�erent domains,
systems and projects. The �rst approach is to de�ne a comprehensive process
embracing the entire set of activities that can occur in every situation, and then,
provide the choices within the process. However, this enlarged approach has a
number of limitations, namely, the delay in the process introduced by taking
again decisions that were already decided, and by carrying out activities that
can be unnecessary.

An alternative approach could be the de�nition of a generic process that is
customized for each project. Doing so, the process is customized before starting
it. In this customized process, only necessary activities are carried out. Hence,
time is signi�cantly reduced by removing unnecessary activities and decisions
[10]. As a next step, the de�nition of all related processes in an organization as
a family can bring the bene�ts of SPLE to the process realm [16]. However, note
that the de�nition of a process line (i.e. the core assets that yield the product
family) is not a trivial task. Such process line would permit us to systematically
yield process instances for each particular domain (e.g. some may require only
MDE, others SPLE and others the combination of both).

Next, we introduce the di�erent kinds of variability that can appear in our
projects.

4.2 Variability of the Process-Line

The process often needs to be customized to meet the needs of di�erent cus-
tomers. A one-size-�ts-all is inappropriate because of the large variability in-
volved. Next we present the variability that originate in the process to subse-
quently sketch how to address them.

� Di�erent project size. Depending on the size of the system, the project size
varies largely ranging from individual (1 person), small team (below 10), to
larger projects (above 10). In small projects the application of a full-�edged
MDPLE process may not be desirable, or even a�ordable.

� Di�erent levels of automation. There are di�erent levels of automation in
code generation. There are some MDE projects where models are mainly
used for design, whereas others models automate code generation. Besides,
there are di�erent sorts of transformations, namely, model to model and
model to text transformations. Overall, there is a variety of approaches.

� Di�erent tools. Market diversity provides a variety of modeling tool sup-
port with di�erent characteristics that come at di�erent cost, which can be
imposed by di�erent customers.

� Di�erent artifacts that cope with variability. Variability is incorporated in
the models. Increasingly, variability is also spreading to metamodels and

9



model transformations [21,25]. This relates to the coarse grained activities
described in Section 3.1.

� Di�erent project infrastructure. The resources involved in di�erent projects
vary among teams. Assorted technologies for repositories, use of wikis or
other tools may di�er.

These di�erences among projects involved that the process needs some sort of
customization. In particular, a number of activities and some decisions are bound
to such di�erences. The speci�c mechanisms used to handle variability are out
of the scope of this paper [19]. Overall, they are those commonly found in soft-
ware product-lines. Feature models for representing the variability in the whole
family, variation points in the speci�cation, and mappings connecting features
to variation points.

The sources of variability for the process-line vindicates the need to accom-
modate the MDPLE process in order to achieve economies of scale not only on
the system, but also on the process.

5 Related work

Previous work describes the bene�ts of applying MDE and SPLE in industrial
case studies, including embedded systems [3,5,15]. Among the bene�ts they re-
port �exibility, better adaptation to change and an increase in productivity and
product quality can be highlighted.

Nevertheless, the adoption of MDE and SPLE in isolation, not to mention
MDPLE, in a project is far from trivial. It involves an up-front investment and
considerable changes in the organization. As an example, a list of requirements
for MDE to be successful are described in [17]. In our limited experience, the
need to ponder the bene�ts of applying each paradigm is vital and we have
re�ected it in the �rst activity of our process (i.e. DEC).

As mentioned before, the contributions of MDE and SPLE have been already
documented. Their combination brings even greater gains [18,24]. However, the
process that leads to obtain each product, and thus that brings such gains,
incorporates new activities, roles and artifacs, increasing its complexity when
compared to traditional software development. The need to de�ne a process that
systematizes the development of the model driven infrastructure was presented
in [7], where the requirements such process should full�l where described. Based
on an industrial case study, we have de�ned a preliminary process that targets
those needs (see Subsection 3.2). As a case in point, in a previous work we
reported the challenges MDPLE brings for assembly processes [2].

Examples of processes for embedded systems can be found in [11,15]. In both
cases, the infrastructure to produce a product is already given. Our process
includes the development of such infrastructure, as it can vary from domain to
domain. Moreover, both processes create systems from scratch. In our experience,
it is more common to have an existing system that has to be reenginered to apply
MDPLE.

10



Process customization, process variability and process families are an emerg-
ing topic [10,16]. We described the variability we encountered when developing
an MDPLE-based system and sketched the sources of variability we encountered.

6 Conclusions and Future Work

This paper reported our practical experience applying Model Driven and Soft-
ware Product Line engineering to a family of wind turbine control systems.
Overall, we introduced the MDPLE-based engineering process we followed. The
activities for building the MDE infrastructure were detailed.

We also focused on the need for variability for the process itselft and the
sources of variability we identi�ed for such process-line were also described. The
de�nition of a process line that permits to manage such variability by yielding
a family of MDPLE processes is subject of future work.

Our work paves the way for further research on the �eld. Indeed, we are
currently working on detailing the entire process and on the speci�c mechanisms
to handle the process-line variability.

