
Managing Variability and Evolution
of Business Document Models⋆

Christian Pichler1, Martina Seidl2, and Christian Huemer2

1 Inter-Organizational Systems
Research Studios Austria

Vienna, Austria
cpichler@researchstudio.at

2 Institute of Software Technology and Interactive Systems
Vienna University of Technology

Vienna, Austria
{seidl, huemer}@big.tuwien.ac.at

Abstract. The United Nations Centre for Trade Facilitation and eBusi-
ness (UN/CEFACT) standardizes business documents for electronic data
interchange. Their approaches towards UN/EDIFACT and XML have
later been followed by a conceptual modeling approach called Core Com-
ponents (CC). Having used this approach for four years in practice, it
became evident that the support for managing business document mod-
els is a prerequisite for successfully utilizing CC. This includes handling
variants of business document models on the one hand, and managing
the evolution of business document models on the other hand. In this
paper we propose an approach to face these challenges by the means of
Software Product Line Engineering (SPLE) in combination with dedi-
cated model management operators. The contribution of the approach is
twofold. First, SPLE is successfully applied in a new field enabling us to
manage variants of business document models. Second, the model man-
agement operators support the evolution of business document model
variants, whereas the operators defined, contribute to the evolution of
product lines as well.

1 Introduction

Seamless information exchange between business partners is inevitable for suc-
cessful collaboration in electronic commerce. For exchanging information elec-
tronically, standardized formats are required which are provided through Stan-
dard Developing Organizations (SDOs). These standards are typically created
for a particular domain or industry. Business document standards may be distin-
guished into standards defined on the conceptual level and standards defined on

⋆ The work of Research Studios Austria is funded by the Austrian Federal Ministry
of Science and Research. Furthermore, this work has been carried out under the
research grant Public Private Interoperability (No. 818639) of the Austrian Research
Promotion Agency (FFG).

61

the transfer syntax level [1]. Defining a standard on the conceptual level means
that a standard is defined using models such as UML class diagrams [2]. The
conceptual representation is then used for generating the transfer syntax, such
as an XML Schema schema [3], in the following denoted as XML schema.

Such a conceptual approach is envisioned by the Core Components tech-
nology [4] of the United Nations Centre for Trade Facilitation and eBusiness
(UN/CEFACT), which originally became famous for maintaining the United
Nations Directories for Electronic Data Interchange for Administration, Com-
merce and Transport (UN/EDIFACT) standards [5]. UN/CEFACT provides
reusable Core Component assets which serve as a basis for creating business doc-
ument models. One representative example of a business document model created
based on Core Components is UN/CEFACT’s Cross Industry Invoice (CII) [6]
which has recently been mandated for electronic invoicing within the European
Union [7]. Furthermore, UN/CEFACT accommodates generating XML schemas
from conceptual models [8] through proper rules specified in the XML Naming
and Design Rules (NDR) [9].

Having worked on tool support for the Core Components for four years,
we recognized that successfully utilizing Core Components is inhibited due to
several reasons. These reasons include deficiencies in managing variants as well
as in coping with the evolution of business document models. Such types of
problems are addressed in Software Product Line Engineering (SPLE) [10] as
well as Software Configuration Management (SCM) [11]. In particular, SPLE
deals with the strategic reuse of software systems sharing a common, managed
set of features [12]. Furthermore, one aspect of SCM is managing different ver-
sions of software systems. Versions are differentiated into revisions as well as
variants [13]. Revisions emerge along the time dimension and replace preced-
ing revisions whereas variants intentionally coexist. Furthermore, concepts from
SPLE promise benefitial advantages when being used for managing variants of
software systems [14].

