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Abstract: This paper describes an approach for modeling variability in software 
product lines that are developed, and later evolved, using model-driven software 
product line development. This paper describes variability management in UML 
based multiple-view models of the software product line, which consist of developing 
use case and feature models during requirements modeling, static and dynamic 
models during analysis modeling, and component-based software architectures during 
design modeling. This paper also describes an underlying multiple-view meta-model 
for the software product line, with consistency checking between the multiple views. 

1. Introduction  

Although software product line (SPL) engineering [Clements02, Pohl05, Weiss99] is 
becoming increasingly used in industry, model-driven software product line 
engineering is less widely used. The most widely used model-driven software 
development approaches are used for single systems and are based around UML. 
Feature modeling, which is widely used in software product lines, is not used for 
single system modeling with UML. This paper describes an evolutionary model-
driven software product line engineering approach using UML called PLUS (Product 
Line UML-based Software Engineering), in which feature modeling is fully integrated 
with the other modeling views. This paper also describes an underlying multiple-view 
meta-model for the SPL, with consistency checking between the multiple views.  
 
The Object Management Group (OMG) advocates model-driven architecture in 
which “modeling is designing of software applications before coding”. Software 
modeling approaches are now widely used in software development and have an 
important role to play in software product lines [Gomaa05]. Modern software 
modeling approaches, such as the Unified Modeling Language (UML) 
[Rumbaugh05], provide greater insights into understanding and managing 
commonality and variability by modeling product lines from different perspectives.  
 
Kruchten [Kruchten95] introduced the 4+1 view model of software architecture, in 
which he advocated a multiple view modeling approach for software architectures, in 
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which the use case view is the unifying view (the 1 view of the 4+1 views). This 
paper describes a multiple view modeling approach for software product lines in 
which the unifying view is the feature model. In particular, feature modeling provides 
the added dimension of modeling variability in evolutionary software product lines. 
 
After presenting an overview of the evolutionary SPL engineering approach in 
Section 2, this paper describes in Sections 3-5 how variability modeling is provided in 
each of the different modeling views to provide a better understanding of the SPL 
Multiple view meta-modeling, as the underlying representation of the multiple views, 
is described in Section 6 and consistency checking between the multiple views is 
described in Section 7. The approach is discussed in Section 8. 

2. Evolutionary Software Product Line Engineering 

The Evolutionary Software Product Line Engineering Process [Gomaa05] is a highly 
iterative software process that eliminates the traditional distinction between software 
development and maintenance. Furthermore, because new software systems are 
outgrowths of existing ones, the process takes a software product line (SPL) 
perspective; it consists of two main processes, as depicted in Fig. 1:  
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Figure 1: Evolutionary software product line process model 

a) Product line Engineering (a.k.a. domain engineering). A product line multiple-view 
model, which addresses the multiple views of a software product line, is developed. 
The product line multiple-view model, product line architecture, and reusable 
components are developed and stored in the product line reuse library. 
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b) Software Application Engineering. A software application multiple-view model is 
an individual product line member derived from the SPL multiple-view model. The 
user selects the required features for the individual product line member. Given the 
features, the product line model and architecture are adapted and tailored to derive the 
application architecture [Gomaa06]. The architecture determines which of the 
reusable components are needed for configuring the executable application. 
 
An important part of developing a SPL is commonality/variability analysis [Weiss99]. 
The kernel software architecture represents the commonality of the product line. 
Evolution is built into the software development approach because the variability in 
the software architecture is developed by considering the impact of each variable 
feature on the software architecture and evolving the architecture to address the 
feature. The development approach is a feature-based evolutionary approach, meaning 
that it addresses both the original development and subsequent post-deployment 
evolution. Being feature-based, the approach closely relates the evolution of the 
software architecture to the evolution of software requirements. 

