
Towards Software Product Lines Application in

the Context of a Smart Building Project

Thibaut Possompès1,2, Christophe Dony2, Marianne Huchard2, Hervé Rey1,
Chouki Tibermacine2, and Xavier Vasques1

1 IBM France � PSSC Montpellier
thibaut.possompes, reyherve, xavier.vasques@fr.ibm.com

2 LIRMM, CNRS and Université de Montpellier 2
possompes, dony, huchard, chouki.tibermacine@lirmm.fr

Abstract. This paper presents proposals on how to apply software prod-
uct lines in the context of smart buildings control systems. Our study is
held in the context of the RIDER (Research for IT as a Driver of EneRgy
e�ciency) project, which is led by a consortium of several companies and
research laboratories.
The paper highlights various issues, including issues related to traceabil-
ity, variability and automatic transformations in our speci�c application
context. It then proposes solutions to apply existing concepts like feature
diagrams, model-driven transformations and component-based architec-
tures, or appropriate extensions of these concepts, in this context.
Furthermore, we globally propose an approach to federate the various
components involved in smart buildings, and to capitalize on the devel-
oped IT components by reusing them at the lower cost in the construction
of future buildings.

Key words: Smart buildings, feature diagrams, traceability, model trans-
formations

1 Introduction

Nowadays, buildings are responsible for huge energy consumption sometimes
because of wrong, or not optimized machinery control. For instance, cooling an
empty room during the summer is useless and represents an energy waste. In-
stalling a presence detector would be an e�cient way to detect when to engage
the cooling system. Instrumenting buildings to track and solve wrong usage of
energy management systems, will result in using energy more e�ciently and
therefore stop wasting it. Such instrumented buildings are called smart build-

ings. Their particularity is that they allow gathering information from di�erent
systems (e.g. Heating Ventilation and Air-Conditioning (HVAC) or room occu-
pation agenda) to optimize their settings in order to enhance building energy
e�ciency.

In this paper we propose an approach to federate the various components
involved in smart buildings, and to capitalize on the developed IT components

73



Possompès et al.

by reusing them at a lower cost in the construction of future buildings. We
achieve this goal by using software product lines methodology for:

� gathering domain knowledge from the di�erent stakeholders, and managing
the whole software life-cycle of smart buildings related projects.

� modelling IT infrastructure necessary for instrumenting a building and
analysing related data.

This leads us to describe how we could generate some parts of the IT in-
frastructure thanks to feature diagrams. We illustrate our approach in a model-
driven perspective and use the principles of the model transformation ([1,2]).
Another key aspect of our project is to enable traceability through developed IT
artefacts, domain models and feature diagrams in order to be able to manage
domain speci�c and IT concepts as a whole. This research is done in the context
of the RIDER project3.

Smart buildings, or houses, are buildings instrumented with specialized equip-
ment, e.g. sensors and controllers (as presented in the home automation example
in [3]), in order to enable their optimization according to speci�ed criteria. Some
challenges associated with this domain consist in optimizing building manage-
ment equipment operations to enhance the global energy e�ciency, and reusing
IT components from one building to another to reduce costs. This leads us to
think of a speci�c building instrumentation as a product derived from a building
product line.

Software Product Lines are de�ned by Pohl et al. in [3] as �a paradigm to develop
software applications (software-intensive systems and software products) using
platforms and mass customisation�. Using platforms requires implementing and
reusing reusable software artefacts in order to �t to speci�c client needs at a
lower cost. This helps building customisable applications and implies using a
strict approach for identifying variations. This last concept requires being able
to specify commonalities and variation points associated to each modelling arte-
fact produced during software development life cycle, including requirements,
architecture, components and tests artefacts.

Section 2 describes the project's context. Section 3 presents how domain is-
sues will be addressed thanks to software product lines concepts. We also describe
which methodology will inspire us to solve challenges identi�ed in the project
and how we can gather requirements, speci�c domain vocabulary, domain mod-
els and software architecture. Section 4 discusses how will be concretely imple-
mented software product lines in the project. This will be described in depth
by specifying the software levels impacted by the product lines approach, the
link between product line artefacts and the project IT architecture, and �nally

3 The RIDER project (�Research for IT as a Driver of EneRgy e�ciency�) is led by
a consortium of several companies and research laboratories, including IBM and
the LIRMM laboratory, interested in improving building energy e�ciency by instru-
menting it.

