
MALLOW 2010

Proceedings of The Multi-Agent Logics, Languages, and

Organisations Federated Workshops (MALLOW 2010)

Lyon, France, from the 30th of August to the 2nd of

September, 2010.

ORGANIZATION COMMITTEE

Organization chairs
• Olivier Boissier, ENSM, Saint-Etienne, France
• Amal El Fallah Seghrouchni, LIP6, Paris, France
• Salima Hassas, LIESP, Lyon, France
• Nicolas Maudet, LAMSADE, Paris, France

Organization committee
• Samir Aknine, LIESP, Lyon, France
• Aurélie Bénier, LIP6, Paris, France
• Fabien Badeig, LAMSADE, Paris, France
• Flavien Balbo, LAMSADE, Paris, France
• Zahia Guessoum, LIP6, Paris, France
• Gauthier Picard, ENSM, Saint-Etienne, France
• Laurent Vercouter, ENSM, Saint-Etienne, France
• Caroline Wintergerst, IAE Lyon 3, France

Steering Committee
• Cristina Baroglio, University of Torino, Italy
• Rafael H. Bordini (chair), INF-UFRGS, Brazil
• Mehdi Dastani, Utrecht Univeristy, Netherlands
• Virginia Dignum, TU Delft, Netherlands
• João Leite, Universidade Nova de Lisboa, Portugal
• John Lloyd, Australian National University, Australia
• Brian Logan, University of Nottingham, UK
• Pablo Noriega, IIIA-CSIC, Spain
• Munindar Singh, NCSU, USA
• Rineke Verbrugge, University of Groningen, Netherlands

PREFACE

These informal proceedings contain the contributions presented during MALLOW-2010
federation of workshops at Domaine Valpré near Lyon. MALLOW stands for "Multi-Agent
Logics, Languages, and Organizations". This year the event federates 5 workshops:

• The Workshop on Coordination, Organization, Institutions and Norms in Agent
Systems (COIN)

• The Workshop of the FIPA Design Process Documentation and Fragmentation
Working Group (DPDF WG)

• The Workshop on LAnguages, methodologies and Development tools for multi-
agent systemS (LADS)

• The Workshop on Logics for Resource Bounded Agents (LRBA)
• The Workshop on Multi-Agent Systems and Simulation (MASS)

The contributed papers of each workshop have been selected independently by the
corresponding scientific committees, for a grand total of 42 papers. We believe it provides a
nice overview of the current research on some of the hot topics in multiagent systems.

In addition to these contributions, invited lectures by Bruce Edmonds (Manchester
Metropolitan University Business School, UK), Andreas Herzig (IRIT, Toulouse, FR) and
David Sadek (Orange, FR), are scheduled this year.
A panel organized by Alessandro Ricci (DEIS, Bologna, Italy) offers the opportunity for
the participants to share and discuss their points of view on "Agent and Multi-agent
Thinking in Mainstream Computer Science".

We take the opportunity to thank these invited speakers, the panel organizer and the
participants for their contribution.

MALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in
2009 in Turin. The objective, as initially stated, is to “provide a venue where: the cost of
participation was minimum; participants were able to attend various workshops, so
fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty
of time for networking, by maximizing the time participants spent together”.

We would like to thank the Valpré Domain for offering the accommodation infrastructure
that strongly contributed this year to build this friendly atmosphere.

This MALLOW-2010 edition has been organized by four groups of the French community,
developing researches on multi-agent systems: LAMSADE (Paris), LIESP (Lyon), LIP6
(Paris) and G2I/LSTI (Saint-Etienne).
The success of these first editions, with an attendance of 80-100 participants, is a clear
encouragement to organize a follow-up. At the time of writing, the available figures
indicate a similar attendance for this year, with participants coming from large variety of
countries (e.g. Brazil, France, Germany, Italy, Japan, Netherlands, and United Kingdom).

Like in previous editions, the collocation of MALLOW with the European Summer School
already proved to be beneficial for many young researchers. Indeed, about 25% of
participants registered to attend both events and enjoy this unique opportunity to get in two
weeks the background picture of the multiagent field (as provided by EASSS tutors), and
some of the latest developments as discussed during MALLOW workshops.

Finally, a key to the success of MALLOW events is to offer an affordable price for the
whole event. This year this was made possible thanks to the support of various partners that
we wish to thank again here: AFIA (Artificial Intelligence French Association), FIPA,
COST Agreement Technologies IC0801, ISLE, IXXI (Complex Systems Institute Rhônes-
Alpes), UPETEC (Emergence Technologies Self-Adaptive Software), Région Rhône-
Alpes, Rhône Le Département, LIESP Laboratory, LAMSADE, LIP6, ENSM Saint-
Etienne.

COIN@

Nicoletta Fornara, George Vouros (eds.)

11th International Workshop on

Coordination, Organization,
Institutions and Norms

in Agent Systems

Lyon, France,
30th August - 2nd September 2010

Workshop Notes

COIN@MALLOW 2010 web site
http://ai-lab-webserver.aegean.gr/coin@mallow2010/

Preface

The development of complex distributed AI systems with heterogeneous and
diverse knowledge is a challenge. System components must interact, coordinate
and collaborate to manage scale and complexity of task environments targeting
persistency and maybe, evolution of systems. Managing scale and complexity
requires organized intelligence; in particular intelligence manifested in organiza-
tions of agents, by individual strategies or collective behaviour. System archi-
tects have to consider: the inter-operation of heterogeneously designed, devel-
oped or discovered components (agents, objects/artefacts, services provided in
an open environment); inter-connection which cross legal, temporal, or organi-
zational boundaries; the absence of global objects or centralised controllers; the
possibility that components will not comply with the given specifications; and
embedding in an environment which is likely to change, with possible impact on
individual and collective objectives.

The convergence of the requirement for intelligence with these operational
constraints demands: coordination, the collective ability of heterogeneous and
autonomous components to arrange or synchronise the performance of specified
actions in sequential or temporal order; rational and open organization, a formal
structure supporting or producing intentional forms of coordination, capable
of managing changes in the environment in which it operates; institution, an
organization where the performance of designated actions by empowered agents
produces conventional outcomes; and norms, standards or patterns of behaviour
in an institution established by decree, agreement, emergence, and so on.

The automation and distribution of intelligence is the subject of study in
autonomous agents and multi-agent systems; the automation and distribution
of intelligence for coordination, organization, institutions and norms is the in-
terest of this workshop on Coordination, Organization, Institutions and Norms
in Agent Systems (COIN), in its eleventh edition. The COIN@MALLOW 2010
workshop is part of the COIN series of workshops http://www.pcs.usp.br/ coin/.

This edition of COIN received fourteen high quality submissions, describ-
ing works by researchers coming from nine different countries, eight of which
have been selected by the Programme Committee as regular papers and two
of which have been selected by the Programme Committee as position papers.
Each paper received at least three reviews in order to supply the authors with
helpful feedback that could stimulate the research as well as foster discussion.
COIN@AAMAS2010 and COIN@MALLOW2010 post-proceedings will be pub-
lished soon in a single Springer LNCS volume.

We would like to thank all authors for their contributions, the members of
the Steering Committee for the valuable suggestions and support, and the mem-
bers of the Programme Committee for their excellent work during the reviewing
phase.

August 4th, 2010

Nicoletta Fornara, George Vouros

Workshop Organisers

Nicoletta Fornara University of Lugano, Switzerland
George Vouros University of the Aegean, Greece

Programme Committee

Alexander Artikis National Centre for Scientific Research Demokritos, Greece
Guido Boella University of Torino, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Rafael Bordini Federal University of Rio Grande do Sul, Brazil
Amit Chopra University of Trento, Italy
Antonio Carlos da Rocha Costa Univ. Federal do Rio Grande FURG, Brazil
Marina De Vos University of Bath, UK
Virginia Dignum Delft University of Technology, The Netherlands
Jomi Fred Hubner Federal University of Santa Catarina, Brazil
Christian Lemaitre Universidad Autonoma Metropolitana, Mexico
Henrique Lopes Cardoso Universidade do Porto, Portugal
Eric Matson Purdue, USA
John-Jules Meyer Utrecht University, The Netherlands
Pablo Noriega IIIA-CSI, Spain
Eugenio Oliveira Universidade do Porto, Portugal
Andrea Omicini University of Bologna, Italy
Sascha Ossowski URJC, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College, London, UK
Juan Antonio Rodriguez Aguilar IIIA-CSIC, Spain
Jaime Sichman University of Sao Paulo, Brazil
Munindar P. Singh North Carolina State University, USA
Viviane Torres da Silva Universidade Federal Fluminente, Brazil
Kostas Stathis Royal Holloway, University of London, UK
Paolo Torroni University of Bologna, Italy
Leon van der Torre University of Luxembourg, Luxembourg
Birna van Riemsdijk Delf University of Technology, The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vazquez-Salceda University Politecnica de Catalunya, Spain
Mario Verdicchio University of Bergamo, Italy
Danny Weyns Katholieke Universiteit Leuven, Germany
Pinar Yolum Bogazici University, Turkey

Additional Reviewers

Luciano Coutinho Universidade de Campinas, Brazil
Akin Gunay Bogazici University, Turkey
Ozgur Kafali Bogazici University, Turkey

Steering Committee

Guido Boella University of Torino, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Nicoletta Fornara University of Lugano, Switzerland
Christian Lemaitre Universidad Autonoma Metropolitana, Mexico
Eric Matson Purdue University, USA
Pablo Noriega Artficial Intelligence Research Institute, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College London, UK
Jaime Sichman University of Sao Paulo, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vzquez Salceda Universitat Politecnica de Catalunya, Spain
George Vouros University of the Aegean, Greece

Table of Contents

Normative Monitoring: Semantics and Implementation 1
Sergio Alvarez-Napagao, Huib Aldewereld, Javier Vazquez, Frank Dignum

Controlling multi-party interaction within normative multi-agent
organizations . 17

Olivier Boissier, Flavien Balbo, Fabien Badeig

Norm Refinement and Design through Inductive Learning 33
Domenico Corapi, Marina De Vos, Julian Padget, Alessandra Russo,
Ken Satoh

Norm enforceability in Electronic Institutions? . 49
Natalia Criado, Estefania Argente, Antonio Garrido, Juan A. Gimeno,
Francesc Igual, Vicente Botti, Pablo Noriega, Adriana Giret

Towards a Normative BDI Architecture for Norm Compliance 65
Natalia Criado, Estefania Argente, Pablo Noriega, Vicent Botti

Generating Executable MAS-Prototypes from SONAR Specifications 82
Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, Daniel Moldt

Embodied Organizations: a unifying perspective in programming
Agents, Organizations and Environments . 98

Michele Piunti, Olivier Boissier, Jomi F. Hüubner, Alessandro Ricci

Group intention = social choice + commitment . 115
Marija Slavkovik, Guido Boella, Gabriella Pigozzi, Leon van der Torre

Position Papers

MERCURIO: An Interaction-oriented Framework for Designing,
Verifying and Programming Multi-Agent Systems . 134

Matteo Baldoni, Cristina Baroglio, Federico Bergenti, Antonio Bocca-
latte, Elisa Marengo, Maurizio Martelli, Viviana Mascardi, Luca Padovani,
Viviana Patti, Alessandro Ricci, Gianfranco Rossi, Andrea Santi

Contextual Integrity and Privacy Enforcing Norms for Virtual
Communities . 150

Yann Krupa, Laurent Vercouter

Normative Monitoring:
Semantics and Implementation

Sergio Alvarez-Napagao1, Huib Aldewereld2,
Javier Vázquez-Salceda1, and Frank Dignum2

1 Universitat Politècnica de Catalunya
{salvarez,jvazquez}@lsi.upc.edu

2 Universiteit Utrecht
{huib,dignum}@cs.uu.nl

Abstract. The concept of Normative Systems can be used in the scope of Multi-
Agent Systems to provide reliable contexts of interactions between agents where
acceptable behaviour is specified in terms of norms. Literature on the topic is
growing rapidly, and there is a considerable amount of theoretical frameworks
for normative environments, some in the form of Electronic Institutions. Most of
these approaches focus on regulative norms rather than on substantive norms, and
lack a proper implementation of the ontological connection between brute events
and institutional facts. In this paper we present a formalism for the monitoring of
both regulative (deontic) and substantive (constitutive) norms based on Structural
Operational Semantics, its reduction to Production Systems semantics and our
current implementation compliant to these semantics.

1 Introduction

In recent years, several researchers have argued that the design of multi-agent systems
(MAS) in complex, open environments can benefit from social abstractions in order
to cope with problems in coordination, cooperation and trust among agents, problems
which are also present in human societies. One of such abstractions is Normative Sys-
tems. Research in Normative Systems focuses on the concepts of norms and normative
environment (which some authors refer to as institutions) in order to provide normative
frameworks to restrict or guide the behaviour of (software) agents. The main idea is
that the interactions among a group of (software) agents are ruled by a set of explicit
norms expressed in a computational language representation that agents can interpret.
Although some authors only see norms as inflexible restrictions to agent behaviour, oth-
ers see norms not as a negative, constraining factor but as an aid that guides the agents’
choices and reduces the complexity of the environment, making the behaviour of other
agents more predictable.

Until recently, most of the work on normative environments works with norm spec-
ifications that are static and stable, and which will not change over time. Although this
may be good enough from the social (institutional) perspective, it is not appropriate
from the agent perspective. During their lifetime, agents may enter and leave several
interaction contexts, each with its own normative framework. Furthermore they may be
operating in contexts where more than one normative specification applies. So we need

1

mechanisms where normative specifications can be added to the agents’ knowledge
base at run-time and be practically used in their reasoning, both to be able to interpret
institutional facts from brute ones (by using constitutive norms to, e.g. decide if killing
a person counts as murder in the current context) and to decide what ought to be done
(by using regulative norms to, e.g. prosecute the murderer). In this paper we propose to
use production systems to build a norm monitoring mechanism that can be used both
by agents to perceive the current normative state of their environment, and for these
environments to detect norm violations and enforce sanctions. Our basic idea is that an
agent can configure, at a practical level, the production system at run-time by adding
abstract organisational specifications and sets of counts-as rules.

In our approach, the detection of normative states is a passive procedure consisting
in monitoring past events and checking them against a set of active norms. This type
of reasoning is already covered by the declarative aspect of production systems, so
no additional implementation in an imperative language is needed. Using a forward-
chaining rule engine, events will automatically trigger the normative state - based on
the operational semantics - without requiring a design on how to do it.

Having 1) a direct syntactic translation from norms to rules and 2) a logic imple-
mented in an engine consistent with the process we want to accomplish, allows us to
decouple normative state monitoring from the agent reasoning. The initial set of rules
we have defined is the same for each type of agent and each type of organisation, and
the agent will be able to transparently query the current normative state at any moment
and reason upon it. Also this decoupling helps building third party/facilitator agents ca-
pable of observing, monitoring and reporting normative state change or even enforcing
behaviour in the organisation.

In this paper we present a formalism for the monitoring of both regulative (de-
ontic) and substantive (constitutive) norms based on Structural Operational Semantics
(Section 2), its reduction to Production Systems semantics (Section 3) and our current
implementation compliant to these semantics (Section 4). In Section 5 we compare with
other related work and provide some conclusions.

2 Formal Semantics

In this section we discuss the formal semantics of our framework. First, in section 2.1,
we give the semantics of institutions as the environment specifying the regulative and
constitutive norms. Then, in section 2.2, we describe the details of how this institution
evolves over time based on events, and how this impacts the monitoring process. This
formalisation will be used in section 3 as basis of our implementation.

Through this paper, we will use as an example the following simplified traffic sce-
nario:

1. A person driving on a street is not allowed to break a traffic convention.
2. In case (1) is violated, the driver must pay a fine.
3. In a city, to exceed 50kmh counts as breaking a traffic convention.

2

2.1 Preliminary definitions

Before giving a formal definition of institutions (see definition 4), we first define the
semantics of the regulative and constitutive norms part of that institution (in definitions
1 and 3, respectively).

We assume the use of a predicate based propositional logic language LO with pred-
icates and constants taken from an ontology O, and the logical connectives {¬,∨,∧}.
The set of all possible well-formed formulas of LO is denoted as wff(LO) and we
assume that each formula from wff(LO) is normalised in Disjunctive Normal Form
(DNF). Formulas in wff(LO) can be partially grounded, if they use at least one free
variable, or fully grounded if they use no free variables.

In this paper we intensively use the concept of variable substitution. We define a
substitution instance Θ = {x1 ← t1, x2 ← t2, ..., xi ← ti} as the substitution of the
terms t1, t2, ..., ti for variables x1, x2, ..., xi in a formula f ∈ wff(LO).

We denote the set of roles in a normative system as the set of constants R, where
R ⊂ O, and the set of participants as P , where each participant enacts at least one role
according to the ontology O.

As our aim is to build a normative monitoring mechanism that can work at real time,
special care has been made to choose a norm language which, without loss of expre-
siveness, has operational semantics that can then be mapped into production systems.
Based in our previous work and experience, our definition of norm in an extension of
the norm language presented in [12]:

Definition 1. A norm n is a tuple n = 〈fA, fM , fδ, fD, fw, w〉, where

– fA, fM , fδ, fD, fw ∈ wff(LO), w ∈ R,
– fA, fM , fD respectively represent the activation, maintenance, and deactivation

conditions of the norm, fδ, fw are the explicit representation of the deadline and
target of the norm, and

– w is the subject of the norm.

In order to create an optimal norm monitor it is important to know which norms
are active at each point in time, as only those are the ones that have to be traced (in-
active norms can be discarded from the monitoring process until they become active
again). The activation condition fA specifies when a norm becomes active. It is also the
main element in the norm instantiation process: when the conditions in the activating
condition hold, the variables are instantiated, creating a new norm instance3 The tar-
get condition fw describes the state that fulfills the norm (e.g. if one is obliged to pay,
the payment being made fulfills the obligation). The deactivating condition fD defines
when the norm becomes inactive. Typically it corresponds to the target condition (e.g.,
fulfilling the norm instance deactivates that instance of the norm), but in some cases it
also adds conditions to express other deactivating scenarios (e.g., when the norm be-
comes deprecated). The maintenance condition fM defines the conditions that, when

3 One main differentiating aspect of our formalisation is that we include variables in the norm
representation and we can handle multiple instantiations of the same norm and track them
separately.

3

no longer hold, lead to a violation of the norm. Finally the deadline condition fδ resp-
resents one or several deadlines for the norm to be fulfilled.

An example of a norm for the traffic scenario (”A person driving on a street is not
allowed to break a traffic convention”) would be formalised as follows

n1 :=〈enacts(X,Driver) ∧ is driving(X),

¬traffic violation(X),

⊥ ,
¬is driving(X),

is driving(X) ∧ ¬traffic violation(X),

Driver〉,
The activating condition states that each time an event appears where an individual

enacting theDriver role drives (‘is driving), then a new instance of the norm becomes
active; the maintenance condition states that the norm will not be violated while no
traffic convention is violated; this norm has no deadline, it is to apply at all times an
individual is driving; the norm instance deactivates when the individual stops driving4;
the target of this norm is that we want drivers not breaking traffic conventions; finally
the subject of the norm is someone enacting the Driver role.

It is important to note here that, although our norm representation does not explicitly
include deontic operators, the combination of the activation, deactivation and mainte-
nance conditions is as expressive as conditional deontic statements with deadlines as the
ones in [3]. It is also able to express unconditional norms and maintenance obligations
(i.e. the obligation to keep some conditions holding for a period of time). To show that
our representation can be mapped to conditional deontic representations, let us express
the semantics of the norm in definition 1 in terms of conditional deontic statements.
Given relations between the deadline and maintenance condition (that is, fδ → ¬fM ,
since the maintenance condition expresses more than the deadline alone) and between
the target and the deactivation condition (i.e., fw → fD, since the deactivation condi-
tion specifies that either the norm is fulfilled or something special has happened), we
can formalise the norms of definition 1 as the equivalent deontic expression (using the
formalism of [3]): fA → [Ow(Ewfw ≤ ¬fM)U fD], where Eap means that agent a
sees to it that (stit) p becomes true and U is the CTL∗ until operator. Intuitively, the
expression states that after the norm activation, the subject is obliged to see to it that the
target becomes true before the maintenance condition is negated (either the deadline is
reached or some other condition is broken) until the norm is deactivated (which is either
when the norm is fulfilled or has otherwise expired).

Since we are not reasoning about the (effects of) combinations of norms, we will not
go into further semantical details here. The semantics presented in this deontic reduction
are enough for understanding the monitoring process that is detailed in the remainder
of the paper.

A set of norms is denoted as N . We define as violation handling norms those norms
that are activated automatically by the violation of another norm:

4 Although the norm is to apply at all times an individual is driving, it is better to deactivate the
norm each time the individual stops driving, instead to keep it active, to minimize the number
of norm instances the monitor needs to keep track at all times.

4

Definition 2. A norm n′ = 〈f ′A, f ′M , f ′δ, f ′D, f ′w, w′〉 is a violation handling norm of
n = 〈fA, fM , fδ, fD, fw, w〉, denoted as n; n′ iff fA ∧ ¬fM ∧ ¬fD ≡ f ′A

Violation handling norms are special in the sense that they are only activated when
another norm is violated. They are used as sanctioning norms, if they are to be fulfilled
by the norm violating actor (e.g., the obligation to pay a fine if the driver broke a traffic
sign), or as reparation norms, if they are to be fulfilled by an institutional actor (e.g. the
obligation of the authorities to fix the broken traffic sign).

A norm is defined in an abstract manner, affecting all possible participants enacting
a given role. Whenever a norm is active, we will say that there is a norm instance
ni = 〈n, θ〉 for a particular norm n and a substitution instance Θ.

We define the state of the world st at a specific point of time t as the set of predicates
holding at that specific moment, where st ⊆ O, and we will denote S as the set of
all possible states of the world, where S = P(O). We will call expansion F (s) of a
state of the world s as the minimal subset of wff(LO) that uses the predicates in s in
combination of the logical connectives {¬,∨,∧}.

One common problem for the monitoring of normative states is the need for an
interpretation of brute events as institutional facts, also called constitution of social
reality[8]. The use of counts-as rules helps solving this problem. Counts-as rules are
multi-modal statements of the form [c](γ1 → γ2), read as “in context c, γ1 counts-as
γ2”. In this paper, we will consider a context as a set of predicates, that is, as a possible
subset of a state of the world:

Definition 3. A counts-as rule is a tuple c = 〈γ1, γ2, s〉, where γ1, γ2 ∈ wff(LO),
and s ⊆ O.

A set of counts-as rules is denoted as C. Although the definition of counts-as in [8]
assumes that both γ1 and γ2 can be any possible formula, in our work we limit γ2 to a
conjunction of predicates for practical purposes.

Definition 4. Following the definitions above, we define an institution as a tuple of
norms, roles, participants, counts-as rules, and an ontology:

I = 〈N,R, P,C,O〉

An example of I for the traffic scenario would be formalised as follows:
N :={〈enacts(X,Driver) ∧ is driving(X),
¬traffic violation(X),⊥,¬is driving(X),
is driving(X) ∧ ¬traffic violation(X), Driver〉,
〈enacts(X,Driver) ∧ is driving(X) ∧ traffic violation(X),
>,
paid fine(X), Driver〉}
R :={Driver},P :={Person1}
C :={〈exceeds(D, 50), traffic violation(D), is in city(D)〉}
O :={role, enacts, is driving, is in city,
exceeds, traffic violation, is driving, paid fine,
Person1, role(Driver), enacts(Person1, Driver)}

5

2.2 Normative Monitor

In this section we present a formalisation of normative monitoring based on Structural
Operational Semantics.

From the definitions introduced in section 2.1, a Normative Monitor will be com-
posed of the institutional specification, including norms, the current state of the world,
and the current normative state.

In order to track the normative state of an institution at any given point of time, we
will define three sets: an instantiation set IS, a fulfillment set FS, and a violation set
V S, each of them containing norm instances {〈ni, Θj〉, 〈ni′ , Θj′〉, ..., 〈ni′′ , Θj′′〉}. We
adapt the semantics for normative states from [11]:

Definition 5. Norm Lifecycle: Let ni = 〈n,Θ〉 be a norm instance, where n = 〈fA, fM , fD, w〉,
and a state of the world s with an expansion F (s). The lifecycle for norm instance ni
is defined by the following normative state predicates:

activated(ni)⇔ ∃f ∈ F (s), Θ(fA) ≡ f
maintained(ni)⇔ ∃Θ′,∃f ∈ F (s), Θ′(fM) ≡ f ∧Θ′ ⊆ Θ
deactivated(ni)⇔ ∃Θ′,∃f ∈ F (s), Θ′(fD) ≡ f ∧Θ′ ⊆ Θ
instantiated(ni)⇔ ni ∈ IS
violated(ni)⇔ ni ∈ V S
fulfilled(ni)⇔ ni ∈ FS
where IS is the instantiation set, FS is the fulfillment set, and V S is the violation

set, as defined above.

For instance, for norm n1, the lifecycle is represented in Figure 1. The maintained
state is not represented as it holds in both the activated and fulfilled states. The de-
activated state is also not depicted because it corresponds in this case to the Fulfilled
state.

Fig. 1: Lifecycle for norm n1 in the traffic scenario: (I)nactive, (A)ctivated, (V)iolated,
(F)ulfilled

Definition 6. A Normative MonitorMI for an institution I is a tupleMI = 〈I, S, IS, V S, FS〉
where

6

– I = 〈N,R, P,C,O〉,
– S = P(O),
– IS = P(N × S ×Dom(S)),
– V S = P(N × S ×Dom(S)), and
– FS = P(N × S ×Dom(S)).

The set Γ of possible configurations of a Normative Monitor MI is Γ = I × S ×
IS × V S × FS.

However, the definition above does not take into account the dynamic aspects of
incoming events affecting the state of the world through time. To extend our model
we will assume that there is a continuous, sequential stream of events received by the
monitor:

Definition 7. An event e is a tuple e = 〈α, p〉, where

– α ∈ P 5, and
– p ∈ F and is fully grounded.

We define E as the set of all possible events, E = P(P × F)

Definition 8. The Labelled Transition System for a Normative Monitor MI is defined
by 〈Γ,E,�〉 where

– E is the set of all possible events e = 〈α, p〉
– � is a transition relation such that � ⊆ Γ × E × Γ

The inference rules for the transition relation � are depicted in Figure 2.

3 Monitoring with production systems

In our approach, practical normative reasoning is based on a production system with
an initial set of rules implementing the operational semantics described in Section 2.2.
Production systems are composed of a set of rules, a working memory, and a rule in-
terpreter or engine [2]. Rules are simple conditional statements, usually of the form
IF a THEN b, where a is usually called left-hand side (LHS) and b is usually called
right-hand side (RHS).

3.1 Semantics of production systems

In this paper we use a simplified version of the semantics for production systems intro-
duced in [1].

Considering a set P of predicate symbols, and an infinite set of variables X , where
a fact is a ground term, f ∈ T (P), andWM is the working memory, a set of facts, a
production rule is denoted if p, c remove r add a, or

5 α is considered to be the asserter of the event. Although we are not going to use this element
in this paper, its use may be of importance when extending or updating this model.

7

Event processed:

ei = 〈α, p〉
〈〈〈i, s, is, vs, fs〉, ei〉, ei+1〉� 〈〈i, s ∪ {p}, is, vs, fs〉, ei+1〉

(1)

Counts-as rule activation:

∃Θ, ∃f ∈ F (s),∃〈γ1, γ2, si〉 ∈ C, si ⊆ s ∧Θ(γ1) ≡ f ∧Θ(γ2) /∈ s
〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s ∪ {Θ(γ2)}, is, vs, fs〉, e〉

(2)

Counts-as rule deactivation:

∃Θ,∃f ∈ F (s),∃〈γ1, γ2, si〉 ∈ C, si 6⊆ s ∧Θ(γ1) ≡ f ∧Θ(γ2) ∈ s
〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s− {Θ(γ2)}, is, vs, fs〉, e〉

(3)

Norm instantiation:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ ¬∃n′ ∈ N,n′ ; n ∧ 〈n,Θ〉 /∈ is ∧ ∃Θ, ∃f ′ ∈ F (s), f ′ ≡ Θ(fA)

〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s, is ∪ {〈n,Θ〉}, vs, fs〉, e〉
(4)

Norm instance violation:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ 〈n,Θ′〉 ∈ is ∧ 〈n,Θ′〉 /∈ vs∧
¬(∃Θ,∃f ′ ∈ F (s), f ′ ≡ Θ(fM) ∧Θ ⊆ Θ′) ∧NR =

⋃
n;n′〈n′, Θ′〉

〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s, (is− {〈n, Theta′〉}) ∪NR,
vs ∪ {〈n,Θ′〉}, fs〉, e〉

(5)
Norm instance fulfilled:

∃n = 〈fA, fM , fD, w〉 ∈ N ∧ 〈n,Θ′〉 ∈ is ∧ ∃Θ, ∃f ′ ∈ F (s), f ′ ≡ Θ(fD) ∧Θ ⊆ Θ′

〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s, is− {〈n,Θ′〉}, vs, fs ∪ 〈n,Θ′〉〉, e〉
(6)

Norm instance violation repaired:

∃n, n′ ∈ N ∧ n; n′ ∧ 〈n,Θ〉 ∈ vs ∧ n; n′ ∧ 〈n′, Θ〉 ∈ fs
〈〈〈N,R, P,C,O〉, s, is, vs, fs〉, e〉� 〈〈〈N,R, P,C,O〉, s, is, vs− {〈n,Θ〉}, fs〉, e〉 (7)

Fig. 2: Inference rules for the transition relation �

p, c ⇒ r, a,

consisting of the following components:

– A set of positive or negative patterns p = p+ ∪ p− where a pattern is a term pi ∈
T (F ,X) and a negated pattern is denoted ¬pi. p− is the set of all negated patterns
and p+ is the set of the remaining patterns

– A proposition c whose set of free variables is a subset of the pattern variables:
V ar(c) ⊆ V ar(p).

– A set r of terms whose instances could be intuitively considered as intended to be
removed from the working memory when the rule is fired, r = {ri}i∈Ir , where
V ar(r) ⊆ V ar(p+).

8

– A set a of terms whose instances could be intuitively considered as intended to
be added to the working memory when the rule is fired, a = {ai}i∈Ia , where
V ar(a) ⊆ V ar(p).

Definition 9. A set of positive patterns p+ matches to a set of facts S and a substitution
σ iff ∀p ∈ p+,∃t ∈ S, σ(p) = t. Similarly, a set of negative patterns p− dismatches a
set of facts S iff ∀¬p ∈ p−,∀t ∈ S,∀σ, σ(p) 6= t.

A production rule p⇒ r, a is (σ,WM′)-fireable on a working memoryWM when
p+ matches withWM′ and p− dismatches withWM, whereWM′ is a minimal subset
ofWM, and T |= σ(c).

Definition 10. The application of a (σ,WM′)-fireable rule on a working memoryWM
leads to the new working memoryWM′′ = (WM− σ(r)) ∪ σ(a).

Definition 11. A general production system PS is defined as PS = 〈P,WM0,R〉,
whereR is a set of production rules overH = 〈P,X〉.

3.2 Reduction

In order to formalise our Normative Monitor as a production system, we will need to
define several predicates to bind norms to their conditions: activation, maintenance, de-
activation, and to represent normative state over norm instances: violated, instantiated,
and fulfilled. We will also use a predicate for the arrival of events: event, and a predicate
to represent the fact that a norm instance is a violation handling norm instance of a vi-
olated instance: repair. For the handling of the DNF clauses, we will use the predicates
holds and has clause.

Definition 12. The set of predicates for our production system, for an institution I =
〈N,R, P,C,O〉, is:
PI := O ∪ {activated,maintained, deactivated,

violated, instantiated, fulfilled, event, repair,
holds, has clause, countsas}

The initial working memory WM0 should include the institutional specification
in the form of the formulas included in the counts-as rules and the norms in order
to represent the possible instantiations of the predicate holds, through the use of the
predicate has clause.

First of all, we need to have the bindings between the norms and their formulas
available in the working memory. For each norm n = 〈fA, fM , fD, w〉, these bindings
will be:
WMn := {activation(n, fA),maintenance(n, fM), deactivation(n, fD)}
As we assume the formulas from wff(LO) to be in DNF form:

Definition 13. We can interpret a formula as a set of conjunctive clauses f = {f1, f2, ..., fN},
of which only one of these clauses fi holding true is necessary for f holding true as
well:

rh := has clause(f, f ′) ∧ holds(f ′, Θ)⇒ ∅, {holds(f,Θ)}

9

For example, if f = (p1(x)∧p2(y)∧ ...∧pi(z))∨ ...∨(q1(w)∧q2(x)∧ ...∧qj(y)),
then the initial facts to be inWM0 will be:
WM0 :=

⋃
f ′∈f has clause(f, f

′) = {has clause(f, f1), ..., has clause(f, f2)}
Also, we have to include the set of repair norms by the use of the predicate repair,

and the counts-as definitions by the use of the predicate countsas.

Definition 14. The initial working memoryWMI for an institution I = 〈N,R, P,C,O〉
is:

WMI :=
⋃n∈N
n;n′ repair(n, n′) ∪⋃

n=〈fA,fM ,fD,w〉∈N (WMn ∪WMfA ∪WMfM ∪WMfD) ∪⋃
c=〈γ1,γ2,s〉∈C({countsas(γ1, γ2, s)} ∪WMγ1 ∪WMs)

The rule for the detection of a holding formula is defined as rhcf = dfe ⇒ ∅, {holds(f, σ)},
where we denote as dfe the propositional content of a formula f ∈ wff(LO) which
only uses predicates from O and the logical connectives ¬ and ∧, and σ as the substitu-
tion set of the activation of the rule. Following the previous example:

rhcf1 = p1(x) ∧ p2(y) ∧ ... ∧ pi(z)⇒ ∅, {holds(f1, {x, y, z})}
rhcf2 = q1(w) ∧ q2(x) ∧ ... ∧ qi(y)⇒ ∅, {holds(f2, {w, x, y})}
Similarly as in Definition 14:

Definition 15. The set of rules RhcI for detection of holding formulas for an institution
I = 〈N,R, P,C,O〉 is:

RhcI :=
⋃
n=〈fA,fM ,fD,w〉∈N (

⋃
f∈{fA,fM ,fD} r

hc
f) ∪⋃

c=〈γ1,γ2,s〉∈C(
⋃
f∈γ1 r

hc
f)

By using the predicate holds as defined above, we can translate the inference rules
from Section 2.2. Please note that the rules are of the form p, c ⇒ r, a as shown in
Section 3.1. However, as we only need the c part to create a constraint proposition in
the rules for norm instance violation and fulfillment, c is omitted except for these two
particular cases.

Definition 16. Translated rules (see Figure 2)
Rule for event processing (1):
re = event(α, p)⇒ ∅, {dpe}
Rule for counts-as rule activation (2):
rca = countsas(γ1, γ2, c) ∧ holds(γ1, Θ) ∧ holds(c,Θ′) ∧ ¬holds(γ2, Θ)
⇒ ∅, {Θ(dγ2e)}
Rule for counts-as rule deactivation (3):
rcd = countsas(γ1, γ2, c) ∧ holds(γ1, Θ) ∧ ¬holds(c,Θ′) ∧ holds(γ2, Θ)
⇒ {Θ(dγ2e)}, ∅
Rule for norm instantiation (4):
rni = activation(n, f) ∧ holds(f,Θ) ∧ ¬instantiated(n,Θ) ∧ ¬repair(n′, n)
⇒ ∅, {instantiated(n,Θ)}
Rule for norm instance violation (5):
rnv = instantiated(n,Θ)∧maintenance(n, f)∧¬holds(f,Θ′)∧repair(n, n′),
∀Θ′, Θ′ ⊆ Θ

10

Fig. 3: Architecture of the DROOLS implementation

⇒ {instantiated(n,Θ)}, {violated(n,Θ), instantiated(n′, Θ)}
Rule for norm instance fulfillment (6):
rnf = deactivation(n, f)∧instantiated(n,Θ)∧subseteq(Θ′, Θ)∧holds(f,Θ′),
Θ′ ⊆ Θ
⇒ {instantiated(n,Θ)}, {fulfilled(n,Θ)}
Rule for norm instance violation repaired (7):
rnr = violated(n,Θ) ∧ repair(n, n′) ∧ fulfilled(n′, Θ′)
⇒ {violated(n,Θ)}, ∅

Definition 17. Following Definitions 13, 15 and 16, the set of rules for an institution
I = 〈N,R, P,C,O〉 are:
RI := RhcI ∪ {rh, re, rca, rcd, rni, rnv, rnf , rnr}

Definition 18. The production system PSI for an institution I will be, from Defini-
tions 12, 14 and 17:
PSI := 〈PI ,WMI ,RI〉

4 Implementation

A prototype of our normative reasoner has been implemented as a DROOLS program.
DROOLS is an open-source Object-Oriented rule engine for declarative reasoning in
Java [14]. Its rule engine is an implementation of the forward chaining inference Rete
algorithm [4]. The use of Java objects inside the rule engine allows for portability and
an easier communication of concepts with the reasoning of agents coded in Java.

11

rule "holds"
when

HasClause(f : formula, f2 : clause)
Holds(formula == f2, theta : substitution)

then
insertLogical(new Holds(f, theta));

end

rule "event processed"
when

Event(a : asserter, p : content)
then

insertLogical(p);
end

rule "counts-as activation"
when

CountsAs(g1 : gamma1, g2 : gamma2, s : context)
Holds(formula == g1, theta : substitution)
Holds(formula == s, theta2 : substitution)
not Holds(formula == g2, substitution == theta)

then
Formula f;

f = g2.substitute(theta);
insert(f);

end

rule "counts-as deactivation"
when

CountsAs(g1 : gamma1, g2 : gamma2, s : context)
Holds(formula == g1, theta : substitution)
not Holds(formula == s, theta2 : substitution)
Holds(formula == g2, substitution == theta)
f : Formula(content == g2, grounding == theta)

then
retract(f);

end

rule "norm instantiation"
when

Activation(n : norm, f : formula)
Holds(formula == f, theta : substitution)
not Instantiated(norm == n, substitution == theta)
not Repair(n2 : norm, repairNorm == n)

then
insert(new Instantiated(n, theta));

end

rule "norm instance violation"
when

ni : Instantiated(n : norm, theta : substitution)
Maintenance(norm == n, f : formula)
not (SubsetEQ(theta2 : subset, superset == theta)
and Holds(formula == f, substitution == theta2))
Repair(norm == n, n2 : repairNorm)

then
retract(ni);
insert(new Violated(n, theta));
insert(new Instantiated(n2, theta));

end

rule "norm instance fulfillment"
when

Deactivation(n : norm, f : formula)
ni : Instantiated(norm == n, theta : substitution)
SubsetEQ(theta2 : subset, superset == theta)
Holds(formula == f, substitution == theta2)

then
retract(ni);
insert(new Fulfilled(n, theta));

end

rule "norm instance violation repaired"
when

ni : Violated(n : norm, theta : substitution)
Repair(norm == n, n2 : repairNorm)
Fulfilled(norm == n2, substitution == theta)

then
retract(ni);

end

rule "subseteq"
when

Holds(f : formula, theta : substitution)
Holds(f2 : formula, theta2 : substitution)
eval(theta.containsAll(theta2))

then
insertLogical(new SubsetEQ(theta2, theta));

end

Fig. 4: Translation of base rules to DROOLS

12

In DROOLS we can represent facts by adding them to the knowledge base as ob-
jects of the class Predicate. Predicates are dynamically imported from standardised De-
scription Logic OWL-DL ontologies into Java objects using the tool OWL2Java[17], as
subclasses of a specifically designed Predicate class. The following shows an example
of the insertion of enacts role(p,Driver) into the knowledge base to express that p
(represented as object p of the domain and instantiating a participant) is in fact enacting
the role driver:

ksession.insert(new Enacts(p, Driver.class));

DROOLS programs can be initialised with a rule definition file. However, its working
memory and rule base can be modified at run-time by the Java process that is running
the rule engine. We take advantage of this by keeping a fixed base, which is a file with
fixed contents implementing the rules from Definition 13 and 16, which are indepen-
dent of the institution, and having a parser for institutional definitions that will feed the
rules from Definition 15, which are dependent on the institution (see Figure 3). The in-
stitutional definitions we currently use are based on an extension of the XML language
presented in [12].