3. Variability in Requirements Modeling  

3.1 Feature Variability Modeling 

With multiple-view SPL modeling, it is possible to define the commonality and 
variability in each view. However, it is difficult to get a complete picture of the 
variability in the SPL because the variability is dispersed among the multiple views. 
To get a full understanding of the SPL variability, it is necessary to have one view 
that focuses entirely on variability and defines variability dependencies. That is the 
purpose of the feature modeling view. 
 
Feature modeling [Kang90] is the unifying view for modeling variability in software 
product lines.   Features are analyzed and categorized as common features (must be 
supported in all product line members), optional features (only required in some 
product line members), alternative features (a choice of feature is available) and 
prerequisite features (dependent upon other features). There may also be 
dependencies among features, such as mutually exclusive features. The emphasis in 
feature modeling is capturing the product line variability, which is characterized by 
optional and alternative features, since these features differentiate one member of the 
family from the others.     

Features are used widely in product line engineering but are not used in UML. In 
order to effectively model product lines, it is necessary to incorporate feature 
modeling concepts into UML. Features can be incorporated into UML using the meta-
modeling concept, in which features are modeled as meta-classes and given 
stereotypes to differentiate between <<common feature>>, <<optional feature>>, 
<<parameterized feature>> and <<alternative feature>>.  Furthermore, feature 
groups, which place a constraint on how certain features can be selected for a product 
line member, such as mutually exclusive features, are also modeled using meta-
classes and given stereotypes, e.g., <<zero-or-one-of feature group>> or <<exactly-
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one-of feature group>> [Gomaa05]. Integrating feature modeling with UML is also 
described in [Vranic06]. 
 
An example of a feature model is given for a Banking SPL in Fig. 2, which depicts 
optional and parameterized features, as well as a feature group consisting of a default 
feature and alternative features. Optional features are the Greeting and Statement 
features. An example of an exactly-one-of feature group is the Language feature 
group, which consists of a default English feature as well as alternative Spanish, 
French or German features. The feature model could evolve by adding other 
Language alternatives or optional features such as a funds deposit feature. 

 
 Figure 2 Example of Feature Model 

3.2. Use Case Variability Modeling  

The functional requirements of a system are defined in terms of use cases and actors 
[Rumbaugh05]. For a single system, all use cases are required. In a software product 
line, only some of the use cases, which are referred to as kernel use cases, are required 
by all members of the family.  Other use cases are optional, in that they are required 
by some but not all members of the family.  Some use cases may be alternative, that is 
different versions of the use case are required by different members of the family.  In 
UML, the use cases are labeled with the stereotype <<kernel>>, <<optional>> or 
<<alternative>> [Gomaa05].  In addition, variability can be inserted into a use case 
through variation points, which specify locations in the use case where variability can 
be introduced [Jacobson97, Gomaa05, WebberGomaa04].  
 
Use cases are used to determine the functional requirements of a system; they can also 
serve this purpose in SPL. Griss [Griss98] has pointed out that the goal of use case 
analysis is to get a good understanding of functional requirements whereas the goal of 
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feature analysis is to differentiate between commonality and variability. Use cases 
and features complement each other. Thus optional and alternative use cases are 
mapped to optional and alternative features respectively, while use cases variation 
points are also mapped to features [Gomaa05].  
 
With use case modeling, it is more difficult to capture dependencies in use case 
variability, whereas a feature dependency can be explicitly captured in a feature 
model. For example, both Greeting and Language are use case variation points but 
Greeting depends on Language, which is explicitly captured in the feature model (Fig. 
2) as a feature dependency. The same variability can be repeated in multiple use cases 
but is captured more effectively as one feature in a feature model. For example, the 
Language variation point is needed in several use cases but appears as one only 
feature in the feature model. 
 
In the use case model for the Banking SPL (Fig. 3), the Statement feature (Fig. 2) is 
mapped to an optional Print Statement use case and the Language use case variation 
point, which is required in several use cases to model variability in the display 
language, is mapped to the Language feature group (Fig. 2). In an evolving SPL, a use 
case model could evolve by adding variation points to reflect further changes 
introduced through evolution and providing new optional or variant use cases.  

