
Algebraic and Cost-based Optimization of

Refactoring Sequences⋆

Martin Kuhlemann1, Liang Liang2, and Gunter Saake3

1 University of Magdeburg, Germany
martin.kuhlemann@ovgu.de

2 University of Magdeburg, Germany
leon.liangliang@hotmail.com

3 University of Magdeburg, Germany
gunter.saake@ovgu.de

Abstract. Software product lines comprise techniques to tailor a pro-
gram by selecting features. One approach to implement product lines
is to translate selected features into sequenced program transformations
which extend a base program. However, a sequence translated from the
user selection can be inefficient to execute. In this paper, we show how
we optimize sequences of refactoring transformations to reduce the com-
position time for product line programs.

1 Introduction

A feature is a characteristic of a program which is of interest to a user [14].
Software product lines (SPLs) comprise techniques to tailor the set of features
of a program to user needs [17]. One technique to implement an SPL is to
define code transformations which successively apply to a base program and add
the desired program characteristics to it. These SPL transformations include
aspects [32], refinements [4], refactorings [18], and others.

In SPLs, feature-adding code transformations are abstract operations which
a user selects without knowing their implementation. As a result the user (un-
knowingly) may select transformations that undo each other or that override
another transformation’s effects. Such a non-optimal transformation plan may
be selected by accident but may also be meaningful to reuse transformations.1

While the composition result is correct, the composition process is more expen-
sive than necessary. On the one hand, end-user satisfaction may be increased due

⋆ This paper summarizes and extends the Master’s Thesis of Liang Liang [21]. An
extended version of this paper with more technical details has been published as a
technical report [20]. The authors thank Don Batory and Andreas Lübcke for helpful
discussions and for giving hints on earlier versions of this paper. The authors thank
the anonymous reviewers of MDPLE2010 for additional hints.

1 Suppose in one configuration of an SPL, classes List and ArrayList should switch
names then one of them must be renamed twice, e.g., List 7→ TestList 7→ ArrayList.
In a second configuration, in which only List exists, List should be renamed into
ArrayList, too, and for that both prior refactorings get reused.

37

to a reduced program composition time. On the other hand, developers benefit
when they must compose a number of SPL programs, e.g., during testing.

In this paper, we lean on database optimization techniques and optimize
sequences of refactorings translated from a user selection of features. We discuss
the theoretical basics as well as our prototype. In case studies we observed that
with our prototype we reduced composition time by up to 81%.

2 Background

We introduce the concepts of refactoring along with transformation-based SPLs
as these concepts are issue to optimization, later.

2.1 Refactorings

Refactorings are code transformations that alter the structure of code but do
not alter its functionality [26]. Refactoring descriptions, like Rename Class, are
templates and so a developer has to provide parameters to make the templates
executable [25]. For example, to execute a Rename Class refactoring, two pa-
rameters must be defined: the class to rename and the new class name.

When a refactoring is parameterized and executed, the refactoring engine
commonly executes two phases. In the verification phase, preconditions are
checked in the code to refactor to ensure its transformation does not alter its
functionality. For any Rename Class refactoring, the refactoring engine will check
whether the class to rename does exist and whether the class created by the
refactoring does not exist [28].

In the transformation phase, transformations are performed on the code el-
ements specified as parameters for the refactoring. That is, for Rename Class,
the specified class is renamed and every reference to the class is updated [10].
In the following, we denote a refactoring R, that replaces a code element X by a
code element Y, with RX7→Y.

2.2 Transformation-Based Software Product Lines

Features are user-visible program characteristics of an SPL and are selected
to tailor a program of that SPL [14]. Features can be implemented by code
transformations defined in feature modules [4]. In SPLs, feature modules are
hidden from the user – the user makes a selection of feature names/descriptions
which is translated into a sequence of program transformations. The program
transformations make the generated program expose the required features.