The base rules (see Definitions 13 and 16) has been quite straightforward and the
translation is almost literal. The contents of the reusable DROOLS file is shown in Fig-
ure 4. The last rule of the Figure is the declarative implementation of the predicate
SubsetEQ to represent the comparison of substitutions instances Θ ⊆ Θ′, needed for
the cases of norm instance violation and fulfillment. In our implementation in Drools,
substitution instances are implemented as Set<Value> objects, where Value is a tuple
〈String, Object〉.

The rest of the rules (see Definitions 15) are automatically generated from the in-
stitutional specifications and inserted into the DROOLS rule engine. An example of two
generated rules for the traffic scenario is shown in Figure 5.

rule "N1_activation_1"
when

n : Norm(id == "N1")
Activation(norm == n, f : formula)
Enacts(X : p0, p1 == "Driver")
IsDriving(p0 == X)

then
Set<Value> theta = new Set<Value>();
theta.add(new Value("X", X));
insert(new Holds(f.getClause(0), theta));

end

rule "C1_1"
when

c : CountsAs(g1 : gamma1)
Exceeds(D : p0, 50 : p1)

then
Set<Value> theta = new Set<Value>();
theta.add(new Value("D", D));
insert(new Holds(g1.getClause(0), theta));

end

Fig. 5: Rules for the traffic scenario

13

The initial working memory is also automatically generated by inserting objects
(facts) into the DROOLS knowledge base following Definition 14. An example for the
traffic scenario is also shown in Figure 6. Please note that this is not an output of the
parser, but a representation of what it would execute at run-time.

ksession.insert(norm1);
ksession.insert(norm2);
ksession.insert(new Repair(norm1, norm2));
ksession.insert(new Activation(norm1, fn1a));
ksession.insert(new Maintenance(norm1, fn1m));
ksession.insert(new Deactivation(norm1, fn1d));
ksession.insert(new HasClause(fn1a, fn1a1));
ksession.insert(new HasClause(fn1m, fn1m1));
ksession.insert(new HasClause(fn1d, fn1d1));
/* ...same for norm2... */
ksession.insert(new CountsAs(c1g1, c1g2, c1s));
ksession.insert(new HasClause(c1g1, c1g11));
ksession.insert(new HasClause(c1g2, c1g21));
ksession.insert(new HasClause(c1s, c1s1));

Fig. 6: Facts for the traffic scenario

5 Conclusions and Related Work

The implementation of rule-based norm operationalisation has already been explored
in previous research. Some approaches [13,15] directly define the operationalisation of
the norms as rules of a specific language, not allowing enough abstraction to define
norms at a high level to be operationalised in different rule engine specifications. [5]
introduces a translation scheme, but it is bound to Jess by using specific constructs of
this language and it does not support constitutive norms.

Other recent approaches like [6] define rule-based languages with expressive con-
structs to model norms, but they are bound to a proper interpreter and have no grounding
on a general production system, requiring the use of an intentionally crafted or mod-
ified rule engine. For example, in [7,9], obligations, permissions and prohibitions are
asserted as facts by the execution of the rules, but the actual monitoring is out of the
base rule engine used.

[16] introduces a language for defining an organisation in terms of roles, norms,
and sanctions. This language is presented along with an operational semantics based on
transition rules, thus making its adoption by a general production system straightfor-
ward. Although a combination of counts-as rules and sanctions is used in this language,
it is not expressive enough to support regulative norms with conditional deontic state-
ments.

We solve these issues by combining a normative language [12] with a reduction to
a representation with clear operational semantics based on the framework in [11] for
deontic norms and the use of counts-as rules for constitutive norms. The formalism pre-
sented in this paper uses logic conditions that determine the state of a norm (active,

14

fulfilled, violated). These conditions can be expressed in propositional logic and can
be directly translated into LHS parts of rules, with no special adaptation needed. The
implementation of the operational semantics in a production system to get a practical
normative reasoner is thus straightforward. This allows agents for dynamically chang-
ing its institutional context at any moment, by feeding the production system with a new
abstract institutional specification.

Our intention is not to design a general purpose reasoner for normative agents, but
a practical reasoner for detecting event-driven normative states. This practical reasoner
can then be used as a component not only by normative agents, but also by monitors
or managers. Normative agents should deal with issues such as planning and future
possibilities, but monitors are focused on past events. For such a practical reasoner,
the expressivity of actions languages like C+ is not needed, and a simple yet efficient
solution is to use production systems, as opposed to approaches more directly related
to offline verification or model checking, such as [10].

Mere syntactical translations are usually misleading in the sense that rule language
specific constructs are commonly used, constraining reusability [13,5,7]. However, as
we have presented in this paper a reduction to a general version of production system
semantics, any rule engine could fit our purposes. There are several production system
implementations available, some widely used by the industry, such as JESS, DROOLS,
SOAR or PROVA. In most of these systems rules are syntactically and semantically sim-
ilar, so switching from one to the other would be quite simple. As production systems
dynamically compile rules to efficient structures, they can be used as well to validate
and verify the consistency of the norms. As opposed to [7,9], our reduction ensures that
the whole monitoring process is carried out entirely by a general production system,
thus effectively decoupling normative state detection and agent reasoning.

DROOLS is an open-source powerful suite supported by JBoss, the community, and
the industry, and at the same time it is lightweight enough while including key features
that we are or will be using in future work, As an advantage over other alternatives, it
includes features relevant to our topic, e.g. event processing, workflow integration. Its
OO approach makes it easy to be integrated with imperative code (Java), and OWL-DL
native support is expected in a short time.

Our implementation is already being used in several use cases with large amounts of
events and it is available at http://ict-alive.svn.sf.net/viewvc/ict-alive/
OrganisationLevel/trunk/Monitoring/ under a GPL license. As future
work we expect to extend the semantics in order to support first-order logic norm condi-
tions, and to perform an analysis on the algorithmic complexity of our implementation.

Acknowledgements

This work has been partially supported by the FP7-215890 ALIVE project. J. Vázquez-
Salceda’s work has been also partially funded by the Ramón y Cajal program of the
Spanish Ministry of Education and Science.

15

References

1. Cirstea, H., Kirchner, C., Moossen, M., Moreau, P.E.: Production Systems and Rete Algo-
rithm Formalisation. Tech. Rep. ILOG, INRIA Lorraine, INRIA Rocquencourt, Manifico
(2004)

2. Davis, R., King, J.: An overview of production systems. Tech. rep., Stanford Artificial Intel-
ligence Laboratory, Report No. STAN-CS-75-524 (1975)

3. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.: Meeting the Deadline: Why, When and
How. In: Formal Approaches to Agent-Based Systems, Lecture Notes in Computer Science
3228, pp. 30–40. Springer Berlin / Heidelberg (2005)

4. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

5. Garcı́a-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems. pp. 667–673. Utrecht, Netherlands (2005)

6. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraint rule-
based programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18(1), 186–217 (2009)

7. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

8. Grossi, D.: Designing invisible handcuffs: Formal investigations in institutions and organi-
zations for multi-agent systems. Thesis, Universiteit Utrecht (2007)

9. Hübner, J.F., Boissier, O., Bordini, R.H.: Normative programming for organisation manage-
ment infrastructures. In: Workshop on Coordination, Organization, Institutions and Norms
in Agent Systems in Online Communities (COIN@MALLOW 2009) (2009)

10. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic contracts. In:
Proceedings of 6th International Symposium on Automated Technology for Verification and
Analysis, Lecture Notes in Computer Science 5311, pp. 397–407. Springer Berlin / Heidel-
berg (2008)

11. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards a
formalisation of electronic contracting environments. In: Coordination, Organizations, In-
stitutions and Norms in Agent Systems IV, Lecture Notes in Computer Science 5428, pp.
156–171. Springer Berlin / Heidelberg (2009)

12. Panagiotidi, S., Vázquez-Salceda, J., Alvarez-Napagao, S., Ortega-Martorell, S., Willmott,
S., Confalonieri, R., Storms, P.: Intelligent Contracting Agents Language. In: Proceedings of
the Symposium on Behaviour Regulation in Multi-Agent Systems (BRMAS 2008) at AISB
2008. vol. 1, p. 49. Aberdeen, Scotland (2008)

13. Paschke, A., Dietrich, J., Kuhla, K.: A Logic Based SLA Management Framework. In: Pro-
ceedings of the 4th Semantic Web Conference (ISWC 2005). pp. 68–83. Galway, Ireland
(2005)

14. Proctor, M., Neale, M., Frandsen, M., Jr., S.G., Tirelli, E., Meyer, F., Verlaenen, K.: Drools
documentation. JBoss (2008)

15. Strano, M., Molina-Jimenez, C., Shrivastava, S.: A rule-based notation to specify executable
electronic contracts. In: Proceedings of the International Symposium on Rule Representa-
tion, Interchange and Reasoning on the Web (RuleML2008), Lecture Notes in Computer
Science 5321, pp. 81–88. Springer Berlin / Heidelberg (2008)

16. Tinnemeier, N., Dastani, M., Meyer, J.J.: Roles and norms for programming agent organiza-
tions. In: Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009). vol. 1, pp. 121–128. Budapest, Hungary (2009)

17. Zimmermann, M.: OWL2Java (2009)

16

Controlling multi-party interaction within
normative multi-agent organizations

Olivier Boissier1, Flavien Balbo2,3, and Fabien Badeig2,3

1 Ecole Nationale Supérieure des Mines,
158 Cours Fauriel, 42100 Saint-Etienne, France

Olivier.Boissier@emse.fr
2 Université Paris-Dauphine - LAMSADE,

Place du Maréchal De Lattre de Tassigny,F-75775 Paris 16 Cedex, France
balbo@lamsade.dauphine.fr

3 INRETS - GRETIA,
2, Rue de la Butte Verte,93166 Noisy Le Grand, France

badeig@inrets.fr

Abstract. Multi-party communications taking place within organiza-
tions lead to different interaction modes between agents (e.g. (in)direct
communication between roles, (in)direct communication restricted to a
group, etc). Fully normative organisations need to regulate and control
those modes as they do for agents’ behaviors. This paper proposes to ex-
tend the normative organization model Moise in order to specify such
interaction modes between autonomous agents participating to an orga-
nization. This specification has two purposes: (i) to make the multi-agent
organization able to monitor the interaction between the agents, (ii) to
make the agents able to reason on these modes as they can do on norms.
The paper is focused on the first point. We illustrate with a crisis man-
agement application how this extension has been implemented thanks to
a specialization of the Easi interaction model.

1 Introduction

In a Multi-Agent System (MAS), interaction and organization play key and
essential roles. A MAS is often described as composed of agents situated in a
shared environment interact directly or indirectly with each other to execute and
cooperate in a distributed and decentralized setting according to an organization.
The Easi model4 [7] proposes a multi-party environment based interaction model
and is therefore able to support the complexity of the interaction within an
organization. On one hand, agents are able to send messages to other agents
situated in the environment and, on the other hand, any agent situated in the
environment is able to perceive the exchanged message. It is thus possible to
consider, for the same message, direct, indirect and overhearing communications.
If needed, the Easi model preserves the privacy of the interaction, more details
are given in [7].

4 Environment as Active Support for Interaction

17

However, it is not possible to make the agents aware of this interaction set-
tings. There is no declarative representation usable at the agent level.

Agents in a MAS are often structured along one organization that helps
and/or constraints their cooperation schemes. Current proposals offer modeling
languages usable either by agents either by an organization management sys-
tem dedicated to the regulation and supervision of the agents within the defined
organization. The Moise model [5] is one of these proposals. Its organization
modeling language is composed of two dimensions – structural and functional
- connected to each other by a normative specification. Such a feature makes
it possible to easily extend the model with new dimensions. Currently, there
doesn’t exist any dimension dedicated to the definition of interaction modes
within the organization. It is thus not possible to govern the agents interac-
tion modes resulting from the multi-party communications offered in the Easi
framework.

In this paper, our aim is to propose a unified model for interaction and orga-
nization. To reach this objective we propose the enrichment of theMoise orga-
nization modeling language with a new and independent dimension connected
to the other ones by the normative specification. This way it is thus possible to
make the agents able of reasoning on their use of the interaction modes offered in
the Easi platform. The next step will be to develop such reasoning capabilities
in the agents. In this paper we focus on the presentation of the unified model
and how it is translated to be monitored by the facilities offered by the Easi
platform. The MAS designer will be able to use the resulting specification of
both the organization and the interaction and to get the corresponding support
environment.

The paper is organized as follows. In section 2, we present the background of
the proposal and motivate our choices. In section 3, we expose howMoise orga-
nization modeling language has been extended to specify the interaction modes
proposed by Easi. The section 4 describes how this specification is mapped to
the Easi model. In section 5, we show the expressing capabilities of the pro-
posal with different examples issued of a crisis management application. Before
conclusion, we compare our proposal to the current related approaches.

2 Background

In this paper, we consider a crisis management application where different dedi-
cated emergency services must be coordinated in order to solve a crisis situation.
The main difficulty in the modeling of such an application consists in the defini-
tion of the interaction constraints between those services, given that each service
has the possibility to decide on its own which interaction mode to use. We use
this application all along the paper to illustrate the components of our pro-
posal. In the following sections, we specify parts of the multi-agent organization
governing this application thanks to the models Moise and Easi.

18

2.1 Moise

The Moise framework [4] is composed of an organization modeling language,
an organization management infrastructure and organization based reasoning
mechanisms at the agent level. In this paper, we focus on the organization mod-
eling language. Our aim is to use it with the Easi platform in order to specify
and regulate the different interaction modes available on this platform (see next
section).

The organization modeling language considers the specification of an orga-
nization along three independent dimensions5: structural (SS), functional (FS)
and normative (NS). Whereas SS and FS are independent, NS defines a set of
norms binding elements of both specifications. The aim is that the agents enact
the behaviors specified in NS when participating to the organization. The orga-
nization modeling language is accompanied by a graphical language (cf. Fig. 1,
2) and XML is used to store the organizational specifications.

Structural Dimension: The structural dimension specifies the roles, groups, and
links of an organization. It is defined with the following tuple: 〈R,@, rg〉 with
R set of the roles, @, inheritance relation between roles, rg organization root
group specification. The definition of this group gives the compatibility relations
between roles, the maximal and minimal cardinality of agents that can endorse
roles within the group, the links connecting roles to each other (communication,
authority, acquaintance) and sub-groups. In NS, the role is used to bind a set of
constraints on behaviors that the agent commits to satisfy as soon it endorses
the role.

In the crisis application, we define (cf. Fig. 1) two main groups which cor-
respond to the tactical spheres used in a crisis management: decision-making
sphere (Decision-making) and operational sphere (Operational). For each of them,
we define the roles manager and operator inheriting the generic role role-player.
These roles are specialized respectively in coordinator, leaderD for the group Decision-

making and leaderS for the subgroups of group Operational. The role coordinator

(resp. leaderD) can be played by only and only one agent - 1..1 - (resp. several
agents - 1..* -). A compatibility link connects the role leaderD to leaderS mean-
ing that any agent playing leaderD will be able to play also the role leaderS. Six
communication links (cf. l1 to l6) have been defined between these roles (e.g. l1
communication link between coordinator and leaderD).

Functional Dimension: The functional dimension is defined by 〈M,G,S〉 with
M set of missions, consistent grouping of collective or individual goals. A mission
defines all the goals an agent commits to when participating in the execution of
a social scheme by the way of the roles that they endorse. G is the set of the
collective or individual goals to be satisfied and S is the set of social schemes,
tree-like structurations of the goals into plans.

5 In this paper, we will provide the only necessary details in order to globally un-
derstand the model as well as the proposed extensions. For further details, readers
should refer to http://moise.sourceforge.net/.

19

0..g1 0..g2 0..s1 0..s3

DDE CIGT SAMU

l1
1..n1..1

l4

l5
l3

l2

l6

1..1 1..1

1..p1..p1..p1..p

1..1 1..1

0..1

role

group

composition
inheritance

communication

compatibility

intra-group inter-group

manager

coordinator

member

operator

Operational

0..1

Crisis

Decision-making

Traffic Network
Manager

Rescue
Unity

Firefighter

teamteamteamteam
DDE CIGT SAMU Firefighter

role-player

leaderS

leaderD

traffic
regulator

leader
team

Fig. 1. Partial graphical view of the structural specification for the crisis management
application

The Fig. 2 illustrates a social scheme of FS expressing the collective plan for
deciding within the crisis management application. According to it, agents should
aggregate the different information in relation to the crisis situation Refining crisis

perception, Safeguarding zone by executing one of the two social schemes (scheme 1

or scheme 2 that are not detailed here) and execute the scheme 3. The different
goals are organized into missions.

Normative Dimension: The normative dimension NS defines a set of norms as:
〈id, c, ρ, dm,m〉 with id norm identifier, c activation condition of the norm6, ρ
role concerned by the deontic modality, dm deontic modality (obligation or per-
mission), m mission. A normative expression can be read as : “when c holds,
any agent playing role ρ has dm to commit on the mission m”. Within this lan-
guage, norms are either a permission, either an obligation for a role to commit
to a mission. Goals are indirectly connected to roles since a mission is a set of
goals. Interdictions are supposed to exist by default: if the normative specifica-
tion doesn’t have any permission or obligation for a couple mission, role, any
agent playing the role is forbidden to commit to mission. A norm becomes in
the active state (resp. inactive) as soon as the condition c holds (resp. doesn’t

6 Predicates bearing on the current organization state (e.g. plays, committed, etc)
and/or bearing on particular configurations of the application.

20

m1

m1,m2,m3 m4,m5

m5

m4.1 m4.2

m4

b1 : Managing crisis

b2 : Refining
crisis perception

scheme 1 scheme 2

Triggering scheme

(scheme 3)
Rescuing casualty

sequence choice parallelism

Safeguarding zone

Fig. 2. Graphical view of the social scheme for decision within the crisis management
application. Goals are the nodes of the tree. Missions to which the goals are assigned
are in red.

hold). When the norm is active, the deontic expression attached to the norm can
be verified. The norm can thus becomes fulfilled or unfulfilled.

For instance, in the crisis management application, the norm obliging agents
playing the role leaderS in the group Traffic Network Management (TNM) to safe-
guard the zone where the accident took place (mission m4) is: 〈n1, c1, leaderS ,

obligation,m4〉 where c1 is plays(bearer, leaderS , TNM). The term bearer refers
to the agent that will play the role “bearer” in the context of the obligation
issued from the instantiation of the norm in the organization entity (see be-
low) and plays is a predicate satisfied when the agent plays the leaderS in an
instance of group TNM. When the zone is secured, the agents playing the same
role within the context of the group Rescue Unity (RU) deploys the intervening
scheme (mission m5) following the norm: 〈n2, c2, leaderD, obligation,m5〉 where c2
is plays(bearer, leaderS , RU).

Organizational Entity: An organizational entity (OE) is defined from the or-
ganizational specification OS and a set of agents A by the following tuple:
〈OS,A,GI, SI,O〉 where GI is the set of concrete groups of the organization,
i.e. groups dynamically created from the group specification of the OS, SI is
the set of concrete social schemes dynamically created in the OE from the social
schemes specification in the OS and O is the set of obligations issued from the
norms NS attached to agents of A whose conditions are satisfied [6].

2.2 Easi

The multi-party interaction model Easi supports the management of direct,
indirect and overhearing communications in a MAS [7]. For cognitive agents, the
common point between all these communication modes consists in the routing
of the messages by identifying which agent should obtain which message and in
which context. Solving this problem requires taking into account both sides of
the sender and potential receivers. To this aim, Easi manages meta-informations
on the MAS (agents, messages, context) in the communication environment and
use them to help the agents to interact. The interaction model Easi is thus

21

defined by 〈Ω,D, P,F〉 with Ω = {ω1, ..., ωm} the set of entities (A ⊂ Ω and
MSG ⊂ Ω - A set of agents and MSG set of messages -), D = {d1, ..., dm} set
of domain descriptions of the properties, P = {p1, ..., pn} set of properties, and
F = {f1, ..., fk} set of filters.

Entity: The entities are the meta-information on the MAS that Easi manages.
An entity ωi ∈ Ω is defined by 〈er, ed〉 where er is a reference to an element of
the MAS and ed is the description of that element. An element of the MAS can
be agents (A), messages (MSG) and a reference is its physical address on the
platform or other objects such as URL, mailbox, The description ed is defined
by a set of couples 〈pi, vj〉 where pi ∈ P and vj is the value of the property for
this entity. Any agent of the MAS has its own processing and knowledge settings.
It is connected to the communication environment by the way of its description
that it stores and updates in this environment. This description ed is used for
the routing of the informations to the reference er.

Property: A property gives an information on an entity. A property pi ∈ P :
Ω → dj ∪ {unknown, null} is a function whose description domain dj ∈ D can
be quantitative, qualitative or a finite set of data. The unknown value is used
when the value of the property cannot be set, and null is used to state that the
property is undefined in the given description. In order to simplify the notation,
only the value of the description domain is given to specify a property.

For instance, in the crisis management application, the properties attached
to agents and messages are id, role, position, subject, sender with:

– id : Ω → N ,
– role : Ω → {coordinator, leaderS},
– position : Ω → N x N ,
– subject : Ω → {alert, demand},
– sender : Ω → N .

An agent a can have the following description {〈role, coordinator〉} and an
agent b {〈role, leaderS 〉, 〈position, (10, 20)〉} and a message m {〈subject, alert〉,
〈position, (15, 20)〉}.

Filter: The filter identifies the entities according to their description (ed) and
realizes the interaction between the concrete objects (er). A filter fj ∈ F is a
tuple fj = 〈fa, fm, [fC], nf 〉 with nf filter name. The assertion fa : A → {T, F}
identifies the receiving agents (which agent), the assertion fm : MSG → {T, F}
identifies the concerned messages (which message), and fC : P(Ω)→ {T, F} is an
optional set of assertions identifying other entities of the context (which context).

Each agent ?r (′?′ preceedings a letter denotes a variable) whose description
validates fa receives in its mailbox the message ?m that satisfies fm if there
exists a set of entities in the ?c such that fC is true.

A filter is therefore valid for any tuple 〈?r ∈ A, ?m ∈MSG[, ?c ⊂ Ω]〉
For instance, in the crisis management application, the filter Fe sets the

routing of the communication as follows (′ =′ is the comparison operator):

22

– The agents with the role leaderD that are situated in the crisis origin:
fa : [role(?r) = leaderD] ∧ [position(?r) = (0, 0)]

– should receive the alert messages:
fm : [subject(?m) = alert] ∧ [sender(?m) =?ide]

– of the agent playing the role coordinator:
fC : [id(?e) =?ide] ∧ [role(?e) = coordinator]

In this example, the description of the message sender (?e) that is identified
thanks to the property sender in the message belongs to the context. Agents
wishing to send or receive a message, update their description in the commu-
nication platform and add/retract dynamically in/from the environment filters
that involve them. Thus the environment supports simultaneously direct inter-
action (including dyadic, broadcast multi-cast and group communication) and
indirect interaction (including mutual-awareness and overhearing). If the filter is
added by the future receiver of the message then the interaction is indirect: the
depositary agent defines which message it wants to receive. If the filter is added
by the future message sender then the interaction is direct: the depositary agent
defines which agent it wants to contact.

According to the state of the different descriptions within the environment,
the triggered filter will enable the routing of the messages in the different inter-
action modes towards the corresponding targets.

Even if Easi offers an advanced communication management by identifying
precisely the interaction context, it cannot be used by the agents in order to rea-
son on the causes of the interaction. For instance, the filter Fe will permit the
routing of messages but the reasons of this requirement is not expressed within
Easi. For the filter Fe, the choice of the communication mode may depend
on the relations between the roles coordinator and leaderD: the coordinator sends
messages to leaders (direct mode) for dedicated messages whereas the leaders
listen to all the messages issued from the coordinator (indirect mode). Using this
knowledge, an agent could reason on the current interactions. For instance, the
coordinator may choose a direct interaction to handle certain informations and
indirect interaction for others. The leaders can deduce the importance to the
informations according to the filter used to receive informations. The specifica-
tion of communications within an organizational model would help the agents
to relate communication filters to the reasons that cause the use of such a com-
munication channel.

3 Extending Moise for Easi

In order to clearly specify the interaction modes used in Easi, we are going to
enrich and extend the organization modeling language ofMoise with a new di-
mension. This new dimension is called communication mode specification (noted
CS). It is dedicated to expressing the communication modes that will be used
within the organization. As the otherMoise dimensions, we keep it independent
of SS and FS. We use the same principle to connect it to the other dimensions
and enrich the normative specification accordingly. The aim is to be able to

23

connect the communication modes to the structure and functioning of the orga-
nization by the way of norms. Those norms will be made accessible to the agents
when interacting with other agents of the organization.

The organization specification is thus enriched into the following 4-uple:
〈SS, FS, CS,NS〉 with CS communication modes specification andNS the mod-
ified normative specification. We detail these two components in what follows.

3.1 Communication modes specification

The specification CS is composed of the set of communication modes cm ∈ CS
considered in the organization.

A communication mode is defined as: 〈type, direction, protocol〉 with type,
the type of the communication mode (direct or indirect), direction, the message
transmission direction (unidirectional or bidirectional), protocol, the interaction
protocol that is used. The values of this last variable correspond to the name
of the different interaction protocols that the designer wishes to be used and
deployed in the organization (e.g. FIPAREQUEST , Publish Subscribe, ...).

As we will see below, a communication mode qualifies the communication
link defined in the structural specification between roles. The communication
link is directed from the initiator of the communication - source of the link - to
the participant - target of the link -. Therefore, a link can be considered as:

– a unidirectional channel, letting circulate messages in only one direction,

– a bidirectional channel, letting circulate messages in both directions from
the initiator to the participant and inversely.

Orthogonal to these two directions, we consider the direct and indirect interac-
tion models proposed within Easi.

In the crisis management application, we define, for instance, the two follow-
ing communication modes cmd,b and cmi,u:
cmd,b: 〈direct, bidirectional, FIPAREQUEST 〉
cmi,u: 〈indirect, unidirectional, PublishSubscribe〉
where cmd,b is used to directly ask for information whereas cmi,u is used to
provide informations to agents that will consult it when they want.

3.2 Communication Norms

In order to bind communication link and communication mode as defined in CS
by making explicit the deontic modalities attached to their use, we generalize the
writing of the norms described in theMoise initial version: 〈id, c, ρ, dm, object〉
where id is norm identifier, ca the activation condition, ρ the role on which
the deontic modality bears, dm the deontic modality (obligation or permission),
object the subject of the norm.

24

Object of a norm: The object of a norm object is defined as the two following
expressions:

– do(m) in the case where a mission m has to be executed - case initially
considered in Moise,

– use(l, cm, α) in the case where the communication mode cm should be used
for the link l in the context α.

Context: The context α defines the constraints bearing on the descriptions ed
of the entities ωi ∈ Ω (cf. Sec. 2.2) involved in the interaction using this com-
munication link: sender, receiver, message. It is also possible to add additional
descriptions issued from other entities of the MAS (e.g. requirements of the
agent, ...). It is thus possible to use a mission as context of use of the link or
a particular goal as context of use of this link. We will define in the following
section the way we express these constraints when describing how Easi has been
specialized to handle Moise. When α’s status is T (true), the link is usable in
any situation.

Let’s consider the communication link l1 used by the agents playing the role
coordinator towards agents playing the role leaderD (eg. Fig. 1) in the crisis man-
agement application. Given the normative specification that we have defined, it
is possible to bind to it the communication mode cmi,u defined above, by writ-
ing the following norm: n1 〈n1, c1, coordinator, obligation, use(l1, cmi,u, T)〉 with c1
: committed(m1) to express that l1 ought to be used by agents playing the role
coordinator when they are committed to the mission m1. No particular context is
attached to the use of the communication mode cmi,u.
We can also attach to this link another communication mode cmd,b, by defin-
ing a new norm n2 : 〈n2, c2, coordinator, obligation, use(l1, cmd,b, α2)〉 with c2 :

committed(m4) by specifying a context α2 (cf. following section for the syntax)
stating that the communication on the link l1 takes place for the sending of mes-
sages to agents belonging to group CIGT (Center of the Ingineering and Manage-
ment of the Traffic). The link l1 can also be bound to the same constraints but for
communication in the context α3 stating the sending of messages from thea gent
playing role coordinator to agent belonging to group TNM: 〈n3, c2, coordinator,

obligation, use(l1,mcd,b, α3)〉.

In the following, we will need to access to the different features of a com-
munication link from the structural specification. We will use pointed notation
lj .initiator (resp. lj .participant) to access to the source role (resp. target) of
the link lj , and lj .group to access to the group in which lj is defined.

4 Specializing Easi for Moise

Our objective is to generate filters for the communication environment from the
specifications defined in the organization modeling language. These filters use
informations on the organization. These informations should be stored in the
description of the entities that are managed by the communication environment

25

in order to be accessible to the filters. In this section, we identify and define
the necessary properties for describing the agents and messages in the com-
munication environment. Then we describe a generic filter generated from the
communication norms that we just defined in the previous section.

4.1 Properties

In order to connect organization and interaction, it is necessary to give a minimal
description of an agent, of a message while incorporating this new dimension in
them. Given the definition of an entity in section 2.2, we define the following
properties that are accessible in the environment for each type of entity.

Agent Properties: The description of an agent is at least composed of the id and
org properties, where:

– id returns the identifier of the agent (id : A → IDA with IDA set of agent
identifiers),

– org returning the subset of organizational descriptions coming from the par-
ticipation of the agent to the organization (org : A→ P(OC) with OC set of
organization descriptions).

An organization description oci ∈ OC is defined by: oci = 〈ig : g, r,m, go〉 with
ig ∈ IG, g ∈ {rg} ∪ rg.subgroups, r ∈ R, m ∈ M , go ∈ G. ig is a concrete group
created from the group specification g defined in the SS of the organization. The
parameter rg and the sets R, M , G are defined in the organization specification
(cf. Sec. 2.1).

For instance, in the crisis management application, the agent a described by
org(a) = {〈g1 : Decision making, leaderD, m2, b2〉, 〈g2 : DDE, leaderS , m1, b1〉},
belongs to the group g1 of type Decision-making and to a group g2 of type DDE,
in which it plays respectively role leaderD, committed to mission m2, trying to
achieve goal b2 and the role leaderS, committed to the mission m1 trying to achieve
the goal b1.

This description of an agent is minimal. We defined two management modes.
Being related to the organization, these properties can be managed without
being intrusive: management by the organization management infrastructure.
However, if this set is complemented by specific properties related to the internal
state of the agents, their management is ensured by the agents themselves. For
instance, a property availability returning the availability of the agent has a
value that is related to the choice of the agent itself.

Message Properties: In the same way, we specialize the description of a message
with the following set of minimal properties sender, receiver, subject, rc, sc where:

– sender : MSG→ IDA,
– receiver : MSG→ P(IDA) ∪ {unknown},
– subject : MSG→ Dsubject ∪ {unknown}, with Dsubject = G ∪R ∪ {expression},
expression is a string,

26

– rc : MSG→ OC ∪ {unknown} being the reception context,
– sc : MSG→ OC ∪ {unknown} being the sending context.

Using these properties, the sender gives informations on the organizational
context in which the interaction takes place. For a message, each of these prop-
erties can receive a value or the value unknown. The more the sender specifies
values of properties, the more precise will be the filter that can be used for the
routing. We impose that the property sender doesn’t get a value unknown in
order to avoid anonymous messages.

Given these different properties, we have now the possibility of a routing
ranging from indirect interaction, based on only the identifier of the sender, to
one, focused on a subset of receivers (receiver) in a particular organizational
context (rc), with a sender being in a given organizational context (sc) and the
message with a particular content (subject).

The sender can also decide to define patterns for conditioning the routing
along different organizational contexts. To this aim, it can use the symbol ′ ′ as
value for an element of the organizational context. This symbol denotes that the
value is not a constraint in the choice of the tuples.

For instance, in the crisis management application, the expression 〈 : DDE,

, m2, 〉 defines an organizational pattern of OC such that the concrete group
must be of type DDE and the mission is m2 whatever are the values for roles and
goals. The message mes1 described below means that the sender whose identifier
is a1 and having the goal b2 (sending context) sends a message to the agents a2
and a4. In this case, the processing of the message is not constrained by the
organizational states of the participating agents. They only have to be trying
to achieve the organizational goal b2. 〈〈sender, a1〉, 〈receiver, {a2, a4}〉, 〈subject,
demand〉, 〈rc, 〈 : , , , b2〉〉, 〈sc, 〈 : , , , b2〉〉〉

For the sender, these are only possibilities since the routing of the message
depends on the filters that are installed in the communication environment.

In fact, according to the filters that are installed in it, the routing of the
message can lead to different situations: interaction as intended by the sender,
no interaction or interaction not intended by the sender. For instance, the agent
a2 can receive the message although it doesn’t have the goal b2 in the case there
exists a filter enabling the reception of messages from the agent a1, whatever are
the values for the properties of the message.

In each message is stored the organizational context of its sending in order to
enable the agents to filter them. An agent can thus choose to receive messages or
to route them according to their organizational contexts without being imposed
their use. Moreover, this definition of messages enables to consider the evolution
of the organization state. Thus, a message kept in the environment can still be
received by an agent in case of change of the organization state. For instance,
an agent can be interested by any message whose receiving context concerns a
role that it just endorsed. It is useful to keep an history of the past interaction

27

to better understand the current situation. Another advantage is to avoid that
a message is missed because it has been sent before the agent has endorsed the
role. In order to avoid a risk of confusion between messages, a property related
to the time value of there emission or related to there life time can be added to
the message description. This choice belongs to the system designer and is out
of the scope of this paper.

4.2 From Communication Norms to Environment Filters

The activation of a norm for a communication link leads to the generation and
addition of a filter in the environment. This filter is called normative filter. It
corresponds to the exact translation of the norm as it is instantiated by the orga-
nization management system. Thanks to the organization management system,
the agents are aware of the norm activation. Besides to the normative filters,
the communication environment contains also filters set by the agents according
to their activity in the system. In case of direct interaction, the sender knows
that it can reach the agents identified as receiver in the norm. In case of indi-
rect interaction, the receiver knows that it can receive messages identified in the
norm.

A normative filter uses all the possible informations coming from the organi-
zational specification and routes a message according to its sc and rc properties.
The property receiver is not used in the generation process of a normative filter
since it requires that the sender knows the identifiers of the agents. This is a too
strong hypothesis. The same way, since the routing comes from the activation
of a norm, the filter cannot constrain the subject of the message (subject) ex-
cept additional conditions in the norms (context α of the object of the norm).
The filter identifies a state of the context corresponding to the interaction. It is
identical in the direct and indirect cases. We then propose a generating pattern
that will be specialized for each activated communication norm.

Access to the organizational specification: The normative filter is created when
the norm is activated as follows.

Let’s first define the functions initiator and participant that access to the
agents involved in the communication link defined in the object of the norm.

initiator : O → A participant : O → A

These functions return, for an instantiated norm, the agent (initiator), who
initiates, or the one (participant), who participates, to the interaction. From
these two functions, we express constraints on the descriptions of the agents.
For instance org(initiator(nj)) makes possible to access to the organizational
context attached to the description of the agent initiating the communication in
the context of the instantiated norm nj in which it is involved.

Let’s define the predicate achievesα that is automatically generated from the
constraints expressed in the context α of the object of a norm. This predicate
checks that the context is satisfied given the initiator, participant, message and
entity descriptions in the environment, given α :
achievesα : A×MSG×A× P(Ω) :→ {T, F}

28

Given the previous definitions, we are able now to express the generic nor-
mative filter fnk

(?p, ?m, {?i, C}) for the receiver ?p of the message ?m sent by ?i
in the context C. This filter has been generated from the activation of the norm
nk. The object of the norm bears on the communication link lj . It is composed
of assertions fa that identifies the receiver of the message ?p according to its
organizational context, fm that identifies the message ?m according to its orga-
nizational context and fc that identifies the organizational context of the sender
and the constraints α of the norm nk.
fa : 〈[org(?p) 3 〈?x : lj .group, lj .participant, , 〉]
fm : 〈[sender(?m) = id(?i)] ∧ [sc(?m) = 〈?y : lj .group, lj .initiator, , 〉] ∧ [rc(?m) =

〈?x : lj .group, lj .participant, , 〉]
fC : 〈[org(?i) 3 〈?y : lj .group, lj .initiator, , 〉] ∧ achievesα(?p, ?m, ?i, C)〉

Let’s consider again the norm n2 of the crisis management application: 〈n2,

committed(m4), coordinator, obligation, use(l1, cmd,b, α2)〉 with α2 : [〈 : CIGT , , , 〉 ∈
org(participant(n2))]. The interaction is a direct and bidirectional one (cf. cmd,b

of n2). The sending agent deposits the first message. The two necessary filters
have been generated and added thanks to the activation of n2.

The normative filter generated for n2 for the interaction from initiator to
participant is fn2(?p, ?m, {?i, C}) : where :
fa : 〈[org(?p) 3 〈 ?x : Decision making, leaderD, , 〉]
fm : 〈[sender(?m) = id(?i)] ∧ [sc(?m) = 〈?y : Decision making, coordinator, , 〉] ∧
[rc(?m) = 〈?x : Decision making, leaderD, , 〉]
fC : 〈[org(?i) 3 〈?y : Decision making, coordinator, , 〉] ∧[org(?p) 3 〈 : CIGT, , , 〉]〉

The normative filter from the participant to the initiator is fn2(?i, ?m, {?p, C}) :7,
where:
fa : 〈[org(?i) 3 〈?x : Decision making, coordinator, , 〉]
fm : 〈[sender(?m) = id(?p)]∧[sc(?m) = 〈?y : Decision making, leaderD, , 〉]∧[rc(?m) =

〈?x : Decision making, coordinator, , 〉]
fc : 〈[org(?p) 3 〈?y : Decision making, leaderD, , 〉] ∧ [org(?p) 3 〈 : CIGT, , , 〉]〉]〉

This way, for two agents participating to the same concrete group, the mes-
sage sent by the initiator agent a1 processed by the filter fn2

will have the fol-
lowing description: 〈〈sender, id(a1)〉, 〈rc, 〈g1 : Decision making, coordinator, , 〉〉,
〈sc, 〈g1 : Decision making, leaderD, , 〉〉〉

The message sent by the participant agent a2, processed by fn2 will have the
following description: 〈〈sender, id(a2)〉, 〈rc, 〈g1 : Decision making, leaderD, , 〉〉,
〈sc, 〈g1 : Decision making, coordinator, , 〉〉, 〉

With these two filters, a communication channel has been created between
agents having the roles coordinator and responsible in the group CIGT. The
interaction model Easi has make possible to elaborate these filters. TheMoise
model has made possible its use.

7 we continue to use the variable ?p for the participant in the interaction and ?i for
the initiator given that the agent which is identified by the variable ?i who receives
the message sent by ?p.

29

5 Example

In this section, we illustrate and discuss the expressing capabilities of our pro-
posal going back to the interaction modes attached to the communication link
l1 issued of the communication norms n1, n2, n3 in the crisis management ap-
plication described in the paper.

