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Abstract. Recent efforts in the automotive domain to initiate a para-
digm-shift from a traditional hardware-driven to a function-driven de-
velopment process create new challenges to tackle. A hardware-driven
variant handling mechanism will get more and more inappropriate. In-
stead, new concepts and methods are necessary to model and configure
concrete systems. A software document which is used in the early phase
of development is the so called function net model. Variability in function
nets is captured implicitly and is strongly dependent on the hardware
infrastructure, constraints are collected with informal annotations, and
variants are generated manually. This results in a situation where func-
tion nets get too complex, time consuming and unsuitable for future stan-
dards. In this paper, we will present a model-driven approach for function
nets to capture variability explicitly, to express formal constraints, and
to generate concrete variants with the support of an automated config-
uration process. By this, it is possible to use the generated variants as
skeletons for virtual prototyping, so that requirement specifications can
be verified efficiently.

1 Introduction and Motivation

Variability in automotive software engineering has achieved a degree of complex-
ity which can no longer be handled with traditional hardware-driven method-
ologies [1–3]. Function net models are software documents which are used in an
early phase of such a development process to describe the first virtual realiza-
tion of the system structure [4]. Typically, it consists of functional modules that
interact via signals.

Variation points and their variants are captured implicitly by modeling a
so called maximal function net model. The idea behind that is to capture every
functional module, e.g., a sensor, an actuator, a control algorithm etc. In this
way, a function net corresponds to an Electronic Control Unit (ECU) together
with all its physical connections to bus systems, sensors, and actuators. Figure 1
illustrates two forms of a maximal function net model. Figure 1(a) represents a
function net model specified in an Excel sheet, while Figure 1(b) is a visualization
of this Excel sheet as graph. In both forms, it is very difficult or nearly impossible
to extract useful information manually out of it.
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(a) Function net
model as Excel
sheet (cutout).

(b) Function net model as graph.

Fig. 1. A maximal function net model illustrated in two different forms.

Communication dependencies between function nets, i.e., communication de-
pendencies between ECUs, which have an influence on variability are handled
by using informal annotations. Variants are then generated manually by remov-
ing specific parts of the function net with the help of these annotations. In a
hardware-driven process, this can be regarded equally to removing hardware
components such as ECUs, sensors, or actuators and the appropriate software
portions. Any implications to other hardware and software components have to
be solved manually.

Regarding the current trend in automotive software engineering, we can ob-
serve a paradigm-shift from a hardware-driven process to a function-driven pro-
cess [5]. Therefore, a hardware-driven variant handling mechanism will get more
and more inappropriate, because it gets too complex and is not suitable for fu-
ture standards: it completely depends on the underlying hardware infrastructure,
consistency has to be ensured manually, i.e., there is no formalization to express
dependencies, and there is also no automated support to configure and validate
concrete variants.

In a research project at our department, we are providing new concepts,
methods, and tools for handling complexity and variability in software doc-
uments for automotive software engineering [6–9]. We have developed a formal
language to model function nets, and a formal language to model variation points
and variants. Furthermore, we have integrated these two modeling languages in
order to reduce synchronization overhead. Modeling guidelines, some of which
can be checked on syntactical level and others which completely rely on behalf
of the function net architect, are also provided. Moreover, methodology rules for
the usage of such an integrated modeling language are also specified. What is
still missing is the possibility to express constraints between functional mod-
ules or its signals inside one or many function net models. Furthermore, there
is also a need to have an automated support to configure concrete variants out
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of the family which also ensures the consistency. Because we are not only deal-
ing with function net models but with several software documents, we need a
configuration engine which is independent from the input language.

Including the missing concepts will enhance the development process in a
way, that out of the family of function net models, we can generate skeleton
variants for virtual prototypes (i.e., behavioral simulation on a PC). This allows
an early and efficient verification of requirement specifications.

In this paper, we will introduce an approach to express constraints in and
between function net models. Furthermore, a configuration process is integrated
which is coupled with an independent back-end inference engine. The output of
the configuration process is a concrete variant of a function net.

The paper is structured as follows: Section 2 describes and motivates the
problems in more detail. Here, we also illustrate an example which is used con-
tinuously in the whole paper. Section 3 and 4 include the main contribution of
this paper. Here, we explain the language to express constraints and the whole
configuration process. Section 5 describes related work and finally Section 6
concludes this paper.

2 Problem Description by Example

This section describes the initial situation of our approach that is relevant to
explain the problems we are going to tackle and the contribution of this paper.
Nevertheless, we will not describe the conceptual background but illustrate an
example and refer to them appropriately.