Program transformations in SPLs can implement refactorings in order to
integrate programs, foster reuse, and to tailor non-functional properties of pro-
grams [18,29]. Feature modules which host such refactoring transformations are
called refactoring feature modules (RFMs) [18]. When a user selects features,
that translate to refactorings the structure of the synthesized program is altered

38

Feature Module F1

_elements

get()

List Queue

Feature Module R2

Rename class:List 7→TestList

Feature Module R3

Rename method:TestList.get 7→pop

Feature Module R4

Rename class:TestList 7→ArrayList

Feature Module R5

Rename class:Queue 7→myQueue

Feature Module R6

Rename class:ArrayList 7→Queue

Feature Module F1

_elements

get()

List Queue

Feature Module C2

Rename class:List 7→ArrayList

Feature Module C3

Rename method:ArrayList.get 7→pop

Feature Module R5

Rename class:Queue 7→myQueue

Feature Module R6

Rename class:ArrayList 7→Queue

(a) Running RFM example. (b) Optimization result.

Fig. 1.

compared to a base definition in other SPL transformations, e.g., classes are
named differently.

In our running example for this paper in Figure 1a, there is one feature
module F1 which defines the base program of the SPL and which is altered by
SPL transformations which follow. That is, there is a number of RFMs, R2 to
R6 which transform the base program of F1. When a user selects feature F1 and
does not select any RFM, the configured program will be a copy of the code
of F1. When a user selects all features (top-down order), F1 along with R2 to
R6 the composed program will expose the functionality of F1 but will have a
different structure. Specifically, when all features are selected, then the resulting
code will be a class myQueue with no members and a class Queue with a field
elements and a method pop.

3 Optimizing Refactoring Sequences

We consider two ways to optimize a given sequence of refactorings: optimizing the
verification phases and optimizing the transformation phases of the sequenced
refactorings. Optimizing verification phases in a sequence of refactorings is to
check whether preceding refactorings establish preconditions of later refactor-
ings [28,16]. When a refactoring’s precondition is satisfied by an earlier refac-
toring in a sequence, the program does not have to be validated for the latter
refactoring, and thus not parsed and traversed for verification issues – perfor-
mance can be gained by fusing verification phases [28,16].

39

R2 R3 R4 R5 R6Base set−up

dependency

predecessor

dependency

Fig. 2. Optimization steps in running example of Fig. 1a.

Optimizing the transformation phases for a sequence of refactorings is to
fuse transformations performed by successive refactorings. For example, we can
fuse two successive refactorings if both refactorings rename the same class,
e.g., R4TestList 7→ArrayList• R2List7→TestList can be replaced by C2 List7→ArrayList. As we
do not have to traverse the code twice to parse it, to set up the type system,
to look for calls to the method, and to update them, we expect performance
benefits. The optimizations we propose work without prior code analysis (alge-
braic optimization) and with prior code analysis and cost functions (cost-based
optimization).

3.1 Algebraic Optimization

In this work, we concentrate on the concepts for fusing transformation phases
of refactorings to improve composition performance (fusing verification phases
has been analyzed before [28,16]). To optimize a given sequence of refactorings,
we reorder sequenced refactorings and fuse them finally. We reorder refactorings
to group refactorings of which transformation phases could be fused according
to fusing rules we define. We identify fusible refactorings by analyzing their
parameters and types.

Basic Concept. To optimize the RFM sequence of Figure 1a, we iterate the
sequence of refactorings and calculate fusible refactorings. Two refactorings are
fusible when there is a set-up dependency between them, the complete precondi-
tion of the later refactoring is satisfied by the preceding refactoring, and when the
fused refactoring again is a standard refactoring according to [10] or the empty
refactoring. For instance, we calculate, that R2List 7→TestList could be fused with
R4TestList 7→ArrayList to C2List7→ArrayList (see Figure 1b) because the output element
TestList of R2 is the input element of R4 and the fusing result is the standard
refactoring Rename Class; the same for R4 and R6. We then try to reorder R4
and R6 to become successors of R2.

To prevent errors introduced by our reordering, we propose to compute a de-
pendency graph concept for all refactorings. Especially, we look for two kinds of
dependencies: (1) set-up dependencies toward preceding RFMs where one preced-
ing refactoring sets up some code elements required by a subsequent refactoring,
and (2) predecessor dependencies toward preceding refactorings where a preced-

40

Table 1. Excerpt from [20,21]: Fusing rules to optimize RFM sequences.