– 〈n1, c1, coordinator, obligation, use(l1, cmi,u, T)〉 with c1 : committed(m1)

– 〈n2, c2, coordinator, obligation, use(l1, cmd,b, α2)〉 with c2 : committed(m4)

and α2 : 〈 : CIGT , , , 〉 ∈ org(participant(n2))

– 〈n3, c3, coordinator, obligation, use(l1, cmd,b, α3)〉 with c3 : committed(m4)

and α3 : 〈 : TNM, , , 〉 ∈ org((participant(n3))

On these three norms, the differences bear on the activation conditions of the
norm cx , the communication mode cmx,y and the communication context spec-
ified in the object.

The norm n1 whose activation condition bears on the management of the
crisis (mission m1) is activated during all the crisis management. The norms n2
and n3 are not active since the agents on which the norms bear are committed
on the mission m4.

The predicate achievesα of the normative filter fn1
generated from the norm

n1 is always true (α1 = T). According to this norm, all the agents playing the
role leaderD (target of link l1) must consult the informations set available by any
agent playing the role coordinator. The norm n2 imposes a direct interaction in
the context of mission m4 so that the coordinator is able to get informations
on the state of the transportation network. According to this norm, any agent
playing the coordinator role can reach any agent playing the role leaderD (target
of link l1) and being a member of concrete group of type CIGT. The normative
filter fn2

described in the previous section expresses these constraints. For the
same mission m4, the coordinator requires information on the available ressources
in the services TNM. The normative filter fn3 resulting from the activation of
norm n3, enables the coordinator to reach any leader of each traffic network
management service (TNM).

In our example, if the missions m1, m4 are under examination, the norma-
tive filters corresponding to the three norms are simultaneously present in the
environment. From the point of view of the agent playing the role coordinator,
it means that it can route messages directly to the agents who are leaderD in
groups of type CIGT (n2) and broaden their demand to agents playing the role
leaderD in the groupes of type TNM (n3) given its needs.

Let’s turn to the agents playing the role leaderD in the group Decision-making.
If involved in the role leaderS within the groups CIGT and TNM (let’s notice that
this situation is possible thanks to the compatibility link between both roles),
the agents will receive the requests from the agent playing the role coordinator and
will be able to know that this is a direct interaction issued from the coordinator.
The agents will be able to answer to this agent by using the normative filter
created in case of bidirectionnal interaction. Thanks to norm n1, every agent
playing the role leaderD will receive the messages sent by the agents playing

30

the role coordinator via the filter fn1
, building a common and shared knowledge

(indirect interaction). According to their processing activity, the agents will be
more or less aware of these messages.

This short example that we can’t detail more, shows the richness of expres-
siveness of the interaction modes made possible by combining Easi andMoise
as described in this paper.

6 Related work

To our knowledge, there doesn’t exist a similar support to interaction enabling,
for the same communication, to consider simultaneously the direct and indirect
interaction modes.

Considering related works to the indirect interaction, the general principle
consists in the use of a shared data space that is integrated or not to the en-
vironment [8]. In this approach, the tuples that are deposit by the sender in
the shared space are compared to patterns expressing the needs of the receivers.
These works are focused on the accompanying coordination language and don’t
consider, at any moment, the organization or the state of the agents.

Dealing with the direct interaction model, several works propose to use an or-
ganizational structure in order to manage the communications. In [1], the agents
are organised in a hierarchy where each level knows the skills of the agents be-
longing to the lower level in order to make possible for the sender, a routing of
the messages according to the skills. However, it is not an organizational model
that is usable by the agents. In the AGR model [3], the organization constrains
the interactions according to the groups to which the agents participate. It sup-
ports a routing of the message according to the organizational model (group,
role). However, the only interaction mode is the direct one and the agents don’t
have access to an explicit description of the different specifications.

Normative organization models have been proposed in the literature in order
to regulate and control the communication between agents. However the specifi-
cations address the interaction protocols, i.e. the coordination of the interaction
instead of interaction modes. The only considered interaction mode is the di-
rect one (e.g. ISLANDER [2]). They don’t consider the interaction at the level
addressed in this paper.

7 Conclusions

In this paper, we have proposed a specification of interaction modes between
agents within an organization. For that aim, we have extended and enriched the
organization modeling language of the Moise framework. We have also shown
how the specifications have been used to generate and to configure dynamically
the communication environment supported by the Easi platform. We have il-
lustrated the use of this proposal in a crisis management application.

In the future, we intend to extend the considered interaction modes to over-
hearing. We will also consider the communication between groups by extending

31

the scope of communication to groups by enriching and modifying the structural
specification ofMoise. Thanks to these new primitives in the organization spec-
ification, we can turn to the development of reasoning mechanisms at the agent
level to make agents able to reason on the interaction modes that they can use
within the organization.

Acknowledgement

We would like to thank D. Trabelsi, H. Hadioui and J.F. Hübner for the fruitful
discussions about the content of this paper.

References

1. N. Bensaid and P. Mathieu. A hybrid architecture for hierarchical agents. In Proc.
of ICCIMA’97, pages 91–95, 1997.

2. M. Esteva, J. A. Rodriguez-Aguiar, C. Sierra, P. Garcia, and J. L. Arcos. On the
formal specification of electronic institutions. In Frank Dignum and Carles Sierra,
editors, Proceedings of the Agent-mediated Electronic Commerce, LNAI 1191, pages
126–147, Berlin, 2001. Springer.

3. J. Ferber and O. Gutknecht. A meta-model for the analysis and design of or-
ganizations in multi-agents systems. In Y. Demazeau, editor, Proceedings of the
3rd International Conference on Multi-Agent Systems (ICMAS’98), pages 128–135.
IEEE Press, 1998.

4. J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting Multi-Agent Organ-
isations with Organisational Artifacts and Agents. Journal of Autonomous Agents
and Multi-Agent Systems, 20(3), 2010.

5. J. F. Hübner, J. S. Sichman, and O. Boissier. A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In G. Bittencourt
and G. L. Ramalho, editors, Proceedings of the 16th Brazilian Symposium on Ar-
tificial Intelligence (SBIA’02), volume 2507 of LNAI, pages 118–128, Berlin, 2002.
Springer.

6. Jomi Fred Hübner, Olivier Boissier, and Rafael H. Bordini. Normative programming
for organisation management infrastructures. COIN Workshop at MALLOW, 2009.

7. J. Saunier and F. Balbo. Regulated multi-party communications and context aware-
ness through the environment. Journal on Multi-Agent and Grid Systems, 5(1):75–
91, 2009.

8. L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, and A. Omicini. ”exhibitionists”
and ”voyeurs” do it better: A shared environment approach for flexible coordina-
tion with tacit messages. In Proc. of Workshop on Environments for Multi-Agent
Systems, LNAI 3374, pages 215–231. Springer Verlag, 2004.

32

Norm Refinement and Design through Inductive
Learning?

Domenico Corapi1, Marina De Vos2, Julian Padget2,
Alessandra Russo1, and Ken Satoh3

1 Department of Computing, Imperial College London
{d.corapi,a.russo}@imperial.ac.uk

2 Department of Computer Science, University of Bath
{mdv,jap}@cs.bath.ac.uk
3 National Institute of Informatics

ksatoh@nii.ac.jp

Abstract. In the physical world, the rules governing behaviour are debugged by
observing an outcome that was not intended and the addition of new constraints
intended to prevent the attainment of that outcome. We propose a similar ap-
proach to support the incremental development of normative frameworks (also
called institutions) and demonstrate how this works through the validation and
synthesis of normative rules using model generation and inductive learning. This
is achieved by the designer providing a set of use cases, comprising collections
of event traces that describe how the system is used along with the desired out-
come with respect to the normative framework. The model generator encodes
the description of the current behaviour of the system. The current specification
and the traces for which current behaviour and expected behaviour do not match
are given to the learning framework to propose new rules that revise the existing
norm set in order to inhibit the unwanted behaviour. The elaboration of a nor-
mative system can then be viewed as a semi-automatic, iterative process for the
detection of incompleteness or incorrectness of the existing normative rules, with
respect to desired properties, and the construction of potential additional rules for
the normative system.

1 Introduction

Norms and regulations play an important role in the governance of human society. So-
cial rules such as laws, conventions and contracts prescribe and regulate our behaviour,
however it is possible for us to break these rules at our discretion and face the conse-
quences. By providing the means to describe and reason about norms in a computational
context, normative frameworks (also called institutions or virtual organisations) may be
applied to software systems allowing for automated reasoning about the consequences
of socially acceptable and unacceptable behaviour, by monitoring the permissions, em-
powerment and obligations of the participants and generating violations when norms
are not followed.
? This work is partially supported through the EU Framework 7 project ALIVE (FP7-IST-

215890), and the EPSRC PRiMMA project (EP/F023294/1).

33

The formal model put forward in [9] and its corresponding operationalisation through
Answer Set Programming (ASP) [3, 18] aims to support the top-down design of norma-
tive frameworks. AnsProlog is a knowledge representation language that allows the
programmer to describe a problem and required properties on the solutions in an intu-
itive way. Programs consist of rules interpreted under the answer set semantics. Answer
set solvers, like CLASP[17] or SMODELS[25], can be used to reason about the given
AnsProlog specification, by returning acceptable solutions in the form of traces, as
answer sets. In a similar way, the correctness of the specification with respect to given
properties can be verified.

Currently, the elaboration of behavioural rules and norms is an error-prone process
that relies on the manual efforts of the designer and would, therefore, benefit from au-
tomated support. In this paper, we present an inductive logic programming (ILP) [24]
approach for the extraction of norms and behaviour rules from a set of use cases. The
approach is intended as a design support tool for normative frameworks. Complex sys-
tems are hard to model and even if testing of properties is possible, sometimes it is hard
to identify missing or incorrect rules. In some cases, e.g. legal reasoning, the abstract
specification of the system can be in part given in terms of specific instances and use
cases that ultimately drive the design process and are used to assess it. We propose
a design support tool that employs use-cases, i.e. traces together with their expected
normative behaviour, to assist in the revision of a normative framework. The system
is correct when none of the traces are considered disfunctional, i.e. they match the ex-
pected normative behaviour. When a disfunctional trace is encountered the normative
specification needs to be adjusted: the task is to refine the given description by learning
missing norms and/or behavioural rules that, added to the description, entail the ex-
pected behaviour over the traces. We show how this task can be naturally represented
as a non-monotonic ILP problem in which the partial description of the normative sys-
tem provides the background knowledge and the expected behaviour comprises the ex-
amples. In particular, we show how a given AnsProlog program and traces can be
reformulated into an ILP representation that makes essential use of negation in induc-
ing missing parts of the specification. As the resulting learning problem is inherently
non-monotonic, we use a non-monotonic ILP system, called TAL [12], to compute the
missing specification from the traces and the initial description.

Given the declarative nature of ASP, the computational paradigm used for our nor-
mative frameworks, we needed to adopt a declarative learning approach as we aim to
learn declarative specifications. This differs from other approaches, such as reinforce-
ment learning whereby norms or policies are learned as outcomes of estimation and
optimisation processes. Such types of policies are not directly representable in a declar-
ative format and are quite different in nature from the work reported here.

The paper is organised as follows. Section 2 presents some background material on
the normative framework, while Section 3 introduces the non-monotonic ILP system
used in our proposed approach. Section 4 describes the AnsProlog modelling of nor-
mative frameworks. Section 5 illustrates how the revision task can be formulated into
an ILP problem, and how the generated ILP hypothesis can be reformulated as norms
and behaviour rules within the AnsProlog representation. In Section 6 we illustrate
the flexibility and expressiveness of our approach through a number of different par-

34

tial specifications of a reciprocal file sharing normative framework. Section 7 relates
our approach to existing work on learning norms with respects to changing/improved
requirements. We conclude with a summary and remarks about future work.

2 Normative Frameworks
The concept of normative framework has become firmly embedded in the agent com-
munity as a necessary foil to the essential autonomy of agents, in just the same way as
societal conventions and legal frameworks have grown up to constrain people. In both
the physical and the virtual worlds, and the emerging combination of the two, the argu-
ments in favour centre on the minimisation of disruptive behaviour and supporting the
achievement of the goals for which the normative framework has been conceived and
thus also the motivation for submission to its governance by the participants. While the
concept remains attractive, its realisation in a computational setting remains a subject
for research, with a wide range of existing logics [29, 1, 7, 9, 32] and tools [26, 14, 19].

2.1 Formal Model
To provide context for this paper, we give an outline of a formal event-based model
for the specification of normative frameworks that captures all the essential properties,
namely empowerment, permission, obligation and violation. Extended presentations ap-
pear in [9] and [10].

The essential elements of our normative framework are: (i) events (E), that bring
about changes in state, and (ii) fluents (F), that characterise the state at a given instant.
The function of the framework is to define the interplay between these concepts over
time, in order to capture the evolution of a particular institution through the interaction
of its participants. We distinguish two kinds of events: normative events (Enorm), that
are the events defined by the framework and exogenous (Eex), that are outside its scope,
but whose occurrence triggers normative events in a direct reflection of the “counts-as”
principle [21]. We further partition normative events into normative actions (Eact) that
denote changes in normative state and violation events (Eviol), that signal the occurrence
of violations. Violations may arise either from explicit generation, from the occurrence
of a non-permitted event, or from the failure to fulfil an obligation. We also distinguish
two kinds of fluents: normative fluents that denote normative properties of the state such
as permissions P , powersW and obligations O, and domain fluents D that correspond
to properties specific to the normative framework itself. The set of all fluents is denoted
as F . A normative state is represented by the fluents that hold true in this state. Fluents
that are not presented are considered to be false. Conditions on a state are therefore
expressed by a set of fluents that should be true or false. The set of possible conditions
is referred to as X = 2F∪¬F .

Changes in state are achieved through the definition of two relations: (i) the gen-
eration relation, which implements counts-as by specifying how the occurrence of one
(exogenous or normative) event generates another (normative) event, subject to the em-
powerment of the actor and the conditions on the state, and (ii) the consequence relation.
This latter specifies the initiation and termination of fluents subject to the performance
of some action in a state matching some expression. The generation relation is formally

35

defined as G : X ×E → 2Enorm , and the consequence relation as C : X ×E → 2F×2F .
The fluents to be initiated as a result of an event E are often denoted by C↑(φ,E) while
the ones to be terminated are denoted by C↓(φ,E).

The semantics of our normative framework is defined over a sequence, called a
trace, of exogenous events. Starting from the initial state, each exogenous event is
responsible for a state change, through initiation and termination of fluents. This is
achieved by a three-step process: (i) the transitive closure of G with respect to a given
exogenous event determines all the generated (normative) events, (ii) to this all viola-
tions of events not permitted and obligations not fulfilled are added, giving the set of
all events whose consequences determine the new state, (iii) the application of C to this
set of events identifies all fluents that are initiated and terminated with respect to the
current state so giving the next state. For each trace, we can therefore compute a se-
quence of states that constitutes the model of the normative framework for that trace.
This process is realised as a computational model through Answer Set Programming
(see Section 4) and it is this representation that is the subject of the learning process
described in Section 5.

3 Learning

Inductive Logic Programming (ILP) [24] is a machine learning technique concerned
with the induction of logic theories from (positive and negative) examples and has been
successfully applied to a wide range of problems [15]. Automatic induction of hypothe-
ses represented as logic programs is one of the distinctive features of ILP. Moreover,
the use of logic programming as representation language allows a principled represen-
tation of background information relevant to the learning. To refine normative theories
we employ an ILP learning system, called TAL [12], that is able to learn non-monotonic
theories, and can be employed to perform learning of new rules and the revision of ex-
isting rules. The TAL approach is based on mapping a given inductive problem into an
abductive reasoning process. The current implementation of TAL relies on an extension
of the abductive procedure SLDNFA [13] and preserves its semantics.

Definition 1. A non-monotonic ILP task is defined as 〈E,B, S〉 where E is a set of
ground positive or negative literals, called examples, B is a background normal theory
and S is a set of clauses called language bias. The normal theory H ∈ ILP 〈E,B, S〉,
called hypothesis, is an inductive solution for the task 〈E,B, S〉, if H ⊆ S, H is
consistent with B and B ∪H |= E.

B and H are normal theories and thus support negation as failure. The choice of an
appropriate language bias is critical. In TAL the language bias S is specified by means
of mode declarations [?].

Definition 2. A mode declaration is either a head or body declaration, respectively
modeh(s) and modeb(s) where s is called a scheme. A scheme s is a ground literal
containing place-markers. A place-marker is a ground function whose functor is one of
the three symbols ’+’ (input), ’-’ (output), ’#’ (constant) and the argument is a constant
called type.

36

Given a schema s, s∗ is the literal obtained from s by replacing all place-markers
with different variables X1, ..., Xn. A rule r is compatible with a set M of mode dec-
larations iff (a) there is a mapping from each head/body literal l in r to a head/body
declaration m ∈M with schema s such that each literal is subsumed by its correspond-
ing s∗; (b) each output place-marker is bound to an output variable; (c) each input
place-marker is bound to an output variable appearing in the body or to a variable in
the head; (d) every constant place-marker is bound to a constant; (e) all variables and
constants are of the corresponding type. From a user perspective, mode declarations
establish how rules in the final hypotheses are structured, defining literals that can be
used in the head and in the body of a well-formed hypothesis. Although we show M in
the running example of this paper for reference, the mode declarations can be concealed
from the user and derived automatically. They can be optionally refined to constrain the
search whenever the designer wants to employ useful information on the outcome of
the learning to reduce the number of alternative hypotheses or improve performance.

4 Modelling Normative Frameworks

While the formal model of a normative framework allows for clear specification of a
normative system, it is of little support to designers or users of these systems. In order
to be able to do so, computational tools are needed. The first step is a computational
model equivalent to the formal model. We have opted for a form of logic programming,
called Answer Set Programming (ASP)[18]. Here we only present a short flavour of the
language AnsProlog, and the interested reader is referred to [3] for in-depth coverage.

AnsProlog is a knowledge representation language that allows the programmer to
describe a problem and the requirements on the solutions in an intuitive way, rather than
the algorithm to find the solutions to the problem. The basic components of the language
are atoms, elements that can be assigned a truth value. An atom can be negated using
negation as failure so creating the literal not a. We say that not a is true if we cannot
find evidence supporting the truth of a. If a is true then not a is false and vice versa.
Atoms and literals are used to create rules of the general form: a ← B, not C, where
a is an atom and B and C are set of atoms. Intuitively, this means if all elements of B
are known/true and no element of C is known/true, then a must be known/true. We refer
to a as the head and B ∪ not C as the body of the rule. Rules with empty body are are
called facts; A program in AnsProlog is a finite set of rules.

The semantics of AnsProlog are defined in terms of answer sets, i.e. assignments
of true and false to all atoms in the program that satisfy the rules in a minimal and
consistent fashion. A program has zero or more answer sets, each corresponding to a
solution.

4.1 Mapping the formal model into AnsProlog

In this section we only provide a summary description of how the formal institutional
model is translated in to AnsProlog . A full description of the model can be found in
[9] together with completeness and correctness of model with respect to traces. Each
program models the semantics of the normative framework over a sequence of n time

37

instants such that ti : 0 ≤ i ≤ n. Events are considered to occur between these snap-
shots, where for simplicity we do not define the intervals at which events occur explic-
itly, and instead refer to the time instant at the start of the interval at which an event is
considered to occur. Fluents may be true or false at any given instant of time, so we use
atoms of the form holdsat(f, ti) to indicate that fluent f holds at time instant ti. In
order to represent changes in the state of fluents over time, we use atoms of the form
initiated(f, ti) and terminated(f, ti) to denote the fact that fluent f was initiated
or terminated, respectively, between time instants i and i+1. We use atoms of the form
occurred(e, ti) to indicate that event e ∈ E is considered to have occurred between
instant ti and ti+1. These atoms denote events that occur in an external context or
are generated by the normative framework. For exogenous events we additionally use
atoms of the form observed(e, ti) to denote the fact that e has been observed.

The mapping of a normative framework consists of three parts: a base component
which is independent of the framework being modelled, the time model and the frame-
work specific component. The independent component deals with inertia of the fluents,
the generation of violation events of un-permitted actions and unsatisfied obligations.
The time model defines the predicates for time and is responsible for generating a sin-
gle observed event at every time instance. In this paper we will focus solely on the
representation of the specific features of the normative framework.

In order to translate rules in the normative framework relations G and C, we must
first define a translation for expressions which may appear in these rules. The valuation
of a given expression taken from the set X depends on which fluents may be held to
be true or false in the current state (at a give time instant). We translate expressions
into ASP rule bodies as conjunctions of extended literals using negation as failure for
negated expressions.

With all these atoms defined, mapping the generation function and the conse-
quence relation of a specific normative framework becomes rather straightforward.
The generation function specifies that an normative event e occurs at a certain in-
stance (occurred(e, t)) when an another event e′ occurs, the event e is empowered
(holdsat(pow(e), t) and a set of conditions on the state are satisfied (holdsat(f, t)
or not holdsat(f, t)). The rules for initiation (initiated(f, t)) and termina-
tion (terminated(f, t) of a fluent f are triggered when a certain event e occurs
(occurred(e, t)) and a set of conditions on the state are fulfilled. The initial state of
our normative framework is encoded as simple facts (holdsat(f, i00)).

Figure 1 gives a summary of all AnsProlog rules that are generated for a specific
normative framework, including the definition of all the fluents and events as facts. For
a given expression φ ∈ X , we use the term EX(φ, T) to denote the translation of φ
into a set of ASP literals of the form holdsat(f, T) or not holdsat(f, T).

In situations where the normative system consists of a number of agents whose
actions can be treated in the same way (e.g. the rules for borrowing a book are the
same for every member of alibrary) or where the state consists of fluents that can
be treated in a similar way (e.g. the status of book), we can parameterise the events
and fluents. This is represented in the AnsProlog program by function symbols (e.g
borrowed(Agent, Book)) rather than terms. To allow for grounding, extra atoms to

38

p ∈ F ⇔ ifluent(p).
e ∈ E ⇔ event(e).

e ∈ Eex ⇔ evtype(e, obs).
e ∈ Eact ⇔ evtype(e, act).
e ∈ Eviol ⇔ evtype(e, viol).

C↑(φ, e) = P ⇔ ∀p ∈ P · initiated(p, T)← occurred(e, I),EX(φ, T).

C↓(φ, e) = P ⇔ ∀p ∈ P · terminated(p, T)← occurred(e, I),EX(φ, T).
G(φ, e) = E ⇔ g ∈ E, occurred(g, T)←occurred(e, T),

holdsat(pow(e), I),EX(φ, T).
p ∈ S0 ⇔ holdsat(p, i00).

Fig. 1. The translation of normative framework specific rules into AnsProlog

ground these variables need to be added. Grounded versions of the atoms also need to
be added to the program. An example of this can be found in Section 6.

5 Learning Normative Rules

5.1 Methodology

The development process is supported by a set of use cases U . Use cases represent
instances of executions that are known to the designer and that drive the elaboration
of the normative system. If the current formalisation of the system does not match
the intended behaviour in the use case then the formalisation is still not complete or
incorrect. Each use case u ∈ U is a tuple 〈T,C,O〉 where T is a trace that specifies
all the exogenous events occurring at all the time points considered (observed(e, T));
C are ground holdsat or occurred facts that the designer believes to be important
and represents the conditional expected output; O are ground holdsat and occurred

literals that represent the expected output of the use case.
The design process is iterative. A current formalisation of the model in AnsProlog

is tested against a set of use cases. Together with the AnsProlog specification of the
normative framework we add the observed events and a constraint indication that no
answer set that does not satisfyO is acceptable. The latter is done by adding a constraint
containing the negation of all the elements in O. If for some use cases the solver is not
able to find an answer set (returns unsatisfiable), then a revision step is performed. All
the use cases and the current formalisation are given as input to TAL. Possible revisions
are provided to the designer who ultimately chooses which is the most appropriate. The
success of the revision step depends on the state of the formalisation of the model. The
set of supporting use cases can be extended as the design progresses to more accurate
models.

In this paper we focus on the learning step and we show how a non-monotonic
ILP system can be used to derive new rule. Refining existing rules (i.e. deleting rules
or adding and delete conditions in rules) is a straightforward extension of the current
framework. Though we do not discuss it in this paper, revision can be performed by
extending the original rules with additional predicates that extend the search to deletion
of conditions in rules and to exceptions as shown in [11].

39

Designer

Normative
framework
AnsProlog

formalisation

Use Cases

Learning

Suggested revisions

Fig. 2. Iterative design driven by use cases.

5.2 Mapping ASP to ILP
The differences between the AnsProlog program and the translation into a suitable
representation for TAL is procedural and only involves syntactic transformations. Thus
the difference in the two representations only consists in how the inference is performed.
The two semantics coincide since the same logic program is encoded and the mapping
of a normative framework has exactly one answer set when given a trace. If conditions
are added this can be reduced to zero.

A normative model F corresponds to a AnsProlog program PF as described in
Section 4. All the normal clauses contained in PF are part of B; the only differences
involve time points, that are handled inB by means of a finite domain constraint solver.
B also contains all the facts inC and T (negated facts are encoded by adding exceptions
to the definitions of holdsat and occurred). The set of examples E contains the
literals inO. EachH ∈ ILP 〈E,B, S〉 represents a possible revision for P and thus for
the original normative model.

6 Example

To illustrate the capabilities of the norm learning mechanism, we have developed a
relatively simple scenario that, at the same time, is complicated enough to demonstrate
the key properties with little extraneous detail.

The active parties—agents—of the scenario each find themselves initially in the
situation of having ownership of several (digital) objects—the blocks—that form part
of some larger composite (digital) entity—a file. An agent may give a copy of one its
blocks in exchange for a copy of another block with the aim of acquiring a complete
set of all the blocks. For simplicity, in the situation we analyse here, we assume that
initially each agent holds the only copy of a given block, and that is there is only one
copy of each block in the agent population. Furthermore, we do not take into account
the possibility of exchanging a block for one that the agent already has. We believe that
neither of these issues does more than complicate the situation by adding more states
that would obscure the essential properties that we seek to demonstrate. Thus, we arrive
at a statement of the example: two agents, Alice and Bob, each holding two blocks from
a set of four and each having the goal of owning all four by downloading the blocks they
miss from the other while sharing, with another agent, the ones it does.

40

% Normative and Domain Rules
initiated(hasBlock(Agent,Block), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
initiated(perm(myDownload(Agent,Block)), I)←

occurred(myShare(Agent), I), holdsat(live(filesharing), I).
terminated(pow(filesharing,myDownload(Agent,Block)), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
terminated(needsBlock(Agent,Block), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
terminated(pow(filesharing,myDownload(Agent,Block)), I)←

occurred(misuse(Agent), I), holdsat(live(filesharing), I).
terminated(perm(myDownload(Agent,Block)), I)←

occurred(myDownload(Agent,Block), I), holdsat(live(filesharing), I).
occurred(myDownload(AgentA,Block), I)←

occurred(download(AgentA,AgentB,Block), I), holdsat(hasBlock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I), AgentA! = AgentB.

occurred(myShare(AgentB), I)←
occurred(download(AgentA,AgentB,Block), I), holdsat(hasBlock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I), AgentA! = AgentB.

occurred(misuse(Agent), I)← occurred(viol(myDownload(Agent,Block)), I), i).
% Initial state
holdsat(pow(filesharing,myDownload(Agent,Block)), i0).
holdsat(pow(filesharing,myShare(Agent)), i0).
holdsat(perm(download(AgentA,AgentB,Block)), i0)).
holdsat(perm(myDownload(Agent,Block)), i0).
holdsat(perm(myShare(Agent)), i0).
holdsat(hasBlock(alice, x1), i0). holdsat(hasBlock(alice, x2), i0).
holdsat(hasBlock(bob, x3), i0). holdsat(hasBlock(bob, x4), i0).
holdsat(needsBlock(alice, x3), i0). holdsat(needsBlock(alice, x4), i0).
holdsat(needsBlock(bob, x1), i0). holdsat(needsBlock(bob, x2), i0).
holdsat(live(filesharing), i0).
% fluent rules
holdsat(P, J)← holdsat(P, I), not terminated(P, I), next(I, J).
holdsat(P, J)← initiated(P, I), next(I, J).
occurred(E, I)← evtype(E, ex), observed(E, I).
occurred(viol(E), I)←

occurred(E, I), not holdsat(perm(E), I), holdsat(live(X), I), evinst(E,X).
occurred(viol(E), I)←

occurred(E, I), evtype(E, inst), not holdsat(perm(E), I), event(viol(E)).

Fig. 3. Translation of the “sharing” normative framework into AnsProlog (types omitted).

We model this as a simple normative framework, where the brute event [20] of
downloading a block initiates several normative events, but the act of downloading re-
vokes the permission of that agent to download another block until it has shared (this the
complementary action to download) a block with another agent. Violation of this norm
results in the download power being revoked permanently. In this way reciprocity is
assured by the normative framework. Initially, each agent is empowered and permitted
to share and to download, so that either agent may initiate a download operation.

Fig. 3 shows the AnsProlog representation of the complete normative framework
representing this scenario. In the following examples a variety of normative rules will
be deliberately removed and re-learned.

6.1 Learning Setting

To show how different parts of the formal model can be learned we start from a cor-
rect specification and, after deleting some of the rules, we use TAL to reconstruct the
missing parts based on a single use case. In our example TAL is set to learn hypotheses
of at most three rules with at most three conditions. The choice of an upper bound on

41

the complexity (number of literals) of the rule ultimately rests on the final user. Alter-
natively, TAL can iterate on the complexity or perform a best first search that returns
increasingly more complex solutions. We use the following mode declarations, M :

m1 : modeh(terminated(perm(myDownload(+agent,+block)),+instant)).
m2 : modeh(initiated(perm(myDownload(+agent,+block)),+instant)).
m3 : modeb(occurred(myDownload(+agent,+block),+instant)).
m4 : modeb(occurred(myDownload(+agent,−block),+instant)).
m5 : modeb(occurred(myShare(+agent),+instant)).
m6 : modeb((+agent!= +agent)).
m7 : modeb(holdsat(hasblock(+agent,+block),+instant)).
m8 : modeb(holdsat(powfilesharing(myDownload(+agent,+block)),+instant)).

The first two mode declarations state that terminate and initiate permission rules for
the normative fluentmyDownload can be learned. The other declarations constrain the
structure of the body. The difference between m3 and m4 is that the former must refer
to the same block as the one in the head of the rule while the latter introduces a possibly
different block. m8 is an inequality constraint between agents. In general more mode
declarations should be considered (e.g. initiation and termination of all types of fluents
should be included) but the revision can be guided by the designer. For example new
changes to a stable theory are more likely to contain errors and thus can be isolated in
the revision process. The time to compute all the reported hypotheses ranges from 30
to 500 milliseconds on a 2.8 GHz Intel Core 2 Duo iMac with 2 GB of RAM.

The background knowledge B contains the rules in Fig. 3 together with the traces
T given in the use cases. C in this example is empty to allow for the demonstration of
the most general types of learning.

Learning a single terminate/initiate rule We suppose one of the initiate rules is
missing from the current specification:

initiated(perm(myDownload(Agent,Block)), I)←
occurred(myShare(Agent), I).

The designer inputs the following observed events that show how in a two agent sce-
nario, one of the agents loses permission to download after downloading a block and
reacquires it after providing a block for another agent. The trace T looks like:

observed(download(alice, bob, x3), 0).
observed(download(bob, alice, x1), 1).

The expected output O is:

not holdsat(perm(myDownload(alice, x4)), 1).
holdsat(perm(myDownload(alice, x4)), 2).

The trace is disfunctional if the expected output is not true in the answer set of T ∪ B.
The ILP task is thus to find a set of rules H within the language bias specified by
mode declarations in M such that given the background knowledge B in Fig. 3 and the

42

given expected output O as conjunction of literals, O is true in the only answer set of
B ∪ T ∪H (if one exists). TAL produces the following hypotheses:

initiated(perm(myDownload(A,)), C)← (H1)
occurred(myShare(A), C).

and
terminated(perm(myDownload(,)),). (H2)
initiated(perm(myDownload(A,)), C)←

occurred(myShare(A), C).

The second solution is not the one intended but it still supports the use case. Note
that according to current implementation, whenever a fluent f is both initiated and
terminated at the same time point, f still holds at the subsequent time point.

Learning multiple rules In this scenario two rules are missing from the specification:

initiated(perm(myDownload(Agent,Block)), I)←
occurred(myShare(Agent), I).

terminated(perm(myDownload(Agent,Block2)), I)←
occurred(myDownload(Agent,Block1), I).

We use the same T and O as previously. TAL produces the following hypotheses:

terminated(perm(myDownload(A,)), C)← (H1)
occurred(myDownload(A,), C).

initiated(perm(myDownload(A,)), C)←
occurred(myShare(A), C).

terminated(perm(myDownload(,)),). (H2)
initiated(perm(myDownload(A,)), C)←

occurred(myShare(A), C).

The second solution is consistent with the use case, but the designer can easily discard
it, since the rule is not syntactically valid with respect to the normative framework: a
fluent can only be terminated as a consequence of the occurrence of an event. Using
more advanced techniques for the language bias specification it would be possible to
rule out such a hypothesis.

Learning of undesired violation We assume the following rule is missing:

initiated(perm(myDownload(Agent,Block)), I)←
occurred(myShare(Agent), I).

This time we provide a different trace T :

observed(download(alice, bob, x3), 0).
observed(download(bob, alice, x1), 1).
observed(download(alice, bob, x4), 2).

As a result of the trace, a violation at time point 2 is implied that the designer knows to
be undesired. The expected output is:

not occurred(viol(myDownload(alice, x4)), 2).

43

occurred(myShare(A), B)← (H1)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(A,E)), B).

occurred(myShare(A), B)← (H2)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(A,E)), B),
holdsat(hasblock(A,E), B).

occurred(myShare(A), B)← (H3)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(C,E)), B).

occurred(myShare(A), B)← (H4)
occurred(download(C,A,E), B), A! = C,
holdsat(pow(filesharing,myDownload(C,E)), B),
holdsat(hasblock(A,E), B).

occurred(myShare(A), B)← (H5)
occurred(download(C,A,E), B), A! = C,
holdsat(hasblock(A,E), B).

occurred(myShare(A), B)← (H6)
occurred(download(C,A,E), B),
holdsat(pow(filesharing,myDownload(C,E)), B).

Fig. 4. Proposals to revise the generate rule

The outcome of the learning consists of the following two possible solutions:

initiated(perm(myDownload(A,)), C)← (H1)
occurred(myShare(A), C).

initiated(perm(myDownload(,)),). (H2)

that show how the missing rule is derived from the undesired violation. As in the previ-
ous scenario the designer can easily dismiss the second candidate.

Learning a generate rule To account for the different type of rules that need to be
learned, the language bias is extended to consider learning of generate rules. The new
mode declarations are:

modeh(occurred(myShare(+agent),+instant)).
modeb(occurred(download(−agent,+agent,−block),+instant)).

We use the same trace and expected output as in the previous scenario (three observed
events). The following rule is eliminated from the specification:

occurred(myShare(AgentB), I)←
AgentA! = AgentB,
occurred(download(AgentA,AgentB,Block), I),
holdsat(hasblock(AgentB,Block), I),
holdsat(pow(filesharing,myDownload(AgentA,Block)), I).

This is the most complicated case for the designer as a set of six different hypotheses
are returned by TAL (see Figure 4). Knowing the semantics of the function symbol
download(AgentA, AgentB, Block) as AgentA downloads from AgentB the designer
should be able to select the most appropriate rule.

44

7 Related Work

The motivation behind this paper is the problem of how to converge upon a complete
and correct normative framework with respect to the intended range of application,
where in practice these properties may be manifested by incorrect or unexpected be-
haviour in use. Additionally, we would observe, from practical experience with our
particular framework, that it is often desirable, as with much software development, to
be able to develop and test incrementally—and regressively—rather than attempt veri-
fication once the system is (notionally) complete.

The literature seems to fall broadly into three categories: (a) concrete language
frameworks (OMASE, Operetta, InstSuite, MOISE, Islander, OCeAN and the constraint
approach of Garcia-Camino (full references to these are currently omitted because of
page limitations)) for the specification of normative systems, that are typically sup-
ported by some form of model-checking, and in some cases allow for change in the
normative structure; (b) logical formalisms, such as [16], that capture consistency and
completeness via modalities and other formalisms like [5], that capture the concept of
norm change, or [?] and [?]; (c) mechanisms that look out for (new) conventions and
handle their assimilation into the normative framework over time and subject to the
current normative state and the position of other agents [2, 8]. Essentially, the objective
of each of the above is to realize a transformation of the normative framework to ac-
commodate some form of shortcoming. These shortcomings can be identified in several
ways: (a) by observing that a particular state is rarely achieved, which can indicate there
is insufficient normative guidance for participants, or (b) a norm conflict occurs, such
that an agent is unable to act consistently under the governing norms [23], or (c) a par-
ticular violation occurs frequently, which may indicate that the violation conflicts with
an effective course of action that agents prefer to take, the penalty notwithstanding. All
of these can be viewed as characterising emergent [28] approaches to the evolution of
normative frameworks, where some mechanism, either in the framework, or in the envi-
ronment, is used to revise the norms. In the approach taken here, the designer presents
use cases that effectively capture their behavioural requirements for the system, in or-
der to ‘fix’ bad states. This has an interesting parallel with the scheme put forward by
Serrano and Saugar [30], where they propose the specification of incomplete theories
and their management through incomplete normative states identified as “pending”. The
framework lets designated agents resolve this category through the speech acts allow
and forbid and scheme is formalised using an action language.

A useful categorisation of normative frameworks appears in [6]. Whether the norms
here are ‘strong’ or ‘weak’ —the first guideline— depends on whether the purpose of
the normative model is to develop the system specification or additionally to provide
an explicit representation for run-time reference. Likewise, in respect of the remaining
guidelines, it all depends on how the framework we have developed is actually used:
we have chosen, for the purpose of this presentation, to stage norm refinement so that
it is an off-line (in the sense of prior to deployment) process, while much of the dis-
cussion in [6] addresses run-time issues. Whether the process we have outlined here
could effectively be a means for on-line mechanism design, is something we have yet
to explore.

45

From an ILP perspective, we employ an ILP system that can learn logic programs
with negation (stratified or otherwise). Though recently introduced and in its early
stages of development TAL is the most appropriate choice to support this work for
two main reasons: it is supported by completeness results, unlike other existing non-
monotonic ILP systems ([27], [22]), and it can be tailored to particular requirements
(e.g. different search strategies can address performance requirements). The approach
presented in this paper is related to other recently proposed frameworks for the elab-
oration of formal specifications via inductive learning. Within the context of software
engineering, [?] has shown how examples of desirable and undesirable behaviour of
a software system can be used by an ILP system, together with an incomplete back-
ground knowledge of the envisioned system and its environment, to compute missing
requirements specifications. A more general framework has been proposed [?] where
desirable and undesirable behaviours are generated from counterexamples produced by
model checking a given (incomplete) requirements specification with respect to given
system properties. The learning of missing requirements has in this case the effect of
eliminating the counterexamples by elaborating further the specification.