Figure 3 Product Line Use Cases 

4. Variability in Analysis Modeling 

4.1. Static Variability Modeling 

In single systems, a class is categorized by the role it plays. Application classes are 
classified according to their role in the application using stereotypes, such as «entity 
class», «control class», or «interface class». In modeling software product lines, each 
class can be categorized according to its reuse characteristic using the stereotypes 
«kernel», «optional», and «variant». In UML 2.0, a modeling element can be 
described with more than one stereotype. Thus one stereotype can be used to 
represent the reuse characteristic while a different stereotype is used to represent the 
role played by the modeling element [Gomaa05]. The role a class plays in the 
application and the reuse characteristic are orthogonal.  
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For every feature in the product line, certain classes realize the functionality specified 
by the feature. For example, the Greeting feature is realized by the optional ATM 
Greeting entity class (Figure 4) and either the default English Display Prompts or a 
variant class, such as French Display Prompts. 
 

 

«variant»
«entity»
French

DisplayPrompts
 

Figure 4 Role and Reuse Stereotypes in Product Line Classes 

4.2 Dynamic Interaction Variability Modeling 

Variability modeling in dynamic interaction modeling is used to determine the 
dynamic impact of each feature on the software architecture of the software product 
line. This results in new components being added or existing components having to be 
adapted. The kernel system is a minimal member of the product line. In some product 
lines the kernel system consists of only the kernel objects. For other product lines, 
some default objects may be needed in addition to the kernel objects.  The kernel 
system is developed by considering the kernel use cases, which are required by every 
member for the product line. For each kernel use case, an interaction diagram is 
developed depicting the objects needed to realize the use case.  
 
Variability modeling during evolution of the product line starts with the kernel system 
and considers the impact of optional and alternative features [Gomaa05]. This results 
in the addition of optional or variant components to the product line architecture. For 
each optional or alternative feature, an interaction diagram is developed consisting of 
new optional or variant objects – the variant objects are kernel or optional objects that 
are impacted by the variable scenarios, and therefore need to be adapted. For 
example, the Greeting and Language features (Fig. 2) impact the interaction diagrams 
for the Validate PIN and Withdraw Cash use cases by needing the addition of the 
Greeting optional object and one of the variant Language objects. 

4.3 State Machine Variability Modeling 

When components are adapted for evolution, there are two main approaches to 
consider, specialization or parameterization. Specialization is effective when there are 
a relatively small number of changes to be made, so that the number of specialized 
classes is manageable. However, in SPL evolution, there can be a large degree of 
variability. Consider the issue of variability in control classes, which are modeling 
using state machines and depicted on statecharts [Harel96]. Modeling variability can 
be handled either by parameterized statecharts or specialized statecharts. The 
following discussion relates to evolution within a given state dependent component. 
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To capture product line variability and evolution, it is necessary to specify optional 
states, events and transitions, and actions. A further decision that needs to be made 
when using state machines to model variability is whether to use state machine 
inheritance or parameterization. The problem with using inheritance is that a different 
state machine is needed to model each alternative or optional feature, or feature 
combination, which rapidly leads to a combinatorial explosion of inherited state 
machines.  For example, with only three features that could impact the statechart, 
there would be eight possible feature and feature combinations, resulting in eight 
variant statecharts.  With 10 features, there would be over 1000 variant statecharts. 
However, 10 features can be easily modeled on a parameterized statechart as 10 
feature dependent transitions, states, or transitions. 
 