Preceding RFM Following RFM Fused RFM

Rename ClassC1⇒C2 Rename ClassC2⇒C3 Rename ClassC1⇒C3

Extract InterfaceC1⇒I2 Rename ClassI2⇒I3 Extract InterfaceC1⇒I3

Rename MethodM1⇒M2 Inline MethodM2 Inline MethodM1

Move ClassC1⇒C2 Move ClassC2⇒C3 Move ClassC1⇒C3

Rename ClassC1⇒C2 Collapse hierarchy(C2,C3)⇒C3 Collapse Hierarchy(C1,C3)⇒C3

Extract ClassC1⇒C2 Rename ClassC2⇒C3 Extract ClassC1⇒C3

Extract MethodM1⇒M2 Rename MethodM2⇒M3 Extract MethodM1⇒M3

Extract ClassC1⇒C2 Rename ClassC2⇒C3 Extract ClassC1⇒C3

Extract ClassC1⇒C2 Move ClassC2⇒C3 Extract ClassC1⇒C3

Extract SubclassC1⇒C2 Rename ClassC2⇒C3 Extract SubclassC1⇒C3

Extract SubclassC1⇒C2 Move ClassC2⇒C3 Extract SubclassC1⇒C3

Extract SuperclassC1⇒C2 Rename ClassC2⇒C3 Extract SuperclassC1⇒C3

Extract SuperclassC1⇒C2 Move ClassC2⇒C3 Extract SuperclassC1⇒C3

Push-Down FieldF1⇒F2 Pull-Up FieldF2⇒F1 ∅

Push-Down MethodF1⇒F2 Pull-Up MethodF2⇒F1 ∅

ing refactoring requires another refactoring to establish a required deletion. The
conceptual dependency graph for Figure 1a is given in Figure 2.2

Using the computed dependency graph we try to reorder R4 and R6 according
to their fusibility. However, we only commute refactorings that do not have
predecessor dependencies among each other. Further, we update the parameters
of two commuted refactorings when both expose set-up dependencies toward
the same predecessor refactoring and share fully qualified names. For instance in
Figure 2, we commute R3 with R4 because R4 is fusible with R2. As R3 and R4
both expose set-up dependencies toward R2 and parameters share the identifier
TestList, we update R3 to become C3ArrayList.get7→pop, see Figure 1b. However,
we do not reorder R6 because its predecessor dependency towards R5 disallows
commuting with R5. Finally, we fuse successive refactorings according to our
fusing rules of Table 1, see [20,21] for a complete list.

Name capture. When a method A is renamed by a Rename Method refac-
toring, all methods that override A or that are overridden by A are renamed
accordingly [10]. Name capture is an error in refactoring that occurs when meth-
ods override each other after a refactoring executed which did not override each
other before the refactoring executed [26,25,31]. When commuting refactorings,
we may not know whether methods referenced in 2 RFMs will override each
other after both RFMs get commuted. Nevertheless, we must guarantee that we
do not introduce name capture, i.e., that the optimized refactoring sequence still
produces the same program. Name capture must also be prevented for fields.3

We present three concepts which avoid name capture. In concept #1, we
track which refactoring parameter (fully qualified name) emerges out of which

2 R2 creates class TestList which is required by R3 and R4. R4 creates class ArrayList
which R6 requires to exist. R5 removes Queue which R6 requires to not exist.

3 A special situation which disallows commuting refactorings occurs when a Move
Method RFM or Inline Method RFM follows an Extract Interface RFM and both
operate the same class.

41

code element in the base code. By analyzing relationships between the code
elements in the base code we can then decide whether two elements override
each other. In concept #2, we disallow commuting of two refactorings when both
reference methods, e.g., Rename Method refactorings, or when both reference
fields. However, we only must disallow commuting when field or method names
match in the refactorings to be commuted. In concept #3, we define all the
elements, which a refactoring alters, inside feature modules. As a result, we
know all (overridden) methods which are effected by a Rename Method RFM.

Heuristical reordering. Reordering itself can produce performance benefits
for the composition process. For example, when a Rename Field RFM follows
an Encapsulate Field RFM4, then reordering is beneficial though both RFMs
cannot be fused. The reason is that the field to be renamed might be referenced
multiple times in the transformed code but is only referenced once in the getter
and once in the setter method after encapsulating the field. When the field name
is integrated in the generated method names, this optimization is not possible.
For caution in this case, we should disallow commuting Encapsulate Field RFMs
with any other refactoring transforming the field.