8 Conclusions and Future Work

We have presented an approach for learning norms and behavioural rules, via inductive
logic programming, from example traces in order to guide and support the synthesis
of a normative framework. This addresses a crucial problem in normative systems as
the development of such specifications is in general a manual and error-prone task. The
approach deploys an established inductive logic programming system [12] that takes in
input an initial (partial) description of a normative system and use cases of expected
behaviours provided by the designer and generates hypothesis in the form of missing
norms and behavioural rules that together with the given description explain the use
cases. Although the approach presented in this paper has been tailored for learning
missing information, it can also be applied to computing revisions over the existing de-
scription. In principle this can be achieved by transforming the existing normative rules
into defeasible rules with exceptions and using the same ILP system to compute excep-
tion rules. These exceptions would in essence be prescriptions for changes (i.e. addition
and/or deletion of literals in the body of existing rules) in the current specification.
An appropriate refactoring of the defeasible rules based on the learned exception rules
would give a revised (non-defeasible) specification. In this case, the revision would be
in terms of changes over the rules of a normative framework instead of changes over its
belief state, as would be the case if a TMS approach were adopted.

There are several criticisms that can be levelled at the approach as it stands. Firstly,
the design language is somewhat unfriendly: a proper tool would have a problem-
oriented language, like InstAL/QL [10, 19]. A system designer would then start from
an initial description of their normative framework with some use cases and receive
automated suggestions of additional norms to include in the framework written in the
same high-level language. The machinery described here, based on ASP syntax and ILP
formulation, would then be used as a sound “back- end” computation to a formalism
familiar to the system designer. Secondly, better control is needed over the rules that are

46

learned and over the filtering of incorrect rules; at present this depends on specialised
knowledge of the learning process. This can to some extent be controlled through care-
ful choice of and limits on the size of use cases—probably involving heuristics—to
improve the effectiveness of the learning process in the search for relevant hypotheses
and pruning of those potential solutions that cannot be translated back into the canonical
form of the normative framework. Despite these issues, we believe we have identified an
interesting path for automating and development and debugging of practical normative
specifications and perhaps, in the long term, a mechanism for on-line norm evolution.

References

1. A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies with the Causal Calculator.
In Proceedings of workshop on agent-oriented software engineering iii (aose), LNCS 2585.
Springer, 2003.

2. Alexander Artikis. Dynamic protocols for open agent systems. In Sierra et al. [31], pages
97–104.

3. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

4. Guido Boella, Pablo Noriega, Gabriella Pigozzi, and Harko Verhagen, editors. Normative
Mult-Agent Systems, number 09121 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009.

5. Guido Boella, Gabriella Pigozzi, and Leendert van der Torre. Normative framework for
normative system change. In Sierra et al. [31], pages 169–176.

6. Guido Boella, Gabriella Pigozzi, and Leendert van der Torre. Normative systems in computer
science - ten guidelines for normative multiagent systems. In Normative Mult-Agent Systems,
2009.

7. Guido Boella and Leendert van der Torre. Constitutive Norms in the Design of Normative
Multiagent Systems, City College. In Proceedings of the Sixth International Workship on
Computational Logic in Multi-Agent Systems (CLIMA-VI), June 2005.

8. George Christelis and Michael Rovatsos. Automated norm synthesis in an agent-based plan-
ning environment. In Sierra et al. [31], pages 161–168.

9. Owen Cliffe, Marina De Vos, and Julian Padget. Answer set programming for representing
and reasoning about virtual institutions. In Computational Logic for Multi-Agents (CLIMA
VII), volume 4371 of LNAI, pages 60–79. Springer, May 2006.

10. Owen Cliffe, Marina De Vos, and Julian A. Padget. Embedding landmarks and scenes in
a computational model of institutions. In Coordination, Organizations, Institutions, and
Norms in Agent Systems III, volume 4870 of LNCS, pages 41–57, September 2008.

11. D. Corapi, O. Ray, A. Russo, A.K. Bandara, and E.C. Lupu. Learning rules from user be-
haviour. In 5th Aritificial Intelligence Applications and Innovations (AIAI 2009), April 2009.

12. D. Corapi, A. Russo, and E. Lupu. Inductive logic programming as abductive search. In
26th International Conference on Logic Programming, Leibniz International Proceedings in
Informatics. Schloss Dagstuhl Research Online Publication Server, 2010.

13. Marc Denecker and Danny De Schreye. Sldnfa: An abductive procedure for abductive logic
programs. J. Log. Program., 34(2):111–167, 1998.

14. V. Dignum. A model for organizational interaction: based on agents, founded in logic. PhD
thesis, University of Utrecht, 2004.

15. Sas̆o Dz̆roski. Relational data mining applications: an overview. pages 339–360, 2000.
16. Christophe Garion, Stéphanie Roussel, and Laurence Cholvy. A modal logic for reasoning

on consistency and completeness of regulations. In Boella et al. [4].

47

17. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-Driven Answer Set Solving.
In Proceeding of IJCAI07, pages 386–392, 2007.

18. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9(3-4):365–386, 1991.

19. Luke Hopton, Owen Cliffe, Marina De Vos, and Julian Padget. Instql: A query language for
virtual institutions using answer set programming. In Proceedings of the 10th International
Workshop on Computational Logic in Multi-Agent Systems (ClimaX), IfI Technical Report
Series, pages 87–104, September 2009.

20. John R. Searle. The Construction of Social Reality. Allen Lane, The Penguin Press, 1995.
21. Andrew J.I. Jones and Marek Sergot. A Formal Characterisation of Institutionalised Power.

ACM Computing Surveys, 28(4es):121, 1996. Read 28/11/2004.
22. Tim Kimber, Krysia Broda, and Alessandra Russo. Induction on failure: Learning connected

horn theories. In LPNMR, pages 169–181, 2009.
23. Martin Kollingbaum, Timothy Norman, Alun Preece, and Derek Sleeman. Norm conflicts

and inconsistencies in virtual organisations. In Proceedings of COIN 2006, volume 4386 of
LNCS, pages 245–258. Springer, 2007.

24. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications.
Ellis Horwood, 1994.

25. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In LPNMR, volume 1265 of LNAI, pages 420–429. Springer,
July 28–31 1997.

26. Juan A. Rodriguez-Aguilar. On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona, 2001.

27. Chiaki Sakama. Nonmonotonic inductive logic programming. In LPNMR, page 62, 2001.
28. Bastin Tony Roy Savarimuthu and Stephen Cranefield. A categorization of simulation works

on norms. In Boella et al. [4].
29. Marek Sergot. (C+)++: An Action Language For Representing Norms and Institutions. Tech-

nical report, Imperial College, London, August 2004.
30. Juan-Manuel Serrano and Sergio Saugar. Dealing with incomplete normative states. In

Proceedings of COIN 2009, volume 6069 of LNCS. Springer, 2010. in press.
31. Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman, editors.

8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2009), Budapest, Hungary, May 10-15, 2009, Volume 1. IFAAMAS, 2009.

32. Munindar P. Singh. A social semantics for agent communication languages. In Issues in
Agent Communication, pages 31–45. Springer-Verlag: Heidelberg, Germany, 2000.

48

Norm enforceability in Electronic Institutions?

Natalia Criado1 , Estefania Argente1 , Antonio Garrido1 , Juan A. Gimeno1,
Francesc Igual1, Vicente Botti1, Pablo Noriega2 , Adriana Giret1

1 DSIC, Department of Information Systems and Computation,
Universitat Politècnica de Valencia,

2 IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Scientific Research Council,

{ncriado,eargente,agarridot,jgimeno,figual,vbotti,agiret}@dsic.upv.es

pablo@iiia.csic.es

Abstract. Nowadays Multi-Agent Systems require more and more reg-
ulation and normative mechanisms in order to assure the correct and
secure execution of the interactions and transactions in the open vir-
tual organization they are implementing. The Electronic Institution ap-
proach for developing Multi-Agent Systems implements some enforce-
ability mechanisms in order to control norms execution and observance.
In this paper we study a complex situation in a regulated environment
in which the enforceability mechanisms provided by the current Elec-
tronic Institutions implementation cannot deal appropriately with norm
observance. The analyzed situation is exemplified with a specific sce-
nario of the mWater regulated environment, an electronic market for
water-rights transfer. After this example is presented, we extrapolate it
to a more generic domain while also addressing the main issues for its
application in general scenarios.

1 Introduction

In general, norms represent an effective tool for achieving coordination and co-
operation among the members of a society. They have been employed in the field
of Multi-Agent Systems (MAS) as a formal specification of a deontic statement
that aims at regulating the actions of software agents and the interactions among
them. Thus, a Normative MAS (NMAS) has been defined in [3] as follows:

”a MAS organized by means of mechanisms to represent, communicate,
distribute, detect, create, modify, and enforce norms and mechanisms to
deliberate about norms and detect norm violation and fulfilment.”

According to this definition, the norm enforcement problem, faced by this pa-
per, is one of the key factors in NMAS. In particular, this paper faces with the
enforcement of norms inside Electronic Institutions (EIs) that simulate real sce-
narios. EIs [19, 22, 8] represent a way to implement interaction conventions for
agents who can establish commitments in open environments.

When real life problems are modelled by means of EI some of the norms
are obtained by giving a computational interpretation to real legislation. In this
process we have encountered two main problems:

49

– Norm Inconsistency. Usually the set of laws created by human societies in
order to regulate a specific situation are contradictory and/or ambiguous.
In particular, there are situations in which there is a general law (regulative
norm [4]) which is controlled by a local law (procedural norm [4]). The prob-
lem arises when this local law does not ensure compliance of the more general
law. This may be due to the existence of different levels of institutions which
are working in the same system [11]. Thus, an elaborated process is necessary
in order to determine which norms are active in a specific moment and how
they are applied. Traditional methods for implementing norms in EI, which
are based on the unambiguous interpretation of norms, are not suitable to
overcome this problem.

– Norm Controlling. Even in absence of a conflict among norms, there is still
the problem of norm controlling. Norm enforcement methods inside EI are
based on the observation of these activities controlled by norms. In particu-
lar, there are norms whose violation cannot be observed since they regulate
situations that take place out of the institution boundaries. Thus, violations
are only detectable in presence of a conflict among agents.

In this paper we focus on the enforcement of these norms, which cannot
be controlled by traditional techniques. Thus, we address the question of en-
forceability of non-observable norms inside EIs. In order to make more clear
and understandable the problem addressed by this paper, it has been exempli-
fied in the mWater scenario [5]. In addition, a first solution for overcoming the
mWater concrete problem is shown. In particular, we propose the definition of a
grievance scene for allowing normative conflicts to be solved within the mWater
institution. However, this solution can be also extrapolated to generic domains.

This paper is structured as follows: the next section provides background on
norm implementation, EIs and the implementation of norms inside EIs. Then a
concrete example of the problem addressed by this paper is described. Finally,
discussion and future works are described.

2 Background

This section firstly reviews the main methods for ensuring norm compliance in
MAS and the techniques that can be employed for implementing these methods.
Then, a brief description of the Electronic Institution framework is given, as well
as a discussion on how norms are implemented and enforced in this framework.

2.1 Norm Implementation in Multiagent Systems

Norms allow legal issues to be modelled in electronic institutions and electronic
commerce, MAS organizations, etc. Most of the works on norms in MAS have
been proposed from a theoretical perspective. However, several works on norms
from an operational point of view have recently arisen, which are focused on
giving a computational interpretation of norms in order to employ them in the

50

design and execution of MAS applications. In this sense, norms must be inter-
preted or translated into mechanisms and procedures which are meaningful for
the society [14]. Methods for ensuring norm compliance are classified into two
categories: (i) regimentation mechanisms, which consist in making the violation
of norms impossible, since these mechanisms prevent agents from performing
actions that are forbidden by a norm; and (ii) enforcement mechanisms, which
are applied after the detection of the violation of some norm, reacting upon it.

In a recent work [2], a taxonomy of different techniques for implementing
effectively norms is proposed. On the one hand, the regimentation of norms can
be achieved by two processes: (i) mediation, in which both the resources and
communication channels are accessed through a reliable entity which controls
agent behaviours and prevents agents from deviating from ideal behaviour; and
(ii) hard-wiring, assuming that the agents’ mental states are accessible and can
be modified in accordance with norms. On the other hand, norm enforcement
techniques are classified according to both the observer and the enforcer entity.
Norms are self-enforced when agents observe their own behaviour and sanction
themselves. Thus, norm compliance is both observed and enforced without the
need of any additional party. In situations in which those agents involved by a
transaction are responsible for detecting norm compliance (i.e. second-party ob-
servability) norms can be enforced by: (i) the second-party which applies sanc-
tions and rewards; and (ii) a third entity which is an authority and acts as
an arbiter or judge in the dispute resolution process. In the case of third-party
observability, two different mechanisms for ensuring norm compliance can be
defined according to the entity which is in charge of norm enforcing: (i) social
norms are defended by the society as a whole; (ii) in infrastructural enforcement
there are infrastructural entities which are authorities in charge of monitoring
and enforcing norms by applying sanctions and rewards.

2.2 Electronic Institutions

Electronic Institutions (EI) are computational counterparts of conventional in-
stitutions [19, 22, 8]. Institutions are, in an abstract way, a set of conventions
that articulate agent interactions [20]. In practice they are identified with the
group of agents, standard practices, policies and guidelines, language, docu-
ments and other resources —the organization— that make those conventions
work. Electronic Institutions are implementations of those conventions in such a
way that autonomous agents may participate, their interactions are supported
by the implementation and the conventions are enforced by the system on all
participants. Electronic institutions are engineered as regulated open MAS en-
vironments. These MAS are open in the sense that the EI does not control the
agents’ decision-making processes and agents may enter and leave the EI at their
own will. EIs are regulated in four ways. First, agents are capable of establish-
ing and fulfilling commitments inside the institution, and those correspond to
commitments in the real world. Second, only interactions that comply with the
conventions have any consequence in the environment. Third, interactions are

51

organized as repetitive activities regulated by the institution and, last, interac-
tions, in EIs, are always speech acts.

An EI is specified through: (i) a dialogical framework which fixes the context
of interaction by defining roles and their relationships, a domain ontology and a
communication language; (ii) scenes that establish interaction protocols of the
agents playing a given role in that scene, which illocutions are admissible and
under what conditions; (iii) performative structures that, like the script of a
play, express how scenes are interrelated and how agents playing a given role
move from one scene to another, and (iv) rules of behaviour that regulate how
commitments are established and satisfied.

The IIIA model has a platform for implementation of EIs. It has a graphical
specification language, ISLANDER, in which the dialogical framework, perfor-
mative structures and those norms governing commitments and the pre- and
post- conditions of illocutions are specified [9]. It produces an XML file that is
interpreted by AMELI [10], a middleware that handles agent messages to and
from a communication language, like JADE, according to the ISLANDER spec-
ification [10]. In addition, EIDE [1] includes a monitoring and debugging tool,
SIMDEI that keeps track of all interactions and displays them in different modes.
There is also a tool, aBuilder, that, from the XML specification, generates, for
each role, agent shells that comply with the communication conventions (the
decision-making code is left to the agent programmer).

2.3 Norm Implementation in EI

Norm Regimentation. In AMELI, governors filter the actions of agents, let-
ting them only to perform those actions that are permitted by the rules of
society. Therefore, governors apply a regimentation mechanism, preventing the
execution of prohibited actions and, therefore, preventing agents to violate their
commitments.

This regimentation mechanism employed by governors makes use of a formal-
ism based on rules for representing constraints on agent behaviours [13]. This
formalism is conceived as a “machine language” for implementing other higher
level normative languages. More specifically, it has been employed to enforce
norms that govern EIs. The main features of the proposed “machine language”
are: (i) it allows for the explicit definition and management of agent norms (i.e.
prohibitions, obligations and permissions); (ii) it is a general purpose language
not aimed at supporting a specific normative language; (iii) it is declarative and
has an execution mechanism. For implementing this rule system, the Jess tool
has been employed as an inference engine. Jess allows the development of Java
applications with “reasoning” capabilities1.

In open systems, not only the regimentation of all actions can be difficult,
but also sometimes it is inevitable and even preferable to allow agents to vi-
olate norms [6]. Reasons behind desirability of norm violations are because it
is impossible to take a thorough control of all their actions, or agents could

1 http://herzberg.ca.sandia.gov/jess/

52

obtain higher personal benefits when violating norms, or norms may be vio-
lated by functional or cooperative motivations, since agents intend to improve
the organization functionality through violating or ignoring norms. Therefore,
all these situations require norms to be controlled by enforcement mechanisms.
Next, works on the enforcement of norms inside EI are described.

Norm Enforcement. The enforcement of a norm by an institution requires
the institution to be capable of recognizing the occurrence of the violation of
the norm and respond to it [14]. Hence, checking activities may occur in several
ways: directly, at any time, randomly or with periodical checks, or by using
monitoring activities; or indirectly, allowing agents to denounce the occurrence
of a violation and then checking their grievances.

Regarding direct norm enforcement, the institution itself is in charge of both
observing and enforcing norms. Thus, in this approach there are infrastructural
entities which act as norm observers and apply sanctions when a violation is
detected. In [17, 12], distributed mechanisms for an institutional enforcement of
norms are proposed. In particular, these works propose languages for expressing
norms and software architectures for the distributed enforcement of these norms.
More specifically, the work described in [17] presents an enforcement mechanism,
implemented by the Moses toolkit [16], which is as general (i.e. it can implement
all norms that are controllable by a centralized enforcement) and more scalable
and efficient with respect to centralized approaches. However, one of the main
drawbacks of this proposal is the fact that each agent has an interface that sends
legal messages. Since norms are controlled by these local interfaces, norms can
be only expressed in terms of messages sent or received by an agent; i.e. this
framework does not support the definition of norms that affect an agent as a
consequence of an action carried out independently by another agent. This prob-
lem is faced by Gaertner et al. in [12]. In this approach, Gaertner et al. propose
a distributed architecture for enforcing norms in EI. In particular, dialogical
actions performed by agents may cause the propagation of normative positions
(i.e. obligations, permissions and prohibitions). These normative propositions
are taken into account by the normative level; i.e. a higher level in which norm
reasoning and management processes are performed in a distributed manner. In
a more recent work, Modgil et al. [18] propose an architecture for monitoring
norm-governed systems. In particular, this architecture is formed by trusted ob-
servers that report to monitors on states of interest relevant to the activation,
fulfilment, violation and expiration of norms. This monitoring system is correc-
tive in the sense that it allows norm violations to be detected and reacting to
them.

Mixed Approaches. Finally, there are works which employ a mixed approach
for controlling norms. In this sense, they propose the usage of regimentation
mechanisms for ensuring compliance with norms that preserve the integrity of
the application. Unlike this, enforcement is proposed to control norms that can-
not be regimented due to the fact that they are not verifiable or their violation

53

may be desirable. In [7] an example on the mixed approach is shown. In par-
ticular, this work shows how norms that define the access to the organization
infrastructure are controlled, whereas norms controlling other issues such as
work domain norms are ignored. In particular, those norms that define permis-
sions and prohibitions related to the access to the organization are regimented
through mediation, whereas obligation norms are enforced following the institu-
tional sanction mechanism.

The ORA4MAS [15] is another well known proposal that makes use of a
mixed approach for implementing norms. The ORA4MAS proposal defines arti-
facts as first class entities to instrument the organisation for supporting agents
activities within it. Artifacts are resources and tools that agents can create and
use to perform their individual and social activities [21]. Regarding the imple-
mentation of norms in the ORA4MAS framework, regimentation mechanisms are
implemented in artifacts that agents use for accessing the organization according
to the mediation mechanism. Enforcement of norms has been implemented using
third party observability, since the detection of norm violations is a functional-
ity provided by artifacts. In addition, norms are enforced by third parties, since
there are agents in charge of being informed about norm violations and carrying
out the evaluation and judgement of these situations.

However, none of the above mentioned proposals allows norms which regulate
activities taking place out of the institution scope to be controlled. In this case,
norm compliance is non-observable by the institution and can only be detected
when a conflict arises. Thus, in this paper we propose that both a second-party
and third-party can observe non-compliant behaviour and start a grievance pro-
cess which takes place inside the EI. Therefore, in this paper we face the problem
of institutional enforcement of norms based on second-party and third-party ob-
servability. Next section provides a concrete instantiation of this problem inside
a more specific case-study.

3 A concrete sample scenario in the mWater regulated
environment

In this section we exemplify the problem of non-regimented norm enforcement
in EI with mWater, a regulated MAS application for trading water-rights within
a virtual market. In order to get a good understanding of the overall mWater
functioning, we first describe the motivation of mWater and present a brief
overview of its structure. Afterwards, the sample complex situation for norm
enforcement in the current mWater EI implementation is analyzed.

3.1 mWater overall description

In countries like Spain, and particularly in its Mediterranean coast, there is a
high degree of public awareness of the main consequences of the scarcity of water
and the need of fostering efficient use of water resources. Two new mechanisms

54

Initial

Notation

X

Start End Process Arc And
Transition

Xor
Transition

Or
Transition

Nested
Process

Multiple
Processes

Entitlement

Accreditation
Trading

Tables

Trading

Hall
Grievances

Annulment

Agreement

Validation

Contract

Enactment

Final

m

X

X

m, b, s

X

m, ba, b, s

m

m

m

m

m

m

m, ba,
b, s

mb,s

ba, b, s

p, a

m,b,s

ba
w

w

w

w

g

g

ba, b, s

m, ba,
b, s

m, p, a m, p, a

m

w

m, w
m, w

m, g, ba

m, g, ba

Fig. 1. mWater performative structure. Participating Roles: g - Guest, w - Water user,
b - Buyer, s - Seller, p - Third Party, m - Market Facilitator, ba - Basin Authority.

for water management already under way are: a heated debate on the need and
feasibility of transferring water from one basin to another, and, directly related
to this proposal, the regulation of water banks2. mWater is an agent-based elec-
tronic market of water-rights. Our focus is on demand and, in particular, on
the type of regulatory and market mechanisms that foster an efficient use of
water while preventing conflicts. The framework is a somewhat idealized version
of current water-use regulations that articulate the interactions of those indi-
vidual and collective entities that are involved in the use of water in a closed
basin. The main focus of the work presented in this paper is on the regulated
environment, which includes the expression and use of regulations of different
sorts: from actual laws and regulations issued by governments, to policies and
local regulations issued by basin managers, and to social norms that prevail in
a given community of users.

For the construction of mWater we follow the IIIA Electronic Institution
(EI) conceptual model [1]. For the actual specification and implementation of
mWater we use the EIDE platform.

2 The 2001 Water Law of the National Hidrological Plan (NHP) —’Real Decreto
Legislativo 1/2001, BOE 176’ (see www.boe.es/boe/dias/2001/07/24/pdfs/A26791-
26817.pdf, in Spanish)— and its amendment in 2005 regulates the power of right-
holders to engage in voluntary water transfers, and of basin authorities to setup
water markets, banks, and trading centers for the exchange of water-rights in cases
of drought or other severe scarcity problems.

55

Procedural conventions in the mWater institution are specified through a
nested performative structure (Fig. 1) with multiple processes. The top struc-
ture, mWaterPS, describes the overall market environment and includes other
performative structures; TradingHall provides updated information about the
market and, at the same time, users and trading staff can initiate most trading
and ancillary operations here; finally, TradingTables establishes the trading pro-
cedures. This performative structure includes a scene schema for each trading
mechanism. Once an agreement on transferring a water-right has been reached
it is ”managed” according to the market conventions captured in AgreementVal-
idation and ContractEnactment scenes. When an agreement is reached, mWa-
ter staff check whether the agreement satisfies some formal conditions and if
so, a transfer contract is signed. When a contract becomes active, other right-
holders and external stakeholders may initiate a Grievance procedure that may
have an impact on the transfer agreement. This procedure is activated whenever
any market participant believes there is an incorrect execution of a given norm
and/or policy. Grievance performative structure includes different scenes to ad-
dress such grievances or for the disputes that may arise among co-signers. On
the other hand, if things proceed smoothly, the right subsists until maturity.

3.2 Complex scenario: The registration of water-right transfer
agreements

In mWater we have three different types of regulations: (i) government norms,
issued by the Spanish Ministry of Environment (stated in the National Hydro-
logical Plan); (ii) basin or local norms, defined and regimented by the basin
authorities; and (iii) social norms, stated by the members of a given user as-
sembly and/or organization. The interplay among different norms from these
three groups brings about complex situations in which there are non-regimented
norms and, moreover, the non-compliance of the norm is not observable until a
conflict appears. A very critical situation for the reliable execution of mWater
appears when the following norms apply:

Government norm - (N0): A water-user can use a given volume of water from
a given extraction point, if and only if he/she owns the specific water-right
or has a transfer agreement that endows him/her.

Government norm - (N1): Every water-right transfer agreement must be reg-
istered within the fifteen days after its signing and wait for the Basin Au-
thorities’ approval in order to be executed.

Local norm - (N2): The registration process of a water-right transfer agreement
is started voluntarily by the agreement signing parties.

Social norm - (N3): Whenever a conflict appears, a water user can start a
grievance procedure in order to solve it.

Sample situation:
Let’s suppose there is a water user A who has a water-right w1 and wants

to sell it. A starts a Trading Table inside the TradingTables process (see Fig. 1)

56

in order to sell w1. The water user B enters the Trading Table and, as a result,
there is an agreement Agr1 between A and B, by which B buys w1 from A for
the period [t1, t2], and pays the quantity p1 for such a transfer. A and B belong
to Basinx, in which norms N1, N2 and N3 apply. A and B do not register Agr1
due to norm N2 (in other words, A and B do not go to the Agreement Validation
scene of Fig. 1). Since there is no mechanism in Basinx by which water-right w1

is blocked from A after its selling (due to Agr1 is not registered and w1 is still
owned by A in time periods not overlapped with [t1, t2]), A continues to operate
in the market. Afterwards A starts a new Trading Table to sell w1 for period
[t3, t4], with t1 < t3 < t2 and t4 > t2 (the new period [t3, t4] is overlapped with
[t1, t2]). In this second Trading Table A and C sign Agr2, by which A sells w1

to C for the period [t3, t4] and C pays p2 to A. A and C belong to Basinx. In
this case C registers Agr2 in the Agreement Validation scene, due to N1 and
N2, and obtains the basin approval for executing Agr2. At time t3 (the transfer
starting time) C attempts to execute Agr2, but there is no water in the water
transportation node, since B is also executing Agr1. At this moment C has a
conflict with B, and in order to solve it he/she has to start a grievance procedure
due to N3 (Grievances performative structure of Fig. 1).

This situation3 is an instantiated example of the one described above, in
which there are non-regimented norms whose non-compliance is not observable
and cannot be asserted until the conflict appears. The critical situation comes out
due to the compliance procedure for agreement registration and second selling
of the same water-right is not coercive.

The current development environment of EI we are using does not provide
build-in support for non-coercive processes that are defined by non-regimented
norms. Moreover, those situations in which it is not possible to observe the
non-compliance of a norm until the resulting conflict appears are not supported
either. Nevertheless, there are sample scenarios, like mWater, in which this be-
haviour is required. In the following section we analyze the EI implementation
we have devised for this complex scenario.

3.3 Implementation

In this section our approach to solve the previously described complex scenario
in mWater is described.

In order to include norm N1 in the current EI implementation of mWater we
have designed the Agreement Validation scene (see Fig. 1) as a successor scene
for any Trading Table. When any water user enters this scene, the Market Facili-
tator verifies the constraint of fifteen days from the agreement statement process
related to norm N1. If this constraint is satisfied the water-right transfer agree-
ment is forwarded to the Basin Authority who activates a Normative Reasoning

3 The scenario presented in this section happens in practice in Spain, due to the
impossibility to monitor all the water transfer negotiations that may take place
among the different water users. It can be considered as a loophole in the Spanish
regulations. Nevertheless we are interested in modeling it due to its complexity and
in order to simulate the ”real” behaviour of the basin users.

57

Initial

Recruiting
Conflicting

Parties

X

Final

Conflict
Resolution

Negotiation Table

Arbitration

X

mm, w, j

m

w

m, w, am, w, am, w, a w, a

j, w, a

j, w, a

X

w, aw, a

j

Fig. 2. Grievances performative structure

process in order to approve, or not, the agreement based on the basin normative
regulation. If the agreement gets approved it is published in the Trading Hall in
order for every water user of the basin to be informed of the transfer agreement.

On the other hand, norm N2 is automatically included in the mWater in-
stitution due to the EIDE implementation feature by which no participating
agent in the electronic institution can be forced to go to a given scene. For the
particular mWater example, neither the buyer nor the seller can be forced to
go through the transition between the Trading Table scene and the Agreement
Validation scene (see Fig. 1). This way, whenever the buyer and/or the seller
goes to the Agreement Validation scene he/she starts the scene voluntarily, so
norm N2 is satisfied.

The implementation of norm N3 requires a specific performative structure,
named Grievances (Fig. 2), in order to deal with conflict resolution processes.

Finally, the observance of norm compliance is delegated to every water user.
Hence, the enforceability of norm N0 is delegated to every water user.

Fig. 2 shows the different scenes of the complex Grievances performative
structure. In this structure any conflict can be solved by means of two alterna-
tive processes (these processes are similar to those used in Alternative Dispute
Resolutions and Online Dispute Resolutions [23, 24]). On the one hand, conflict
resolution can be solved by means of negotiation tables (Conflict Resolution Ne-
gotiation Table performative structure). In this mechanism a negotiation table
is created on demand whenever any water user wants to solve a conflict with
other/s water user/s, negotiating with them with or without mediator. Such a
negotiation table can use a different negotiation protocol, such as face to face,
standard double auction, etc. On the other hand, arbitration mechanisms for
conflict resolution can also be employed (Arbitration performative structure). In
this last mechanism, a jury solves the conflict sanctioning the offenses.

There are three steps in the arbitration process (see Fig. 3). In the first
one, the grievance is stated by the plaintive water user. In the second step, the
different conflicting parties present their allegations to the jury. Finally, in the
last step, the jury, after hearing the dispute, passes a sentence on the conflict.
The difference among the two mechanisms for conflict resolution is that the
arbitration process is binding, meanwhile the negotiation is not. In this way if

58

Initial FinalGrievance
Hearing

Dispute

Sanctioning

Offenses
X X Xm

p, a

m,
p, a

m,
p, a

m,
p, a

p, a a

m m

m, p, a
m, p, a

m, a

Fig. 3. Arbitration performative structure

any of the conflicting parties is not satisfied with the negotiation results he/she
can activate an arbitration process in order to solve the conflict.

In the previously described complex scenario, when C cannot execute Agr2
(because there is no water in the water transportation node), C believes that B
is not complying norm N0. C believes there is a conflict because Agr2 endows
him/her to use the water, and moreover, there is no transfer agreement published
in the Trading Hall that endows B to do the same. In order to enforce norm N0
and to execute Agr2, C starts a grievance procedure. In this procedure, water
users C and B are recruited as conflicting parties and A as third party because
he/she is the seller of w1 as stated in Agr2 (Recruiting Conflicting Parties scene
of Fig. 2). Let’s assume C chooses as conflict resolution mechanism arbitration,
because he/she does not want to negotiate with B. After stating the grievance,
C and B present their allegations to the jury. In this process B presents Agr1 by
which he/she believes there is fulfillment of norm N0. Nevertheless, in the last
arbitration step, by means of a Normative Reasoning function, the jury analyzes
the presented allegations and the normative regulations of the basin and deduces
that there is an offense. Norm N1 was not complied by B and A, and moreover,
A has sold the same water-right twice for an overlapped time period. In this last
step, the jury imposes the corresponding sanctions to A and B.

Fig. 4 shows a snapshot of the mWater ’s complex scenario implementation
running on the AMELI execution environment of EIDE. The implementation
we have devised for this complex situation in mWater allows us to solve the
described scenario. Moreover, when dealing with this scenario it is possible
to observe the limitations of the current EIDE platform for supporting non-
observability and enforceability of non-regimented norms. The implementation
of mWater we are discussing in this paper is developed with EIDE 2.114, and
includes all the components described in previous sections. Moreover, the in-
formation model that supports the execution of the EI is developed in MySQL
and includes the different conceptual data required for the market execution.
Fig. 5 shows a fragment of the relational model in which some elements are de-
picted such as: basin structure, water-right definition, agreement, and conflict
resolution table configuration, among others.

mWater is devised as a simulation tool for helping the basin policy makers
to evaluate the behaviour of the market when new or modified norms are ap-

4 Available at http://e-institutions.iiia.csic.es/eide/pub/

59

Fig. 4. A snapshot of the mWater electronic institution running on AMELI

plied. To this end, we are working on defining evaluation functions to measure
the performance of the market. These measures include the amount of water
transfer agreements signed in the market, volume of water transferred, number
of conflicts generated, etc. Apart from these straightforward functions we are
also working on defining ”social” functions in order to asses values such as the
trust and reputation levels of the market, or degree of water user satisfaction,
among others.

Fig. 5. A fragment of the information model of mWater

60

4 Discussion and closing remarks

In real life problems, in many occasions it is difficult or even impossible to check
norm compliance, specially when the violation of the norm cannot be directly
observable. In other occasions, it is not only difficult to regiment all actions,
but it might be preferable to allow agents to violate norms, since they may
obtain a higher personal benefit or they may intend to improve the organization
functionality, despite violating or ignoring norms. It is clear that from a general
thought and design perspective of an Electronic Institution, it is preferable to
define a safe and trustful environment where norms cannot be violated (i.e. norms
are considered as hard constraints), thus providing a highly regimented scenario
that inspires confidence to their users. However, from a more flexible and realistic
perspective, it is appealing to have the possibility for agents to violate norms for
personal gain. Although this is a very realistic attribute that humans can have, it
eventually leads to corruption and, consequently, the designer may think to rule
it out. But again, from a norm enforceability standpoint it is always a good idea
to allow this: it does not only make the environment more open and dynamic,
but it also provides a useful tool for decision support. In such a thread, we are
able to range the set of norms, from a very relaxed scenario to a very tight one,
simulate the institution and the agents’ behaviour, and finally analyze when
the global performance —in terms of number of conflicts that appear, degree
of global satisfaction or corruption, etc.— shows better, which makes it very
interesting as a testbed itself [5]. In all these cases, norm enforcement methods
are needed, such as second-party and third-party enforcements.

This paper has highlighted the necessity for norm enforceability in Electronic
Institutions. Clearly, when the agents and their execution occur outside the
boundaries of the institution it is inviable to count on a simple and efficient way
to guarantee a norm-abiding behaviour, as the full observability of the whole
execution and environment is rarely possible. In other words, norm violations
are perfectly plausible (and unfortunately common) and are only detectable in
presence of a conflict among agents.

In our mWater scenario, we have proposed an open mechanism that com-
prises two main principles: (i) the generation of a grievance when one agent
detects a conflict, i.e. when an agent denounces the occurrence of a violation;
and (ii) an authority entity with the role of arbiter/judge to mediate in the dis-
pute resolution process and being able to apply sanctions. The advantage of this
mechanism is twofold. First, it allows different types of grievance, either when
it corresponds to the execution of a previous signed (or unsigned) agreement or,
simply, when it happens as an occasional event during the habitual execution of
the water scenario and its infrastructure use. Second, it provides different ways
to deal with grievances, as shown in Fig. 2: (i) in a very formal and strict way by
means of an arbitration procedure that relies on a traditional jury, thus applying
a third-party enforceability mechanism (with an infrastructure enforcement); or
(ii) in a more flexible way that relies on the creation of a conflict resolution ne-
gotiation table, which ranges from informal protocols (e.g., face to face) to more
formal ones that may need one or more mediators. In this last case, a second-party

61

enforceability mechanism has been adopted. We have shown that this grievance
procedure shows to be effective in the mWater scenario. But despite its origin in
the water environment, it can be easily extrapolated to any other real problem
modelled by using EIs, which represent the main contributions of this paper.

The underlying idea to deal with norm enforcement in generic domains fol-
lows a simple flow, but it needs some issues to be clearly defined. First of all,
we require a procedure to activate or initiate a new grievance. This can be done
from any type of performative structure similar to the TradingHall of Fig. 1.
This operation requires the identification of the agents that will be involved in
the grievance itself, so it is essential for all agents to be uniquely identified; that
is, we cannot deal with anonymous agents, which is an important issue. Once
the grievance has been initiated, we also require a mechanism for recruiting the
conflicting parties. Again, this is related to the agents’ identification and the ne-
cessity of (perhaps formal) communication protocols to summon all the parties.
Note that this step is necessary for any type of dispute resolution, both by ne-
gotiation tables and arbitration. And, at this point we have a high flexibility for
solving the conflicts, as they can be solved in many ways depending on the type
of problem we are addressing at each moment. Analogously to the trading tables
that we have in the mWater scenario, we can use general or particular tables to
reach an agreement and, thus, solving the conflict, no matter the real problem
we have. Finally, it is also important to note that reaching an agreement when
solving the conflict does not prevent from having new conflicts that appear from
such an agreement, being necessary the initiation of a new grievance procedure
and repeating all the operations. Although such new grievances are possible
from both the negotiation table and arbitration alternatives, it is common to
have situations where the decisions/verdict taken by the arbitration judges are
unappealable.

Our current work of research is focused on providing a more thorough spec-
ification of this mechanism to enforce norms in EIs, how the conflict resolution
tables can be defined and to come up with specialized protocols for these tables.
Our final goal is to be able to integrate this behaviour in a decision support
system to simulate different agents’ behaviour and norm reasoning to be applied
to the mWater and other scenarios of execution.

Acknowledgements

This paper was partially funded by the Consolider programme of the Spanish
Ministry of Science and Innovation through project AT (CSD2007-0022, INGE-
NIO 2010), MICINN project TIN2008-06701-C03-03 and by the FPU grant AP-
2007-01256 awarded to N. Criado. This research has also been partially funded
by the Generalitat de Catalunya under the grant 2009-SGR-1434 and Valencian
Prometeo project 2008/051.

62

References

1. Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez-Aguilar, and Carles
Sierra. Engineering open environments with electronic institutions. Engineering
Applications of Artificial Intelligence, (18):191–204, 2005.

2. Tina Balke. A taxonomy for ensuring institutional compliance in utility computing.
In Guido Boella, Pablo Noriega, Gabriella Pigozzi, and Harko Verhagen, editors,
Normative Multi-Agent Systems, number 09121 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany.

3. G. Boella, L. van der Torre, and H. Verhagen. Introduction to the special issue
on normative multiagent systems. Autonomous Agents and Multi-Agent Systems,
17(1):1–10, 2008.

4. Guido Boella and Leendert van der Torre. Substantive and procedural norms in
normative multiagent systems. Journal of Applied Logic, 6(2):152–171, 2008.

5. V. Botti, A. Garrido, A. Giret, F. Igual, and P. Noriega. On the design of mWater:
a case study for Agreement Technologies. In 7th European Workshop on Multi-
Agent Systems - EUMAS 2009, pages 1–15, 2009.

6. Castelfranchi C. Formalising the informal? Journal of Applied Logic, N 1, 2004.
7. N. Criado, V. Julian, V. Botti, and E. Argente. A Norm-based Organization

Management System. In AAMAS Workshop on Coordination, Organization, In-
stitutions and Norms in Agent Systems (COIN), pages 1–16, 2009.

8. M. Esteva. Electronic Institutions: from specification to development. IIIA PhD
Monography, 19, 2003.

9. M. Esteva, J.A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the
formal specification of electronic institutions. Agent mediated electronic commerce,
pages 126–147, 1991.

10. M. Esteva, B. Rosell, J.A. Rodriguez-Aguilar, and J.L. Arcos. Ameli: An agent-
based middleware for electronic institutions. In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems-Volume
1, page 243. IEEE Computer Society, 2004.

11. N. Fornara and M. Colombetti. Specifying and enforcing norms in artificial institu-
tions (short paper). In Proc. 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), pages 1481–1484, 2008.

12. D. Gaertner, A. Garcia-Camino, P. Noriega, J.A. Rodriguez-Aguilar, and W. Vas-
concelos. Distributed norm management in regulated multiagent systems. In Pro-
ceedings of the 6th international joint conference on Autonomous agents and mul-
tiagent systems, page 90. ACM, 2007.