Figure 2 shows an example of a function net model integrated with a vari-
ability model [6, 8]. It illustrates a part of a Central Locking System (CLS),
with a Vehicle Access Controller (VAC), a Data Transceiver (DT), and a
Central Locking Master (CLM). A VAC can lock (l) or unlock (ul) the ve-
hicle. For this, it has to authorize itself with some authentication data (ad).
To communicate between functional modules we use ports. Thereby, we distin-
guish between data ports, i.e., signals with a data storage characteristic, and
control ports, i.e., signals initiating a functionality. In Figure 2 data ports are
visualized with a rectangular shape, while control ports are visualized with a
circle shape. Furthermore, these two types of ports are distinguished between
provided and required ports. In Figure 2 provided ports are marked black, while
required ports are marked white.

Variation points and their variants are captured in the variability model
[6, 8]. For example, a VAC is a variation point, which has two variants, i.e., a
Remote Control (RC) and an Identification Transmitter (IDT) for a more
comfortable access. In the same way, a DT is also a point of variation which has
for example Antennas (At) as variants. A further variant could be a key slot
(not shown in Figure 2). Variation points have group cardinalities and variants
have variant cardinalities in the same way as Czarnecki et al. have introduced
[10]. For example, in Figure 2 the group cardinality [1..2] of VAC expresses that
out of the captured variants at least one but at most two variants are needed for
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Fig. 2. An example showing the integration of a function net and variability model.

a valid CLS. The variant cardinality [1..4] of At expresses that a valid CLS can
have at least one but at most four instances of the variant. By using group and
variant cardinalities it is possible to restrict valid systems. In the subsequent
sections, we will see that this is not enough to express constraints.

Finally, variants can be specified more fine-grained (depicted with the dots in
Figure 2). For example, ports and their connections can differ depending on the
variant. For our explanations in this paper, we will not need them and therefore,
they are neglected here.

As explained before, currently we cannot express more complex constraints
between functional modules or its signals inside one or many function nets.
Furthermore, an automated support to configure concrete variants is also not
possible. The next two subsections will describe the mentioned problems in more
detail.

2.1 Expressing Constraints

In Figure 2, we have denoted two constraints for IDT (solid black line with arrow),
i.e., the exclusion of RC if it is selected and the necessity of exactly four Ats.
Please note that the exclusion can also be modeled with the expression of group
cardinalities. This kind of constraints and obviously more complex constraints
are often needed when modeling a family of function nets. As mentioned before,
in our current prototype it is not possible to express more complex constraints
which is a strong limitation of our integrated concept. Therefore, there is a need
for an appropriate constraint language in order to express dependencies between
variants.

An important requirement is that the language has sufficient expressive-
ness. It should be possible to combine multiple variants and to formulate nested
statements. It should also be possible to define constraints between different
variability models. Another important requirement is that constraints should be
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reusable. Having gained experience in often used constraints, it should be pos-
sible to predefine standard constraints and reuse them. Furthermore, the con-
straint language should not cause that much time-consuming training effort for
the configuration process. This minimizes error-proneness and enhance usability.

2.2 Configuration of Concrete Variants

Consider again Figure 2. We have depicted check boxes for the variability model
to illustrate the configuration process. In the example, IDT is selected which
requires exactly 4 Ats. Obviously, this is a valid configuration from which a
concrete variant can be derived. The variant can then be used as skeleton for
virtual prototypes to verify the requirements specification. Such a virtual proto-
type can for example be modeled with tools such as Matlab R© Simulink R© and
Stateflow R© [11]. In our current implementation such a configuration process is
not supported.

There is a need for back-end configuration engine which infers valid variants.
The configuration engine should be independent from the input language. This
means, that it should be possible to handle different kind of models, such as
function net models, Simulink models, and even source code. Furthermore, it
should be possible to combine different models and process them as input. For
this, the configuration process should be easily extendable and highly performant.

3 Design of Function Net Families with Constraints

Because we do not plan to design a new constraint language, we have investigated
literature to find a suitable one that fulfills our requirements and is adaptable to
our prototype. As one important requirement, we have identified that the con-
straint language should not cause additional expenses. Therefore, the selection
of our language depends on the input language of the underlying configuration
engine. As we will see in Section 4, we will use smodels as configuration engine
which requires Weight Constraint Rule Language (WCRL) as input language
[12]. Soininen et. al. have shown that WCRL has sufficient expressiveness. It is
also possible to reuse rules. Therefore, WCRL is a language that is suitable for
our purposes. In this paper, we do not show the complete definition of WCRL
but limit it to a portion that is enough for the variability and function net model.
For the complete definition, please refer to the authors of WCRL [12].