Nowadays, models are an important artifact in Software Engineering with the
purpose of documenting software systems or for performing Model-Driven Engi-
neering (MDE) [15]. The combination of MDE as well as SPLE seems promising
resulting in the ability to leverage the benefitial advantages of both, MDE as well
as SPLE [16]. Although there is currently much effort spent on model manage-
ment [17] and the development of model versioning systems, there is, to the best
of our knowledge, no approach which exactly fits our needs. The context of Core
Components offers, compared to model versioning for conventional UML models,
a restricted environment. The Core Components technology specifies the usage
of Core Components and as a consequence this additional information may be
used for managing variants as well as for coping with the evolution of business
document models. In being confronted with a SCM problem, we propose to face
these challenges by the means of SPLE as well as dedicated model management
operators.

This paper is structured as follows. In Section 2 we provide the necessary
background on UN/CEFACT’s Core Components serving as a basis for business

62

<<ABIE>>
Address

<<BBIE>>
+ City: Text [0..1]
+ Country: Text [0..1]
+ Format: Code [0..1]
+ FreeForm: Text [0..1]
+ Street: Text [0..1]
+ Postcode: Text [0..1]

<<ABIE>>
Person

<<BBIE>>
+ BloodType: Code [0..1]
+ EyeColor: Code [0..1]
+ Hobby: Text [0..1]
+ HairColor: Code [0..1]
+ Name: Text [0..1]
+ Title: Text [0..1]

<<ASBIE>> Private

<<ASBIE>> Work

Ge
ne

ric
Co

re
Co

mp
ne

nts

0..*

0..*

<<ABIE>>
Address

<<BBIE>>
+ City: Text [0..1]
+ Country: Text [0..1]
+ Street: Text [0..1]
+ Postcode: Text [0..1]

<<ABIE>>
Person

<<BBIE>>
+ BloodType: Code [0..1]
+ Name: Text [0..1]
+ Title: Text [0..1] <<ASBIE>> Private 1..1

Co
nte

xtu
ali
ze
d

Co
re

Co
mp

on
en

ts

Fig. 1. Simplified Core Component Concept.

document modeling. Section 3 describes an example business document model
and elaborates on the challenges encountered in business document modeling.
In Section 4 we first apply PLE in the field of business document modeling, and
second, introduce model management operators for dealing with the evolution
of business document models. Section 5 describes related work. In Section 6, we
conclude the paper with a critical discussion and an outlook on future work.

2 Background: UN/CEFACT’s Core Components

UN/CEFACT’s Core Components represent domain independent, transfer syn-
tax independent, reusable building blocks for assembling business documents.
The Core Component concepts as well as the underlying metamodel are defined
in the Core Components Technical Specification (CCTS) [4]. For utilizing the
Core Components in state-of-the-art modeling environments it would be suffi-
cient to represent core components using class diagrams of the Unified Modeling
Language (UML). However, since the Core Component concept “derivation by
restriction”, discussed in the following, is currently not feasible in UML, we
introduced the UML Profile for Core Components (UPCC) [18, 19] which we
submitted to UN/CEFACT for standardization.

For reasons of simplicity, the concepts are presented in an abridged manner—
the full specification of the concepts may be found in [4]. Basically, we distinguish
between the Basic Business Information Entities (BBIE), Aggregated Business
Information Entities (ABIE), and Association Business Information Entities
(ASBIE). An ABIE contains one or more BBIEs and an ASBIE creates relation-
ships between ABIEs. An example illustrating a simple Core Components model
is shown in the Generic Core Components layer of Figure 1. In particular, Fig-
ure 1 shows the ABIE Person with the BBIEs Name, Title, etc. Furthermore,
Person is associated with the ABIE Address twice, namely through the ASBIE
Private and the ASBIE Work.

For the application in concrete business scenarios, the Core Components must
be customized to the context of the particular domains and the requirements of
the involved organizations in order to obtain concrete business documents. For

63

instance, SDOs of different business branches may use the Generic Core Compo-
nents model as a basis for creating their variants fulfilling their domain-specific
requirements. The Core Component concept specifies that creating contextual-
ized business document models must follow a “derivation by restriction” mech-
anism. This means that a contextualized business document model is created
through removing elements from a particular Core Component. For example, in
Figure 1, the layer Customized Core Components, illustrates the customization of
the Generic Core Components layer for fitting particular domain requirements.
For example, the ABIE Person does not contain the BBIE HairColor, or the
ASBIE Working is omitted.