13. Andrés Garćıa-Camino, Juan A. Rodŕıguez-Aguilar, Carles Sierra, and
Wamberto Weber Vasconcelos. Norm-oriented programming of electronic insti-
tutions. In Proc. International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 670–672. ACM, 2006.

14. D. Grossi, H. Aldewereld, and F. Dignum. Ubi lex, ibi poena: Designing norm
enforcement in e-institutions. In Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems II, volume 4386, pages 101–114. Springer, 2007.

15. J.F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems, 20(3):369–400, 2010.

16. N.H. Minsky and V. Ungureanu. A mechanism for establishing policies for elec-
tronic commerce. In International Conference on Distributed Computing Systems,
volume 18, pages 322–331. Citeseer, 1998.

63

17. N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems. ACM Transactions on
Software Engineering and Methodology (TOSEM), 9(3):273–305, 2000.

18. Sanjay Modgil, Noura Faci, Felipe Rech Meneguzzi, Nir Oren, Simon Miles, and
Michael Luck. A framework for monitoring agent-based normative systems. In
Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman,
editors, AAMAS, pages 153–160. IFAAMAS, 2009.

19. P. Noriega. Agent-mediated auctions: The fishmarket metaphor. IIIA Phd Monog-
raphy, 8, 1997.

20. D.C. North. Institutions, institutional change, and economic performance. Cam-
bridge Univ Pr, 1990.

21. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

22. J.A. Rodrıguez-Aguilar. On the design and construction of agent-mediated elec-
tronic institutions. IIIA Phd Monography, 14, 2001.

23. T. Schultz, G. Kaufmann-Kohler, D. Langer, and V. Bonnet. Online dis-
pute resolution: The state of the art and the issues. In Available at SSRN:
http://ssrn.com/abstarct=899079.

24. WK Slate. Online dispute resolution: Click here to settle your dispute. Dispute
Resolution Journal, 56(4):8–14, 2002.

64

Towards a Normative BDI Architecture for
Norm Compliance

N. Criado1, E. Argente1, P. Noriega2, and V. Botti1

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n. 46022 Valencia (Spain)
Email: {ncriado,eargente,vbotti}@dsic.upv.es

2 Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas

Campus de la UAB, Bellaterra, Catalonia (Spain)
Email: pablo@iiia.csic.es

Abstract. Multi-Agent Systems require coordination mechanisms in or-
der to assemble the behaviour of autonomous and heterogeneous agents
and achieve the desired performance of the whole system. Norms are
deontic statements employed by these coordination mechanisms which
define constraints to the potential excesses of agents’ autonomous be-
haviour. However, norms are only effective if agents are capable of un-
derstanding and managing them pragmatically. In this paper, we propose
an extension of the BDI proposal in order to allow agents to take prag-
matic autonomous decisions considering the existence of norms. In par-
ticular, coherence and consistency theory will be employed as a criterion
for determining norm compliance.

1 Introduction

The development of network technologies and Internet has made it possible
to evolve from monolithic and centralized applications, in which problems are
solved by a single component, to distributed applications, in which problems are
solved by means of the interaction among autonomous agents. In these systems,
the autonomy and heterogeneity of agents make mandatory the definition of
coordination mechanisms for ensuring the whole performance of the system.
With this aim, social notions, such as organizations, institutions and norms,
have been introduced in the design and implementation of distributed systems.

Norms have been defined in distributed systems as regulations or patterns of
behaviour established in order to constrain the potential excesses of autonomous
agents. The definition of norms for controlling distributed systems requires the
development of normative agents. Normative agents [8] must be endowed with
capabilities for considering norms and deciding which norms to comply with and
how to comply with them. The multi-context Graded BDI architecture [7] allows
agents to reason in uncertain and dynamic environments.

65

The work presented in [9] is a first effort on the extension of the Graded BDI
architecture [7] in order to allow agents to accept norms autonomously. This
work focuses on the description of the architecture as a whole but it provides
few details about how agents acquire new norms and face with the norm compli-
ance dilemma. In addition, it lacks an elaborated definition of norm and norm
dynamics. According to these criticisms, in this paper we propose to revise this
architecture in order to allow agents to take norms into account in a more sophis-
ticated way. In particular, here we focus on the application of both Cognitive
Coherence Theory [26] and Consistency Theory [2] for reasoning about norm
compliance. Coherence is a cognitive theory whose main purpose is the study of
how pieces of information influence each other by imposing a positive or nega-
tive constraint over the rest of information. Consistency is a logic property which
analyses the relationship among a formula and its negation. Our proposal con-
sists on applying deliberative coherence theory for determining which norms are
more coherent with respect to the agent’s mental state. In addition, consistency
criterion is considered when determining how to comply with norms. Therefore,
this paper tries to overlap some of the main drawbacks of the original proposal
by means of adding coherence and consistency constraints to the architecture.

This paper is structured as follows: next section describes the background of
our proposal; Section 3 provides norm definitions; in Section 4 the normative BDI
architecture is explained; the two components in charge of norm management
are explained in Sections 5 and 6; Section 7 describes the norm internalization
process; and, Section 8 remarks the contributions and future work.

2 Background

Along this section all approaches considered for this work are explained. In
particular, the normative multi-context Graded BDI architecture (n-BDI for
short) refined in this paper is explained first. Next subsections introduce the
basis of consistency and coherence theories.

2.1 BDI architectures for normative agents

Usually, proposals on agent architectures which support normative reasoning do
not consider norms as dynamic objects which may be acquired and recognised by
agents. On the contrary, these proposals consider norms as static constraints that
are hard-wired on agent architectures. Regarding recent proposals on individual
norm reasoning, the BOID architecture [4] represents obligations as mental at-
tributes and analyses the relationship and influence of such obligations on agent
beliefs, desires and intentions. However, this proposal presents some drawbacks:
i) it only considers obligation norms; ii) it considers norms as static entities that
are off-line programmed in agents. In relation with this last feature, the EMIL
proposal [1] has developed a framework for autonomous norm recognition. Thus,
agents would be able to acquire new norms by observing the behaviour of other
agents which are situated in their environments. The main disadvantage of EMIL

66

is that agents obey all recognised norms blindly without considering their own
motivations. The multi-context graded BDI agent architecture [7] does not pro-
vide an explicit representation of norms. However, it is capable of representing
and reasoning with graded mental attitudes, which makes it suitable as a basis
for a norm aware agent architecture.

In order to overlap these drawbacks, in [9, 10], the multi-context graded BDI
agent architecture [7] has been extended with recognition and normative rea-
soning capabilities. According to the n-BDI proposal, an agent is defined by a
set of interconnected contexts, where each context has its own logic (i.e. its own
language, axioms and inference rules). In addition, bridge rules are inference
rules whose premises and conclusions belong to different contexts. In particular,
an n-BDI agent [9, 10] is formed by:

– Mental contexts [6] to characterize beliefs (BC), intentions (IC) and desires
(DC). These contexts contain logic propositions such as (Ψγ, δ); where Ψ
is a modal operator in {B,D+, D−, I} which express beliefs, positive and
negative desires and intentions, respectively; γ ∈ LDL is a dynamic logic
[19] proposition; and δ ∈ [0, 1] represents the certainty degree associated
to this mental proposition. For example (Bγ, δ) represents a belief about
proposition γ of an agent and δ represents the certainty degree associated
to this belief.

– Functional contexts [6] for planning (PC) and communication (CC).
– Normative contexts [9] for allowing agents to recognise new norms (RC) and

to consider norms in their decision making processes (NC).
– Bridge Rules for connecting mental, functional and normative contexts. A

detailed description of these bridge rules can be found in [7]. For a more
detailed description of normative bridge rules see [9].

Regarding the normative extension of the BDI architecture, the norm decision
process consists of the following steps:

1. It starts when the RC derives a new norm through analysing its environment.
2. These norms are translated into a set of inference rules which are included

into the NC. The NC is responsible for deriving new beliefs and desires
according to the current agent mental state and the inference rules which
have been obtained from norms.

3. After performing the inference process for creating new beliefs and desires
derived from norm application, the normative context must update the men-
tal contexts.

The original proposal [9, 10] is a preliminary work towards the definition of
autonomous norm aware agents capable of making a decision about norm com-
pliance. In this sense, this approach presents several problems and deficiencies.
Firstly, the notion of norm is vague and imprecise, in this sense there is not a
clear definition of what an abstract norm and a norm instance mean. Regarding
the norm recognition process, no details about how the set of abstract norms is
updated and maintained are provided. Thus, the RC is seen as a black box that

67

gives no analysis of how it deals with different types of norms (e.g. social norms,
explicit norms created by the institution). Finally, it lacks a more concrete de-
scription of how a BDI agent may decide about obeying or not a norm. In this
sense, the derivation of positive and negative desires from obligations and pro-
hibitions is too simple. In particular, norms that guide agent behaviours might
be in conflict, since they are aimed at defining the ideal behaviour of different
roles which may be played by one agent. Besides that, norm compliance deci-
sions should be consistent with the mental state of agents. Therefore, how agents
make consistent decisions about norm compliance is the main contribution of the
current paper with respect to the original proposal [9].

As a solution to this problem we will employ works on formalisms for ensuring
consistency [2] and coherence [26]. In particular, this paper describes how these
works are applied for reasoning about norm compliance. Next subsections briefly
describe both the proposal of Casali et al. [6] on consistency among graded
bipolar desires and the work of Joseph et al. [17] on the formalization of deductive
coherence for multi-context graded BDI agents.

2.2 Consistency for Graded BDI Agents

In [2] Benferhat et al. made a study of consistency among bipolar graded prefer-
ences. Taking this definition of consistency, Casali et al. in [6] proposed several
schemas for ensuring consistency among mental graded propositions. In particu-
lar, the maintenance of consistency among desires is achieved by means of three
different schemas (i.e. DC1, DC2 and DC3) which impose some constraints be-
tween the positive and negative desires of a formula and its negation. Thus, DC2

schema (which will be employed in this paper) imposes a restriction over positive
and negative desires for the same goal ((D+ γ, δ+γ) and (D− γ, δ−γ), respectively).
In particular, it claims that an agent cannot desire to be in world more than it
is tolerated (i.e. not rejected). Therefore, it determines that:

δ+γ + δ−γ ≤ 1

where δ+γ and δ−γ are the desirability and undesirability degrees (i.e. the certainty
of the positive and negative desire) of proposition γ, respectively.

2.3 Coherence for Graded BDI Agents

In [26] Thagard claims that coherence is a cognitive theory whose main purpose
is the study of associations; i.e. how pieces of information influence each other by
imposing a positive or negative constraint over the rest of information. According
to Thagard’s formalization, a coherence problem is modelled by a graph g =
〈V,E, ζ〉; where V is a finite set of nodes representing pieces of information, E are
the edges representing the positive or negative constraints among information;
each constraint has a weight (ζ : E → [−1, 1] \ {0}) expressing the constraint
strength. Maximizing the coherence [26] is the problem of partitioning nodes

68

into two sets (accepted A and rejected V \ A) which maximizes the strength of
the partition, which is the sum of the weights of the satisfied constraints.

Taking a proof-theoretic approach, Joseph et al. [17] provide a formalization
of deductive coherence for multi-context graded BDI agents. Thus, this work
proposes a formalization together with mechanisms for calculating the coher-
ence of a set of graded mental attitudes. The main idea beyond this formal-
ism is to consider the inference relationships among propositions belonging to
the same context for calculating the weight of coherence and incoherence rela-
tionships. Similarly, bridge rules are employed for setting the coherence degree
among propositions belonging to different contexts. Details concerning building
the coherence graph can be found in [17].

Regarding the relation of coherence with normative decision processes, in [18]
Joseph et al. employed coherence as a criterion for rejecting or accepting norms.
However, this work is based on a very simple notion of norm as an unconditional
obligation. Moreover, this proposal only considers coherence as the one rational
criterion for norm acceptance. In addition, the problem of norm conflict has not
been faced. Finally the process by which agents’ desires are updated according
to norms have also been defined in a simple way without considering the effect
of these normative desires on the previous existing desires.

3 Norm Notion

Norms have been studied from different fields such as philosophy, psychology,
law, etc. MAS research has given different meanings to the norm concept, been
employed as a synonym of obligation and authorization [14], social law [20], social
commitment [24] and other kinds of rules imposed by societies or authorities.

In this work, we take as a basis the formalization of norms made in [21]. In
this proposal a distinction among abstract norms and norm instances is made.
An abstract norm is a conditional rule that defines under which conditions obli-
gations, permissions and prohibitions should be created. In particular, the ac-
tivation condition of an abstract norm defines when an obligation, permission
or prohibition must be instantiated. The norm instances that are created out
of the abstract norms are a set of active unconditional expressions that bind a
particular agent to an obligation, permission or prohibition. Moreover, a norm
instance is accompanied by an expiration condition which defines the validity
period or deadline of the norm instance.

Following this proposal our definition of both abstract norms and norm in-
stances is provided.

Definition 1 (Abstract Norm). An abstract norm is defined as a tuple na =
〈D,A,E,C, S,R〉 where:

– D ∈ {F ,P,O} is the deontic type of the norm. In this work obligations
(O) and prohibitions (F) impose constraints on agent behaviours; whereas
permissions (P) are operators that define exceptions to the activation of obli-
gations or prohibitions;

69

– A is the norm activation condition. It defines under which circunstancies the
abstract norm is active and must be instantiated.

– E is the norm expiration condition, which determines when the norm no
longer affects agents.

– C is a logic formula that represents the state of affairs or actions that must
be carried out in case of obligations, or that must be avoided in case of
prohibition norms.

– S,R are expressions which describe the actions (sanctions S and rewards R)
that will be carried out in case of norm violation or fulfilment, respectively.

Since this work is focused on the norm compliance problem, only those norms
addressed to the agent will be taken into account.

Definition 2 (Norm Instance). Given belief theory ΓBC an abstract norm
na = 〈D,A,E,C, S,R〉 is instanciated into a norm instance
ni = 〈D,C ′〉where:
– ΓBC ` σ(A), where σ is a substitution of variables in A such that A′ = σ(A)

and σ(S), σ(R) and σ(E) are fully grounded.
– C ′ = σ(C).

Once the activation conditions of an abstract norm hold it becomes active
and several norm instances, according to the possible groundings of the activa-
tion condition, must be created. For simplicity, we assume that once a norm is
being instantiated then it is fully grounded. In our proposal, the instantiation
of activation and expiration conditions are considered by the Norm Instantia-
tion bridge rule (which will be explained in Section 6). Similarly, sanctions and
rewards are also considered by this bridge rule in order to decide about conve-
nience of norm compliance. Thus, for simplicity we omit the instantiation of the
norm expiration and activation conditions (σ(A) and σ(E)) and the sanction
and reward (σ(S) and σ(R)) in the representation of a norm instance.

4 Normative BDI Architecture (n-BDI)

As previously mentioned, the main contribution of this paper is to refine the
n-BDI architecture, which was originally proposed in [9, 10], with a more elabo-
rated notion of norm and norm reasoning. In order to design this second version
of the n-BDI, the work of Sripada et al. [25] has been considered as a reference.
It analyses the psychological architecture subserving norms. In particular, this
architecture is formed by two closely linked innate mechanisms: one responsible
for norm acquisition, which is responsible for identifying norm implicating be-
haviour and inferring the content of that norm; and the other in charge of norm
implementation, which maintains a database of norms, detects norm violations
and generates motivations to comply with norms and to punish rule violators.

The evolution of n-BDI is focused on reasoning about norm compliance and
acceptance, so issues related to the detection and reaction to norm violation
are beyond the scope of this paper. In this sense, norms affect n-BDI agents in

70

two ways: i) when a norm is recognised and accepted then it is considered to
define new plans; and ii) when accepted norms are active then their instances
are used for selecting the most suitable plan which complies with norms. This
paper tackles with this last effect of norms. In particular, this paper describes
how Deductive Coherence (described in Section 2.3) and Consistency Theory
(described in Section 2.2) are applied for reasoning about norm compliance.

The n-BDI refines the normative contexts (described in Section 2.1) according
to the norm notions introduced in Section 3. Therefore, Figure 1 shows a scheme
of the n-BDI proposed in this paper. In particular, the RC has been redefined as
the Norm Acquisition Context (NAC), whereas the NC has been redefined into
the Norm Compliance Context (NCC).

Fig. 1. Normative Extension of the Multi-Context BDI Architecture. Grey contexts
and dashed lines (bridge rules) correspond to the basic definition of a BDI agent. The
normative extensions are the white contexts and bold lines.

In this new version of the agent architecture not only the normative contexts
have been improved by considering more elaborated normative definitions, but
also the norm reasoning process has been extended with consistency and coher-
ence notions. Thus, the norm reasoning process can be described as follows:

1. It starts when the NAC receives information cues for inferring new abstract
norms through the Norm Acquisition bridge rule. The NAC carries out an
inference process for maintaining the set of abstract norms in force in a
specific moment.

2. Once the norm activation conditions hold, abstract norms are instantiated
and included into the NCC by means of the Norm Instantiation bridge rule.
Then, the NCC carries out an internal process for determining compliance
with which of the norm instances. In this sense, not all active norms should
be considered when updating the mental state. In this sense, our proposal
consists in employing coherence theory as a criterion for determining which
norms comply with. Therefore, the coherence maximization process is cal-

71

culated in order to determine which norm instances are consistent and must
be taken into account when updating the desire theory.

3. Then, Norm Internalization bridge rules derive new desires according to the
current agent mental state and the set of complied norms, also taking into
account consistency considerations. These new desires may help the agent to
select the most suitable plan to be intended and, as a consequence, normative
actions might be carried out by the agent.

Thus, the norm reasoning process is formed by four different phases: acquisition
of norms in force, decision about norm compliance and internalization of norms.
Next sections describe each one of these phases in detail.

5 Norm Acquisition (NAC)

The NAC context allows agents to maintain a norm base that contains those
norms which are in force in a specific moment (i.e. all norms which are currently
applicable). Thus it is responsible for acquiring new norms and deleting obsolete
norms; and updating the set of in force norms accordingly. This process can be
defined as objective since no motivation or goal is considered in the acquisition
process. Thus, agents only take into account their knowledge of the world in
order to determine the set of norms which is more likely to be in force.

NAC Language. The NAC is formed by expressions such as (n, ρ) where n is
an abstract norm according to Definition 1; and ρ ∈ [0, 1] is a real value which
assigns a degree to this abstract norm. This parameter ρ can have different
interpretations. It can be defined as the reputation of the informer agent in
case of leadership-based norm spreading. If norms are inferred by imitation, ρ
might represent the acceptance degree of the norm. In case of utility maximizing
approaches, as learning algorithms, it can be defined as the expected utility of
the norm.

Abstract Norm Recognition. Regarding how new and obsolete norms are
recognised, the NAC consists of a computational model of autonomous norm
recognition which receives the agent perceptions, both observed and communi-
cated facts, and identifies the set of norms which control the agent environment.
Perceptions which are relevant to the norm recognition may be classified into:

– Explicit normative perceptions. They correspond to those messages exchanged
by agents in which norms are explicitly communicated. Following this ap-
proach, several works have focused on analysing the role of leaders in the
norm spreading. In particular, these leaders provide normative advices to
follower agents when deciding about a norm [27, 22].

– Implicit normative perceptions. This type of perceptions includes the obser-
vation of actions performed by agents as a way of detecting norms. Since
norms are usually supported by enforcing mechanisms such as sanctions and

72

rewards, the detection of them has been considered as an alternative for ac-
quiring new norms [15]. Other works have proposed imitation mechanisms
as a criterion for acquiring new norms. These models are characterized by
agents mimicking the behaviour of what the majority of the agents do in a
given agent society [28, 5]. Moreover, in [23] researchers have experimented
with learning algorithms to identify a norm that maximizes an agent’s utility.

– Mixed normative perceptions. There are proposals which consider both ex-
plicit and implicit normative perceptions as cues for inferring norms [1].

Abstract Norm Dynamics. The set of norms which are in force may change
both explicitly, by means of the addition, deletion or modification of the existing
norms; and implicitly by introducing new norms which are not specifically meant
to modify previous norms, but which change in fact the system because they are
incompatible with such existing norms and prevail over them [16]. However, this
is a complex issue which is out of the scope of this paper. Works presented at the
Formal Models of Norm Change3 are good examples of proposals which provide
a formal analysis of all kinds of dynamic aspects involved in systems of norms.

This paper does not focus on the norm acquisition problem and the dynamics
of abstract norms. In the following, the NAC will be considered as a black box
that receives cues for detecting norms as input and generates abstract norms as
output.

6 Norm Compliance (NCC)

The NCC is the component responsible for reasoning about the set of norms
which hold in a specific moment. In this sense the NAC recognises all norms
that are in force, whereas the NCC only contains those norms which are active
according to the current situation. The NCC should determine which and how
norms will be obeyed and support agents when facing with norm violations.
In this sense, the NCC detects norm violations and fulfilments and generates
punishing and rewarding reactions. This last issue is over the scope of this paper
and will be analysed in future works.

The functionalities carried out by the NCC which are covered by this work
are related to three main issues: the NCC is in charge of maintaining the set
of instantiated norms which are active; then it considers convenience of norm
compliance and determines which norms comply with; and, finally, it derives new
desires for fulfilling these norms.

NCC Language. The NCC is formed by expressions such as: (n, ρ) where n
is a norm instance according to Definition 2. ρ ∈ [0, 1] is a real value which
assigns a degree to this norm instance. This parameter can be interpreted as the
salience of the norm instance. Its value can be determined according to different

3 http://www.cs.uu.nl/events/normchange2/

73

criteria such as utility of norm compliance, emotional considerations, intrinsic
motivations, etc. In this paper, it is defined with regard to the certainty of norm
activation as well as the convenience of norm compliance.

Instantiated norms are inferred by applying instantiation bridge rules to
norms when their activation is detected. Next, these normative bridge rules are
described in detail.

Norm Instantiation Bridge Rule.

NAC : (〈D,A,E,C, S,R〉, ρ), BC : (BA, βA), BC : (B¬E, βE)

NCC : (〈D,C〉, finstantiation(θactivation, θcompliance)))
(1)

If an agent considers that an abstract norm na = 〈D,A,E,C, S,R〉 is cur-
rently active ((BA, βA) ∧ (B¬E, βE)) then a new norm instance ni = 〈D,C〉 is
generated. The degree assigned to the norm instance is defined by the finstantiation
function which combines the values obtained by the θactivation and θcompliance

functions.
On the one hand, θactivation combines the evidence about norm activation

(i.e. the certainty degrees βA, βE and ρ). It can be given a sophisticated definition
depending on the concrete application. In this work, it has been defined as the
weighed average among these three values, as follows:

θactivation =
wA × βA + wE × βE + wρ × ρ

wA + wE + wρ

If all values are equally weighed, then we obtain that θactivation = βA+βE+ρ
3

On the other hand, θcompliance considers both intrinsic and instrumental mo-
tivations for norm compliance. In [11] different strategies for norm compliance
from an instrumental perspective over this architecture are described. In par-
ticular, they consider the influence of norm compliance and violation on agent’s
goals for determining whether the agent accepts the norm. For example, an egoist
agent will accept only those norms which benefit its goals (i.e. whose condition
is positively desired). In this case:

θcompliance =

{
1 if δ+C > 0, where (D+C, δ+C) ∈ ΓDC ;

0 otherwise

Finally, values obtained by the θactivation and the θcompliance functions are
combined by the finstantiation:

finstantiation(θactivation, θcompliance) =
wactivation × θactivation + wcompliance × θcompliance

wactivation + wcompliance

Again, if these two parameters are equally weighed, then we obtain that

finstantiation(θactivation, θcompliance) =
θactivation + θcompliance

2

74

This approach relies upon various values such as wcompliance, wA and wactivation.
The definition of these values is beyond the scope of this paper. In previous works
[9, 11, 10], it has been considered that they are defined off-line by the agent de-
signer. However, this solution is static and it does not allow agents to adapt these
values according to a changing environment. Thus, this issue will be considered
in future works.

6.1 Coherence For Norm Instances

Once Norm Instantiation bridge rule has been applied, it is possible that there
is an incoherence between mental propositions. Because of this, a maximizing
coherency process is needed in order to determine which propositions are consis-
tent and must be taken into account; and which propositions belonging to the
rejection set will be ignored when deriving normative desires.

Since our proposal of agent architecture employs graded logics for repre-
senting mental propositions, this work takes as a basis the work described in
Section 2.3. As argued before, this work proposes a formalization together with
mechanisms for calculating the deductive coherence of a set of graded mental at-
titudes. Our proposal adapts this work by applying the coherence maximization
algorithm to the norm compliance problem. Figure 2 illustrates an overview of
the employment of coherence as a criterion for resolving the norm compliance
dilemma. As shown by this figure, the normative coherence process considers
propositions belonging to the BC, the NCC and NAC. Basically this process
takes into account: i) the beliefs that sustain the activation of norms and their
relationships among them and other beliefs of the BC; ii) the norm instances
and conflict relationships among them; and iii) the abstract norms which have
triggered the norm activation. Relationships among propositions belonging to
each context are defined by means of inference rules and axioms, whereas coher-
ence connections among propositions of different contexts are defined by means
of norm instantiation bridge rules.

By considering coherence we will address three different problems: i) deter-
mining norm deactivation; ii) determining active norms in incoherent states and
iii) normative conflict resolution. In order to formalize normative incoherence
the original proposal of [17] must be extended with extra constraints. Moreover,
since we apply the coherence calculation algorithms for improving the normative
reasoning, then only those propositions which are relevant to the norm compli-
ance process are taken into account. Next, both the definition of normative
coherence constraints for facing with each one of these three questions as well
as the determination of relevant propositions is detailed.

Detecting Norm Activation in Incomplete and Inconsistent States. As
illustrated in Figure 2, norm instantiation bridge rule (see equation 6) allows
norm instances (from NCC) to be connected to beliefs from BC related to their
activation and expiration conditions. Norm instantiation bridge rule has as pre-
conditions the belief about the occurrence of the activation condition A and the

75

Fig. 2. Usage of coherence as a criterion for resolving the norm compliance dilemma.

negation of the expiration condition E. Usually agents do not have an explicit
knowledge about the negation of E. However, it is possible to infer a certainty
degree about ¬E from the certainty degree of E. Following this idea, the first
step for computing coherence is to calculate the closure under negation of beliefs
as follows:

Definition 3 (Closure of Beliefs under Negation). Let Γ be a finite belief
theory presentation using graded formulas. We define the closure of Γ under
negation as:

Γ¬ = Γ ∪ {(B¬ϕ, (1− δ)) : (B¬ϕ, β) 6∈ Γ and (Bϕ, δ) ∈ Γ}
Therefore, the closure of a set of beliefs under negation consists on extending this
theory by inferring new information from what is actually believed. In particular,
if an agent believes that proposition E is true with a certainty degree δ but it
does not have any belief concerning its negation, it is logic to assume that the
certainty degree assigned to ¬E should be lower than (1−δ). We need to calculate
the closure of beliefs under negation in order to detect norm deactivation. In this
sense, when the certainty about the expiration condition E increases it can be
inferred that the certainty of ¬E decreases even if the agent does not have
explicit evidence of it.

In addition we want to define an incoherence relationship among a belief
related to a general proposition and its negation. This relationship is defined by
means of the addition of an inference rule in the belief context:

(BC1) (Bγ, βγ), (B¬γ, β¬γ) ` (0̄, 1− (βγ + β¬γ))

Basically this scheme means that to belief γ and ¬γ simultaneously is a con-
tradiction (0̄). The certainty degree of this contradiction is defined in [18] as
1− (βγ + β¬γ).

76

One of the main problems of the multi-context BDI architecture is the fact
that it does not allow the definition of bridge rules for deleting propositions. In
this sense, there is a bridge rule for inferring a new instance of a norm when
its activation condition holds. However, it is not possible to create a bridge rule
which deletes this instance when the expiration condition holds. In response to
this problem, coherence will be used as a criterion for detecting norm deacti-
vation. Moreover, an agent may have beliefs related to the occurrence of both
the norm activation and expiration conditions. Thus it should consider all those
evidences that sustain the occurrence of the expiration and activation conditions
in order to determine the set of norms which are active. In particular, coherence
will be used as a criterion for detecting norm activation/deactivation according
to the certainty of both the expiration and the activation conditions.

Resolving Normative Conflicts. As previously argued, the above process
of normative coherence is useful not only to determine which norms are active
but even to resolve a norm conflict. Usually, a norm conflict has been defined
in other works as a situation in which something is considered as forbidden
and obliged or forbidden and permitted. In our proposal, we define permissions
as a normative operator which allows defining an exception to the application
of a more general obligation or prohibition norm. Thus, we also consider that
norms which define something as forbidden and permitted are also in conflict.
However, there is no constraint that represents this type of incoherence. In order
to represent incoherence inferred from norm conflicts we add the next inference
rules to the NCC:

(NCC1) (〈O,C〉, ρO), (〈F,C〉, ρF) ` (0̄,−min(ρO, ρF))
(NCC2) (〈O,C〉, ρO), (〈P,¬C〉, ρP) ` (0̄, 1− (ρO + ρP))
(NCC3) (〈F,C〉, ρF), (〈P,C〉, ρP) ` (0̄, 1− (ρF + ρP))

In case of a conflict between a permission and an obligation or a prohibition, the
degree of the falsity constant (0̄) is assigned value 1−(ρO+ρP) or 1−(ρF +ρP),
respectively, in a similar way as in BC1. In case of a conflict among a prohibition
and an obligation we define a stronger incoherence by defining the degree of the
falsity constant as −min(ρO, ρF).

Selecting Relevant Propositions. Once the coherence graph has been de-
fined and a maximising partition (A, V \ A) over this graph has been found
following [17], the set of propositions belonging to the NCC (i.e.ΓNCC) is re-
vised in order to consider only the accepted norms:

Γ ′NCC = ΓNCC ∩A

where A is the accepted set of norm instances according to the maximizing
coherence process [17], i.e. ”the most coherent norm instances”.

77

7 Norm Internalization

Regarding works on norm internalization in the MAS community, maybe the
most relevant proposal are the works of Conte et al. [8]. According to them,
a characteristic feature of norm internalization is that norms become part of
the agent’s identity. The concept of identity implies that norms become part of
the cognitions of the individual agent. In particular, Conte et al. define norm
internalization as a multi-step process, leading from externally enforced norms
to norm-corresponding goals, intentions and actions with no more external en-
forcement. Thus they account for different types and levels of internalization.

In this paper a simplistic approximation to the norm internalization process
has been considered. However, it will be object of future work extensions. In
particular, we have only considered the internalization of norms as goals. In
this sense, the process of norm internalization has been described by the self-
determination theory [13] as a dynamic relation between norms and desires.
This shift would represent the assumption that internalised norms become part
of the agent’s sense of identity. Thus, after performing the coherence process for
creating new norm instances, the NCC must update the DC (Figure 1 Norm
Internalization Bridge Rules) with the new normative desires. The addition of
these propositions into this mental context may cause an inconsistency with
the current mental state. As explained in Section 2.2, in [6] three schemas for
ensuring consistency among mental graded propositions have been proposed.
According to schemaDC2, which imposes a restriction over positive and negative
desires for a same goal, we have implemented the following inference rule:

(DC2) (D
+γ, δ+γ), (D

−γ, δ−γ) ` (0̄, 1− (δ+γ + δ−γ))

Our proposal needs bipolar representation of desires since it is useful when
selecting plans to be intended for achieving the desires. In this sense, both neg-
ative and positive effects of actions will be taken into account when selecting
a plan to be intended. For example, the fact that a plan involves a forbidden
action may be considered as a negative effect. Therefore, obligation norms are
internalized as positive desires whereas prohibition norms are translated into
negative ones. Because of this, DC2 has been considered as a basis for the defi-
nition of bridge rules responsible for updating the DC in a consistent way. Next
these norm internalization bridge rules are described.

Norm Internalization Bridge Rules.

– Obligation Norm. According to DC2 schema, bridge rule for updating the
DC with the positive desires derived from obligation norms is defined as
follows:

NCC : (〈O,C〉, ρ), DC : (D− C, δ−), DC : (D+ C, δ+)

DC : (D+ C,max(ρ, δ+)), DC : (D− C,min(δ−, 1−max(ρ, δ+)))
(2)

78

If an agent considers that the obligation is currently active then a new pos-
itive desire will be inferred corresponding to the new norm condition. Thus,
the desire degree assigned to the new proposition C is defined as the max-
imum between the new desirability and the previous value (max(ρ, δ+)).
Moreover, the undesirability assigned to C is updated as the minimum be-
tween the previous value of undesirability assigned to γ (δ−) and its maxi-
mum coherent undesirability, which is defined as 1−max(ρ, δ+).

– Prohibition Norm. Bridge rule for updating the DC with negative desires is
defined as follows:

NCC : (〈F,C〉, ρ), DC : (D− C, δ−), DC : (D+ C, δ+)

DC : (D− C,max(ρ, δ−)), DC : (D+ C,min(δ+, 1−max(ρ, δ−)))
(3)

Similarly to obligation norms, a prohibition related to a condition C is trans-
formed into a negative desire related to the norm condition (D− C,max(ρ, δ−)).

– Permission Norm. Finally, permission norms do not infer a positive or neg-
ative desire about the norm condition. Permission norms define exceptions
to the application of a more general obligation or prohibition norm. As a
consequence, they only are defined for creating an incoherence with these
more general norms.

8 Conclusion

In this work a previous proposal [9, 10] of a normative BDI architecture has been
revised. The first contribution of the current paper is the usage of coherence
theory in order to determine what means to follow or violate a norm according
to the agent’s cognitions and making a decision about norm compliance. The
second contribution of this paper is the employment of consistency notions for
updating agent cognitions in response to these normative decisions.

The impact of normative decisions on agent cognitions will be object of fu-
ture work. In this paper, the norm internalization problem has been faced in a
simplistic way by considering only the impact of obeyed norms on agent’s de-
sires. Therefore, in future works the role of both deliberative coherence [26] and
emotions on the norm compliance will be analysed. In particular, deliberative co-
herence, which deals with goal adoption in the context of decision making, will
be considered when building plans for obeying or violating norms. In addition,
we will work on extending our agent architecture with an explicit representa-
tion of emotions which will allow agents to consider phenomena such as shame,
honour, gratitude, etc. in their decision making processes.

Due to lack of space, no evaluation or case study has been included here
that might provide a more understanding perspective of our proposal. However,
works describing the original proposal [10, 11] (neither consistency nor coherence
are considered here) provide examples belonging to the m-Water case study. The
m-Water [3] is a water right market which is implemented as a regulated open

79

multi-agent system. It is a challenging problem, specially in countries like Spain,
since scarcity of water is a matter of public interest. The m-Water framework
[12] is a somewhat idealized version of current water-use regulations that articu-
late the interactions of those individual and collective entities that are involved
in the use of water in a closed basin. This is a regulated environment which
includes the expression and use of regulations of different sorts: from actual laws
and regulations issued by governments, to policies and local regulations issued
by basin managers, and to social norms that prevail in a given community of
users. For these reasons, we consider the m-Water problem as a suitable case
study for evaluating performance of the n-BDI agent architecture, since agents’
behaviour is affected by different sorts of norms which are controlled by different
mechanisms such as regimentation, enforcement and grievance and arbitration
processes.

Finally, we are working on the implementation of a prototype of the n-BDI
architecture. Our aim is to evaluate empirically our proposal through the design
and implementation of scenarios belonging to the m-Water case study. In future
works, we will make some experiments concerning the flexibility and performance
of the n-BDI agent model with respect to simple BDI agents, using the m-Water
case study. However, preliminary results of the experimental evaluation of the
n-BDI original proposal can be found in [10].

9 Acknowledgments

This work was partially supported by the Spanish government under grants
CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2009-13839-C03-01 and
TIN2008-04446 and by the FPU grant AP-2007-01256 awarded to N. Criado.

References

1. G. Andrighetto, M. Campenńı, F. Cecconi, and R. Conte. How agents find out
norms: A simulation based model of norm innovation. In NORMAS, pages 16–30,
2008.

2. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion
of preferences on the possibilistic logic framework. In KR, pages 421–434. Morgan
Kaufmann Publishers; 1998, 2002.

3. V. Botti, A. Garrido, A. Giret, and P. Noriega. Managing water demand as a
regulated open mas. In MALLOW Workshop on COIN, page In Press., 2009.

4. J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The boid
architecture – conflicts between beliefs, obligations, intentions and desires. In
AAMAS, pages 9–16. ACM Press, 2001.

5. M. Campenńı, G. Andrighetto, F. Cecconi, and R. Conte. Normal= Normative?
The role of intelligent agents in norm innovation. Mind & Society, 8(2):153–172,
2009.

6. A. Casali, L. Godo, and C. Sierra. A logical framework to represent and reason
about graded preferences and intentions. In KR, pages 27–37. AAAI Press, 2008.

80

7. A. Casali, L. Godo, and C. Sierra. On Intentional and Social Agents with Graded
Attitudes. PhD thesis, Universitat de Girona, 2008.

8. R. Conte, G. Andrighetto, and M. Campenni. On norm internalization. a position
paper. In EUMAS, 2009.

9. N. Criado, E. Argente, and V. Botti. A BDI Architecture for Normative Deci-
sion Making (Extended Abstract). In 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 1383–1384, 2010.

10. N. Criado, E. Argente, and V. Botti. Normative deliberation in graded bdi agents.
In MATES, page In Press, 2010.

11. N. Criado, E. Argente, and V. Botti. Rational strategies for autonomous norm
adoption. In 9th International Workshop on Coordination, Organization, Insti-
tutions and Norms in Multi-Agent Systems (COIN@AAMAS2010), pages 9–16,
2010.

12. N. Criado, E. Argente, A. Garrido, J. A. Gimeno, F. Igual, V. Botti, P. Noriega,
and A. Giret. Norm enforceability in electronic institutions? In 11th International
Workshop on Coordination, Organization, Institutions and Norms in Multi-Agent
Systems (COIN@MALLOW2010), page In Press, 2010.

13. E. Deci and R. Ryan. The” what” and” why” of goal pursuits: Human needs and
the self-determination of behavior. Psychological Inquiry, 11(4):227–268, 2000.

14. F. Dignum. Autonomous agents with norms. Artif. Intell. Law, 7(1):69–79, 1999.
15. F. Flentge, D. Polani, and T. Uthmann. Modelling the emergence of possession

norms using memes. Journal of Artificial Societies and Social Simulation, 4(4),
2001.

16. G. Governatori and A. Rotolo. Changing legal systems: Abrogation and annulment
part i: Revision of defeasible theories. In DEON, pages 3–18, 2008.

17. S. Joseph, C. Sierra, M. Schorlemmer, and P. Dellunde. Formalising deductive
coherence: An application to norm evaluation. Technical report, IIIA-CSIC, 2009.

18. S. Joseph, C. Sierra, M. Schorlemmer, and P. Dellunde. Deductive coherence and
norm adoption. Logic Journal of the IGPL, page In Press, 2010.

19. J. Meyer. Dynamic logic for reasoning about actions and agents. In Logic-Based
Artificial Intelligence, pages 281–311. Kluwer Academic Publishers, 2000.

20. Y. Moses and M. Tennenholtz. Artificial social systems. Computers and Artificial
Intelligence, 14(6), 1995.

21. N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and S. Miles.
Towards a formalisation of electronic contracting environments. In COIN IV, pages
156–171, Berlin, Heidelberg, 2009. Springer-Verlag.

22. B. T. R. Savarimuthu, M. Purvis, and M. K. Purvis. Social norm emergence in
virtual agent societies. In AAMAS, pages 1521–1524. IFAAMAS, 2008.