74



Software Product Lines in Smart Buildings

the link between the product line and the domain models. The conclusion and
perspectives section sums up how model driven engineering approaches could be
applied to software product lines in the smart buildings context.

2 Speci�cation of the Smart Buildings Context

This section describes the speci�c constraints related to smart buildings and,
more speci�cally, the RIDER project. We will present details of modelling an
instrumented building.

2.1 Global Issues

Smart building energy optimization addresses various building management re-
lated activities such as energetics experts, Building Management System (BMS)
manufacturers, electronics engineers, etc. Instrumenting such a heterogeneous
domain to satisfy every stakeholder and to be able to furnish pertinent optimi-
sation scenarios is a complex task. It requires a very close collaboration between
partners and a very modular and reusable IT architecture.

This context raises several questions. How to unite partners around a com-
mon domain vocabulary described in IT models ? How to adapt IT infrastructure
to interface with such large numbers of BMS, sensor types, building architec-
tures ? Clients can have very di�erent expectations from an instrumented smart
building in function of their practical and �nancial requirements. Furthermore,
the environment can a�ect the way a building can be optimized, i.e. buildings
in Delhi will take advantage of di�erent climate speci�cities than ones in Stock-
holm. How to represent and deal with such variations ?

Hence, software product lines looks to be a very appropriate approach in
order to ease reuse of the IT optimization infrastructure deployed on a pilot
building and to unite the heterogeneous points of view around a generic and
extensible IT architecture.

The software product lines feature diagrams are trees representing the main
functions of the system. They are understandable by all stakeholders thanks to
their simplicity. This is a good medium to communicate ideas between them.

Another argument in favour of software product lines, as outlined in [4], is
that it has a strong impact on quality of resulting software. Indeed, it is built
upon mature and proved components which implies lower number of defects,
hence the resulting systems are more reliable and more secure.

2.2 Excerpt of the RIDER Project Context

This project's purpose is to achieve, thanks to IT, the interconnection of several
�elds linked to smart buildings. It encompasses speci�c domain �elds, such as
energetics, building automation, electronics, etc.. First of all this �intelligent�
coordination of systems must be brought by IT through which we want to im-
plement functionalities such as:

75



Possompès et al.

� Analysis of monitored data
� Visualization of monitored data
� Energy e�ciency scenarios application

These features require having a model of the physical components (sensors
and actuators) placed in the building and retrieving monitored data as shown
in Figure 1. The monitored information stream is generally reported by a BMS

Fig. 1. RIDER data acquisition from a building

whose role is to automate basic building management functions based on the
data acquired by the sensors.

To sum up, we want to assemble concepts coming from di�erent domains
related to buildings that were not communicating to each other, and to develop
software components adaptable to the existing instrumentation facilities and
communication interfaces.

3 Domain Analysis with the Help of Software Product

Lines Engineering Concepts

As said before, many players are involved in smart building projects. Hence, it
is necessary to have a good methodology to acquire information about what can
change from one building to another.

Existing Product Line Approaches for Analysing a System As presented
in FODA [5] all stakeholders must be involved in the three phases composing
the domain analysis process:

1. Context analysis to de�ne the domain context.
2. Domain modelling to describe the problems addressed by software in this

domain. It also provides the features of the software, standard vocabulary of
the domain experts, documentation and generic software requirements.

76



Software Product Lines in Smart Buildings

3. Architecture modelling to establish the structure of software implementa-
tion in the domain to help developers. This architecture can guide to build
libraries of reusable components.

Features can be linked to artefacts created during each one of these phases.
As described in FORM [6] features can be classi�ed according to the type of
information they represent. We classify features into the following categories, or
layers:

� Application capabilities features characterize distinct services, operations,
functions, and the performance that an application may possess (e.g. opti-
mizing heaters accordingly to users preferences).