Furthermore, UN/CEFACT provides the publicly available Core Component
Library (CCL) [20] containing predefined Core Components. The Generic Core
Components layer in Figure 1 illustrates an excerpt from the CCL. Those pre-
defined Core Components may be reused for defining a multitude of business
document models in various business contexts. Nevertheless, the development of
concrete business documents is a highly dynamic process where mulitple partic-
ipating organizations are involved. The next section presents a typical scenario
which illustrates problems arising in such a dynamic development environment.

3 Motivation and Challenges

In the Core Component Technical Specification (CCTS) [4], UN/CEFACT pro-
vides the foundation for creating Core Component (CC) models through the
underlying metamodel as well as additional rules. In the following we describe
challenges encountered in dealing with CC models. We elaborate on managing
business document model variants as well as business document model evolution.

3.1 Variant Management

Following the Core Component approach, as elaborated on above, Standard De-
veloping Organizations of different business branches may utilize the Generic

Domain Model as basis for creating variants—fulfilling their domain-specific re-
quirements. Note that the Generic Domain Model illustrated in Figure 2 repre-
sents an excerpt from the Core Component Library (CCL). For example, in the
healthcare domain it is necessary to represent information on the blood type of
a particular person whereas the same information is irrelevant in the commerce
domain. As a result, two variants of the Generic Domain Model are created, the
Healthcare Domain Model and the Commerce Domain Model. Both domain mod-
els represent copies of the Generic Domain Model with domain specific adaptions,
as illustrated in Figure 2, Mark A and Mark B.

Similar to a business document model based on the CCL, these specific do-
main models may again serve as a basis for different organizations within the
domain to define their own variants of business document models, as illustrated
in Figure 2, Mark C. For example, healthcare providers may further restrict the
Healthcare Domain Model for representing patient information. Consequently, a
wealth of different variants of business document models have to be managed.

64

<<ABIE>>
Address

<<BBIE>>
+ City: Text [0..1]
+ Country: Text [0..1]
+ Street: Text [0..1]
+ Postcode: Text [0..1]

Code

<<ABIE>>
Person

<<BBIE>>
+ BloodType: Code [0..1]
+ Name: Text [0..1] <<ASBIE>> Private 1..1

<<ABIE>>
Address

<<BBIE>>
+ City: Text [0..1]
+ Country: Text [0..1]
+ Street: Text [0..1]
+ Postcode: Text [0..1]

Code

<<ABIE>>
Person

<<BBIE>>
+ Name: Text [0..1] <<ASBIE>> Work 0..*

<<ABIE>>
Address

<<BBIE>>
+ City: Text [0..1]
+ Country: Text [0..1]
+ Format: Code [0..1]
+ FreeForm: Text [0..1]
+ Street: Text [0..1]
+ Postcode: Text [0..1]

Code

<<ABIE>>
Person

<<BBIE>>
+ BloodType: Code [0..1]
+ EyeColor: Code [0..1]
+ Hobby: Text [0..1]
+ HairColor: Code [0..1]
+ Name: Text [0..1]
+ Title: Text [0..1]

<<ASBIE>> Private

<<ASBIE>> Work

0..*

0..*

1A

Generic Domain Model

Healthcare Domain Model Commerce Domain Model
B

C C
2 3

Fig. 2. Variants of a Business Document Model.

3.2 Model Evolution

Business document models as well as their variants evolve over time due to
different reasons, such as extensions, refactorings, or bug fixes. Assume that an
inappropriate data type Text has been used in the CCL. Therefore, a new version
of the Core Component Library is released, where the type of the BBIE City is
changed from Text to Code, as illustrated in Figure 2, Mark 1.