23. S. Sen and S. Airiau. Emergence of norms through social learning. In IJCAI, pages
1507–1512, 2007.

24. M. P. Singh. An ontology for commitments in multiagent systems. Artif. Intell.
Law, 7(1):97–113, 1999.

25. C. Sripada and S. Stich. A framework for the psychology of norms. The Innate
Mind: Culture and Cognition, pages 280–301, 2006.

26. P. Thagard. Coherence in Thought and Action. The MIT Press, Cambridge,
Massachusetts, 2000.

27. H. Verhagen. Norm Autonomous Agents. PhD thesis, Stockholm University, 2000.
28. F. y Lopez. Social Power and Norms. PhD thesis, Citeseer, 2003.

81

Generating Executable Multi-Agent System
Prototypes from SONAR Speci�cations

Michael Köhler-Buÿmeier, Matthias Wester-Ebbinghaus, Daniel Moldt

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg

(koehler,wester,moldt)@informatik.uni-hamburg.de

Abstract. This contribution presents the Mulan4Sonar middleware
and its prototypical implementation for a comprehensive support of or-
ganisational teamwork, including aspects like team formation, negotiation,
team planning, coordination, and transformation. Organisations are mod-
elled in Sonar, a Petri net�based speci�cation formalism for multi-agent
organisations. Sonar models are rich and elaborated enough to auto-
matically generate all necessary con�guration information for the Mu-
lan4Sonar middleware.

1 Introduction
Organisation-oriented software engineering is a discipline which incorporates re-
search trends from distributed arti�cial intelligence, agent-oriented software en-
gineering, and business information systems (cf. [1, 2] for an overview). The basic
metaphors are built around the interplay of the macro level (i.e. the organisation
or institution) and the micro level (i.e. the agent). Organisation-oriented software
models are particularly interesting for self- and re-organising systems since the
system's organizing principles (structural as well as behavioral) are taken into
account explicitly by representing (in terms of reifying) them at run-time.

The following work is based on the organisation model Sonar (Self-Organising
Net Architecture) which we have presented in [3, 4]. In this paper we turn to a
middleware concept and its prototypical implementation for the complete organ-
isational teamwork that is induced by Sonar.

First of all we aim at a rapid development of our middleware prototype. There-
fore we need a speci�cation language that inherently supports powerful high-level
features like pattern matching and synchronisation patterns. The second require-
ment is a narrow gap between the speci�cation and implementation of the mid-
dleware prototype. Ideally, middleware speci�cations are directly executable. As
a third requirement, we are interested in well established analysis techniques to
study the prototype's behaviour. As a fourth requirement we want the middle-
ware speci�cations to be as close as possible to the supported Sonar-model of
an organization. Related to this, the �fth requirement results as the possibility to
be able to directly generate the middleware speci�cations from the Sonar-model
automatically. The sixth requirement is that we want an easy translation of the
prototype into an agent programming language.

82

Since Sonar-models are based on Petri nets we have chosen high-level Petri
nets [5] as the speci�cation language for our middleware prototype. This choice
meets the requirements stated above: We can reuse Sonar-models by enrich-
ing them with high-level features, like data types, arc inscription functions etc.
Petri nets are well known for their precise and intuitive semantics and their
well established analysis techniques, including model checking or linear algebraic
techniques. We particularly choose the formalism of reference nets, a dialect of
high-level nets which supports the nets-in-nets concept [6] and thus allows to im-
mediately incorporate (�program�) micro-macro dynamics into our middleware.
Reference nets receive tool support with respect to editing and simulation by the
Renew tool [7]. Additionally, Renew has been extended by the agent-oriented
development framework Mulan [8, 9], which allows to program multi-agent sys-
tems in a language that is a hybridisation of reference nets and Java. We make
use of Mulan and provide a middleware for Sonar-models. Consequently, our
middleware is called Mulan4Sonar and we present a fully-functional prototype
in this paper.

The paper is structured as follows: Section 2 brie�y sketches our formal spec-
i�cation language for organisational models, called Sonar. Section 3 addresses
our Mulan4Sonar middleware approach on a rather abstract and conceptual
level. It illustrates the structure of our target system: Sonar-models are com-
piled into a multi-agent system consisting of so called position agents, i.e. agents
that are responsible for the organisational constraints. Section 4 describes our im-
plemented middleware prototype in detail. It is generated from Sonar-models.
The middleware serves integration and control of all organisational activities, like
team formation, negotiation, team planning, coordination, and transformation.
We consider related work in Section 5 before we close the paper with a conclusion
in Section 6.

2 The Underlying Theoretical Model: SONAR

In the following we give a short introduction into our modelling formalism, called
Sonar. A Sonar-model encompasses (i) a data ontology, (ii) a set of interaction
models (called distributed work�ow nets, DWFs), (iii) a model, that describes the
team-based delegation of tasks (called role/delegation nets), (iv) a network of or-
ganisational positions, and (v) a set of transformation rules A detailed discussion
of the formalism can be found in [3], its theoretical properties are studied in [4].

In Sonar a formal organisation is characterised as a delegation network of
sub-systems, called positions. Each position is responsible for the execution or del-
egation of several tasks. Figure 1 illustrates the relationship between the Sonar
interaction model, the delegation model and the position network � i.e. the as-
pects (ii) to (iv).1 The left side of the �gure describes the relationship between the
positions (here: broker, virtual �rm, requester, etc.) in terms of their respective
roles (here: Producer, Consumer etc.) and their associated delegation links. In
1 To keep the model small we we have omitted all data-related aspects and transfor-
mation rules � i.e. the aspects (i) and (v) � in this �gure.

83

Fig. 1. A simpli�ed Sonar-Model

this scenario, we have a requester and two suppliers of some product. Coupling
between them is provided by a broker.2 From a more �ne-grained perspective,
the requester and one of the suppliers consist of delegation networks themselves.
For example, in the case of the virtual �rm supplier, we can identify a manage-
ment level and two subcontractors: �rm 1 �rm 2. The two subcontractors may
be legally independent �rms that integrate their core competencies in order to
form a virtual enterprise (e.g. separating fabrication of product parts from their
assembly). The coupling between the �rms constituting the virtual enterprise is
apt to be tighter and more persistent than between requester and supplier at the
next higher system level, which provides more of a market-based and on-the-spot
connection.

Sonar relies on the formalism of Petri nets. Each task is modelled by a place p
and each task implementation (delegation/execution) is modelled by a transition
t. Each task place is inscribed by the set of roles which are needed to implement it,
e.g. the set {Prod ,Cons} for the place in the position requester. Each transition
t is inscribed by the DWF net D(t) that speci�es the interaction between the
roles. In the example we have two inscriptions: PC and PC3 where the former is
show on the right of Figure 1. Positions are the entities which are responsible for
the implementation of tasks.3 Therefore, each node in P ∪ T is assigned to one
position O.4

2 Note that for this simpli�ed model brokerage is an easy job, since there are only two
producers and one consumer. In general, we have several instances for both groups
with a broad variety of quality parameters, making brokerage a real problem.

3 The main distinction between roles and position is that positions � unlike roles � are
situated in the organisational network, they implement roles and are equipped with
resources.

4 Organisation nets can be considered as enriched organisation charts. Organisation
nets encode the information about delegation structures � similar to charts � and
also about the delegation/execution choices of tasks, which is not present in charts.

84

So far we have used only the static aspects of Petri nets, i.e. the graph struc-
ture. But Sonar also bene�ts from the dynamic aspects of Petri nets: Team
formation can be expressed in a very elegant way. If one marks one initial place
of an organisation net Org with a token, each �ring process of the Petri net mod-
els a possible delegation process. More precisely, the token game is identical to
the team formation process (cf. Theorem 4.2 in [4]). It generates a team net (the
team's structure) and a team DWF, i.e. the team's behavior speci�cation.

As another aspect, Sonar-models are equipped with transformation rules.
Transformation rules describe which modi�cations of the given model are allowed.
They are speci�ed as graph rewrite rules [10]. As a minimal requirement the
rules must preserve the correctness of the given organisational model. In Sonar
transformations are not performed by the modeller � they are part of the model
itself. Therefore we assume that a Sonarmodel is strati�ed by models of di�erent
levels. The main idea is that the activities of DWF nets that belong to the level
n are allowed to modify those parts that belong to levels k < n but not to higher
ones.

3 Organisational Position Network Activities
We now elaborate on the activities of a multi-agent system behaving according
to a Sonar-model.

3.1 Conceptual Overview
The basic idea is quite simple: With each position of a Sonar-model we asso-
ciate one dedicated agent, called an organisational position agent (OPA). This is
illustrated in Figure 2 where the OPAs associated with a Sonar-model together
embody a middleware layer.

Fig. 2. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,

If one fuses all nodes of each position into one single node, one obtains a graph
which represents the organisation's chart. Obviously, this construction removes all
information about the organisational processes.

85

each OPA represents a conceptual connection point for an organisational member
agent (OMA). An organisation is not complete without its OMAs. Each OMA
actually interacts with its OPA to carry out organisational tasks, to make deci-
sions where required. OMAs thus implement/occupy the formal positions.5 Note
that an OMA can be an arti�cial as well as a human agent. An OPA both enables
and constrains organisational behaviour of its associated OMA. Only via an OPA
an OMA can e�ect the organisation and only in a way that is in conformance
with the OPA's speci�cation. In addition, the OPA network as a whole relieves
its associated OMAs of a considerable amount of organisational overhead by au-
tomating coordination and administration. To put it di�erently, an OPA o�ers
its OMA a �behaviour corridor� for organisational membership. OMAs might of
course only be partially involved in an organisation and have relationships to
multiple other agents than their OPA (like Alice and Bob in Figure 2) or even
to agents completely external to the organisation (like Alice and Dorothy). From
the perspective of the organisation, all other ties than the OPA-OMA link are
considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the �rst one between
micro and macro level (one OPA versus the complete network of OPAs) and the
second one between formal and informal aspects of an organisation (OPA versus
OMA). We can make additional use of this twofold interface. Whenever we have
a system of systems setting with multiple scopes or domains of authority (e.g.
virtual organisations, strategic alliances, organisational �elds), we can let an OPA
of a given (sub-)organisation act as a member towards another OPA of another
organisation. This basically combines the middleware perspective with a holonic
perspective (cf. [11]).

3.2 Organisational Teamwork

Sonar-models of organisations induce teamwork activities. We distinguish be-
tween organisational teamwork activities of �rst- and of second-order. First-order
activities target at carrying out �ordinary� business processes to accomplish busi-
ness tasks.

� Team Formation: Teams are formed in the course of an iterated delegation
procedure in a top-down manner. Starting with an initial organisational task
to be carried out, successive task decompositions are carried out and sub-
tasks are delegated further. A team net according to Section 2 consists of the
positions that were involved in the delegation procedure.

� Team Plan Formation/Negotiation: After a team has been formed, a compro-
mise has to be found concerning how the corresponding team DWF net (cf.
Section 2) is to be executed as it typically leaves various alternatives of going

5 Note that from a technical point of view, the OPA network is already a complete
MAS. This MAS is highly non-deterministic since a Sonar-model speci�es what is
allowed and what is obligatory, so many choices are left open. Conceptually, the OPA
network represents the formal organisation while the OMAs represent its informal
part which in combination describe the whole organisation.

86

one way or the other. A compromise is found in a bottom-up manner with
respect to the team structure. The �leaf� positions of the team net tell their
preferences and the intermediary, inner team positions iteratively seek com-
promises between the preferences/compromise results of subordinates. The
�nal compromise is a particular process of the team DWF net and is called
the team plan.

� Team Plan Execution: As the team plan is a DWF net process that describes
an interaction between team positions, team plan execution follows straight-
forward.6

� Hierarchic propagation: If a holonic approach as illustrated in Figure 2 is
chosen, team activities that span multiple organisations are propagated ac-
cordingly.

Second-order activities reorganisation e�orts.

� Evaluation: Organisational performance is monitored and evaluated in or-
der to estimate prospects of transformations. To estimate whether an or-
ganisational transformation would improve organisational performance, we
introduce metrics that assign a multi-dimensional assessment to a formal or-
ganisation. In addition to the Petri net-based speci�cations of the previous
section, there may exist additional teamwork constraints and parameters that
may be referred to. How to measure the quality of an organisational structure
is generally a very di�cult topic and highly contingent. We will not pursue
it further in this paper.

� Organisational Transformations: As described in Section 2, transformations
can either be applied to a formal organisation externally or be carried out by
the positions themselves as transformation teams (cf. exogenous versus en-
dogenous reorganisation [12]). In the latter case, transformations are typically
triggered by the above mentioned evaluations. But it might also be the case
that a new constraint or directive has been imposed and the organisation has
to comply.

3.3 Organisation Agents

As shown in Figure 2 all the OPAs of an organisation are within the context of an
organisation agent which represents the OPA network as a whole. The organisa-
tion agent is responsible for the management of the organisational domain data
(e.g. customer databases etc.) but also for the management of the organisational
meta data which includes the data ontology, the interaction protocols (i.e. the
process ontology), and also a representation of the Sonar-model itself. This is
illustrated in the top half of Figure 3.

Additionally, the organisation agent is responsible for the network wide fram-
ing of the organizational teamwork e�orts, i.e. team formation, negotiation, and
6 For the time being, we do not address the topic that team plan execution might fail
and what rescue e�orts this might entail.

87

Fig. 3. The Organisation Agent

team plan execution (as illustrated in the bottom half of Figure 3). The organi-
sation agent is responsible for monitoring the abstract aspects on the teamwork
(i.e. the OPA network perspective), while the OPAs are responsible for the con-
crete decisions (i.e. the OPA perspective).7 For example, the organisation agent
abstractly speci�es that during the team formation the OPA O may delegate
some task to another agent which must belong to a certain set of OPAs,8 but the
concrete choice for a partner is left to the OPA O which in turn coordinates its
decision with its associated OMA.

In our architecture the concrete choices of the OPAs are framed by the so called
team cube (cf. Figure 3). The notation cube is due to the fact that we have three
dimension of teamwork: team formation, negotiation, and team plan execution.
For each dimension we can choose between several mechanisms. For example in
the team formation phase the delegation of tasks to subcontractors can either be
implemented by a market mechanism (i.e. choosing the cheapest contractor), by a
round-robin scheduling (i.e. choosing contractors in cyclic order), or even by some
kind of �a�ection� between OPAs/OMAs. Given a concrete situation that initiates
a teamwork activities, the organisation chooses an appropriate mechanism for
7 Note that the existence of a single agent representing the organisation has not to
be confused with a monolithic architecture. The main bene�t of the existence of
an organisation agent is that it allows to provide a network-wide view on the team
activities.

The abstract aspects could as well be implemented by the OPAs themselves and
thus be totally distributed. In fact the concurrency semantics of Petri nets perfectly
re�ects this aspect: In the mathematical sense the processes of an organisation agent
are in fact distributed, even if generated from one single net.

8 This set of possible delegation partners is calculated from the Sonar-model.

88

each of the three dimensions. During the execution phase of the team plans the
team cube evaluates the process to improve the assignment of mechanisms.

4 The Mulan4Sonar Middleware

Each position of a Sonar-organisation consists of a formal part (the OPA as an
organisational artifact) and an informal part (the OMA as a domain member).
An organisation together with the OPA network relieves its associated OMAs of
a great part of the organisational overhead by automation of administrative and
coordination activities. It is exactly the generic part of the teamwork activities
from Section 3.2 that is automated by the organisation/OPA network: Team
formation, team plan formation, team plan execution always follow the same
mechanics and OMAs only have to enter the equation where domain actions have
to be carried out or domain-dependent decisions have to be made.

4.1 Compilation of Sonar Speci�cations into Mulan4Sonar

In the following we demonstrate the compilation of an organisational Sonar-
model into the Mulan4Sonar middleware layer for automated teamwork sup-
port. A Sonar-model is semantically rich enough to provide all necessary in-
formation to allow an automated generation/compilation. The aspects of this
compilation and the resulting prototypical middleware are discussed using the
organisation example introduced above in Figure 1. The prototypical middleware
layer generated from this Sonar-model is speci�ed by a high-level Petri net,
namely a reference net. This is bene�cial for two reasons: (1) the translation
result is very close to the original speci�cation, since the prototype directly in-
corporates the main Petri net structure of the Sonar-model; (2) the prototype is
immediately functional as reference nets are directly executable using the open-
source Petri net simulator Renew [7] and we can easily integrate the prototype
into Mulan [8, 9], our developing and simulation system for MAS based on Java
and reference nets. Therefore we have chosen to implement the compiler as a
Renew-plugin.

The plugin implements a compiler that is based on graph rewriting. The com-
piler searches for a net fragment in the Sonar-model that matches the pattern on
the left hand side of a rewrite rule and translates it into a reference net fragment
which is obtained as the instantiation of the rule's right hand side. An exam-
ple rule with the parameter n is given in Figure 4: The rule attaches a place
for the OPA a to the transition. In the �nal model this place contains the OPA
that represents the position �position name� . The rule also adds inscriptions that
describe that OPA a is willing to implement the task t (denoted by the inscrip-
tion a:askImpl("t")) and a list of inscriptions a:askPartner("pi", Oi) (one for each
pi, 1 ≤ i ≤ n) describing that a delegates the subtask pi to the OPA Oi. The
variable x denotes the identi�er of the teamwork process.

We consider teamwork in six phases. For each phase, the original Sonar-model
(in our case the one from Figure 1) is taken and transformation rules generate

89

Fig. 4. A transformation rule for Phase 1

an executable reference net fragment. For example, the transformation rule from
Figure 4 is used for the �rst phase, selection of team members (see below). Finally,
the fragments for the phases 1 to 6 are linked sequentially and the resulting overall
net represents the main (organisation-speci�c) middleware component that is used
in the (generic)Mulan4Sonarmiddleware layer to coordinate the organizational
teamwork. The six teamwork phases are the following:

1. Selection of team members: By agents receiving tasks, re�ning them and del-
egating sub-tasks, the organisation is explored to select the team agents. This
way, a team tree is iteratively constructed but the overall tree is not globally
known at the end of this phase.

2. Team assembly: The overall team tree is assembled by iteratively putting sub-
teams together. At the end of this phase, only the root agent of the team tree
knows the overall team.

3. Team announcement: The overall team is announced among all team member
agents.

4. Team plan formation: The executing team agents (i.e. the leaves of the team
tree) construct partial local plans related to the team DWF net. These partial
plans are iteratively processed by the ancestors in the team tree. They seek
compromises concerning the (possibly con�icting) partial plans until the root
of the team tree has build a global plan with a global compromise.

5. Team plan announcement and plan localisation: The global team plan is an-
nounced among all team member agents. The executing team agents have to
localise the global plan according to their respective share of the plan.

6. Team plan execution: The team generates an instance of the team DWF net,
assigns all the local plans to it, and starts the execution.

Here, we will only discuss �rst-order organisational teamwork. However, our
Mulan4Sonar middleware approach features a recursive system architecture in
order to support reorganization, including second-order activities (a presentation
of the whole model can be found in the technical report [13]).

Before the six phases are discussed in more detail, we illustrate how a Mulan
multi-agent system that incorporates our Mulan4Sonar middleware layer looks
like.

90

4.2 Multi-Agent System with Mulan4Sonar Middleware Layer

In Section 3, we have described our general vision of a multi-agent system that
incorporates Sonar organisations: The formal part of each Sonar organization
is explicitly represented by a distributed middleware layer consisting of OPAs
for each position and one organisation agent as an additional meta-level entity.
In our current prototypical implementation of the Mulan4Sonar middleware
layer, the organisation agent is actually not yet fully included, at least not as an
agent. Instead, the organisation agent of a Sonar organisation manifests itself in
terms of the generated six-phase reference net explained in the previous subsection
(together with possible DWF nets). This concept is illustrated in Figure 5.

Fig. 5. Mulan4Sonar middleware layer in the current prototype

It is shown that the formal part of a Sonar organisation is embodied by the
generated middleware net and the position agents that are hosted on the agent
places of the net. Here we do not elaborate on the internal structure of the agents
as we would have to go into the details of multi-agent system programming with
Mulan which is out of the scope of the paper. All OPAs share the same generic
OPA architecture (GOPA) that we have presented in [14]. Note that in the current
prototype, the OPAs are directly embedded on the agent places of the middleware
net. This is justi�ed as they are actually rei�ed parts of the formal organisation
and we assume that the whole middleware (and thus the formal organization) is
executed on the same Mulan platform. The OMAs however are external agents
that have chosen to act as members of the organization. Consequently, they can
be hosted on remote platforms and communicate with their respective OPAs via
message passing.

91

For future developments of our Mulan4Sonar middleware we plan to have
the organisation agent to be actually realized as a Mulan agent (see Subsec-
tion 4.4).

4.3 Explanation of the Six Teamwork Phases

As explained in Subsection 4.1, a Sonar-model of an organisation is compiled
into executable reference nets for each of the six teamwork phases. Afterwards, the
reference nets for the phases 1 to 6 are combined in one reference net and linked
sequentially. This linkage is achieved via synchronisation inscriptions. Thus, the
end of a phase is synchronised with the start of the succeeding phase.

The reference nets for the six phases share the same net structure but have
di�erent inscriptions. This re�ects the fact that all teamwork is generated from
the same organisational Sonar-speci�cation, but in di�erent phases di�erent in-
formation is needed. Figure 6 shows the generated reference net for the �rst phase,
selection of team members.9

Before any teamwork can occur, the system setup has to be carried out. Six
position agents (OPAs) � one for each position � are initialized and registered.
The position agents are hosted on the agent places of the generated middleware
net. After this step the initialisation is �nished and teamwork may ensue.

For our given Sonar-model we have only one position that is able to start a
team, namely O4 since it is the only position having a place with an empty preset
(i.e. the place p0). Whenever the position agent O4 decides to begin teamwork,
it starts the �rst phase, team member selection. The only possibility for task p0

is to delegate it to O1. Here, O1 has only one implementation possibility for this
task, namely t1. This entails to generate the two subtasks p1 and p2. O1 selects
the agents these subtasks are delegated to. For p2 there is the only possibility O4

but for p1 there is the choice between O2 and O3. Partner choices occur via the
synchronisation a:askPartner(p,O) between the middleware net and the position
agents: Agent a provides a binding for the partner O when the task p has to be
delegated. Assume that the agent O1 decides in favour of O3, then the control
is handed over to O3 which has a choice how to implement the task: either by
t2 or by t5. This decision is transferred between position agents and middleware
net via the synchronisation a:askImpl(t) which is activated by the agent a only if
t has to be used for delegation/implementation.

After this iterated delegation has come to an end � which is guaranteed for
well-formed Sonar-models � all subtasks have been assigned to team agents and
the �rst phase ends. At this point the agents know that they are team members,
but they do not know each other yet. To establish such mutual knowledge the
second phase starts.

We cannot cover every phase in detail. The general principle has been shown
for phase one, namely enriching the original Sonar model of an organisation
with (1) connections to position agents and (2) execution inscriptions along the
purpose of the respective teamwork phase.
9 Note that the rule from Figure 4 has been applied several times.

92

Fig. 6. Zoom: First Phase of the Mulan4Sonar-middleware

93

The purpose of the remaining �ve phases has been covered in Subsection 4.1.
Here, we want to cover one technical aspect speci�cally. The description of the
�rst phase has made clear that it is a top-down phase. Following the delegation
relationships of the original Sonar-model, a team tree is built from the root
down to the leaves. It is also clear that the second phase has to be a bottom-up
phase. The overall team is not yet known to any position agent. Thus, beginning
with the leaves of the team tree and the corresponding "one-man sub-teams",
sub-teams are iteratively assembled until the complete team is �nally known at
the root node. Consequently, for the second phase, the direction of the arrows has
to be reversed compared to the original Sonar model. Analogous observations
hold for the remaining four phases. Phases 3 and 5 are top-down phases while
phases 4 and 6 are bottom-up phases.

4.4 Strengths, Weaknesses and Future Work

In this subsection, we give a brief qualitative evaluation of the approach taken in
this paper. Sonar is a formal model of organisations based on Petri nets. It is
often di�cult to initially come up with an approach to deploy formal speci�cations
in a software environment. In the case of the Petri net speci�cations, one can take
advantage of the inherent operational semantics. In this sense, Petri nets often
allow for a rapid prototyping approach to go from abstract models (requiring
only simple Petri net formalisms) to fully functional, executable models (requiring
high-level Petri net formalism, in our case reference nets). Consequently, our �rst
approach was to take a Sonar-speci�cation of an organisation and derive an
executable prototype by manually attaching inscriptions and add some auxiliary
net elements.

While manually crafting an executable reference net for each speci�c Sonar-
model is of course not worthwhile in the long run, it provided us with very early
lessons learned and running systems from the beginning on. The work presented
in this paper was the next step. Based on our experiences from the handcrafted
prototypes we were able to clearly denominate and devise the transformation rules
that were needed for automated generation of executable reference net fragments
from Sonar-models.

Consequently, we see the conceptual as well as operational closeness between
an underlying Sonar-model and its generated middleware net as a crucial advan-
tage for our fast progress in deploying Sonar-organisations. In addition, formal
properties like well-formedness (cf. [3, 4]) of a Sonar-model directly carry over
to the implementation level.

However, there are also problems associated with our current approach. Firstly,
organisational speci�cations at run-time are only available in terms of the refer-
ence net generated from the underlying Sonar-model. This format is not very
suitable for being included in an agent's reasoning processes. Secondly, reorga-
nization e�orts are only achieved via a workaround. Changing only particular
elements of a reference net at runtime is not inherently supported by our envi-
ronment. Thus, for a reorganization of an organization, the whole middleware net
has to be replaced.

94

Because of the mentioned problems, we are working on further improving the
Mulan4Sonar middleware. Current e�orts target at keeping the organizational
speci�cation as a more accessible and mutable data structure at the level of the
middleware layer. Although it is no longer necessarily represented as a reference
net itself, the organisational activities and dynamics allowed by the middleware
layer are still directly derived from the underlying Petri net semantics of Sonar.

5 Related Work

Our work is closely related to other approaches that propagate middleware layers
for organisation support in multi-agent systems like S-MOISE+ [15], AMELI [16]
or TEAMCORE/KARMA [17]. The speci�cs of each middleware layer depends on
the speci�cs of the organizational model that is supported. What all approaches
have in common is that domain agents are granted access to the middleware
layer via proxies that constrain, guide and support an agent in its function as
a member of the organisation, cf. OrgBox in S-MOISE+, Governor in AMELI,
Team Wrapper in TEAMCORE/KARMA. Our organisational position agents,
the OPAs, serve a similar purpose. The are coupled with organisational member
agents, the OMAs, which are responsible for domain-level actions and decisions.

However, in the case of S-MOISE+ and AMELI, management of organi-
sational dynamics is mainly taken care of by middleware manager agents (the
OrgManager for S-MOISE+ and the institution, scene and transition managers
for AMELI). The proxies mainly route communication between the domain level
agents and the middleware managers. Consequently, middleware management is
to some degree centralised.10 In our case, the OPAs are both proxies and mid-
dleware managers. They manage all six phases of organisational teamwork in a
completely distributed way. This is quite similar to the function of the Team
Wrappers in TEAMCORE/KARMA. The KARMA middleware component can
be compared to the organisational agent in our approach. It is a meta-level entity
that is responsible for setting up the whole system and for monitoring perfor-
mance.

In [19], we additionally study the conceptual �t between di�erent middleware
approaches (in combination with the organisational models they support) and
their application on di�erent levels of a large-scale system of systems.

6 Conclusion

In this paper, we have built upon our previous work Sonar on formalising organ-
isational models for MAS by means of Petri nets [4, 3]. In particular, the paper
is dedicated to a prototypical Mulan4Sonar middleware layer that supports
the deployment of Sonar-models. As Sonar-speci�cations are formalised with
10 However, in the case of S-MOISE+, the new middleware approach ORA4MAS [18]

(organizational artifacts for MAS) has been devised, resulting in a more decentralised
approach.

95

Petri nets, they inherently have an operational semantics and thus already lend
themselves towards immediate implementation. We have taken advantage of this
possibility and have chosen the reference net formalism as an implementation
means. Reference nets implement the nets-in-nets concept [6] and thus allow us
to deploy Sonar-organisations as nested Petri net systems. The reference net
tool Renew [7] o�ers comprehensive support, allowing us to re�ne/extend the
Sonar speci�cations into fully executable prototypes.

This leaves us with a close link between a Sonar speci�cation of an organi-
sation and its accompanying Mulan4Sonar middleware support. The structure
and behaviour of the resulting software system is directly derived and compiled
from the underlying formal model. For example, we have explicitly shown how the
organisation net of a formal Sonar-speci�cation can be utilised for the middle-
ware support of six di�erent phases of teamwork. In each phase, the original net is
used di�erently (with di�erent inscriptions and arrow directions). This approach
of deploying Sonar-models does not only relieve the developer of much otherwise
tedious programming. It also allows to preserve desirable properties that can be
proven for the formal model and that now carry over to the software technical
implementation.

Finally, although we have introduced the idea of Sonar-organizations acting
in the context of other Sonar-organizations, we have not addressed the topic in
detail here. We study this subject in [20, 21], but on a more abstract/generic level
than Sonar o�ers. Nevertheless, we have already begun to transfer the results
to Sonar.

References
1. Carley, K.M., Gasser, L.: Computational organisation theory. In Weiÿ, G., ed.:

Multiagent Systems. MIT Press (1999) 229�330
2. Dignum, V., ed.: Handbook of Research on Multi-Agent Systems: Semantics and

Dynamics of Organizational Models. IGI Global (2009)
3. Köhler-Buÿmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-

ganisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. Special Issue on Concurrency in
Process-Aware Information Systems 5460 (2009) 98�114

4. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informaticae
79 (2007) 415 � 430

5. Girault, C., Valk, R., eds.: Petri Nets for System Engineering � A Guide to Modeling,
Veri�cation, and Applications. Springer (2003)

6. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In Desel, J.,
Reisig, W., Rozenberg, G., eds.: Advanced Course on Petri Nets 2003. Volume 3098
of LNCS, Springer (2003) 819�848

7. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: International Conference on Application
and Theory of Petri Nets 2004. Volume 3099 of LCNS, Springer (2004) 484 � 493

8. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In
Colom, J.M., Koutny, M., eds.: International Conference on Application and Theory
of Petri Nets. Volume 2075 of LNCS, Springer (2001) 224�241

96

9. Cabac, L., Dörges, T., Duvigneau, M., Moldt, D., Reese, C., Wester-Ebbinghaus,
M.: Agent models for concurrent software systems. In Bergmann, R., Lindemann,
G., eds.: Proceedings of the Sixth German Conference on Multiagent System Tech-
nologies, MATES'08. Volume 5244 of LNAI, Springer (2008) 37�48

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

11. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation for
the organization of multiagent systems. In: Holonic and Multi-Agent Systems for
Manufacturing, First International Conference on Industrial Applications of Holonic
and Multi-Agent Systems (HoloMAS). Volume 2744 of LNCS, Springer (2003) 71�80

12. Boissier, O., Hübner, J., Sichman, J.S.: Organization oriented programming: From
closed to open organizations. In O'Hare, G., Ricci, A., O'Grady, M., Dikenelli, O.,
eds.: Engineering Societies in the Agents World VII. Volume 4457 of LNCS, Springer
(2007) 86�105

13. Köhler-Buÿmeier, M., Wester-Ebbinghaus, M.: A Petri net based prototype for MAS
organisation middleware. In Moldt, D., ed.: Workshop on Modelling, object, compo-
nents, and agents (MOCA'09), University of Hamburg, Department for Computer
Science (2009) 29�44

14. Köhler-Buÿmeier, M., Wester-Ebbinghaus, M.: Sonar: A multi-agent infrastructure
for active application architectures and inter-organisational information systems. In
Braubach, L., van der Hoek, W., Petta, P., Pokahr, A., eds.: Conference on Multi-
Agent System Technologies, MATES 2009. Volume 5774 of LNAI, Springer (2009)
248�257

15. Hübner, J.F., Sichman, J.S., Boissier, O.: S-moise: A middleware for developing
organised multi-agent systems. In: International Workshop on Organizations in
Multi-Agent Systems: From Organizations to Organization-Oriented Programming
(OOOP 2005). (2005) 107�120

16. Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In Sierra, C., Sonenberg, L., Tambe, M.,
eds.: Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2004). (2004) 236�243

17. Pynadath, D., Tambe, M.: An Automated Teamwork Infrastructure for Hetero-
geneous Software Agents and Humans. In: Autonomous Agents and Multi-Agent
Systems, 7(1�2). (2003) 71�100

18. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents: Giving the organisational power
back to the agents. In: Autonomous Agents and Multi-Agent Systems, 20(3). (2010)
369�400

19. Wester-Ebbinghaus, M., Köhler-Buÿmeier, M., Moldt, D.: From Multi-Agent to
Multi-Organization Systems: Utilizing Middleware Approaches. In: Alexander, A.,
Picard, G., Vercouter, L., eds.: Engineering Societies in the Agents World IX. Vol-
ume 5485 of LNCS, Springer (2008) 46�65

20. Wester-Ebbinghaus, M., Moldt, D.: Modelling an open and controlled system
unit as a modular component of systems of systems. In Köhler-Buÿmeier, M.,
Moldt, D., Boissier, O., eds.: International Workshop on Organizational Modelling
(OrgMod'09), University of Paris (2009) 81�100

21. Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS'2008). (2008) 1307�1311

97

Embodied Organizations: a unifying perspective
in programming Agents, Organizations and

Environments

Michele Piunti1, Olivier Boissier2, Jomi F. Hübner3, and Alessandro Ricci1

1 Universitá di Bologna, Italy - {michele.piunti,a.ricci}@unibo.it
2 Ecole des Mines St-Etienne, France - boissier@emse.fr

3 University of Santa Catarina, Florianópolis, Brazil - jomi@inf.furb.br

Abstract. MAS research pushes the notion of openness related to sys-
tems combining heterogeneous computational entities. Typically, those
entities answer to different purposes and functions and their integration
is a crucial issue. Starting from a comprehensive approach in developing
agents, organizations and environments, this paper devises an integrated
approach and describes a unifying programming model. It introduces the
notion of embodied organization, which is described first focusing on the
main entities as separate concerns; and, second, establishing different in-
teraction styles aimed to seamlessly integrate the various entities in a co-
herent system. An integration framework, built on top of Jason, CArtAgO
andMoise (as programming platforms for agents, environments and or-
ganizations resp.) is described as a suitable technology to build embodied
organizations in practice.

1 Introduction

Agent based approaches consider agents as autonomous entities encapsulating
their control, characterized (and specified) by epistemic states (beliefs) and mo-
tivational states (goals) which result in a goal oriented behavior. Recently, or-
ganization oriented computing in Multi Agent Systems (MAS) has been advo-
cated as a suitable computation model coping with the complex requirements
of socio-technical applications. As indicated by many authors [8, 2, 6], organiza-
tions are a powerful tool to build complex systems where computational agents
can autonomously pursue their activities exhibiting social attitudes. The orga-
nizational dimension is conceived in terms of functionalities to be exploited by
agents, while it is assumed to control social activities by monitoring and changing
those functionalities at runtime. Being conceived in terms of human organiza-
tions, i.e., being structured in terms of norms, roles and global objectives, this
perspective assumes an organizational layer aimed at promoting desired coordi-
nation, improving control and equilibrium of social dynamics. Besides, the need
for openness and interoperability requires to cope with computational environ-
ments populated by several entities, not modellable as agents or organizations,
which are supposed to be concurrently exploited by providing functionalities

98

supporting agents objectives. These aspects are even more recognized in current
ICT, characterized by a massive interplay of self-interested entities (humans
therein) developed according to different models, technologies and programming
styles. Not surprisingly, recent approaches introduced environment as pivotal di-
mension in MAS development [22, 14]. Such a multifaceted perspective risks to
turn systems into a scattered aggregation of heterogenous elements, while their
interplay, as well as their interaction, is reduced to a problem of technological
interoperability. To prevent this, besides the different mechanisms and abstrac-
tions that must be considered, there is a strong need of binding these elements
together in a flexible and clear way.

Providing a seamless integration of the above aspects places the challenge to
conceive the proper integration pattern between several entities and constructs.
A main concern is agent awareness, namely the need for agents to exhibit special
abilities and knowledge in order to bring about organizational and environmen-
tal notions—which typically are not native constructs of their architectures [21,
15]. Once the environment dimension is introduced as an additional dimension,
a second concern is how to connect in a meaningful way the organizational en-
tities and the environmental ones, thereby (i) how the organization can ground
normative measures as regimentation and obligations in environments, and (ii)
how certain events occurring in environments may affect the global organiza-
tional configuration. These aspects enlighten a series of drawbacks on existing
approaches, either on the conceptual model and on the programming constructs
to be adopted to build systems in practice.

Taking a programming perspective, this work describes an infrastructural
support allowing to seamlessly integrate various aspects characterizing an open
MAS. In doing so, the notion of Embodied Organization is detailed, aimed at
introducing each element in the MAS as an integral part of a structured infras-
tructure. In order to reconcile organizations, agents and environments, Embodied
organization allows developers to focus on the main entities as separate concerns,
and then to establish different interaction styles aimed to seamlessly integrate
the various entities in a coherent system. In particular, the proposed approach
defines a series of basic mechanisms related to the interaction model:

i. How the agents could profitably interact with both organizational and other
environmental entities in order to attain their design objectives;

ii. How the organizational entities could control agent activities and regiment
environmental resources in order to promote desired equilibrium;

iii. How environmental changes could affect both organizational dynamics and
agents activities;

The rest of the paper is organized as follows: Section 2 provides a survey
of situated organization as proposed by existing works. Starting from the de-
scription of the basic entities characterizing an integrated perspective, Section 3
presents a unified programming model including agents, organizations and envi-
ronments. The notion of Embodied Organization is detailed in Section 4, while
Section 5 discusses a concrete programming model to implement it in practice.

99

Finally, Section 6 concludes the paper discussing the proposed approach and
future directions.

2 Organizations situated in MAS Environments

Although early approaches in organization programming have not been ad-
dressed at modeling environments explicitly, recent trends are investigating the
challenge to situate organizations in concrete computational environments. In
what follows, a survey on related works is discussed, enlightening strengths and
drawbacks of existing proposals.

2.1 Current Approaches

Several agent based approaches allow to implement situated organizations instru-
menting computational environments where social interactions are of concern. A
remarkable example of situated organization is due to Okuyama et al. [12], who
proposed the use of “normative objects” as reactive entities inspectable by agents
working in “normative places”. Normative objects can be exploited by the orga-
nization to make available information about norms that regulate the behavior
of agents within the place where such objects can be perceived by agents. Indeed,
they are supposed to indicate obligations, prohibitions, rights and are readable
pieces of information that agents can get and exploit in computational environ-
ments. The approach envisages a distributed normative infrastructure which is
assumed to control emergent dynamics and to allow agents to implicitly interact
with a normative institution. The mechanism is based on the intuition that the
reification of a particular state in a normative place may constitute the realiza-
tion of a particular institutional fact (e.g., “being on a car driver seat makes an
agent to play the role driver”). This basic idea is borrowed from John Searle’s
work on speech acts and social reality [16, 17] Searle envisaged an institutional
dimension rising out of collective agreements through special kind of rules, that
he refers as constitutive rules. Those rules constitute (and also regulate) an ac-
tivity the existence of which is logically dependent on the rules themselves, thus
forming a kind of tautology for what a constitutive rule also defines the notion
that it regulates. In this view, “being on a car driver seat makes an agent to
play the role driver” strongly situate the institutional dimension on the environ-
mental one, both regulating the concept of role adoption and, at the same time,
defining it.