� Operating environment features represent the attributes of the environment
in which an application is used and operated (e.g. operating system, software
platform such as IBM Tivoli c© used for managing and monitoring systems).

� Domain technology features represent implementation details, at a low and
technical level, speci�c to a given domain (e.g. HVAC valve control).

� Implementation technique features describe technical details that could be
used in other computer science areas (e.g. wireless sensor communication
protocol).

Each of these layers will require the participation of the project stakeholders.
By using this classi�cation, we can establish feature diagrams that will target

speci�c descriptive needs. Furthermore, we will use the software product line
framework cited in several books ([4,3]) and de�ned in [7].

We can observe that each layer can be associated to one or several frame-
work steps. Application capabilities are close to domain requirements and product
management steps. Figure 2 gives a small example of the kind of feature we can
expect in the context of smart buildings. The feature called RIDER is the root
feature (concept explained by Czarnecki et al. in [8]). We can derive from it two
mandatory features named Intelligence and Building management system in-

terface. Intelligence feature contains Visualization, Data analysis and Building

management scenarios sub features representing three possible di�erent ways to
enhance the management of instrumented buildings. The Building management

system interface feature encompass the basic functionalities necessary to inter-
face the RIDER system to a BMS. Its two sub features shows that it is possible
to acquire data from a building and to send orders to it. They are not manda-
tory but not choosing them would drastically restrict Intelligence sub features
choice. Indeed, constraints relationships are not shown on this diagram but we
can assume that Data analysis and Building management scenarios require the
Data acquisition feature.

Operating environment and Implementation technique are related to domain

design and realisation. Figure 3 shows a very global view of the RIDER architec-
ture. Software products will be chosen to carry out the functionalities expected
from each box. These products would be described in the operating environment

layer ; the way information is transmitted from the BMS to the RIDER system
would be associated to the Implementation technique layer.

77



Possompès et al.

Fig. 2. Excerpt of a feature diagram related to buildings domain (all feature diagrams
of this paper are created with Waterloo University feature modelling eclipse plug-in)

Fig. 3. RIDER architecture example

78



Software Product Lines in Smart Buildings

Feature diagrams would be a great help for allowing all di�erent domain
experts to express the di�erences between the requirements concerning the IT
infrastructure thanks to a non IT language. Indeed, we want to keep a traceability
through all steps by linking feature diagrams together in order to be able to
check, e.g. whether client requirements are ful�lled by architectural choices.

Existing Approaches and New Propositions to Capitalize upon Do-

main Knowledge A further work in our approach would be to base domain
models upon feature diagrams describing their semantics with domain vocab-
ulary. This would help all stakeholders to understand and communicate with
each other with a common language and make UML models semantics accessi-
ble to non specialist users. Hence we could link functionalities throughout several
domain models and requirements speci�cations (e.g. building components like
HVAC and thermal regulation concept).

Many enhancements have been made to the initial feature diagrams presented
in FODA [5]. Fey et al. [9] introduced feature sets in order to group features from
an arbitrary point of view. This can help domain experts to categorize the func-
tionalities they expect from their domain model. Zhang et al [10] added features
binding time property to specify when the feature must be either implemented
or removed. We plan to extend this functionality to be able to check partially
customized feature models to allow the di�erent domain experts to choose the
features that �t to their needs or practical possibilities.

Traceability links could be used to check whether implemented domain arte-
facts are consistent with the expected enhancements of the smart building. The
requirement changes could be easily modelled directly by feature diagrams.
Hence, feature choice would directly have an in�uence on the IT infrastruc-
ture. Figure 4 presents an excerpt of a feature diagram describing the kind
of functionalities that we can expect from a building equipped with a BMS.
HVAC and Lights features represent systems that can be managed in a build-
ing. Their respective sub-features are speci�c function descriptions representing
either monitored data or actuator commands. An expert from the BMS domain
could create an exhaustive feature diagram that will be put in relation with a
UML component diagram as depicted in Figure 5.

Figure 2 presents high-level features that could be implemented in the
project. Each feature should be linked to other ones present in other feature
diagrams, such as the one in Figure 4.