Commuting a Hide Method refactoring5 with a Rename Method refactoring
is beneficial. After hiding the method, the composer can reason on the new
visibility qualifier of this hidden method and thus can prune the code traversed
for renaming. For example, if hiding the method push produces a private method
then for renaming push the composer just must traverse the class as no references
outside this class can exist. Similar optimizations are possible for fields.

Random reordering. With the concepts presented so far, we cannnot optimize
the sequence R3RenameClass:C37→C4 • R2MoveClass:C2 7→C3 • R1RenameClass:C1 7→C2

because we cannot detect any fusibility. We can fuse neither R1 with R2 nor R2
with R3 because the resulting refactoring would be no standard refactoring –
fusing them would exceed our set of operations.6 We also do not detect fusibility
between R1 and R3 because the output identifier of R1 does not match the
input identifier of R3. If we at random commute R1 with R2 or R2 with R3 then
a new fusing chance emerges between (reordered) R1 and (reordered) R3. We
envision to generate sets of refactoring plans during algebraic optimization also
by randomly reordering refactorings and to select the shortest plan for execution.

4 Encapsulate field adds get and set methods for the field to encapsulate [10]. After
that, the refactoring transformation replaces every reference to the field by a call to
either the get or set method.

5 Hide Method refactoring reduces the visibility of the method as far as possible [10].
6 We could provide composite refactorings which do renaming and moving within one
step (as shown before [16]) but we refrained due to the infinit number of possible
refactoring combinations [16].

42

3.2 Cost-based Optimization

We can analyze the code to be refactored to estimate the execution costs for indi-
vidual refactorings. From there we can further optimize a refactoring sequence or
select between alternative sequences. We envision to identify refactorings which
alter distinct parts of a program (possibly, distinct artifact types). If we can re-
order these refactorings to succeed each other, we can parallelize their execution,
i.e., we can load and alter the distinct program parts in parallel. One approach
to identify relevant distinct program parts is to collect visibility qualifiers and
inheritance hierarchies from the program to refactor. If then the visibility of two
code elements is very restricted, e.g., private or protected, and both occur in dif-
ferent classes (hierarchies) according refactorings perform on distinct pieces of
code and can be executed in parallel.

R2
-

R3
-

R7’
-

R4
-

Fig. 3. Parallel
RFM execution.

As an example, consider the Rename Method refactor-
ings R3TestList.get 7→pop and R7myQueue.pop7→insert where both
methods are analyzed to not override each other or a com-
mon method, and to be qualified as protected. Thus, R3
and R7 transform distinct parts of a program. In that
case we can infer a parallelization chance and try to make
both refactorings successors. We then can load TestList

and myQueue and their subclasses in parallel and execute
R3 and R7 in parallel as shown in Figure 3. We can also
parallelize refactorings which transform private members
of different classes.

If the visibility of members is private or protected and – in the latter case –
the inheritance hierarchy is small, then according refactorings are expected to be
cheap. By deferring presumably expensive refactorings we increase the chance
that for a longer time the memory is not exceeded by loading code. This reduces
the number of buffer misses (increases performance).

4 Case Studies

We implemented the basic concept of algebraic optimization of RFMs prototyp-
ically. Currently, a separate optimizer operates RFMs in a step separately before
the composer tool runs. Details can be found in [20,21].

4.1 Study Setup

We took programs of different size and purpose as study objects. We composed
the feature modules and took the composer’s runtime. Then we run our optimizer
tool and took its runtime, too. Finally, we composed the optimized sequences and
compared the composer’s runtime to the time of the unoptimized composition,

43

Table 2. Measured tool run times (in ms).

Program #
S
L
O
C

⋆

#
R
F
M
s
(u
n
op
t.
)

#
R
F
M
s
(o
p
t.
)

C
om

p
os
er

(u
n
op
t.
)

C
om

p
os
er

(o
p
t.
)

O
p
ti
m
iz
er

P
u
re

O
p
ti
m
iz
at
io
n

Simple List (a) 19 5 2 12018.6 9870.4 8934.6 9.4
Simple List (b) 19 8 4 12840.7 9546.8 9401.4 9.5
Simple List (c) 19 10 4 16359.3 10412.3 9074.6 20.3
TankWar ∼1K 10 4 31934.2 14093.6 8206.3 18.8
Workbench.texteditor (a) ∼16K 10 4 172162.4 83561.1 18749.9 17.2
Workbench.texteditor (b) ∼16K 17 3 253831.2 59731.2 18448.4 23.3
Workbench.texteditor (c) ∼16K 55 3 769617.5 61292.1 77632.7 101.4
ZipMe ∼3K 3 3 20461 20281.4 7867.1 10.8

⋆lines of source code without RFMs

see Table 2.7 As we do not change the composition of non-RFM features we
prune the studies to only have one non-RFM feature module F1 each.