Constitutive rules in the form X counts as Y in C are also at the basis of
the formal work proposed by Dastani et al. [5]. Here a normative infrastructure
(which is referred as “normative artifact”) is conceived as a centralized envi-
ronment that is explicitly conceived as a container of institutional facts, i.e.,
facts related to the normative/institutional states, and brute facts, i.e. related
to the concrete/ “physical” workplace where agents work. To shift facts from
the brute dimension to the normative one the system is assumed to handle con-
stitutive rules defined on the basis of “count-as” and “sanctioning” constructs,

100

which allows the infrastructure to recast brute facts to institutional ones. The
mechanism regulating the application of “count-as” and “sanctioning” rules is
then based on a monitoring process which is established as an infrastructural
functionality embedded inside the normative system. Thanks to this mechanism,
agents behavior can be automatically regulated through enforcing mechanisms,
i.e. without the intervention of organizational agents.

A similar approach is proposed in the work by Tinnemeier et al. [20], where
a normative programming language based on conditional obligations and pro-
hibitions is proposed. Thanks to the inclusion of the environment dimension in
the normative system, this work explicitly grounds norms either on institutional
states either on specific environmental states. In this case indeed the normative
system is also in charge of monitoring the outcomes of agent activities as per-
formed in the work environment, in so doing providing a twofold support to the
organizational dimension and to the environmental one.

With the aim to reconcile physical reality with institutional dimensions, an
integral approach has been proposed with the MASQ approach, which introduces
a meta-model promoting an analysis and design of a global systems along several
conceptual dimensions [19]. The MASQ approach relies on the less recent AGR
model, extended with an explicit support to environment as envisaged by the
AGRE and AGREEN [1]. Four dimensions are introduced, ranging from endoge-
nous aspects (related to agent’s mental attitudes) to exogenous aspects (related
to environments, society and cultures where agents are immersed). In this case,
the same infrastructure used to deploy organizational entities is also regulated
by precise rules for interactions between agents and environment entities. The
resulting interaction model relies on the theory of influences and reactions [9],
in the context of which several interaction styles can be established among the
heterogenous entities dwelling the system.

Besides conceptual and formal integration, few approaches have accounted a
programming approach for situated organizations. By relating situated activities
in the workplace, the Brahms platform endows human work practices and allows
to represent the relations of people, locations, agent systems, communication and
information content [18]. Based on existing theories of situated action, activity
theory and distributed cognition, the Brahms language promotes the interplay
of intelligent software agents with humans their organizations. A similar idea is
provided by Situated Electronic Institutions (SEI) [4], recently proposed as an
extension of Electronic Institutions (EI) [7]. Besides providing a runtime man-
agement of the normative specification of dialogic interactions between agents,
the notion of observability of environment states is at the basis of SEI. They
are aimed at interceding between real environments and EI. In this case, special
governors, namely modelers, allow to bridge environmental structures to the in-
stitution by instrumenting environments with “embodied” devices controlled by
the institutional apparatus. Participating agents can, in this case, perform indi-
vidual actions and interactions (either non message based) while operating upon
concrete devices inside the environment. Besides, SEI introduces the notion of
staff agents, namely organization aware agents which role is to monitor ongoing

101

activities performed by agents which are not under the direct control of the in-
stitution. Staff agents are then assumed to bridge the gap between participating
agents and the institutional dimensions: they typically react to norm violations,
possibly ascribing sanctioning and enforcements to disobeying agents. Institu-
tional control is also introduced by the mean of feedback mechanisms aimed at
comparing observed properties with certain expected values. On the basis of pos-
sible not standard properties detected, an autonomic mechanism specifies how
reconfigure the institution in order to re-establish equilibrium.

The ORA4MAS approach [11] proposed a programming model for concretely
building systems integrating organizational functionalities in instrumented work
environment. In ORA4MAS organizational entities are viewed as artifact based
infrastructures. Specialized organizational artifacts (OAs) are assumed to en-
capsulate organizational functions, which can be exploited by agents to fulfill
their organizational purposes. Using artifacts as basic building blocks of orga-
nizations, allows agents to natively interact with the organizational entity at a
proper abstraction level, namely without being constrained to shape external
actions as mechanism-level primitives needed to work with middleware objects.
The consequence is that the infrastructure does not rely on a sort of hidden com-
ponents, but the organizational layer is placed beside the agents as a suitable
set of services and functionalities to be dynamically exploited (and created) as
an integral part of the MAS work environment. On the other side, ORA4MAS
does not provide an explicit support to environmental resources which are not
included in the organizational specification. Two types of agents are assumed
to evolve in ORA4MAS systems: (i) participating agents, assumed to join the
organization in order to exploit its functions (i.e., adopting roles, committing
missions etc.), while (ii) organization aware agents, assumed to manage the
organization by making changes to its functional and structural aspects (i.e.,
creating and updating functional schemes or groups) or to make decisions about
the deontic events (i.e. norm violations).

2.2 Open Issues and Challenges

Despite the richness of the models proposed for organizations of agents situated
in computational environments, many aspects are still under discussion and have
still to converge in a shared perspective between the different research lines. In
the literature, this variety of approaches have been dealt with separately, each
forming a different piece of a global view, with few consideration for how they
could fit all together. On these basis, we here enlighten a series of current issues
and challenges which our approach, described later on, is going to face with.

Agents/Organisations/Environments Interactions Typically interactions
are based on a sub-agentive level, and are founded on protocols and mechanisms,
instead on being based on the effective capabilities and functionalities exhibited
by the entities involved in the whole system. Different approaches are provided
for the interaction model between environment, agents and their organizations.
Besides, there is not a clear vision on how environment and organizational en-

102

tities should support agents in their native capabilities, as for instance the ones
related to action and perception.
Grounding Goals The computational treatments of goals clashes different ap-
proaches once they are referred to agents and their subjective goals, and when
they are related to organizations and their global goals. For instance, approaches
as MASQ, ORA4MAS describe in a rather abstract terms (i) how the subjective
and global goals should be fulfilled in practice; (ii) which brute state has to be
reached in order to consider a goal as achieved. By considering environments ex-
plicitly, either agents and organizations should be able to ground goals to actual
environment configurations, thus recognizing the fulfillment of their objectives
once the pursued goals have been reached in practice (this approach is adopted,
for instance, in [5]). Other approaches, as for instance ORA4MAS [11], do not
assume organizations able to automatically detect the fulfillment of global goals
in terms of environment configurations.
Grounding Norms As for goals, a weak support is provided for grounding
norms in concrete application domains, thus allowing to establish how and when
a norm has been fulfilled or violated. Furthermore few studies have been ad-
dressed at managing norm lifecycle with respect to distributed and (highly)
dynamic environments. No agreement is then established on which kind of mon-
itoring and sanctioning mechanisms must be adopted. Some approaches envisage
the role of organizational/staff agents [4], other approaches propose the sole au-
tomatic regulation provided by a programmable infrastructure [5, 20].
Agent Awareness It is not clear which kind of capability, and which grade
of awareness, is required for agents to exploit the functionalities provided by
the (situated) entities embedding organizational and environmental resources.
Related to organizations, some approaches propose agents able to automatically
internalize organizational specifications (i.e. MASQ, “normative objects”), other
approaches, as (ORA4MAS and SEI) assume agents’ awareness to be encoded at
a programming level.
Openness Concerns about interoperability and openness cross each of the above
mentioned aspects. Few approaches account technological integration, for in-
stance with respect to varying agent architectures, protocols and data types.
Besides, the described proposals typically focus on a restricted set of interaction
styles (i.e. dialogical interactions supported by an institutional infrastructure
in SEI, environment mediated interactions in normative objects, an hybrid ap-
proach in ORA4MAS).

With the aim to respond the above mentioned challenges, the next sections
describe an integrated approach aimed at devising a unified programming model
seamlessly integrating agents, organizations and environments.

3 Unifying Agents, Organizations and Environments
Programming

This section figures out the main elements characterizing an Embodied Orga-
nization. It envisages an integrated MAS in terms of societies of agents, envi-

103

Staff
Group

Doctor

Staff

1..1

0..1

Visit
Group

Escort Patient

0..1 1..1

inheritance
composition

ROLE
GROUP

acquaintance

communication

authority

compatibility

LINKS INTRA-GROUP EXTRA-GROUP
LEGEND

min..max

Surgery Room
Group

1..10..NVMAX

Visitor

ABS
ROLE

(a) Structural Specification (b) Deontic Specification

Fig. 1. Structural (a) and Normative (b) specifications for the hospital scenario, rep-
resented using the Moise graphical notation.

ronmental and organizational entities. In doing this, we refer to the consistent
body of work already addressed at specifying existing computational models,
while only the aspects which are relevant for the purposes of this work will be
detailed. In particular, we refer to Jason [3] as agent development framework,
CArtAgO [14] for environments and Moise [10] for organizations.

In order to ease the description, the approach will be sketched in the context
of an hospital scenario. It summarizes the dynamics of an ambulatory room, and
can be seen as an open system, where heterogenous agents can enter and leave in
order to fulfill their purposes. In particular, two types of agents are modeled as
organization participants. Staff agents (namely physicians and medical nurses)
are assumed to cooperate with each other in order to provide medical assistance
to visitors. Accordingly, visitor agents (namely patients and escorts) are assumed
to interact themselves in order to book and exploit the medical examinations
provided by the staff.

3.1 Organizations

The first considered dimension concerns the organization. We do adopt the
Moise model, which allows to specify an organization based on three differ-
ent dimensions referred as (i) structural, (ii) functional, and (iii) normative4.
The Structural Specification (SS) provides the organizational structure in terms
of groups of agents, roles and functional relations between roles (links). A role
defines the behavioral scope of agents actually playing it, thus providing a stan-
dardized pattern of behavior for the autonomous part of the system. An inheri-
tance relation can be specified, indicating roles that extend and inherit properties
from parent roles. As showed in Fig. 1 (left), visitor agents can adopt two roles,
patient and escort, both inheriting from a visitor abstract role. The doctor role

4 We here provide a synthesis of the Moise approach showing the specification of the
hospital scenario. For a more detailed description, see [10].

104

is assumed to be played by a physician. It extends the properties of a more
generic staff role, which is assigned in support and administration activities in-
side the group. Relationships can be specified between roles to define authorities,
communication channels and acquaintance links. Groups consist in a set of roles
and related properties and links. In the hospital scenario escorts and patients
form visit groups, while staff and doctor from staff groups. The specification
allows taxonomies of groups (i.e., escorts and patients forming visit group), and
intra-group links, stating that an agent playing the source role is linked to all
agents playing the target role. Notice that the cardinalities for roles inside a
group are specified, indicating the maximum amount of agents allowed to play
that role. The constraints imposed by the SS allow to establish global properties
on groups, e.g. the well-formedness property means to complain role cardinality,
compatibility, and so on.

The Functional Specification (FS) gives a set of functional schemes specifying
how, according with the SS, various groups of agents are expected to achieve
their global (organizational) goals. The related schemes can be seen as goal
decomposition trees, where the root is a goal to be achieved by the overall group
and the leafs are goals that can be achieved by the single agents. A mission
defines all the goals an agent commits to when participating in the execution of
a scheme and, accordingly, groups together coherent goals which are assigned to a
role in a group. The FS for the hospital scenario (Fig. 2) presents three rehearsed
schemes. The visitor scheme (visitorSch) describes the goal tree related to the
visitor group. It specifies three missions, namely mVisit as the mission to which
each agent joining the visit group has to commit, mPatient as the mission to be
committed by the patient who has to undergo the medical visit, and mPay as
the mission to be committed by at least one agent in the visit group. Notice that
the goals “do the visit” (which is related to the mission mPatient) and “pay
visit” (which is related to the mission mPay) can be fulfilled in parallel. The
monitorSch describes the activities performed by a staff agent. These plans are
aimed at verifying if the activities performed by the visitors follow an expected
outcome, namely if the visitors fulfill the payment committing the mPay mission
(which includes the “pay visit” goal). Finally, the docSch specifies the activities
to which a doctor has to commit, namely to perform the visit to every patient.
Notice that each mission has a further property specifying the maximum amount
of time than an agent has to commit to the mission (“time to fulfill”, or ttf
value). The FS also defines the expected cardinality for every mission in the
scheme, namely the number of agents inside the group who may commit a given
mission without violating the scheme constraints.

The Normative Specification (NS) relates roles (as they are specified in the
SS) to missions (as they are specified in the FS) by specifying a set of norms.
Moise norms result in terms of permissions or obligations to commit to a mission.
This allows goals to be indirectly related to roles and groups, i.e. through the
policies specified for mission commitment. Fig. 1 (right) shows the declarative
specification of the norms regulating the hospital scenario, and refers to the
missions described in Fig. 2. “Time to fulfill” (ttf) values refer to the maximum

105

amount of time the organization expects for the agent to fulfill a norm. For
instance, norms n1 and n2 define an obligation for agents playing either patient
and escort roles to commit to the mVisit mission. A patient is further obliged
to commit to mPatient mission (n3). The norm n10 is activated only when the
norm n6 is not fulfilled: It specifies an obligation for a doctor to commit the
mStaff mission, if no other staff agent is committing to it inside the group.
Based on the constraints specified within the SS and FS, the NS is assumed to
include an additional set of norms which are automatically generated in order
to control role cardinality, goal compliance, deadline of commitments, etc.

The concrete computational entities based on the above detailed specifica-
tion have been developed based on an extended version of ORA4MAS [11]. This
programming approach envisages organizational artifacts (OA) are those non-
autonomous computational entities adopted to reify organizations at runtime,
thereby implementing the institutional dimension within the MAS. In particu-
lar, ORA4MAS adopts two types of artifacts, referred as scheme and group arti-
facts, which manage the organizational aspects as specified inMoise’s functional,
structural and normative dimensions. The resulting system has been referred as
Organizational Management Infrastructure (OMI), where the term infrastruc-
ture can be understood from an agent perspective: it embeds those organizational
functionalities exploitable by agents to participate the organizational activities
and to access organization resources possibly exploiting, creating and modifying
OAs on the need. Of course, in order to suitably exploit the OMI functionali-
ties, agents need to be equipped with special capabilities and knowledge about
the organizational structures, that is what in Subsection 2.2 we refer as agent
awareness.

3.2 Environments

As said in Subsection 2.1, the ORA4MAS approach does not support environ-
ments besides organizational functionalities. To this end, dually to the OMI, an
Environment Management Infrastructure (EMI) is introduced to embed the set
of environmental entities aimed at supporting pragmatic functionalities. While
artifacts are adopted as basic building blocks to implement the EMI, environ-
ments also make use of workspaces (e.g., an Hospital workspace is assumed
to contain the hospital infrastructures). Artifacts are adopted in this case to
provide a concrete (brute) dimension – at the environment level – to the global
system. Workspace are adopted in order to model a notion of locality in terms
of an application domain.

As Fig. 2 shows, it is quite straightforward to find a basic set of Environment
Artifacts (EA) building the EMI. Taking an agent perspective, the developer here
simply imagines which kind of service may be required for the fulfillment of the
various missions/goals, thus mapping artifact functionalities to the functional
specification given by the Moise FS.

Designing an EMI is thus not dissimilar to instrumenting a real workplace
in the human case: (i) to model the hospital room it will be used a specialized
hospital workspace, (ii) to automate bookings it will be provided a Desk artifact,

106

joinWorkspace
Hospital

use
Desk

bookVisit

use
BillingMachine

pay
quitWorkspace

Hospital

use
Terminal
sendBill

enter
the room

book
the visit

visit

visitor
scheme

observe

send
fee

monitor
scheme

mSanpay
visit

enforcement

send
bill

mRewdo the
visit

mVisit mVisit

mPaymPatient

exit
mVisit mStaff

use
Terminal
sendFee

use
SurgeryTablet

signPat

focus
Desk,

BillingMachine

Doctor
scheme

visit
patient

mDoc

use
SurgeryTablet

signDoc

BillingMachine

pay

payments
ENVIRONMENT
MANAGEMENT
INFRASTRUCTURE
(EMI) SurgeryTablet

signDoc
signPat

visitsHospital
Workspace

visitorSch monitorSch docSch

Desk

bookVisit

reservations

Terminal

sendBill
sendFee

Fig. 2. (Above)Moise Functional Specification (FS) for the hospital scenario. Schemes
are used to coordinate the behavior of autonomous agents. (Below) FS is used to find
a set of environmental artifacts, and to map their functionalities in the EMI.

(iii) to finalize visits it will be provided a (program running on an) Surgery
Tablet artifact, (iv) to automate payments it will be provided a Billing Machine
artifact, and (v) to send fees and bills it will be provided a Terminal artifact.

3.3 Agents

Besides the abstract indication of the different artifacts exploitable at the en-
vironment level, the Fig. 2 also shows the actions to be performed by agents
for achieving their goals. Thanks to the CArtAgO integration technology, several
agent platforms are actually enabled to play in environments: seamless interoper-
ability is provided by implementing a basic set of actions, and related perception
mechanisms, allowing agents to interact with artifacts and workspaces [14, 15].
Those actions are directly mapped into artifact operations (functions), or ad-
dressed to the workspace: in the case of the EMI, a Jason agent has to perform
a joinWorkspace("Hospital") action to enter the room (which is related to
the mVisit mission); to book the visit (related to the mVisit mission) the ac-
tion bookvisit()[artifact name("Desk")] has to be performed on the desk
artifact, and so on (see Fig. 2, below).

The same semantic mapping agents’ actions into artifact operations is adopted
to describe interactions between agents and OMI: e.g., commitMission is an op-
eration that can be used by agents upon the scheme artifact to notify mission
commitments; adoptRole (or leaveRole) can be used by an agent upon the
group artifact in order to adopt (leave) a given role inside the group, etc.

Fig. 3 (left) shows a global picture of the resulting system. As showed, agents
fulfill their goals and coordinate themselves by interacting with EMI artifacts,

107

Hospital
Workspace

Agent
Platforms

EMI
ENVIRONMENT

ARTIFACTS

OMI
ORGANISATIONAL
ARTIFACTS

Desk

BillingMachine

SurgeryTablet

Terminal

STAFF

STAFF

VISITOR

VISITOR

SchemeBoards

GroupBoards
Constitutive Rule
(Emb-Org-Rule)

Count-as
Rule

Enact
Rule

Embodied
Organization

Environment
Event

Organization
 Event

Event
Ev Type
Ev Value

Produces

Triggers

1..n

Fig. 3. (Left) Global view of the system presents an open set of agents at work with
infrastructures managing Environment and Organization. Functional relationships be-
tween EMI and OMI are established by count-as and enact rules. (Right) Meta-model
for Organizational Embodied Rules, used to implement count-as and enact rules.

while staff agents, which we assume as special agents aware of organizational
functionalities, can directly interact with the OMI. Both these dimensions are
an integral part of the global infrastructure and, most important, can be dynam-
ically exploited by agents to serve their purposes. From an agent perspective,
the whole system can be understood as a set of facts and functions, which are
exploited, from time to time, to the organizational and environmental dimen-
sions. Through artifacts, the global infrastructure provides observable states,
namely information readable by agents for improving their knowledge. Artifacts
also provide operations, namely process based functionalities, aimed at being ex-
ploited by agents for externalizing activities in terms of external actions. Thus,
the epistemic nature of observable properties can be addressed to the infor-
mational dimension of the whole infrastructure, while the pragmatic nature of
artifact operations is assumed to cover the functional dimension.

4 Embodied Organizations

As far as the global system is conceived, EMI and OMI are situated side by
side inside the same work environment, but they are conceived as separated sys-
tems. They are assumed to face distinct application domains, the former being
related to concrete environment functionalities and the latter dealing specifi-
cally with organizational ones. The notion of Embodied Organization provides
a more strict integration: it further identifies and implements additional mech-
anisms and conceives a unified infrastructure enabling functional relationships
between EMI and OMI. As some of the approaches discussed in Section 2, we
theoretically found this relationship on Searle’s notion of constitutive rules. Dif-
ferently from other approaches, we ground the notion of Embodied Organization

108

on a concrete programming model, as the one who lead us to the implementation
of EMI and OMI. As explained below, Embodied Organizations rely on a revised
management of events in CArtAgO, and can be specified by special programming
constructs referred as Emb-Org-Rules.

4.1 Events

A crucial element characterizing Embodied Organizations is given by the re-
newed workspace kernel based on events. Events are records of significant changes
in the application domain, handled at a platform level inside CArtAgO. They are
referred to both state and processes to represent the transitions of configurations
inside workspaces. Each event is represented by a type,value pair (〈evt, evv〉):
Event type indicates the type of the event (i.e., join req indicating agents join-
ing workspace, op completed indicating the completion of an artifact operation,
signal indicating events signalled within artifact operation execution, and so
on); Event value gives additional information about the event (i.e., the source
of the event, its informational content, and so on). Due to the lack of space, the
complete list of events, together with the description of the mechanism underly-
ing event processing, can not be described here. The interested reader can find
the complete model, including the formal transition system, in [13]. We here em-
phasize the relevance of events, which have the twofold role (i) to be perceived
or triggered by agents (i.e. focusing/using artifacts) and (ii) to be collected and
ranked within the workspace in order to trace the global dynamic of the system.

4.2 Embodied Organization Rules

While the former role played by events refers to the interaction between agents
and artifacts, the second role is exploited to identify, and possibly govern, intra-
workspace dynamics. On such a basis, the notion of Embodied Organization refers
to the particular class of situated organization structured in terms of artifact
based infrastructures and governed by constitutive rules based on workspace
events. Events are originated within the infrastructure, being produced by envi-
ronmental and organizational entities. Computing constitutive rules is realized
by Emb-Org-Rule, which consist of a programmable constructs “gluing” together
organizational and environmental dimensions. An abstract model of this pro-
cess is shown by the dotted arrows between EMI and OMI in Fig. 3 (right).
Structures defining Emb-Org-Rule refer to count-as and enact relations.
Count-as rules state which are the consequences, at the organizational level,
for an event generated inside the overall infrastructure. They indicate how, since
the actions performed by the agents, the system automatically detects relevant
events, thus transforming them to the application of a set of operators aimed
at changing the configuration of the Embodied Organization. In so doing, either
relevant events occurring inside the EMI (possibly triggered by agents actions),
either events occurring in the context of the organization itself (OMI) can be
vehicled to the institutional dimension: these events can be further translated in

109

+join_req(Ag)
-> make("visitorGroupBoard",
"OMI.GroupBoard",
["moise/hospital.xml","visitGroup"]);

make("visitorSchBoard",
"OMI.SchemeBoard",
["moise/hospital.xml","visitorSch"]);

apply("visitorGroupBoard",
adoptRole(Ag, "patient"));

include(Ag).

+op_completed("visitorGroupBoard", _,
adoptRole(Ag, "patient"))

-> apply("visitorSchBoard",
commitMission(Ag, "mPat")).

+ws_leaved(Ag)
-> apply("visitorGroupBoard",

leaveRole(Ag, "patient")).

+op_completed("BillingMachine",
Ag, pay)

-> apply("visitorSchBoard",
setGoalAchieved(Ag, pay_visit)).

+op_completed("Terminal",
Ag, sendFee)

-> apply("monitorSchBoard",
setGoalAchieved(Ag, send_fee)).

Table 1. Example of Emb-Org-Rule (count-as) in the hospital scenario.

+signal("visitorGroupBoard",
role_cardinality, visitor)

-> disable("Desk", bookVisit).

+signal("monitorSchBoard",
goal_non_compliance,
obligation(Ag,
ngoa(monitorSch,mRew,send_bill),
achieved(monitorSch,send_bill,Ag), TTF)

-> exclude(Ag).

Table 2. Example of Emb-Org-Rule (enact) in the hospital scenario.

the opportune institutional changes inside the OMI, that is assumed to update
accordingly.
Enact rules state, for each institutional event, which is the control feedback
at the environmental level. Hence, enact rules express how the organizational
entities automatically control the environmental ones. The use of enact rules
allows to exploit organizational events (i.e. role adoption, mission commitment)
in order to elicit changes in the environment.

5 Programming Embodied Organizations

Embodied Organizations enable a unified perspective on agents, organizations
and environments by conceiving an interaction space based on a twofold in-
frastructure governed by events and constitutive rules (Emb-Org-Rules). In this
section examples of programming such rules are discussed.
Programming Count-as Rules According to the Moise FS previously de-
fined, the organization expects that an agent vaid joining the hospital workspace
is assumed to play the role visitor, which purpose is to book a medical visit and
possibly achieve it. Thus, an event join req, 〈vaid, t〉, dispatched once an agent
vaid tries to enter the workspace, from the point of view of the organization
“count-as” creating a new position related to the visit group. Making the event
join req to “count as” vaid adopting the role visitor, is specified by the first rule
in Table 1 (left): it states that since an event signalling that an agent Ag is join-
ing the workspace, an Emb-Org-Rule must be applied to the system. The body
of the rule specifies that two new instances of organizational artifacts related to
the visit group will be created using the make operator. In this case the new

110

artifacts will be identified by visitorGroupBoard and visitorSchBoard. The
following operator constitutes the new role inside the group: apply acts on the
visitorGroupBoard artifact just created by automatically making the agent Ag
to adopt the role patient. Finally, once the adopt role operator succeeds, the last
operator includes the agent Ag in the workspace.

In the above described scenario, the effect of the application of the rule
provides an institutional outcome to the joinWorkspace actions. Besides joining
the workspace, a sequence of operators is applied establishing what this event
means in organizational terms. When the effects of the role-adoption are com-
mitted, as previously described, a new event is generated by the group board:
〈op completed, 〈"visitorGroupBoard", vaid, adoptRole, patient 〉〉. For the
organization, such an event may “count-as” committing to mission mPat on
the visitorSchBoard. This relation is specified by the second rule in Table 1,
where a commitMission is applied to the visitorSchBoard for the mission
mPat. Similarly, an event 〈ws leaved, 〈vaid, t〉〉, signalling that the visitor agent
has left the workspace, from an organizational perspective “count-as” leaving
the role patient. This relation is specified by the first rule in Table 1 (right),
where a leaveRole is applied to the visitorGroupBoard for the role patient.
At the same time, an event like 〈op completed, 〈BillingMachine, vaid, pay, t〉〉
signals that a visitor agent has successfully finalized the pay operation upon
the billing machine. Such an event “count-as” having achieved the goal pay
visit on the visitorSchBoard (second rule in Table 1, right). Finally, an event
〈op completed, 〈Terminal, said, sendFee , t〉〉, signalling that a staff agent has
successfully used the terminal to send the fee to a given patient, “count-as”
having achieved the goal send fee (third rule in Table 1, right).

Programming Enact Rules Enact effects are defined to indicate how, from the
events occurring at the institutional level, some control feedback can be applied
to the environmental infrastructure. As far as the execution of the operations
is conceived in CArtAgO, the OMI automatically dispatches events signalling
ongoing violations. Violations are thus organizational events which may suddenly
elicit the application of some enact rule used to regiment the environment.

In Table 2, a regimentation is installed by the organization thanks to the en-
act rule stating that an event 〈signal, 〈visitorGroupBoard, role cardinality,
∅, t〉〉 signalled by the visitorGroupBoard indicates the violation for the norm
role cardinality. The related enact rule is given in Table 2 (left), where the re-
action to this event is specified in order to disable the book operation on the desk
artifact, for all the agents inside the workspace. The absence of any parameter
related to agent identifier in the disable("Desk", bookVisit) operator makes
the disabling to affect the overall set of agents inside the workspace. Similarly, vi-
olating the obligation imposed to the staff agent to fulfill sanctioning and reward-
ing missions elicits the scheme board assigned to the monitorSch to signal the
event 〈signal, 〈monitorSchBoard, goal non compliance,obligation(Ag,ngoa(

monitorSch,mRew,send bill),achieved(monitorSch,send bill,Ag),TTF), t〉〉.
This event is generated thanks to a special norm (called goal non compliance)
which is automatically generated since the Moise specification and stored in-

111

side the OMI. Due to the enact rule specified in Table 2 (right), this causes the
exclusion for the Ag agent from the hospital workspace.

6 Conclusion and Perspectives

In this paper Embodied Organizations have been introduced as a unified pro-
gramming model promoting a seamless integration of environmental and organi-
zational dimensions of a MAS. A series of responses to the challenges envisaged
in Subsection 2.2 could be listed: Infrastructures. Either environmental and
organizational entities are implemented in concrete infrastructures instrument-
ing workspaces, decentralized in specialized artifacts which serve informational
and operational functions. Interaction. The approach establishes a coherent
semantic for agent - infrastructure interactions, Embodied Organizations define
functional relationships between the heterogenous entities at the basis of orga-
nizations and environments. These are placed in terms of programmable con-
structs (Emb-Org-Rules), governed by workspace events and inspired by Searle’s
notion of constitutive rules. Goals and Norms. Implementing organizations in
concrete environments allows to deal explicitly with goals and norms, which ful-
fillment can be structurally monitored and promoted at the organizational level
through the use of artifacts. Awareness. Embodied Organizations are aimed to
fit the work of agents and accordingly to allow them to externalize pragmatic
and organizational activities. The use of Emb-Org-Rule automates and promotes
specific organizational patterns, to which agents may effortlessly participate sim-
ply by exploiting environmental resources. Artifacts can be used in goal oriented
activities, and, most important, without the need to be aware of organizational
notions like roles, norms, etc. Openness. Technological interoperability is en-
sured at a system level, by providing mechanisms for agent-artifact interactions
which are based on a coherent semantic. Besides, several interaction styles can
be established at an application level, being agents mediated by infrastructures
which can be modified, replaced and created on the need.

Future work will be addressed at covering missing aspects, such as the dia-
logical dimension of interactions, and the inclusion of real embodied entities in
the system (i.e., humans, robots, etc.). An important objective is the definition
of a general purpose approach, towards the full adoption of the proposed model
in the context of concrete application domains and mainstream agent oriented
programming.

References

1. José-Antonio Báez-Barranco, Tiberiu Stratulat, and Jacques Ferber. A unified
model for physical and social environments. In Environments for Multi-Agent
Systems III, Third International Workshop (E4MAS 2006), volume 4389 of Lecture
Notes in Computer Science, pages 41–50. Springer, 2006.

2. Olivier Boissier, Jomi Fred Hübner, and Jaime Simão Sichman. Organization Ori-
ented Programming: From Closed to Open Organizations. In Engineering Societies

112

for Agent Worlds (ESAW-2006). Extended and Revised version in Lecture Notes
in Computer Science LNCS series, Springer, pages 86–105, 2006.

3. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldrige. Programming Multi-
Agent Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. John
Wiley & Sons, 2007.

4. Jordi Campos, Maite Lòopez-Sànchez, Juan A. Rodr̀ıguez-Aguilar, and Marc Es-
teva. Formalising Situatedness and Adaptation in Electronic Institutions. In
COIN-08, Proc., 2008.

5. Mehdi Dastani, Nick Tinnemeier, and John-Jules CH. Meyer. A programming
language for normative multi-agent systems. In Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. IGI-Global, 2009.

6. Virginia Dignum, editor. Handbook of Research on Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. IGI-Global, 2009.

7. Marc Esteva, Juan A. Rodŕıguez-Aguilar, Bruno Rosell, and Josep L. AMELI: An
agent-based middleware for electronic institutions. In Proceedings of International
conference on Autonomous Agents and Multi Agent Systems (AAMAS’04), pages
236–243, New York, 2004. ACM.

8. Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From Agents to Organiza-
tions: An Organizational View of Multi-agent Systems. In Proceedings of (AOSE-
03), volume 2935 of Lecture Notes Computer Science (LNCS). Springer, 2003.

9. Jacques Ferber and Jean-Pierre Müller. Influences and Reaction: a Model of Situ-
ated Multi-Agent Systems. In Proc. of the 2nd Int. Conf. on Multi-Agent Systems
(ICMAS’96). AAAI, 1996.

10. Jomi F. Hübner, , Jaime S. Sichman, and Olivier Boissier. Developing organised
multi-agent systems using the MOISE+ model: Programming issues at the system
and agent levels. International Journal of Agent-Oriented Software Engineering,
1(3/4):370–395, 2007.

11. Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. Instrument-
ing Multi-Agent Organisations with Organisational Artifacts and Agents. Journal
of Autonomous Agents and Multi-Agent Systems, April 2009.

12. Fabio Y. Okuyama, Rafael H. Bordini, and Antônio Carlos da Rocha Costa. A
Distributed Normative Infrastructure for Situated Multi-Agent Organisations. In
Decl. Agent Lang. & Techn. (DALT-VI), volume 5397 of LNCS. Springer, 2009.

13. Michele Piunti. Designing and Programming Organizational Infrastructures for
Agents situated in Artifact-based Environments. PhD thesis, ALMA MATER
STUDIORUM Universitá di Bologna, April 2010.

14. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: An artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 2010. Springer, ISSN 1387-2532 (Print) 1573-7454 (Online).

15. Alessandro Ricci, Andrea Santi, and Michele Piunti. Action and Perception in
Multi-Agent Programming Languages: From Exogenous to Endogenous Environ-
ments. In Proceedings Programming Multiagent Systems (PROMAS-10), 2010.

16. John R. Searle. Speech Acts, chapter What is a Speech Act? Cambridge University
Press, 1964.

17. John R. Searle. The Construction of Social Reality. Free Press, 1997.
18. M. Sierhuis. Modeling and Simulating Work Practice; Brahms: A multiagent mod-

eling and simulation language for work system analysis and design. PhD thesis,
University of Amsterdam, SIKS Dissertation Series, 2001.

19. Tiberiu Stratulat, Jacques Ferber, and John Tranier. MASQ: Towards an Integral
Approach of Agent-Based Interaction. In Proc. of 8th Conf. on Agents and Multi
Agent Systems (AAMAS-09), 2009.

113

20. Nick Tinnemeier, Mehdi Dastani, J.-J.Ch. Meyer, and L. van der Torre. Pro-
gramming normative artifacts with declarative obligations and prohibitions. In
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intel-
ligent Agent Technology (WI-IAT 2009), 2009.

21. M. Birna van Riemsdijk, Koen Hindriks, and Catholijin Jonker. Programming
organisation-aware agents: a research agenda. In In 10th Engineering Societies for
Agents Worlds (ESAW 09), 2009.

22. Danny Weyns, Andrea Omicini, and James J. Odell. Environment as a first-class
abstraction in multi-agent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5–30, February 2007. Special Issue on Environments for Multi-agent Systems.

114

Group Intention is Social Choice with Commitment

Guido Boella1, Gabriella Pigozzi2, Marija Slavkovik2, and Leendert van der Torre2

1 guido@di.unito.it
2 {gabriella.pigozzi, marija.slavkovik, leon.vandertorre}@uni.lu

Abstract. A collaborative group is commonly defined as a set of agents, which
share information and coordinate activities while working towards a common
goal. How do groups decide which are their common goals and what to intend?
According to the much cited theory of Cohen and Levesque, an agent intends g
if it has chosen to pursue goal g and it has committed itself to making g happen.
Following the same line of reasoning, a group intention should be a collectively
chosen goal with commitment. The literature often considers a collective goal to
be one of those individual goals that are shared by all members. This approach
presumes that a group goal is also an individual one and that the agents can act
as a group if they share the beliefs relevant to this goal. This is not necessarily
the case. We construct an abstract framework for groups in which common goals
are determined by social choice. Our framework uses judgment aggregation to
choose a group goal and a multi-modal multi-agent logic to define commitment
and revision strategies for the group intentions.

1 Introduction
An agent acts according to its beliefs and intentions. According to what does a group
act? We would expect that in order for groups to act, jointly or by coordinating their
activities, they need to establish what to believe i.e., form epistemic attitudes, and what
to aim for, i.e., to form motivational attitudes. In existing frameworks for collaborative
activities [9, 12, 16] and group decision-making protocols [10], the formation of group
attitudes is defined only for a specific type of groups. These groups consist of agents
that engage in pursuing a group goal only when the members have the same beliefs
regarding this goal, or when they are successful in reaching an agreement on a given set
of beliefs.

Consider a group of robots in charge of office building maintenance. One candidate
group goal for them is to clean the meeting room. The decision rule to adopt the goal is
that the room needs to be cleaned when the following conditions (reasons) are met: the
floors are dirty or the garbage bin is full, and people do not occupy the room. To decide
whether to pursue this goal, the robots need to decide if the reasons to adopt the goal
are true. The robots cannot check whether the room is occupied or what state it is in.
Hence, to estimate the state of affairs, the robots need to rely on their individual beliefs,
which may diverge.

Assume there are three robots in the group. One robot believes that the room is
occupied and thus, according to it, the group should not adopt the goal. According to the
other two robots, the group should adopt the goal. One robot believes that the garbage
bin is full and the floors clean and the other that the floors are dirty. The question is how
to should one aggregate the beliefs of the robots in this case? The majority of the robots
would estimate that the goal should be adopted. However the group is not univocal

115

and as a result, the goal would not be chosen for a group goal when the robots reason
according to [9, 12, 16]. A general method for forming group attitudes needs to specify
how group attitudes are formed also when agents have disagreeing beliefs or limited
persuasive abilities. A framework that allows for such general methods is still lacking.

Consider now that the group adopts the goal, but before pursuing it, the robots learn
that there is a seminar scheduled in the meeting room. The group has to de-commit from
their intention to clean the room. However, to be able to do so, the group has to have a
commitment strategy that allows de-committing upon change in the reasons for the goal
adoption. Furthermore, the group needs to be able to reconsider its reasons for goals,
and goals, after de-committing. If they simply drop the goal, without “remembering”
why, they would not be able to re-deliberate and commit again once the seminar is over.

An intelligent agent reacts to the changes in its environment and a group should be
capable of doing the same. When new information becomes available the group faces
a choice: to remain committed to its group attitudes or to reconsider them. The most
sensitive commitment strategy proposed by Rao and Georgeff [21] allows for a group
reaction only when the goal is accomplished or impossible. However, the existence of a
goal is intertwined with the existence of some beliefs [2]. Consequently, there is a need
for a commitment strategy that reacts to new information regarding those beliefs on
which the goal hinges. Furthermore, groups need to know not only when to de-commit
from their goals but also how to reconsider their goal-related beliefs.

The research question we address in this paper is:

How can groups choose and reconsider their goals?

A good methodology for collectively choosing and reconsidering goals is one that
can be used by any group of agents regardless of the homogeneity of the individual be-
liefs of its members and their persuasion abilities. The relation between individual goals
and beliefs can be specified and analyzed in modal agent logics like BDILTL [22].
The challenge in group goal generation is to incorporate the aggregation of individual
attitudes into collective ones, as studied in merging, judgment aggregation and social
choice [3, 11, 13, 14, 17]. However, using this approach is not straightforward. The main
difficulty lies in the inability to use judgment aggregation directly in a BDILTL frame-
work. Properties of judgment aggregation and modal agent logic are of different kinds,
as they were initially developed for different purposes.

Our research question thus breaks down into the following sub-questions:

1. How to aggregate individual (epistemic and motivational) attitudes?
2. What are the desirable properties for this aggregation?

A good methodology for collectively choosing and reconsidering goals is also a
methodology that is dynamic enough to allow for the group to change its epistemic
and motivational attitudes in light of new information. Having such a methodology in-
creases the autonomy and reactivity of groups. Hence we need to answer the following
sub-question as well:

3. Which commitment and reconsideration strategies should be available for groups?

116

We thus focus on finding the following solutions:
Formal framework. We extend a multi-agent modal language to be able to represent
judgment aggregation in it.
Choice of aggregation. Judgment aggregation is an abstract framework that allows for
various desirable properties to be specified for the aggregation procedure. The task is
to determine which aggregation properties are necessary and desirable for aggregating
individual beliefs and goals.
Commitment and reconsideration strategies. Within our formal framework, we define
when to de-commit from intentions and how to change them.
Multiple goals. Since a group can have more than one goal, we need to model the effect
that the commitment to (and reconsideration of) one goal has over the commitment to
(and reconsideration of) other goals.