4 Gathering Domain and IT Infrastructure Models

thanks to Model Driven Engineering

4.1 Software Product Line Application to Domain Models

As said before, smart building IT infrastructure should be able to achieve ener-
getic simulation with monitored data and to optimize machine speci�c parame-
ters (e.g. air stream in HVAC units) to enhance global building energy e�ciency.

A building model contains, among many others, information like:

79



Possompès et al.

Fig. 4. Excerpt of a features diagram related to buildings domain

� The kind of installed HVAC unit.
� The presence or absence of thermostat in o�ces.

A building meta model contains a repository of the available kinds of com-
ponents that could be used while modelling a building, including for example:

� List of HVAC parameters
� List of sensor measure types

Figure 5 shows a small excerpt of components that could be instrumented in
an o�ce building.

Instrumenting all parameters is very expensive at a large scale. For instance,
it might not be always necessary to measure the power of light perceived by
human eye in o�ce building rooms. However there might be certain cases when it
is required by the client. Figure 6 depicts an excerpt of feature diagram describing
what kind of optimisation we can expect from instrumenting a building. E.g.
Room heating control is something that can be optimized by reducing ventilation
noise, if disturbing, or programmed to keep a constant temperature. The idea
would be to link features to the modelling artefact necessary to satisfy them. For
instance, selecting room light control feature would require instrumenting room
lights and being able to �ll in the parameters:

� light state to know whether a light is on or o�,
� light order to change the light state.

We explained earlier that some features could be expected from the installed
IT smart building infrastructure. Therefore, the possible software variations de-
scribed in variability diagrams (as explained in [3]) should help people connect-
ing the building to the RIDER system to check whether the right components

80



Software Product Lines in Smart Buildings

Fig. 5. Excerpt of BMS components diagram

Fig. 6. Some features for instrumenting a building

are instrumented and reciprocally whether some optimization features could be
enabled at low cost because of already instrumented components.

If we want to enable the feature keep constant light power we shall be able
to check that the attribute light_measure in the component Lightning can be
�lled by the underlying IT infrastructure.

The next section will present how software product lines could help in creat-
ing an IT architecture able to support the diversity outlined before.

4.2 Software Product Line Application to RIDER IT Architecture

One �rst challenge related to smart buildings is that there exists a very large
set of available BMS, sensors, and actuators. BMS manufacturers must be able
to easily connect their products to the RIDER system to get the best of RIDER
optimization scenarios and analysis. Furthermore, depending on building owner
functional and �nancial requirements, the kind of data to be monitored (e.g.
CO2, human presence) or controlled (e.g. building mechanical ventilation fan
speed) vary widely.

81



Possompès et al.

Hence, the RIDER architecture must be very scalable to the size of the
building or house, but also adaptable to the nature of optimizations we expect
from it and to the level of instrumentation. A base platform, as de�ned in [11],
should be used to allow easy component reuse:

�A platform is any base of technologies on which other technologies
or processes are built.� [11]

Such modular needs could be ful�lled by a software platform [12]. A platform
could use the Rational Asset Speci�cation (RAS) to ease the reuse of speci�c de-
veloped or con�gured software applications. For instance, a database asset could
be reused when the client wants a posteriori analysis of measured data of his
building. Furthermore, functions of the features he chose to implement and the
size of the instrumented building, an estimation of the sizing of the necessary
servers could be made. Indeed, traceability trough architecture models and fea-
ture diagram could help to achieve a sizing of necessary servers and the cost of the
IT infrastructure. [13] shows the importance of traceability and gives informa-
tions for enabling traceability methods in a project. [14] presents a model-driven
component based software product line framework able to automate production
of many of product artefacts.

[15] describes how a base framework like the Open Services Gateway initiative
(OSGi) can support the variability of the instrumented part of the building. An
OSGi bundle could be a speci�c communication interface between RIDER IT
infrastructure and a speci�c BMS instrumenting a building. Such architecture
could greatly improve the openness of the project to other communication and
instrumentation standards.