Simple List. As a proof of concept we applied three different sequences of RFMs
to a conceptual list implementation. In these sequences, we fuse an RFM, which
extracts the interface AbstractList from class List, with reordered RFMs which
all rename the extracted interface. As a result one new refactoring is generated
which extracts the interface with the final name in the first place. In another
sequence, we could not fuse refactorings which had fusing chances due to a
predecessor dependency.

TankWar. We analyzed TankWar an SPL of arcade games for desktop computer
and cell phone developed prior to this evaluation at Magdeburg University. The
study is still small-scale but provides functionality (in contrast to the Simple
List case).

Workbench.texteditor. In order to analyze the performance effect of optimiz-
ing RFM sequences, we should pay attention to the size of the transformed
program. For that, we reused a large-scale study of the Eclipse8 library work-
bench.texteditor from prior work [19]. To this library, we applied three different
sequences of RFMs with lengths ranging from 10 to 55 RFMs.

7 We used a Microsoft Windows XP Home Edition SP2 on an Intel R© CoreTM2 CPU
T5500 @ 1.66GHz, 667MHz FSB, 0.99 GB RAM. The given measurements are aver-
ages of 10 runs, listed one-by-one in [21]. The optimizer solely generates optimized
and unchanged RFMs into a folder Optimized but does not copy other SPL feature
modules. To measure the composition performance for the optimized RFM sequence,
we manually copied the other feature modules into the Optimized folder. Detecting
name capture is not yet implemented. We implemented five fusing rules.

8 http://www.eclipse.org/

44

ZipMe. We finally analyzed a study of a compression library ZipMe from prior
work [18] which showed us that our optimization effort may be worthless and,
thus, derogatory. That is, in the ZipMe study, there is no fusing chance and thus,
the runtime of our optimizer tool directly increases composition time.

In Table 2, we summarize the measured runtimes of the optimizer tool as
well as the runtimes of the composer tool on the unoptimized and on the opti-
mized RFM sequences. In some cases we gained performance increases, e.g., for
case Workbench.texteditor (c) we gained a performance benefit of 81% through
optimization. In many cases, however, the overall composition time increased
with optimization, i.e., performance decreased. For example, the unoptimized
composition time for case Simple List (a) is 12018.6ms and the optimized com-
position time plus the optimizer runtime is 18805ms, i.e., a performance loss of
56%. Nevertheless, we did not fail optimizing. The increased composition time
is mainly caused by the optimizer prototype operating independently from the
composer tool. Times for loading RFMs, thus, contribute to both the composer
and the optimizer tool, and times for writing optimization results arise. When
the optimizer is integrated with the composer tool (possible future work), RFMs
would be loaded only once and the need to write the optimized RFM sequence
to harddisk vanishes. To respect this, we also measured the time for purely opti-
mizing loaded refactoring sequences. When considering pure optimization time,
we get a significant performance benefit for all cases but the ZipMe case.

From the measurements we observed that the performance benefit increases
with a growing size of the program to be transformed, the highest performance
benefits were measured for the biggest program (Workbench.texteditor). We also
observed that with a growing number of fusible RFMs, the optimization benefit
increases, too. In the case of ZipMe, the optimizer could not produce a benefit
and, thus, for this case optimization effort is derogatory.

Threats to Validity. The measurements and benefits depend on the loading
of RFMs. If to load an RFM takes a long time, reducing the number of loads
saves a lot time. The measurements and benefits further depend on the execution
time for a single RFM. If executing a single RFM takes a long time, reducing
the number of executions saves a lot time. The RFM composer tool we used (the
only one we know of) is written for flexibility and not for performance. Thus,
for other RFM composers the numbers may be different.

Our approach may remove whole subsequences from a sequence of transfor-
mations. This implicitly removes precondition checks of removed transforma-
tions. We did not distinguish composer run times for checks and actions because
we did not change the composer.