As a result of the changes applied to the Generic Domain Model, it is necessary
to propagate these changes to all variants which are based on the Generic Domain

Model. Applied to the example, it is necessary to adopt the Healthcare Domain

Model was well as the Commerce Domain Model, as indicated in Mark 2 and
Mark 3, of Figure 2.

3.3 Supporting Variant Management and Model Evolution

For managing variants of business document models we propose to utilize con-
cepts from Software Product Line Engineering (SPLE) [10]. Applying these con-
cepts to business document modeling enables us to efficiently manage variants
of business document models. Furthermore, as illustrated in the example above,
business document models are also subject to evolution. In terms of SPLE this
means that the core assets of the platform change. For dealing with evolution we
need dedicated model management operators. Having such operators at hand
allows to understand and manage the evolution of business document models
within a product line. In particular, the operators support the evolution of the
product line’s core assets as well as the corresponding evolution of the product
line’s products. Hence, these operators also contribute to today’s challenges of
evolution in Model-Driven Product Line Engineering (MDPLE).

Exploring the evolution of product lines within the context of business doc-
ument modeling offers a unique environment having benefitial advantages. Cre-

65

Product!Line!Engineering
Core!Components!in!the!

Context!of!Product!Line!Engineering

m
a
in
!

e
e
ri
n
g

Problem!

Space

l f

Problem!Space:

" Business!Document!Modeling

" Defined!in!the!Core!Components!Technical!Specification!(CCTS)

Platform:

D
o
m

E
n
g
in
e

Platform

Core!

Asset

Core!

Asset

at o

" Core!Component!Library!(CCL)!provides!the!Core!Assets

" Variability!is!expressed!using!Cardinality"based!Feature!Models

" Core!Components!Technical!Specification!(CCTS)!specifies!

the!Production!Plan

A
p
p
li
ca
ti
o
n

E
n
g
in
e
e
ri
n
g

Product

Product

Product

Product

Derivation!of!Product!Variants:

" Based!on!selected!features!a!new!variant!of!a!Business!!!

Document!Model!is!!derived

" Generation!of!transfer!syntax!following!the!XML!Naming!and!

Design Rules (XML NDR)Product Design!Rules!(XML!NDR)

Fig. 3. Business Document Modeling in the Context of Product Line Engineering.

ating variants of business document models follow the “derivation by restric-
tion” mechanism, hence the variability among variants as well as the evolution
of business document models is constrained. Therefore, the business document
modeling environment offers a constrained environment for exploring first steps
towards dealing with the evolution of Model-Driven Product Lines.

4 Model Management

In this section, we propose concepts for addressing the challenges encountered
in business document modeling. These include, the application of SPLE con-
cepts to manage variants of business document models, as well as the definition
of model management operators for supporting the evolution of business docu-
ment models. The meta models and models, representing the core assets of the
product line’s platform in business document modeling, are defined using the
Eclipse Modeling Framework (EMF), in particular Ecore [21]. The metamodel
implemented represents an Ecore-based equivalent of the metamodel specified
in the Core Components Technical Specification (CCTS) [4]. Furthermore, the
model management operators defined, address the evolution of business docu-
ment models. The evolution of meta models and feature models will be discussed
in Section 6, future work. Another important aspect is the granularity of evolu-
tion. In the context of business document models we perform model evolution
on the level of classes, attributes, as well as associations.

4.1 Variant Management

In the following, we illustrate the application of Software Product Line Engineer-
ing (SPLE) concepts to business document modeling, as illustrated in Figure 3.
Generally speaking, Product Line Engineering (PLE) consists of Domain Engi-
neering as well as Application Engineering.