It is often more effective to design a parameterized state machine, in which there are 
feature-dependent states, events, and transitions.  Optional transitions are specified by 
having an event qualified by a feature condition, which guards entry into the state. 
Thus, to realize the Minute Plus feature (which adds a minute to cooking time and 
starts cooking if oven is off), a Minute Pressed feature dependent state transition is 
introduced, which is guarded by the feature condition [minuteplus], as depicted in 
Figure 5. Similarly, there can be feature-dependent actions, such as Switch On and 
Switch Off in Figure 5, which are only enabled if the Light feature condition is True. 
Thus the feature condition is True if the optional feature is selected for a given 
product line member, and false if the feature is not selected. The impact of feature 
interactions can be modeled very precisely using state machines through the 
introduction of alternative states or transitions. 

 
Figure 5 Feature Dependent Transitions and Actions 

 

5. Modeling Variability in Software Architectures 

A software architecture [Bass03] separates the overall structure of the system, in 
terms of components and their interconnections, from the internal details of the 
individual components. Software components can be effectively modeled in UML 2.0 
with structured classes and depicted on composite structure diagrams [Rumbaugh05]. 
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Structured classes have ports with provided and required interfaces. Structured classes 
can be interconnected via connectors that join the ports of communicating classes. 
 
For a SPL component-based software architecture for, it is necessary to specify the 
interface(s) provided by each component and the interface(s) required by each 
component. This capability for modeling component-based software architectures is 
particularly valuable in product line engineering, to allow the development of kernel, 
optional and variant components, “plug-compatible” components, and component 
interface inheritance. It is highly desirable, where possible, to design components that 
are plug-compatible, so that the required port of one component is compatible with 
the provided ports of other components to which it needs to connect [Gomaa05].  
 
Consider the case in which a producer component needs to be able to connect to 
different alternative consumer components in different product line members, as 
shown in Figure 6. The most desirable approach, if possible, is to design all the 
consumer components with the same provided interface, so that the producer can be 
connected to any consumer without changing its required interface. For example, the 
Customer Interaction component could be connected to either the English Display 
Prompts component or the French Display Prompts component (which correspond 
respectively to the default English feature and alternative French feature), given the 
two versions of prompt component provide the same interface. As the SPL evolves 
new producers can communicate with the consumer, or new alternative consumer 
components could be added, given they are compatible with the provided interface. 
When plug-compatible components are not practical, an alternative component design 
approach is component interface inheritance [Gomaa05]. 

 
Figure 6 Design of Plug-compatible Components 

6. Multiple View Meta-Model for Software Product Lines  

The relationships between the multiple views of a model are complex, one of the 
reasons being the different notations that are needed. An alternative approach 
[GomaaShin08] is to consider the relationships between the multiple views at the 
meta-model level. The meta-model describes the modeling elements in a UML model 
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and uses one uniform notation instead of several. Furthermore, rules and constraints 
can be allocated to the relationships between modeling elements. The meta-model can 
then be used for consistency checking among the multiple views [GomaaShin08]. 
Consistency checking in UML diagrams is also described in [Chen09]. 
 
The multiple views are formalized in the meta-model, which depicts the meta-classes, 
attributes of each meta-class, and relationships among meta-classes. Relationships can 
be associations, compositions or aggregations (strong and weak forms of whole/part 
relationships), and generalization/specializations. As the meta-classes have different 
semantic meaning, they are assigned stereotypes corresponding to the different roles 
they play in the meta-model. Thus, meta-classes that represent different views of a 
UML model are assigned the stereotype «view». Meta-classes representing different 
phases of the OO lifecycle are assigned the stereotypes «phase» e.g., Requirements 
Modeling, Analysis Modeling, and Design Modeling. A phase is modeled as a meta-
class that is composed of the views that are developed as part of that phase. 
 
Figure 7 depicts a multiple view meta-model for SPL. The meta-model depicts the six 
views as meta-classes, each with stereotype «view». The Feature Model and Use Case 
Model are views that are part of the Requirements Modeling phase. The Static Model, 
State Machine Model, and Dynamic Interaction Model, are part of the part of the 
Analysis Modeling phase. The Software Architecture Model is developed in the 
Design Modeling phase. Each view in Figure 7 can be modeled in more detail to 
depict the meta-classes in that view, as described in [GomaaShin08]. 
 