Acknowledgments. This work was co-supported by the Spanish Ministry of
Education, and the European Social Fund under contract MODELINE, TIN2008-
06507-C02-01 and TIN2008-06507-C02-02.

References

1. 1st International Workshop on Model-Driven Product Line Engineering (MDPLE),
2010. http://www.feasiple.de/workshop_en.html.

2. Maider Azanza, Oscar Díaz, and Salvador Trujillo. Software Factories: Describing
the Assembly Process. In International Conference on Software Process (ICSP),
2010.

3. Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large
Industrial Context - Motorola Case Study. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS), pages 476�491, 2005.

4. Jean Bézivin. On the Uni�cation Power of Models. Software and System Modeling,
4(2):171�188, 2005.

5. Paul Clements and Linda M. Northrop. Software Product Lines - Practices and
Patterns. Addison-Wesley, 2001.

6. Sybren Deelstra, Marco Sinnema, and Jan Bosch. Experiences in Software Prod-
uct Families: Problems and Issues During Product Derivation. In International
Software Product Line Conference (SPLC), pages 165�182, 2004.

7. Frédéric Fondement and Raul Silaghi. De�ning Model Driven Engineering Pro-
cesses. In International Workshop in Software Model Engineering (WiSME), 2004.

8. Robert B. France and Bernhard Rumpe. Model-Driven Development of Complex
Software: A Research Roadmap. In Workshop on the Future of Software Engineer-
ing (FOSE 2007), 2007.

9. Jack Green�eld, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004.

11



10. Peter Killisperger, Markus Stumptner, Georg Peters, Georg Grossmann, and
Thomas Stückl. Meta Model Based Architecture for Software Process Instanti-
ation. In International Conference on Software Process (ICSP), 2009.

11. Ali Koudri, Joël Champeau, Denis Aulagnier, and Philippe Soulard. Mop-
com/marte process applied to a cognitive radio system design and analysis. In
European Conference on Model Driven Architecture - Foundations and Applica-
tions (ECMDA-FA), pages 277�288, 2009.

12. Jonah Z. Lavi and Joseph Kudish. Systems Modeling and Requirements Speci-
�cation Using ECSAM: An Analysis Method for Embedded and Computer-Based
Systems (ECBS'04). IEEE Computer Society, 2004.

13. OMG. Software Process Engineering Metamodel Speci�cation. Formal Speci�ca-
tion, April 2008. Online at: http://www.omg.org/spec/SPEM/2.0/PDF.

14. AMPLE Project. Aspect-Oriented, Model-Driven Product Line Engineering, 2010.
Online at: http://ample.holos.pt/.

15. Wilhelm Schäfer. A Rigorous Software Process for the Development of Embedded
Systems. In International Software Process Workshop (SPW). Revised Selected
Papers, pages 91�99, 2005.

16. Borislava I. Simidchieva, Lori A. Clarke, and Leon J. Osterweil. Representing
Process Variation with a Process Family. In International Conference on Software
Process (ICSP), 2007.

17. Miroslaw Staron. Adopting Model Driven Software Development in Industry -
A Case Study at Two Companies. In Internationl Conference on Model Driven
Engineering Languages and Systems (MoDELS), pages 57�72, 2006.

18. Salvador Trujillo, Don Batory, and Oscar Díaz. Feature Oriented Model Driven
Development: A Case Study for Portlets. In 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA, May, 2007.

19. Salvador Trujillo, Jose M. Garate, Roberto E. Lopez-Herrejon, Xabier Mendial-
dua, Albert Rosado, Alexander Egyed, Charles W. Krueger, and Josune De Sosa.
Coping with Variability in Model-Based Systems Engineering: An Experience in
Green Energy. In European Conference on Modeling Foundations and Applications
(ECMFA), 2010.

20. Salvador Trujillo, Jose M. Garate, Xabier Mendialdua, Albert Rosado, and Jo-
sune De Sosa. The Future of Green Energy Control Systems. In Draft under
Review, 2010.

21. Salvador Trujillo, Ander Zubizarreta, Josune de Sosa, and Xabier Mendialdua.
Is Model Variability Enough? In 1st International Workshop on Model-Driven
Product Line Engineering (MDPLE), 2009.

22. Salvador Trujillo, Ander Zubizarreta, Xabier Mendialdua, and Josune de Sosa.
Feature-Oriented Re�nement of Models, Metamodels and Model Transformations.
In 1st International Workshop on Feature-Oriented Software Development (FOSD),
pages 87�94, 2009.

23. Markus Völter. MD* Best Practices. Journal of Object Technology (JOT), 8(6):79�
102, 2009.

24. Markus Völter and Iris Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In International Software Prod-
uct Line Conference (SPLC), 2007.

25. Jules White, James H. Hill, Je� Gray, Sumant Tambe, Aniruddha S. Gokhale, and
Douglas C. Schmidt. Improving Domain-Speci�c Language Reuse with Software
Product Line Techniques. IEEE Software, 26(4):47�53, 2009.

12