Domain Engineering is comprised of defining the problem space, creating a
platform containing core assets and variability points, as well as defining a pro-
duction plan [10]. Applied to the context of creating business document models

66

based on Core Components we observe the following. Clearly, the problem space
addressed in the context of Core Components is the area of business document
modeling. The platform of the product line is implicitly defined through the al-
ready existing Core Component Library which contains all core assets which may
be used in product variants, i.e. business document models. As a next step, it is
necessary to specify the production plan which describes how product variants
are derived from the platform. However, as illustrated earlier, the CCTS defines
that business document models, based on predefined Core Components, must
only be created utilizing the “derivation by restriction” mechanism. Therefore,
this mechanism represents the production plan for creating product variants,
representing variants of business document models. Currently, for deriving busi-
ness document model variants, we provide tool support through the VIENNA
Add-In [22].

Application Engineering addresses the process of deriving product variants
from the artifacts defined in process of Domain Engineering. Applied to the
context of Core Components, variants of business document models, based on
the Core Component Library, are derived. Furthermore, the variants of business
document models are transformed into XML schemas according to the XML
Naming and Design Rules (NDR) [9].

4.2 Model Evolution

When managing the variants of business document models, we are confronted
with two different challenges: (1) we intend to keep the hierarchy of business
document models as redundancy free as possible, i.e., we aim at the detection
of business document models which are introduced twice in order to keep the
overall structure as simple as possible and (2) if one business document model is
modified than all derived child documents have to be updated accordingly, i.e.,
we are confronted with the evolution of the business document models. For the
definition of the necessary model management operators, we use the following
simplified view on a business document model based on the concept of Core
Components.

Definition 1 (Business Document Model). The business document model
M over a set of properties P is a tuple of the form

〈BBIE,ABIE,ASBIE, agg, props〉

where BBIE denotes the set of Basic Business Information Entities, ABIE de-
notes the set of Aggregated Business Information Entities, and ASBIE denotes
the set of Association Business Information Entities. For each a ∈ ASBIE it
holds that a = (id, a1, a2) with a1, a2 ∈ ABIE and where id is an identifying
label. The composition of BBIEs in order to form ABIEs is expressed by the

function agg : ABIE → BBIE
BBIE. In order to embrace the different types of en-

tities we introduce the set E with E = BBIE∪ABIE∪ASBIE. Finally, the function

prop : E → P
P assigns each entity a set of properties.

67

The set P contains various types of properties like types and visibilities which
are necessary to describe the different kinds of entities in more detail. In the
following, this vague definition is sufficient as we are not concerned with the
semantics of the properties.

Redundancy Elimination in the Hierarchy of Business Documents. If many vari-
ants are derived according to the needs of different organizations or companies,
the dependency tree rapidly grows. As a consequence, a user new to business
document modeling based on Core Components is not easily able to identify
which business document model fits his/her specific needs. Then the user would
be either discouraged to use the Core Components or the user would start to put
his/her adaptations at a very high level of the business document models hier-
archy although a suitable business document model is already at hand. Hence,
the hierarchy expands into the breath. We propose the implementation of an
operator which is able to identify equivalent business document models or even
two business document models M1 and M2 where M1 is the subset of M2 even
if they are located in different branches. Furthermore, such an operator may be
used to check whether the hierarchy of business document models is valid. The
subset operator is defined as follows.

Definition 2 (Subset Operator). A business document model M1 given by
〈BBIE1,ABIE1,ASBIE1, agg1

, props
1
〉 is a subset of a business document model

M2 = 〈BBIE2,ABIE2,ASBIE2, agg2
, props

2
〉 denoted by M1 ⊆ M2 iff it holds

that BBIE1 ⊆ BBIE2, ABIE1 ⊆ ABIE2, and ASIE1 ⊆ ASIE2. Furthermore, for each
a ∈ ABIE1 it holds that agg

1
(a) ⊆ agg

2
(a) and for each e ∈ BBIE1∪ABIE1∪ASIE1

it holds that prop
1
(e) ⊆ prop

2
(e).

With this subset operator we are able to identify business document models
which are wrongly positioned in the hierarchy of business document models
and in consequence we are able to optimize the overall structure of the model
hierarchy. The subset operator is not only necessary for organizing the repository,
but also in the context of evolution as we see in the following.