5 Related Work

Researchers composed transformations, refactorings, and their preconditions be-
fore, e.g.,[28,16,8,15,13], and formalized refactorings and their preconditions [25].

45

In contrast to prior work, we reorder, replace, and update (sequences of) refac-
torings in a transformation sequence to create a faster-to-execute sequence of
standard refactorings. To the best of our knowledge, this is new.

Dig fuses sequences of refactorings [9, p.95], sequences which were recorded
independently on the same program. He adapts parameters of the refactorings in
order to sequentialize the according refactorings. Similarly, Lynagh fuses concur-
rent edits on code and resolves conflicts by commuting and reverting edits [22].
It may happen that by fusing sequences of edits and refactorings, the resulting
sequence may execute faster than their concatenation (in case this concatenation
works at all). In contrast to prior work, we intend to shrink a single sequence
and for that fuse refactorings and reorder them.

Design maintenance systems (DMSs) organize transformations a program
was built from [5]. DMSs commute transformations, update transformation pa-
rameters [5, p.175], and replace subsequences of transformations [5, p.179] in
order to integrate new transformations and to evolve the program [5, p.179ff].
DMSs compose transformations [5, p.129] but no specific rules are given for how
to do so. We reorder refactorings to fuse them for performance reasons and to
remove superfluous transformations (not in the focus of Baxter [5, p.276]).

Researchers describe how to calculate dependencies between transformations
in general and refactorings in particular [23,24]. We also compute these depen-
dencies, so prior research is a basis for our research. Based on dependencies be-
tween refactorings, we introduce fusing rules for transformation phases of refac-
torings. Further, we discussed optimizations of refactoring sequences based on
code analyses (cost-based optimization, cf. Sec. 3.2).

Pérez derives refactoring sequences that minimize code smells [27]. We trans-
form given sequences of refactorings with fusing rules in order to yield perfor-
mance benefits for their execution. We cannot imagine how to safely automate
the restructuring process of a program towards a given interface.

In our approach, we know generics of all SPL transformations and thus the
transformation’s effects, i.e., we know the effects of refactorings as defined in
RFMs. In general, however, developers may be allowed to define transforma-
tions/rewrites beyond refactorings, e.g., [6]; transformations of which we maybe
do not know the effects. In those cases, our fusing rules do not apply, as we
maybe do not know the effects of transformations before executing them.

Relational algebra organizes a set of algebraic operations users can execute on
databases [7,11]. With SQL, a user describes declaratively the data she needs [30].
The algebra expression translated from the declarative query may be subopti-
mal and thus it is optimized algebraically (without table analyses) and cost-based
(with table analyses) [12,11,30]. In distributed database management systems, a
query result can be computed on different systems in parallel to improve query
time [1,7,12]. When generating our SPL program, the selected features are trans-
lated into sequenced program transformations – a sequence which may be sub-
optimal. In this paper, we showed how a sequence of refactorings inside RFMs
can be optimized algebraically and cost-based, i.e., without and with analyzing
the code to refactor. In our envisioned cost-based optimization we parallelize

46

RFMs to improve composition time which then will closely correlate to parallel
database management systems. However, database management systems do not
organize program transformations.

Batory et al. related program transformations to category theory and, thus,
sketched the formal basis of our optimizations [2,3]. Our fusion rules and heuris-
tical reordering for refactoring transformations thus implement these abstract
concepts. In addition, we presented ideas on cost-based optimizations of refac-
toring sequences.

6 Conclusions

Product line users tailor programs by selecting features. Selected features can
translate into program transformations which execute sequentially on a base pro-
gram. A sequence translated directly from a user selection can be inefficient. In
this paper, we showed how to optimize sequences of refactoring transformations
to reduce the composition time of product line programs. We presented a proto-
type and evaluated it in several case studies. We observed that the optimization
reduces the time to compose a program in most cases though not all.

References

1. P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for distributed
queries. IEEE Transactions on Software Engineering, 9(1):57–68, 1983.