Another problem we will face concerns energy optimization scenarios which
can be modelled by business rules. Feature diagrams could also be linked to the
elements managed in business rules. We could create feature diagrams describ-
ing scenario sets (such as Building heating optimization for grouping all kinds
of rules related to heating optimization). It could be interesting to suggest to
the �nal user energy-e�ciency optimization scenarios according to the existing
possibilities of the infrastructure he chose (which depends on his �nancial and
functional requirements).

A similar problem will be faced concerning data analysis. Indeed, some al-
gorithms could be run exclusively when the BMS sends a large enough data
�ow, or when enough data are at RIDER disposal. Feature diagrams could help
targeting the IT requirements of such algorithms. This contribution is also valid
for visualization methods.

5 Conclusion and Perspectives

In order to apply software product lines to create control systems for smart
buildings, we have presented how we plan to apply and extend existing con-
cepts, like feature diagrams or extensible and component-based architectures, to

82



Software Product Lines in Smart Buildings

this project. Based on theses concepts, our additional main challenges are the
following:

1. Gathering information from di�erent domain experts to model their �elds
by linking domain-speci�c concepts to requirements and IT components.

2. Managing the whole software life-cycle of a smart building related IT project.
It includes the following points:

� Generating domain models from selected features. The generated models
would show the minimal building instrumentation requirements to satisfy
client expectations.

� Specifying domain related features (e.g. available sensors, actuators,
building materials, etc.) and generate high-level feature diagrams (for
clients) containing only the features that could be implemented without
modifying the existing building instrumentation.

The next immediate step will be to synthesize existing feature diagrams se-
mantics, that are the most pertinent for our needs, into a new meta model which
could be used as a basis for a plug-in integrated in a modelling tool. This will
be used as a basis to enable model transformations based on feature diagrams,
UML models and traceability through the di�erent models.

References

1. Stahl, T., Völter, M., Czarnecki, K.: Model-driven software development: technol-
ogy, engineering, management. John Wiley & Sons (2006)

2. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20(5) (2003) 42�45

3. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

4. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Ac-
tion: The best industrial practice in product lines engineering. Springer Berlin
Heidelberg (2007)

5. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute (November 1990)

6. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-
oriented reuse method with domain-speci�c reference architectures. Annals of
Software Engineering 5(1) (1998) 143�168

7. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering - A family-based
software development process. Addison-Wesley, Reading, Massachusetts (1999)

8. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process Improvement and Practice 10(1)
(2005) 7�29

9. Fey, D., Fajta, R., Boros, A.: Feature modeling: A meta-model to enhance usability
and usefulness. Lecture Notes in Computer Science 2379 (2002) 198�216

10. Zhang, W., Zhao, H., Mei, H.: A propositional logic-based method for veri�cation
of feature models. Lecture Notes in Computer Science 3308 (2004) 115�130

83



Possompès et al.

11. techtarget.com: What is platform? - de�nition from whatis.com.
http://searchservervirtualization.techtarget.com/sDefinition/0,

,sid94_gci212797,00.html (2010)
12. Meyer, M., Lehnerd, A.: The power of product platforms. Free Press, New York

(1997)
13. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceabil-

ity. IBM Systems Journal 45(3) (2006) 515�526
14. Rubin, J., Yatzkar-Haham, T.: IBM R&D Labs in Israel | consumer electronics

development environment (COMPETENCE). https://www.research.ibm.com/

haifa/projects/services/competence/index.shtml (February 2007)
15. Pham, H.N., Mahmoud, Q.H., Ferworn, A., Sadeghian, A.: Applying Model-Driven

development to pervasive system engineering. In: SEPCASE '07: Proceedings of
the 1st International Workshop on Software Engineering for Pervasive Computing
Applications, Systems, and Environments, Washington, DC, USA, IEEE Computer
Society (2007) 7

84

http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci212797,00.html
http://searchservervirtualization.techtarget.com/sDefinition/0,,sid94_gci212797,00.html
https://www.research.ibm.com/haifa/projects/services/competence/index.shtml
https://www.research.ibm.com/haifa/projects/services/competence/index.shtml