Evolution of Business Document Models. As any model, the specifications of
business documents may evolve over time. This evolution comprises the exten-
sion due to more precisely stated requirements as well as updates like refactor-
ings or bugfixes of either the generic domain model or of the dedicated domain
models. It is even imaginable that formerly defined model elements are replaced
or even removed if it turns out from experience that these elements are often
used in an incorrect manner or that they are not used at all. Consequently,
the changes have to be propagated to all business documents models which are
created based on the modified business document model in order to ensure com-
pliance of the different business documents. The relationships between business
document models form a tree. Hence, changes are propagated along the affected
branch. Evolution is an issue in the following situation. Given the business doc-
ument models M1 and M2 where M1 is derived from M2, i.e. it holds that

68

M1 ⊂ M2, and M2 evolves to M′

2
, the relationship M1 ⊂ M′

2
does not hold

any more. In order to identify the differences between two business documents
models we define the difference operator as follows.

Definition 3 (Difference Operator). The difference between a business docu-
ment model M1 = 〈BBIE1,ABIE1,ASBIE1, agg1

, props
1
〉 and a business document

model M2 = 〈BBIE2,ABIE2,ASBIE2, agg2
, props

2
〉 (denoted by M1∆M2) is de-

fined by the tupel 〈added, removed, updated〉 where added = E2\E1, removed =
E1\E2, and updated = {e ∈ E1 ∩ E2|props1(e) 6= props

2
(e)} ∪ {e ∈ ABIE1 ∩

ABIE2|agg1
(e) 6= agg

2
(e)} where Ei = BBIEi ∪ ABIEi ∪ ASBIEi with i ∈ {1, 2}.

In this context, evolution is only possible in one direction: changes are prop-
agated from the more general business document models to the its more specific
offsprings. This is due to the “derivation by restriction” mechanism specified in
the Core Components Technical Specification [4].

4.3 Model Management by Example

In the following, we illustrate the application of the model management operators
to the business document models variants, illustrated in Figure 2.

From the definition of a business document model, it follows that in the
Generic Domain Model shown in Figure 2 ABIE = {Person, Address}, ASBIE =
{(private,Person, Address), (work,Person, Address)}, and BBIE contains Name,
Title, City, Country, etc. The function agg relates elements of BBIE with elements
of ABIE, i.e., Name and Title are features of Person whereas City and Country

are features of Address. Finally, the prop function assigns additional information
like types, visibility, multiplicities etc. to the entities.

In Figure 2 the Healthcare Domain Model and the Commerce Domain Model

are subsets of the Generic Domain Model, but the Healthcare Domain Model and
the Commerce Domain Model are not related via the subset operator due to
the different ASBIEs. Applying the difference operator to the updated Generic

Domain Model, illustrated in Figure 2, shows that the only change is given by the
update of the type property of the BBIE Postcode. The changes detected through
difference operator need to be propagated to the different business document
model variants based on the Generic Domain Model. Therefore, the Healthcare

Domain Model and the Commerce Domain Model need to be updated accordingly.

5 Related Work

Combining Model-Driven Engineering (MDE) and Product Line Engineering
(PLE) provides substantial benefits method for creating similar products and
systems [16]. Several examples may be found where model-driven product line
engineering proved to be successfull, including [23]. We study concepts from PLE
which have an impact on business document model variants.

For expressing the variability among variants of business document models,
the concept of cardinality-based feature modeling, as described by Czarnecki et

69

al. [24], is highly relevant. For mapping feature models to core assets of a model-
driven product line, different approaches exist. For instance, Czarnecki et al. [25]
propose a template-based approach for mapping feature models to data models
or behavioral models.