2. D. Batory. A modeling language for program design and synthesis. Lecture Notes

in Computer Science, 5316:39–58, 2008.
3. D. Batory. Using modern mathematics as an fosd modeling language. In Proceed-

ings of the International Conference on Generative Programming and Component

Engineering, pages 35–44, 2008.
4. D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE

Transactions on Software Engineering, 30(6):355–371, 2004.
5. I.D. Baxter. Transformational maintenance by reuse of design histories. PhD

thesis, 1990.
6. M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. a

language and toolset for program transformation. Science of Computer Program-

ming, 72(1-2):52–70, 2008.
7. S. Chaudhuri. An overview of query optimization in relational systems. In Pro-

ceedings of the Symposium on Principles of Database Systems, pages 34–43, 1998.
8. M. Ó Cinnéide and P. Nixon. Composite refactorings for java programs. In Work-

shop on Formal Techniques for Java Programs, pages 129–135, 2000.
9. D. Dig. Automated upgrading of component-based applications. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 2007.
10. M. Fowler. Refactoring: Improving the design of existing code. Addison-Wesley

Longman Publishing Co., Inc., 1999.
11. P.A.V. Hall. Optimization of single expressions in a relational data base system.

IBM Journal of Research and Development, 20(3):244–257, 1976.
12. M. Jarke and J. Koch. Query optimization in database systems. ACM Computing

Surveys, 16(2):111–152, 1984.

47

13. P. Johann and E. Visser. Fusing logic and control with local transformations: An
example optimization. Electronic Notes in Theoretical Computer Science, 57:144–
162, 2001.

14. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented do-
main analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

15. G. Kniesel. A logic foundation for program transformations. Technical Report
IAI-TR-2006-1, Computer Science Department III, University of Bonn, 2006.

16. G. Kniesel and H. Koch. Static composition of refactorings. Science of Computer

Programming, 52(1-3):9–51, 2004.
17. C. W. Krueger. New methods in software product line practice. Communications

of the ACM, 49(12):37–40, 2006.
18. M. Kuhlemann, D. Batory, and S. Apel. Refactoring feature modules. In Proceed-

ings of the International Conference on Software Reuse, pages 106–115, 2009.
19. M. Kuhlemann, D. Batory, and C. Kästner. Safe composition of non-monotonic

features. In Proceedings of the International Conference on Generative Program-

ming and Component Engineering, pages 177–186, 2009.
20. M. Kuhlemann, L. Liang, and G. Saake. Algebraic and cost-based optimization of

refactoring sequences. Technical Report 5, Faculty of Computer Science, University
of Magdeburg, 2010.

21. L. Liang. Optimizing sequences of refactorings. Mas-
ter thesis, University of Magdeburg, Germany, MAR 2010.
http://wwwiti.cs.uni−magdeburg.de/iti db/publikationen/ps/auto/thesis-
Liang.pdf.

22. I. Lynagh. An algebra of patches. http://urchin.earth.li/∼ian/conflictors/paper-
2006-10-30.pdf, 2006.

23. T. Mens, G. Kniesel, and O. Runge. Transformation dependency analysis - a
comparison of two approaches. In Actes des journéees Langages et Modèles à

Objets, pages 167–184, 2006.
24. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using

graph transformation. Software and Systems Modeling, 6(3):269–285, 2007.
25. T. Mens, N. v. Eetvelde, S. Demeyer, and D. Janssens. Formalizing refactorings

with graph transformations. Software Maintenance and Evolution: Research and

Practice, 17(4):247–276, 2005.
26. W.F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, 1992.
27. J. Pérez. Enabling refactoring with HTN planning to improve the design smells

correction activity. In BElgian-NEtherlands software eVOLution workshop, 2008.
28. D.B. Roberts. Practical analysis for refactoring. PhD thesis, University of Illinois

at Urbana-Champaign, 1999.
29. N. Siegmund, M. Kuhlemann, S. Apel, and M. Pukall. Optimizing non-functional

properties of software product lines by means of refactorings. In Proceedings of the

International Workshop on Variability Modelling of Software-intensive Systems,
pages 115–122, 2010.

30. J.M. Smith and P.Y.-T. Chang. Optimizing the performance of a relational algebra
database interface. Communications of the ACM, 18(10):568–579, 1975.

31. P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the
evolution of reusable assets. ACM SIGPLAN Notices, 31(10):268–285, 1996.

32. C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In
Proceedings of the International Conference on Aspect-Oriented Software Develop-

ment, pages 130–139, 2003.

48