A weight constraint rule is of the form

C0 ← C1, . . . , Cn, (1)

where Ci is a weight constraint which in turn is of the form

Ci = L ≤ {a1 = w1, . . . , an = wn} ≤ U, (2)

where L, U ∈ Z are lower and upper bounds, ai is a literal (atomic formula or
predicate), and wi ∈ N0 is a weight.
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A weight constraint Ci is satisfied for a set S iff

L ≤
∑
ai∈S

wi ≤ U, (3)

where S is a set of literals.
To illustrate WCRL consider again Figure 2. To express the exclusion of RC

if IDT is selected, we can define a weight constraint rule as follows:

ExcludeRC← IsSelectedIDT,

where

ExcludeRC =−∞ ≤ {InstOfType(X, RC) : InstDomain(X)} ≤ 0,

and

IsSelectedIDT = 1 ≤ {InstOfType(X, IDT) : InstDomain(X)} ≤ ∞.

The expression InstOfType(X, RC) : InstDomain(X) returns, out of the
whole set of instances, i.e., the selected variants, a subset of a literals X which
are of type RC (and a have default weight of 1). The same holds for IDT.

To express that exactly 4 Ats are needed if IDT is selected, we can define
another weight constraint rule:

Exactly4Ats← IsSelectedIDT,

where IsSelectedIDT is defined as above, and

Exactly4Ats = 4 ≤ {InstOfType(Y, At) : InstDomain(Y)} ≤ 4.

In this way, it is possible to express formal constraints which are also pro-
cessable by the configuration process which is presented next.

4 Configuration of Function Net Families

A constraint language allows the restriction or precision of the configuration
domain. We are now able to model a family of function nets and to express con-
straints across variants. What is still missing is a methodology and appropriate
concepts to configure a concrete variant out of the family. In this section, we will
provide such a configuration process and explain the steps relevant for it.

Figure 3 gives an overview of the whole configuration process. The input
document will be a function net family as shown in Figure 2 and the output
document after configuration will be a comletely configured function net. The
configuration steps are (1) the selection of the variants in the variability model.
This is done with the help of the integrated prototype [8]. The result of this step
will be a function net family plus selected variants. Because WCRL is the input
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Fig. 3. Overview of the configuration process.

language for the back-end inference engine, we need (2) a transformation from
the language of function net families to an equivalent model in WCRL which
is the result of this step. The transformation rules are defined with support
of openArchitectureWare (oAW) [13]. The function net model in WCRL is the
input for the inference engine smodels which (3) infers a configured function
net in WCRL. In order to visualize the result we (4) transform it back to the
function net model. Note that steps (2)-(4) are internally processed so that a
user does not notice them.

In the following subsections, we will explain the above outlined steps in more
detail by illustrating them with the example of Section 2. We will start with step
(2), i.e., a function net family plus selected variants which are transformed to a
model in WCRL.

4.1 Transformation to a WCRL Model

Consider Figure 4. We have a family of function nets where WCRL constraints
can be expressed (see Section 3) and in addition variants can be selected. In the
example, we want to configure an IDT and four Ats. As explained above, we first
have to transform the function net family to a model in WCRL.

The bottom part of the figure shows the result after transformation, i.e.,
a model in WCRL. For example, the functional module VAC is transformed to
Function(VAC) <-. This is a short notation for a weight constraint rule where
the right part is always true (and therefore empty). Such a rule is also called
a fact. The information that VAC is also a variation point is captured in the
next line. Furthermore, we need the association information between VAC as a
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≤ {InstOfType(X, IDT): InstDomain(X)} ≤ ∞
{InstOfType(X, IDT): InstDomain(X)} ≤ ∞

Fig. 4. Transformation of function net family model to WCRL.

functional module and variation point. This is expressed in the third line. In the
same way, variants of variation points, constraints, cardinalities, and selections
are all transformed to WCRL.

To implement transformation rules, we have used the oAW framework, more
precisely the component Xpand. Xpand is a template-based language to generate
code based on EMF (Eclipse Modeling Framework) models [14]. Figure 5 illus-
trates an Xpand template that processes all variation points and variants of our
integrated models (which are also based on EMF) and generates the appropriate
WCRL code. Having now the model in WCRL, we can use the inference engine
smodels to generate a valid configuration.