Several approaches and tools are available for supporting the process of
Model-Driven Product Line Engineering (MDPLE). Antkiewicz et al. [26] in-
troduce the FeaturePlugin which supports creating Feature Models. Ecore.fmp,
a successor of the FeaturePlugin, is introduced by Stephan et al. [27], which al-
lows instantiating class models as feature models. Furthermore, Ecore.fmp allows
viewing Ecore models as Feature Models, as well as the configuration of Ecore
models which may be interpreted as instantiating product variants. Heidenre-
ich et al. implement a tool named FeatureMapper [28], which enables creating
mappings between Feature Models and Ecore models. Furthermore, FeatureMap-
per allows deriving product variants based on a specified feature configuration.
Beuche [29] describes pure::variants, which allows realizing product lines in com-
bination with Ecore models as well.

Groher and Voelter [30] present an approach for Aspect-Oriented Model-
Driven Product Line Engineering (AO-MD-PLE). In their approach, they also
illustrate negative variability in structural models where an overall model is
connected to feature models. Specific feature configuration then serve as a basis
for instantiating model variants. For implementing negative variability, a tool
named XVar is presented.

Though a number of approaches exist for creating model-based product lines,
the support for the evolution of a product line’s assets is limited. The necessity
for addressing the evolution in product lines has also been identified in literature,
such as [31, 32]. For example, Dhungana et al. [33] present their work on support-
ing product line evolution by organizing variability models as a set of interrelated
model fragments. In our work, we address the evolution of business document
models, representing the core assets of the product line. We define dedicated
model management operators for enabling model evolution in our product lines.

6 Conclusion and Future Work

In this paper we identified the need for managing variants of business document
models as well as the need for supporting the evolution of business document
models, which are both necessary for successfully utilizing UN/CEFACT’s Core
Components concept.

The contribution of this paper is two-fold. First, we applied well-known con-
cepts from PLE in a new field, namely business document modeling. Doing so
enables us to effectively manage variants of business document models. Further-
more, we investigated existing tool support for creating model-based product
lines, as well as deriving product variants, i.e. business document model vari-
ants. Second, we defined model management operators as a first step towards
supporting evolution in model-based product lines. Though defined in the con-

70

text of business document models, the operators defined are applicable to soft-
ware models, e.g. UML class diagrams in software product lines, as well.

Future work, based on the findings presented in this paper, includes the
following. First, the implementation of the model management operators is con-
tinued. Since we actively participate in UN/CEFACT, we have access to a pool
of models which allows us to evaluate the concepts proposed. The evaluation
allows us to assess the completeness and correctness of the model management
operators proposed. Furthermore, the evaluation helps us gain experience in the
evolution of business document models which may lead us to propose a classifi-
cation of possible evolution scenarios. In a consecutive step it is also necessary
to address the evolution of other artifacts present in model-driven product lines
whereas existing approaches, such as presented in [34], are subject to evaluation.
This includes the evolution of metamodels, feature models, feature configura-
tions, as well as co-evolution of business document model instances. It is also
necessary to address the matter of co-evolution. This means that changes ap-
plied to business document models also affect actual instances of the business
document models, which needs to be handled. In the long-run, it is planned to
provide tool support for managing the evolution of business document models.

References

1. Liegl, P., Zapletal, M., Pichler, C., Strommer, M.: State-of-the-art in business
document standards. In: Proc. of the 8th Int. Conf. on Industrial Informatics, to
appear, IEEE (2010)

2. OMG: Unified Modeling Language (UML) http://www.uml.org/.
3. W3C: XML Schema 1.1 http://www.w3.org/XML/Schema.
4. UN/CEFACT: Core Components Tech. Spec. (CCTS) 3.0

http://www.untmg.org/ccts/spec/3 0.
5. UN/CEFACT: United Nations Directories for Electronic Data Inter-

change for Administration, Commerce and Transport (UN/EDIFACT)
http://www.unece.org/trade/untdid.