 
Figure 7: Multiple View Meta-model for Software Product Lines 
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The multiple view meta-model for SPL depicted in Figure 7 is feature model centric, 
in that it shows the feature model as the unifying view and its relationship with the 
other five views. There are of course relationships among these five views, as 
described in [GomaaShin08]. However, this paper concentrates on the relationships 
with the feature model. 

7.   Consistency Checking between Multiple Views 

Consistency checking rules are defined based on the relationships among meta-classes 
in the meta-model. The rules resolve inconsistencies between multiple views in the 
same phase or other phases, and to define allowable mapping between multiple views 
in different phases. To maintain consistency in the multiple-view model, rules defined 
at the meta-level must be observed at the multiple-view model level. Consistency 
checking is used to determine whether the multiple-view model follows the rules 
defined in the multiple-view meta-model. 

Figure 8 depicts a meta-model describing the relationships between the feature and 
class model views in Figure 7. Figure 8 also depicts consistency checking between a 
feature in the feature model and a class in the class model. Suppose an optional class 
“Class2” supports an optional feature “Feature2.” Class2 and Feature2 in the 
multiple-view model are respectively instances of Class and Feature meta-classes in 
the multiple-view meta-model. The relationship between Class and Feature meta-
classes is “each optional class in the class model supports only one optional feature in 
the feature model.” For the multiple-view model to remain consistent, this meta-level 
relationship must be maintained between instances Class2 and Feature2 of the meta-
classes. Consistency checking confirms that each optional class in the class model 
supports only one optional feature in the feature model.  

8. Discussion 

This paper has described how feature modeling is the unifying view in a multiple 
view SPL. In particular, a feature model is a more effective approach for modeling the 
variability in a SPL in the form of features, feature groups and feature dependencies. 
Thus the feature model in figure 2 gives a much clearer depiction of the variability in 
the SPL than the use case model. However, the use case model is much better at 
describing the overall functionality of the SPL. By explicitly relating the feature 
model to the use case model in feature/use case tables [Gomaa05], both the variability 
and the functionality of the SPL can be captured and related to each other. Similarly, 
feature/class tables explicitly identify how the variability in requirements is mapped 
to variability in the software architecture in the form of optional and variant classes, 
and feature based class parameters. Variability in state machines is captured by 
feature dependent states, transitions and actions.  

In short, by using features and feature modeling, variability in each modeling view 
can be explicitly depicted and associated with the feature model. Thus even though 
features have no semantics [Czarnecki05], they have an important role to play in 
modeling variability and relating this variability to each of the views in multiple view 
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models.  In comparison to other feature modeling approaches [e.g., Kang90, Griss98, 
Czarnecki05, Vranic06], the approach described in this paper explicitly relates feature 
modeling (at both the modeling and meta-modeling levels) to other modeling views 
that span the requirements, analysis, and design phases of the SPL life cycle.  
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Figure 8 Consistency checking in meta-model for feature and class model view 

9. Conclusions 

This paper has described an approach for modeling variability in software product 
lines, which are developed and later evolved using model-driven SPL development. 
This paper has described variability modeling in UML based multiple-view models of 
the SPL. These models consist of use case and feature models during requirements 
modeling, static and dynamic models during analysis modeling, and component-based 
software architecture models during design modeling. Feature modeling is the 
unifying view for model driven development and evolution of SPLs, since it provides 
an additional dimension for modeling variability.  
 
This paper has also described an underlying meta-model for software product lines, 
which allows consistency checking between the multiple views. Tool support for this 
approach is described in [GomaaShin08] in which the multiple-view meta-model is 
mapped to relational tables, which are then checked for consistency. Related research 
describes separation of concerns for SPL [ShinGomaa10], feature-based testing of 
SPL [OlimpiewGomaa09], adaptive SPL [GomaaHussein07], and feature modeling 
for service-oriented architectures [AbuMatarGomaa10]. 
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