4.2 The Inference Engine: smodels

We have decided to use an independent inference engine, which is able to process
combined models and has a reasonable performance. We will not present in this
paper our classification and evaluation method for our decision, because it is still
work in progress. But among all evaluated possibilities, smodels seems to be a
good candidate [15]. In Section 5 we will give some arguments for our decision.
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1. «DEFINE processVariationPoint FO
2.
3. FunctionVP(«this.getId()») <-
4. FunctionIsVP(«this.variableFun
5.
6. «FOREACH vcard.variants AS var
7.
8. Variant(«vars.getId()») <-
9. FunctionVPHasVariant(«this.g
10. «vcard.getLowerBound()» {Ins

InstDomain(X)} «v
11.
12. «ENDFOREACH»
13.
14. «ENDDEFINE»

OR FunctionVariationPoint»

nction.getId()», «this.getId()») <-

rs»

getId()», «vars.getId()») <-
stOfType(X, «vars.getId()») :
vcard.getUpperBound()» <-

Fig. 5. An example of an Xpand template that generates WCRL code for variation
points and variants.

infere

InstDomain(IDT_1) <-
InstOfType(IDT_1, IDT) <-

InstDomain(At_1) <-
InstDomain(At_2) <-
InstDomain(At_3) <-
InstDomain(At_4) <-
…

InstDomain(IDT_1.ul) <-
Connected(IDT_1.ul, At_1.ul)
…

.wcrl

ence

) <-

Fig. 6. The result of the inference engine smodels.

Using smodels as back-end inference engine, a WCRL model is taken as
input which then infers a configured WCRL model as output (for the input
from Figure 4). Figure 6 shows an example of the output. We have one instance
IDT 1 of type IDT (line 1 and 2), and four instances of type At. Furthermore, all
instances for ports and their connections are inferred.

4.3 Transformation to a Function Net Model

Finally, the result of smodels has to be transformed back to the function net
model. Therefore, we again specify our transformation rules using oAW. We do
not describe this in detail, because it is analogous as described in Subsection 4.1.
Figure 7 illustrates the result of this step. The function net has now one instance
of IDT and four instances of At, which all are connected appropriately. Note that
in this model the complete variability is bind (there is no green colored functional
module) and therefore it is a variant that can be used as a skeleton for virtual
prototyping.
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Fig. 7. The result of the overall configuration process as function net model.

5 Related Work

In terms of expressing constraints, two different approaches exist: structural/
graphical definition and textual definition. The former is usually adopted by
configuration systems involving feature trees [16], and the possible relations in-
clude simple ’requires’ and ’excludes’ relations and cardinality constraints [10],
and relations like ’recommends’ or ’discourages’ in some cases [17].The latter re-
quires the use of a constraint language/logic, including OCL [18], WCRL [12], or
Prolog [17] to express arbitrary logic formulas constraining the model, allowing
less user-friendly yet much more expressive constraints. Among different lan-
guages, OCL has the advantage as the most well-known language since defining
complex constraints requires a considerable amount of proficiency in the relevant
language.

In [19] and [20], different methods for product configuration are summa-
rized. Some are rule-based, logic-based and constraint-based configuration; the
strengths and weaknesses of tools adopting different approaches are discussed in
[21]. Answer Set Programming (ASP) [22] emerges to be an important and widely
accepted means for product configuration, and is suitable for the representation
of configuration knowledge [23]. Since the configuration task is NP-complete,
performance of the inference engine seems to be important for medium to large
scale models. There exist several solvers including pure ASP solvers such as
smodels [15], DLV [24], and hybrid approaches integrated with SAT solvers such
as ASSAT [25]. A theoretical comparison can be found in [26] and comparison
of their performance in relevant sections of each paper and in [27].
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Regarding the different ASP solvers, there exist considerable amount of data
on using smodels, which has a long history of development and wide accep-
tance. It allows a direct integration into our configuration process with the use
of WCRL as input language. In contrast, OCL requires an extra model trans-
formation. However, we plan to integrate OCL into our configuration process
in order to compare both in more detail. The disadvantage in performance and
lack of advanced concepts (such as non-monotonic reasoning, learning, powerful
heuristics) may be neglected considering the current scope of our work; and it is
easy to migrate later to different engines with the same interface (WCRL I/O)
for better performance.

6 Conclusion

In this paper, we have illustrated a model-driven approach to configure an inte-
grated variability and function net model. First, we have explained the need for
a constraint language in order to restrict the configuration domain. Therefore,
we have included WCRL as an appropriate language. Second, we have motivated
the necessity for an independent back-end inference engine. Here, smodels seems
to be a tool which is adaptable, extendable, and with high performance. We plan
to start a benchmark where this can be evaluated more precisely.

The possibility to configure concrete variants of function nets allow the gen-
eration of skeleton variants for virtual prototyping. For example, in this way,
variants of Simulink models can be simulated in order to verify efficiently re-
quirement specifications in an early phase of a model-driven development pro-
cess.
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in E/E-Entwicklungsprozessen. In Software Engineering 2009 Workshop: Produkt-
Variabilität im gesamten Lebenszyklus (PVLZ 2009), KL, Germany, 2009.

8. C. Mengi, A. Navarro Perez, and C. Fuß: Modellierung variantenreicher Funktion-
snetze im Automotive Software Engineering. In Proceedings of the 7th Workshop
Automotive Software Engineering (ASE 2009), Lübeck, Germany, 2009.
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