6. UN/CEFACT: Requirements Spec. Mapping for Cross Industry Invoice v.2.0
7. Europen Commission Export Group: Final Report on e-Invoicing
8. Huemer, C., Liegl, P.: A UML Profile for Core Components and their Transforma-

tion to XSD. In: Proc. of IEEE 23rd Int. Conf. on Data Engineering Workshop.
(2007) 298–306

9. UN/CEFACT: XML Naming and Design Rules 3.0
http://www.unece.org/cefact/xml/xml index.htm.

10. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer (2005)

11. Tichy, W.F.: Tools for Software Configuration Management. In: Proc. of the Int.
Workshop on Software Version and Configuration Control. (1988) 1–20

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2007)

13. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Manage-
ment. ACM Computing Surveys 30(2) (1998) 232–282

14. Dalagarno, M., Beuche, D.: Variant Management. In: 3rd British Computer Sco-
ciety Configuration Management Specialist Group Conference, BCS MSG (2007)

71

15. Bézivin, J.: On the Unification Power of Models. Software and System Modeling
4(2) (2005) 171–188

16. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek, K.: Model-driven
Software Product Lines. In: Comp. to the 20th Annual ACM SIGPLAN Conf.
on Object-Oriented Programming, Systems, Languages, and Applications, ACM
(2005) 126–127

17. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: Proc. of the ACM SIGMOD Int. Conf. on Mgmt. of Data, ACM (2007)

18. Liegl, P.: Conceptual Business Document Modeling using UN/CEFACT’s Core
Components. In: Proc. of the 6th Asia-Pacific Conf. on Conceptual Modeling,
Australian Computer Society (2009)

19. UN/CEFACT: UML Profile for Core Components (2009)
20. UN/CEFACT: UN/CEFACT’s Core Component Library (UN/CCL)

http://www.unece.org/cefact/codesfortrade/codes index.htm.
21. Eclipse Foundation: Eclipse Modeling Framework (EMF)

http://www.eclipse.org/modeling/emf/?project=emf.
22. VIENNA Add-In development team: Visualizing Inter-ENterprise Network Archi-

tectures http://vienna-add-in.googlecode.com/.
23. Wende, C., Heidenreich, F.: A Model-based Product-Line for Scalable Ontologies.

In: Proc. of the 1st Int. Workshop on Model-Driven Product Line Engineering.
(2009) 51–58

24. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing Cardinality-based Feature
Models and their Specialization. Software Process: Improvement and Practice
10(1) (2005) 7–29

25. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Proc. of the 4th Int. Conf. on Generative
Programming and Component Engineering. Volume 3676 of Lecture Notes in Com-
puter Science., Springer (2005) 422–437

26. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature Modeling Plug-In for
Eclipse. In: Proc. of the 2004 OOPSLA Workshop on Eclipse Technology eX-
change (ETX), ACM (2004) 67–72

27. Stephan, M., Antkiewicz, M.: Ecore.fmp. A tool for editing and instantiating class
models as feature models. Technical report, University of Waterloo (2008)

28. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to
Models. In: Proc. of the 30th Int. Conf. on Software Engineering, ACM (2008)

29. Beuche, D.: Modeling and Building Software Product Lines with pure::variants.
In: Proc. of the 12th Int. Software Product Line Conference, IEEE (2008) 358

30. Groher, I., Voelter, M.: Expressing Feature-Based Variability in Structural Models.
In: Proc. of the Workshop Managing Variability for Software Product Lines. (2007)

31. McGregor, J.: The Evolution of Product Line Assets. Technical report, Carnegie
Mellon Software Engineering Insitute (2003)

32. Svahnberg, M., Bosch, J.: Evolution in software product lines: Two cases. Journal
of Software Maintenance 11(6) (1999) 391–422

33. Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R.: Supporting the Evolu-
tion of Product Line Architectures with Variability Model Fragments. In: Seventh
Working IEEE / IFIP Conference on Software Architecture, IEEE (2008) 327–330

34. Rose, L., Paige, R., Kolovos, D., Polack, F.: An Analysis of Approaches to Model
Migration. In: Proc. of the 1st Int. Workshop on Model Co-Evolution and Consis-
tency Management. (2009) 6–15

72