We make the following assumptions. The group has a fixed membership – agents
do not join or depart from the group. The group has a set of candidate group goals
and an order of priory over these goals. The decision rules for each candidate goal are
available to the group. How the decision rules are learned is outside of the scope of this
paper. Here we do not consider how plans are generated, executed and revised once the
group goals are selected or reconsidered, nor we consider whether the group goals are
executed via individual or joint actions.

The layout of the paper is as follows. In Section 2 we introduce judgment aggrega-
tion. In Section 3 we extend a multi-modal agent formalism to capture the aggregation
of individual attitudes. Sections 4 and 5 respectively study the commitment and re-
consideration strategies. Related work, conclusions and outlines for future work are in
Section 6.

2 From individual attitudes to group goals
Let us consider again the example of the robot cleaning crew from Section 1.

Example 1. Let C � tw1, w2, w3u be a crew of cleaning robots. We denote the group
goal to clean the meeting room with g1, and the reasons to adopt this goal with: there
are no people in the room (p1), the room is dirty (p2), the garbage bin in it is full (p3).
The individual beliefs of the robots on whether g1 should be the group goal are justified
by individual beliefs on p1, p2, p3 using the decision rule pp1 ^ pp2 _ p3qq Ø g1.

A group of agents could collectively decide to adopt or reject a goal by voting.
However, the goals of the agents are not independent from their beliefs [2], which we
express using decision rules. When the decision is whether to adopt a goal or not, we
also need to explain why this goal should (not) be adopted. Having reasons for (not)
adopting a goal enables the agents to re-considerer this goal in light of new information.
Judgment aggregation deals with the problem of reaching decisions for a set of logically
dependent issues, by aggregating individual opinions on these issues.

2.1 Judgment aggregation preliminaries

A general overview of judgment aggregation is given in [17]. Here we present the ter-
minology and definitions of judgment aggregation we use in our framework.

117

Consider a logic L with entailment operator |ù. In a judgment aggregation frame-
work, an agenda A � L is the pre-defined set of issues, on which every agent casts
her judgments. E.g., the agenda of Example 1 is A � tp1, p2, p3, g1u. Consider a val-
uation function v such that a judgment “yes” on issue a is a valuation vpaq � 1, while
a judgment “no” on the same issue is a valuation vpaq � 0. A profile is the set of all
judgments assigned, on the agenda issues, by the decision-making agents.

Definition 1 (Profile). Let N � t1, 2, . . .u be a set of agent names, A � L an agenda
and A � A Y t a | a P Au. A profile π is the set of judgments for the agenda items,
submitted by the agents in the group: π � N �A. We define two operators:
The judgment set for agent i is π Ù i � ta | pi, aq P πu.
The set of all the agents who judged “yes” to a P A is π Û a � ti | pi, aq P πu.

Definition 1 extends the definition of a profile given [17] with the operators Ù
and Û. We introduce these operators to ease the explanation of the various aggregation
properties we present later on. To get a better intuitive grasp on these operators, the
reader should envision the profile as a two-dimensional object with the agenda items
identifying the columns and the agents identifying the rows:

π �
w1

w2

w3

p1p2 p3 g1$&
%
1 1 0 1
0 1 1 1
1 0 0 0

,.
-

π is a possible profile for Example 1. We identify π Ù w2 as the row labeled w2 and
π Û p2 as the 1 entries in the column labeled p2, which identify the agents who casted
judgement “yes” on p2.

In judgment aggregation, the judgments over A, both individual and aggregates,
are constrained by decision rules R � L. The set R contains only formulas r such
that all the non-logical symbols of A occur in r P R. For instance, in Example 1, the
decision rule is: pp1 ^ pp2 _ p3qq Ø g1 and all agents respect it. In general, each agent
could follow a different decision rule and yet another decision rule can be imposed
for the group. In judgment aggregation, the agents are allowed to submit only those
judgment sets which are consistent with r P R. Often, the agents are also required to
cast judgments on all the agenda issues. We construct Definition 2 to formalize what it
means for a judgment set to be admissible.

Definition 2 (Admissible profiles). A judgment set π Ù i is complete if and only if for
every a P A, either pi, aq P π or pi, aq P π. A judgment set π Ù i is consistent with
r P R if and only if tru Y pπ Ù iq * K. A judgment set π Ù i is admissible if it is
consistent with the given r P R and complete for A. The set of all admissible judgment
sets for a given A and r is denoted byW .
A profile π is admissible if π Ù i is admissible for all i P N . The set of all admissible
profiles for agents N is denoted by Π .

We denote conpr, ϕq � 1 if ϕ is consistent with r and conpr, ϕq � 0 otherwise. For
the profile in Figure 1, conppp1 ^ pp2 _ p3qq Ø g1, π Ù iq � 1 for every i P C.

We now present the definition of a judgment aggregation function, as given in [17].

118

Definition 3 (Judgment aggregation function). Given an agenda A and agents N , a

judgment aggregation (JA) function is f : 2N�A ÞÑ 2A.

We refer to fpπq as the collective judgment set forN . We denote the result of fpπqwith
K when the JA function produces an inadmissible judgment set. If fpπq � K then we
call fpπq a decision and denote it by Dπ . Figure 1 illustrates an example of a judgment
aggregation function and profile, for which the collective judgment set is K because
conppp1 ^ pp2 _ p3qq Ø g1, tp1, p2, p3, g1uq � 0.

The JA function is a useful abstraction, because many properties of judgment ag-
gregation can be defined in terms of it. It then can be studied which properties can be
accepted together (avoiding impossibility results). Given a JA function f , we describe
the most common properties in the JA literature.
Universal domain. f satisfies universal domain if and only if its domain is Π .
Anonymity. Given a profile π P Π , let pπ � tπ Ù 1, . . . , π Ù nu, be the multiset of
all the individual judgment sets in π. Two profiles π, π1 P Π are permutations of each
other if and only if pπ � pπ1. f satisfies anonymity if and only if fpπq � fpπ1q for all
permutation π and π1.
Unanimity on a P A. f satisfies unanimity on a P A if and only if for every profile
π P Π it holds: if for all i P N , pi, aq P π, then a P fpπq.
Collective rationality. f satisfies collective rationality if and only if for all π P Π ,
conpr, fpπqq � 1 for a given r P R, and either a P fpπq or a P fpπq for every a P A.
Constant. f is constant when there exists ϕ P 2A such that for every π P Π , fpπq � ϕ.
Independence. Let Φ � tπ Û a | a P Au for every π P Π . Let f1, . . . , fm be func-
tions defined as fj : A � Φ ÞÑ t0, 1u. The JA function f satisfies independence if and
only if for all π P Π , there exist functions fi such that for all ϕ P fpπq it holds that
ϕ � ta | a P A, fjpa, π Û aq � 1u Y t a | a P A, fjpa, π Û aq � 0u.

The best known example of fj : A � Φ ÞÑ t0, 1u is the simple majority voting
fm which counts how many agents expressed judgment “yes” on agenda item a. The
function fm returns a if that number of agents is greater than rn2 s and a otherwise.

Fig. 1. A profile, issue-wise majority aggregation, premise-based and conclusion-based majority.

The issue-wise majority function fmaj is defined as

fmaj �

"
ϕ � tfmpπ Û aq | a P Au if ϕ is complete and consistent
K otherwise

*

119

The JA function fmaj satisfies universal domain, anonymity, unanimity, complete-
ness, and independence but it does not satisfy collective rationality, as it can be seen on
Figure 1. All judgement aggregation functions which satisfy universal domain, anonymity,
independence and collective rationality are constant [17]. The most debated [3, 17] is
independence. The reason why it is convenient to have independence is because it is a
necessary condition to guarantee the non-manipulability of f [8]. An aggregation func-
tion is non-manipulable, if no agent can obtain his sincere judgment set ϕ selected as
the collective judgment set by submitting another judgment set ϕ1.

Two aggregation procedures that violate independence but guarantee universal do-
main, anonymity and collective rationality have been proposed in the literature: premise-
based and conclusion-based procedures. A distinguishing feature of judgment aggre-
gation with respect to social choice theory is the distinction between premises and con-
clusions. The agenda is a union of two disjoint sets: the premise set (Ap), and the
conclusion set (Ac). A � Ap YAc, Ap XAc � H. In Example 1, Ap � tp1, p2, p3u
and Ac � tg2u. We give a general definition on when a JA function is premise- or
conclusion-based in Definition 4. The literature on judgment aggregation [17] defines
premise- and conclusion-based procedures only in terms of issue-wise majority.

Definition 4. Let πp � tpi, aq | pi, aq P π, a P Apu, πc � tpi, aq | pi, aq P π, a P Acu
and let the premise and conclusion aggregation functions be defined as
fp : Π ÞÑ 2A

p

{H and f c : Π ÞÑ 2A
c

{H correspondingly. The JA function f is
premise-based if and only if there exists a fp such that fppπpq � fpπq and conclusion-
based if and only if there exists a f c such that f cpπcq � fpπq, for all π P Π .

An example of premise and conclusion-based aggregations is given in Figure 1.
Intuitively, a JA function is premise-based when the collective judgment set on the
premises is obtained as a result of aggregating only the premise profile πp. The deci-
sions fpπq are those ϕ P W for which fppπpq � ϕ (or alternatively f cpπcq � ϕ for
conclusion-based aggregations). However, it is possible that, depending on the decision
rule, there are more than one ϕ P W that satisfy the condition fppπpq � ϕ (or al-
ternatively f cpπcq � ϕ). This is what happens for the conclusion-based procedure we
illustrate in Figure 1.

2.2 Judgment aggregation for BDI agents

In this section first we set the problem of finding collective decisions for group goals in
the context of judgment aggregation. We then argue that the aggregation function used
for this problem should satisfy: collective rationality, universal domain, unanimity and
select a unique ϕ P W . For a democratic group, in which all agents have equal say on
what the group attitudes should be, anonymity should be satisfied. For a group in which
the agents have different levels of expertise, anonymity can be omitted.

We use Gg to denote that “g is a group goal”. A set of the candidate group goals is
the set G � tGg | g P Lu which contains all the goals which the group considers to
adopt. For each goalGg P G, the group has at its disposal decision rulesRg � R and an
agendaAg composed of the goal g (conclusion), and all the reasons (premises) relevant
for g, which were given by the decision rule. Each agent submits her judgments on the
agenda thus generating a profile πg , such that conpRg, πg Ù iq � 1 for all i P N .

120

The decision rules contain all the constraints which the individual and collective
judgment sets should satisfy. These constraints contain three types of information:
rules describing how the goal depends on the reasons (justification rules Rjustg), rules
describing the constraints of the world inhabited by the agents (domain knowledge
RDKg) and rules that describe how g interacts with other candidate goals of the group
(coordination rules Rcoordg). Hence, the decision rule for a group goal g is Rg �
Rjustg YRDKg YRcoordg .

Example 2 (Example 1 revisited). Consider the cleaning crew from Example 1. Rjustg1
is pp1 ^ pp2 _ p3q Ø Gg1 and Ag1 � tp1, p2, p3, Gg1u. Suppose that the crew has
the following candidate group goals as well: place the furniture in its designated lo-
cation (g2) and collect recyclables from garbage bin (g3). The agendas are Ag2 �
tp4, p5, p6, p7, Gg2u, Ag3 � tp3, p8, p9, Gg3u. The justification rules are Rjustg2 �

pp4 ^ p5 ^ pp6 _ p7qq Ø Gg2 and Rjustg3 � pp8 ^ p9 ^ p3q Ø Gg3. The formulas
p4 � p9 are: the furniture is out of place (p4), the designated location for the furniture
is empty (p5), the furniture has wheels (p6) , the furniture has handles (p7), the agents
can get revenue for recyclables (p8), there is a container for the recyclables (p9).
An example of a domain knowledge could be RDKg2 � p4 Ñ p5, since it can not
happen that the designated location for the furniture is empty while the furniture is not
out of place. Group goal Gg3 can be pursued at the same time as Gg1, however, Gg2
can only be pursued alone. Thus the coordination rule for all three goals is
Rcoordg1 � Rcoordg2 � Rcoordg3 � ppGg2 ^ pGg1 _Gg3qq _ Gg2q.

We want the justifications for a goal to explain when a goal should be adopted/refuted.
Having collective justifications for a goal enables the agents to, when the world changes,
consider adopting a goal that has been rejected previously. To this end, we take into con-
sideration justification rules which are of form Gg Ø Γ , where Γ P L such that all the
non-logical symbols of Γ occur in Apg and tGgu � Acg .

We now continue to discuss the desirable properties for the aggregation of individ-
ual beliefs and goals. We need a JA function that satisfies universal domain to be able
to aggregate all admissible profiles. We can use only JA functions that satisfy collec-
tive rationality. If the collective set is not complete, for example, if it contains only a
collective judgment on the goal, then we do not know why the goal was (not) adopted
and consequently we would not know when to revise it. For example, the cleaning crew
decides for the goal g3 (to collect recyclables), without having the reasons like p9 (a
container where to put them). If the world changes and p9 holds, the robots will con-
tinue to collect recyclables.

The aggregation of all admissible profiles should produce a set consistent with the
decision rule because otherwise we would not be generating the group goals and justi-
fications for them. For the same reason we need an aggregation method that selects a
unique ϕ PW .

To guarantee that conpRg, fpπgqq � 1, we need to choose between conclusion-
based and premise-based procedures. At first glance, the premise-based procedure seems
an obvious choice since it will produce complete collective judgment sets under our de-
cision rules. However, upon closer inspection, this procedure has notable drawbacks.

As it is observable from the profile in Figure 1; a premise-based procedure may lead

121

the group to adopt a conclusion that the majority (or even the unanimity) of the group
does not endorse. In our case, the conclusion is the goal and a premise-based aggrega-
tion may establish a group goal which none of the agents is interested in pursuing. To
avoid this we need to aggregate using a conclusion-based procedure. In particular we
want a conclusion-based procedure that has the property of unanimity on Gg.

Given that our decision rules are of the form g Ø Γ , there exist profiles for which
a conclusion-based procedure will not produce complete collective set of judgments.
However, the conclusion-based aggregation can be supplemented with an additional
procedure that completes the produced set of judgments when necessary. Such aggrega-
tion procedure is the complete conclusion-based procedure (CCBP) developed in [20].
This CCBP satisfies universal domain and is collectively rational. However, it does
not always produce a unique decision. CCBP produces a unique collective judgment
for the goal, but it can generate more than one set of justifications for it. This is an
undesirable, but not an unmanageable property. To deal with ties, as it is the practice
with voting procedures, the group can either determine a default set of justifications for
adopting/rejecting each candidate goal, or it can appoint one member of the group as
tiebreaker. Tie-breaking problems in judgment aggregation are the focus of our ongoing
research.

The CCBP from [20] also satisfies anonimity. Whether this is a desirable property
for a group of artificial agents depends entirely on whether the group is democratic or
the opinions of some agents are more important. CCBP can be adjusted to take into
consideration different weights on different agents’ judgment sets.

3 Formal framework for modeling group attitudes
In this section we introduce the language of modal multi-agent logic in which we rep-
resent individual and collective mental attitudes. We then combine the methodology of
judgment aggregation with this representation language and show how collective atti-
tudes are generated. To model commitment to a group goal and reconsideration of a
group goal we use temporal logic.

3.1 Modal multi-agent logic

Just like modal agent logic is concerned mainly with the relation between the individual
goals and beliefs over time, modal multi-agent logic is concerned with the relation be-
tween group goals and beliefs over time. We use modal multi-agent logic to represent:
the agenda, individual judgments, collective judgments and new information that may
prompt goal revision. In line with judgment aggregation proper, we do not use the for-
mal language to represent the judgment aggregation function, but only the arguments
of this function and the results from it. We assume that there is a service, available to
the agents, that elicits the individual judgments, performs the aggregation and makes
the aggregation results available, to the members and for plan-generation.

Agenda issues in judgment aggregation are usually represented by propositional
formulas. This is not a viable option in our case. First, we want to represent the differ-
ence between a goal and the supporting reasons by means of representing the distinc-
tion between conclusions and premises explicitly in the logic. Second, the logic should
represent the distinction between individual and collective judgments. We distinguish

122

conclusions from premises by using a singleK modal operatorGg for representing that
“g is a group goal”.

The obvious choice for modeling the judgment “true” on agenda issue a, of an agent
i, is the modal operator belief Bia (correspondingly Bi a for a judgment “false” on
a). However, we find that beliefs are ill suited for modeling collective judgments of
agents. While a belief Bia is an exclusively private mental state, judgments are public
and contributed for the decision-making purposes of the group. A judgment is thus
closer to a public commitment than to a private belief. Hence, we model judgments
by using the modal operator of acceptance ASa [19]. ASa denotes: agents in S accept
a. The operator ASa allows us to represent both individual judgments, S � tiu, for
i P N and collective judgments with S � N . We define the group acceptance AN a
to be the result of applying judgment aggregation to the individual acceptances. We
present the formal definitions of profile and judgment aggregation function in our logic
in Definition 6. The modal operator AS we use is inspired by the modal operator of the
acceptance logic of [19]. The details on the relation between acceptance logic and our
acceptance operator are given in the Appendix.

We represent the new information that becomes available to the agents with a normal
modal K operator E. Ea denotes: “it is observed that a is true”.

Lastly, to model how the group attitudes evolve with reconsideration we need a
temporal logic. By using LTL we do not need to distinguish between path formulas
and state formulas, but we are able to quantify over traces. Just as in BDILTL, where
Bla denotes that a is believed to be necessary, we use El a to denote that a is
observed to be impossible.

We now give the syntax of our modal multi-agent logic AGELTL.

Definition 5 (Syntax). LetAgt be a non-empty set of agents, with S � Agt, and LP be
a set of atomic propositions. The admissible formulae of AGELTLare formulae ψ0, ψ1

and ψ2 of languages Lprop, LG and LAELTL
correspondingly:

ψ0 ::� p | pψ0 ^ ψ0q | ψ0

ψ1 ::� ψ0 | Gψ0

ψ2 ::� ψ0 | ASψ1 | Eψ2 | Xψ2 | pψ2Uψ2q
where p ranges over LP and S over 2Agt. Moreover, ♦φ � JUφ, lφ � ♦ φ, and
φRφ1 � p φU φ1q.

We can now adjust the definition for a judgment aggregation function. We represent
individual judgments with Atiua with intuitive reading “agent i judges a as true” and
Atiu a with reading “agent i judges a as false”.

Definition 6 (JA in AGELTL). Let N � t1, 2, . . .u be a set of agent names and
G � LG{Lprop a set of candidate goals.
An agenda Ag � LG for goal Gg P G is a set of formulas such that Ag � Apg Y Acg ,
with Apg � Apg Y t a | a P Apgu, Apg � Lprop and Acg � tGg, Ggu.
A profile of judgments is the set π � tAtiua | i P N , a P Agu.
π Ù i � ta | Atiua P πu is the judgment set of agent i.
π Û a � ti | Atiua P πu is the set of all the agents that accepted a.
Given a set of decision rules Rg � Lprop, a profile is acceptable if and only if, for all
i P N and all a P A, conpRg, π Ù iq � 1 and either Atiua or Atiu a. The set of all

123

acceptable profiles for N and Ag , givenRg is Π .
The decision for a profile π, Dπ � tAN a | a P fapπq, fa : Π ÞÑ 2Agu.

For instance, the profile in Figure 1, is πg1 � tAtw1up1, Atw1up2, Atw1up3,
Atw1u Gg1, Atw2u p1, . . . , Atw3uGg1u. The decision using premise-based majority
would be tACp1, ACp2, ACp3, ACGg1u.

AGELTLcan be used to model that an agent does not have a judgment on an agenda
issue, but we will work with the assumption that either Atiu or Atiu a for all agents
and agenda issues.

AGELTLhas Kripke semantics. As in Schild [22], a Kripke structure is defined as a
tupleM � xW,R ,G ,E ,A, Ly. W is a set of possible situations, and R is the temporal
relation over situations R �W�W . G is the goal relation over situations G �W�W ,
while E is the observation relation over situations E �W �W . Let ∆ � 2N � Inst.
A : ∆ ÞÑ W �W maps every S P ∆ to a relation AS between possible situations. L
is a truth assignment to the primitive propositions of LP for each situation w PW , i.e.,
Lpwq : Prop ÞÑ ttrue, falseu.

Temporal formulas are validated in the standard manner [15]. Normal modal for-
mulas Gψ and Eψ have standard semantics, see for example [4]. Acceptance formulas
ASψ are validated according to the semantics of acceptance logic presented in [19]. The
axiomatization of AGELTLis given in the Appendix. Note that AGELTLis a fusion of
the decidable logics: LTL , acceptance logics and two K modal logics.

3.2 Generation of group goals
The mental state of the group is determined by the mental states of the members and the
choice of judgment aggregation function. We represent the mental state of the group by
a set χ of AGELTL formulas. The set χ contains: the set of all candidate goals for the
group G � LG{Lprop and, for each Gg P G, the corresponding decision rules Rg , as
well as the individual and collective acceptances made in the group regarding agenda
Ag . The set χ is common knowledge for the group members. An agent uses χ when it
acts as a group member and its own beliefs and goals when it acts as an individual.

To deal with multiple, possibly mutually inconsistent goals, the group has a priority
order Áx over the group goals G � χ. To avoid overburdening the language with a Áx
operator, we incorporate the priority order within the decision rulesRjustgi � Γi Ø Ggi.
We want the decision rules to capture that if Ggi is not consistent (according to the
coordination rules) with some higher priority goals Gg1, . . . , Ggm, then the group can
accept Ggi if and only if none of Gg1, . . . , Ggm is accepted. Hence, we replace the
justification rule Rjustgi P χ with Rpjustgi � pΓi ^

�m
j pAN Ggjqq Ø Ggi, where

Ggj P G, Ggj Áx Ggi and Ggi ^Ggj ^Rcoordgi |ù K.

Example 3. Consider the goals and rules of the robot crew C from Example 2. As-
sume the crew has been given the priority order Gg1 ¡χ Gg2 ¡χ Gg3. χ contains:
G � tGg1, Gg2, Gg3u, one background knowledge rule, one coordination rule, three
justification rules, out of which two are new priority modified rules:
tG, p4 Ñ p5, pGg2 ^ pGg1 _Gg3qq _ Gg2, Gg1 Ø pp1 ^ pp2 _ p3qq,
Gg2 Ø pp4 ^ p5 ^ pp6 _ p7q ^AC Gg1q, Gg3 Ø pp8 ^ p9 ^ p3 ^ pAC Gg2qu.

124

The agents give their judgments on one agenda after another starting with the agenda
for the highest priority candidate goal. Once the profile π and the decision Dπ for a
goal g are obtained, they are added to χ. To avoid the situation in which the group casts
judgments on an issue that has already been decided, we need to remove decided issues
from Ag before eliciting the profile for this agenda.

The group goals are generated by executing GenerateGoals(χ, N).

function GenerateGoals(χ, S):
for each Ggi P G s.t. [@Ggj P G: (Ggj Á Ggi)ñ (ANGgj P χ or AC:χ Ggj P χ)]

{ B :� pta | AN a P χu Y t a | AN a P χuq XAgi ;
comment // B is the set of already collectively accpted issues from Agi
A�gi :� Agi{B;
πgi :� elicitpS,A�gi , χq;
χ :� χY πgi Y f

apπgiq; }
return χ.

elicit requests the agents to submit complete judgment sets for πgi � χ. We require
that elicit is such that for all returned π it holds conpχ, π Ù iq � 1 for all i P N and
that conpχ, fapπqq � 1. When a higher priority goal Ggi is accepted by the group, a
lower priority incompatible goal Ggj cannot be adopted regardless of the judgments on
the issues in Agj . Nevertheless, Although elicit will provide individual judgments for
the agendaAgj . If the acceptance of Ggi is reconsidered, we can obtain a new decision
on Ggj because the profile for Ggj is available.

Example 4. Consider the χ for robots given in Example 3. The following calls to elicit
are made in the given order. First, πg1 � elicitpN ,A�g1 , χqwith theGenerateGoalspχq �
χ1 � χYπg1Yf

apπg1q. Second, πg2 � elicitpN ,A�g2 , χ1q, withGenerateGoalspχ1q �
χ2 � χ1Yπg2Yf

apπpg2qq. Last, πg3 � elicitpN ,A�g3 , χ2q, withGenerateGoalspχ2q �
χ3 � χ2 Y πg3 Y fapπg3q. Since there is no overlapping between agendas Ag2 and
Ag1 , A�g1 � Ag1 and A�g2 � Ag2 . However, since Ag2 X Ag3 � p3, then A�g3 �
tp8, p9, Gg3u.

Proposition 1. GenerateGoals terminates if and only if elicit terminates and does
not violate the candidate goal preference order.

The proof is straightforward.

4 Commitment strategies
The group can choose to reconsider the decision (acceptance or rejection) on a group
goal in presence of new information. Whether the group chooses to reconsider depends
on how committed it is to bring the goal about. According to Cohen and Levesque
[5], an agent intends g if it has chosen to pursue goal g and it committed itself to
making g happen. Following the same line of reasoning, we define group intention
to be IN g � ANGg and read it as “the agents N intend g”. We defined collective
acceptance as resulting from judgment aggregation, which is a social choice method.
Thus, in our framework, group intention is social choice with commitment. The level of
commitment of a group to a collective acceptance depends on the choice of commitment
strategy.

125

These are the three main commitment strategies (introduced by Rao and Georgeff [21]):
Blind commitment: Iig Ñ pIigUBigq
Single-minded commitment: Iig Ñ pIigUpBig _Bil gqq
Open-minded commitment: Iig Ñ pIigUpBig _ Gigqq

These commitment strategies only consider the relation between beliefs regarding
g and Gg. Instead, a commitment to a goal can now be reconsidered upon new infor-
mation on either one of the agenda issues in Ag and also upon new information on a
higher priority goal.

The strength of our framework is exhibited in its ability to describe the groups’
commitment not only to its decision to adopt a goal, but also to its decision to reject
a goal. Namely, if the agents decided IN gi and AN gj are committed to both IN gi
and AN gj . Commitment to reject g allows for g to be reconsidered and eventually
adopted if the state of the world changes.

Let N be a set of agents with a set of candidate goals G. Let Ggi, Ggj P G have
agendas Agi , Agj . We use p P Apgi and qi P Acgi , qj P A

c
gj . The profiles and decisions

are πgi and fapπgiq; Ggj ¡ Ggi, and Ggj cannot be pursued at the same time as Ggi.

We use the formulas pα1q�pα7q to refine the blind, single-minded and open-minded
commitment. Instead of the “until”, we use the temporal operator release: ψ R φ �
 p ψ U φq, meaning that φ has to be true until and including the point where ψ first
becomes true; if ψ never becomes true, φ must remain true forever. Unlike the until
operator, the release operator does not guarantee that right hand-side formula will ever
become true, which in our case translates to the fact that an agent could be forever
committed to a goal.

(α1) Egi R IN gi
(α2) K R AN Ggi
(α3) pEl gi _ Egiq R AN qi
(α4) AN qj R AN qi
(α5) AN pÑ pE p R AN qiq
Blind commitment: α1 ^ α2.
Only the observation that the goal is achieved (Egi) can release the intention to achieve
the goal IN gi. If the goal is never achieved, the group will always be committed to it.
If a goal is not accepted, then the agents will not reconsider accepting it.

Single-minded commitment: α3.
Only new information on the goal (either that the goal is achieved or had become im-
possible) can release the decision of the group to adopt /reject the goal. Hence, new
information is only regarded if it concerns the conclusion, while information on the
remaining agenda items is ignored.

Extended single-minded commitment: α3 ^ α4.
Not only new information on gi, but also the collective acceptance to adopt a more
important incompatible goal gj can release the intention of the group to achieve gi.
Similarly, if gi is not accepted, the non-acceptance can be revised, not only if gj is
observed to be impossible or achieved, but also when the commitment to pursue gj is
dropped (for whatever reason).

126

Open-minded commitment: α3 ^ α5.
A group will maintain its collective acceptances to adopt/reject a goal as long as the new
information regarding all collectively accepted agenda items is consistent with fapπgiq.
Extended open-minded commitment: α3 ^ α4 ^ α5.
Extending on the single-minded commitment, a change in intention to pursue a higher
priority goal Ggj can also release the acceptance of the group on Ggi.

Once an intention is dropped, a group may need to reconsider its collective accep-
tances. This may cause for the dropped goal to be re-affirmed, but a reconsideration
process will be invoked nevertheless.

5 Reconsideration strategies
In Section 3.2 we defined the mental state of the group χ. We can now define what it
means for a group to be coherent.

Definition 7 (Group coherence). Given a Kripke structureM and situations s P W ,
a group of N agents is coherent if the following conditions are met:
(ρ1):M |ù pASa^AS aq for any S � N and any a P Ag .
(ρ2): IfM, s |ù χ then χ * K.
(ρ3):M, s |ù

�G Ñ l g for all Gg P G.
(ρ4): Let Gg P G and G1 � G{tGgu, thenM |ù p

�G ^ El gq Ñ Xp Ggq.
(ρ5): Let p P Apg and q P tGg, Ggu. Ep^ pEp R AN qq Ñ XAN p

The first condition ensures that no contradictory judgments are given. The second con-
dition ensures that the mental state of the group is logically consistent in all situations.
The third and fourth conditions ensure that impossible goals cannot be part of the set of
candidate goals and if g is observed to be impossible in situation s, then it will be re-
moved from G in the next situation. ρ5 enforces the acceptance of the new information
on the group level, when the commitment strategy so allows – after a is observed and
that lead the group to de-commit from g, the group necessarily accepts a.

A coherent group accepts the observed new information on a premise. This may
cause the collective acceptances to be inconsistent with the justification rules. Conse-
quently, the decisions and/or the profiles in χ need to be changed in to ensure that ρ1
and ρ2 are satisfied. If, however l g or g is observed, the group reconsiders χ by
removing Gg from G. In this case, the decisions and profiles are not changed.

For simplicity, at present we work with a world in which the agents’ knowledge can
only increase, namely the observed information is not a fluent. A few more conditions
need to be added to the definition of group coherence, for our model to be able to be
applicable to fluents. E.g., we need to define which observation is accepted when two
subsequent contradictory observations happen.

For the group to be coherent at all situations, the acceptances regarding the group
goals need to be reconsidered after de-commitment. Let Dg � χ contain the group
acceptances for a goal g, while πg � χ contain the profile for g. There are two basic
ways in which a collective judgment set can be reconsidered. The first way is to elicit a
new profile for g and apply judgment aggregation to it to obtain the reconsidered D�g .
The second is to reconsider onlyDg without re-eliciting individual judgments. The first
approach requires communication among agents. The second approach can be done

127

by each agent reconsidering χ by herself. We identify three reconsideration strategies
available to the agents. The strategies are ordered from the least to the most demanding
in terms of agent communication.

Decision reconsideration (D-r). Assume that Ep, p P Apg , q P tGg, Ggu and the
group de-commited from AN q. The reconsidered decision D�g is such that p is ac-
cepted, i.e., AN p P D�g , and the entire decision is consistent with the justification
rules, namely conpRpjustg ,D�g Ù N q � 1. If the D-r specifies an unique D�g , for any
observed information and anyDg , then χ can be reconsidered without any communica-
tion among the agents. Given the form of Rpjustg (see Section 3.2), this will always be
the case.

However D-r is not always an option when the de-commitment occurred due to a
change in collective acceptance of a higher priority goal g1. Let q1 P tGg1, Gg1u.
Let the new acceptance be AN q1. D-r is possible if and only if D�g � Dg and
conpRpjustg ,Dg Y tAN q1uq � 1. Recall that AN q1 was not in Ag and as such the
acceptance of q1 or q1 is never in the decision for πg .

Partial reconsideration of the profile (Partial π-r). Assume that Ea, a P Ag , Gg P
G. Not only the group, but also the individual agents need to accept a. The Partial
π-r asks for new individual judgments be elicited. This is done to ensure the logical
consistency of the individual judgment sets with the observations. New judgments are
only elicited from the agents i which Atiu a.

Let W � N be the subset of agents i s.t. Atiu a P χ. Agents i are s.t. Atiua P χ
when the observation is E a. Let πWg � πg be the set of all acceptances made by
agents in W . We construct χ1 � χ{πWg . The new profile and decision are obtained by
executing GenerateGoals (χ1, W).

Example 5. Consider Example 4. For πg1 , πg2 and πg3 of the robot crew C, the deci-
sionsDg1 � tACp1, AC p2, ACp3, ACGg1u,Dg2 � tACp4, ACp5, ACp6, ACp7, AC Gg2u
andDg3 � tACp8, ACp9, ACGg3u are made. Assume the group de-commits onGg1because
of E p2. If the group is committed to Gg3, the commitment on Gg3 will not allow for
AN p3 to be modified when reconsidering Gg1. Since AN p3 exists in χ1, p3 will be
excluded from the (new) agenda for g1, although it was originally in it. elicit calls only
on the agents in W to complete πg1 P χ

1 with their judgment sets.

Full profile reconsideration (π-r). The full profile reconsideration is the same with
the partial reconsiderations in all respects except one – now W � N . Namely, within
the full profile revision strategy, each agent is asked to revise his judgment set by accept-
ing the new information, regardless whether he had already accepted the information or
not.

5.1 Combining revision and commitment strategies
Unlike the Rao and Georgeff commitment strategies [21], in our framework the com-
mitment strategies are not axioms of the logic. We require that the commitment strategy
is valid in all the models of the group and not in all the models ofAGELTL. This allows
the group to define different commitment strategies and different revision strategies for
different goals. It might even choose to revise differently depending on which informa-
tion triggered the revision. Choosing different revision strategies for each goal, or each

128

type of new information, should not undermine the coherence of the group record χ.
The conditions of group coherence of the group ensures that after every reconsideration
χ must remain consistent. However, some combinations of commitment strategies can
lead to incoherence of χ.

Example 6. Consider the profiles and decisions in Example 5 . Assume that initially the
group chose open-minded commitment for ICg1 and blind commitment for ICg3, with
goal open-minded commitment for AC Gg2. If Eg1 and thus ICg1 is dropped, then
the extended open-minded commitment would allow AC Gg2 to be reconsidered and
eventually ICg2 established. However, since the group is blindly committed to ICg3,
this change will not cause reconsideration and as a result both ICg2 and ICg3 will be in
χ thus making χ incoherent.

Problems arise when subpRpjustgi q X subpRpjustgj q � H, where subpRpjustg q denotes
the set of atomic sub-formulas of g (Ggi, Ggj P G). Proposition 2 summarizes under
which conditions these problems are avoided.

Proposition 2. Let α1 and α2 be the commitment strategies selected for gi and gj cor-
respondingly. χY α1 Y α2 * K (in all situations):
a) if φ P subpRpjustgi q X subpRpjustgj q and p P Agi X Agj , then α5 is either in both α1

and α2 or in none;
b) if Ggi is more important than Ggj and Gj and Gi cannot be accepted at the same
time, then α4 P α

2.

Proof. The proof is straightforward. Namely, if the change on acceptance ofGgi causes
the decision on Ggj to induce group incoherence, we are able to de-comit from Ggj .
If we were not able to de-comit on Ggj group coherence is blocked. If the change on
collective acceptance on Ggi is caused by an observation on a premise p P Agi XAgj
then condition a) ensures that the commitment to the collective acceptance regarding
Ggj does not block group coherence. If the change on collective acceptance on Ggj is
caused by a change in commitment to a higher priority goal the condition b) ensures
that a commitment regarding Ggj does not block group coherence. Condition b) allows
only “goal sensitive” commitments to be selected for lower level goals.

6 Conclusions
We constructed a group decision-making framework by combining judgment aggre-
gation and multi-agent modal logic. We identified the desirable judgment aggrega-
tion properties for aggregation in collaborative groups. Our multi-agent modal logic
AGELTL is an extension ofBDILTL with modal operators for representing individual
and collective acceptances and observations of new information. We extend the com-
mitment strategies of Rao and Georgeff [21] to increase the reactivity of the group to
new information. Having a group goal Gg in our framework does not imply that the
members individually have the goal Gg and groups can have different levels of com-
mitment to different goals.

Our framework is intended for groups that engage in joint activity. Our framework
is applicable when it is not possible to assume that the agents persuade each other on
a single position and goal, but it is necessary anyway that the group presents itself as

129

a single whole from the point of view of beliefs and goals, and above all as a rational
entity that has goals justified by the beliefs it holds, and it is able to revise these goals
under the light of new information. This requirement was held by Tuomela [24] and
adopted in agent theory by Boella and van der Torre [1] and Lorini [18]. There are
many situations where the proposal of the paper can be applied. For example in an
opensource project, where several people have to discuss online to agree on which is
their position on issues (e.g. which algorithm is better for a certain task) and which is
their goal (e.g. delivering a new realize on which date).

Work on collaborative group activities [9, 12, 16] and group decision-making pro-
tocols [10] focus on how to define collective intentionality and how to distribute the
collective intentions over the agents. We define group intention to be the collective ac-
ceptance of a group goal and focus on defining commitment strategies for the collective
acceptances. An advantage of our framework is its ability to allow groups to commit
to a decision to reject a goal, thus having the option to reconsider rejected goals. Fur-
thermore, we do not only show when to reconsider, but also how, by defining reconsid-
eration strategies. Table 1 summarizes our commitment and reconsideration strategies.

Commitment to Release on Change How
AN p qGg l g g Ggj Ap

g χ fDpgq fπg JA
Blind X
Single-minded X X D-r X
Extended X X X Partial π-r X X
Open-minded X X X Full π-r X X
Extended X X X X

Table 1.Ggj ¡ Gg and can not be pursued at the same time withGg.fDpgq denotes: collective
attitudes for g are reconsidered. f πg denotes: the profile (all or some parts of it) is re-elicited.

Icard et al. [23] consider the joint revision of individual attitudes, with the revision
of beliefs triggering intention revision. However, they do not allow for the revision of
intentions to cause a revision of beliefs. We focus on joint reconsideration of group at-
titudes and we allow for both the change in epistemic and in motivational attitudes can
be a cause for reconsideration.

In our framework, the new information is simultaneously available to the entire
group. In the future we intend to explore the case when only some members of the group
observe the new information. The only assumptions we make regarding the connectivity
of the members is that they are able to communicate their acceptances and receive the
aggregation result. The problem of elicitation and communication complexity in voting
is a nontrivial one [6, 7] and we intend to study these properties within our framework.

In the work we presented, we do not consider how individual acceptances are formed.
We can take that Biφ Ñ Atiuφ, but this need not be the case. We can define dishonest
agents as those for which Biφ Ñ Atiuφ does not hold. In this case, the agent might
declareAtiuφ while it does not believe φ. The question is whether there are scenarios in
which incentives for doing so arise. Furthermore, given that the some reconsideration
strategies call for re-elicitation of judgments, can an agent have the incentive to deliber-
ately give judgments that would lead to sooner re-elicitation? We intend to devote more
attention to answering these questions as well as studying the manipulability properties
of our decision-making framework.

130

References
1. G. Boella and L. van der Torre. The ontological properties of social roles in multi-agent

systems: Definitional dependence, powers and roles playing roles. Artificial Intelligence and
Law Journal (AILaw), 15(3):201–221, 2007.

2. C. Castelfranchi and F. Paglieri. The role of beliefs in goal dynamics: Prolegomena to a
constructive theory of intentions. Synthese, 155:237–263, 2007.

3. B. Chapman. Rational aggregation. Politics, Philosophy and Economics, 1(3):337–354,
2002.

4. B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
5. P. R. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelligence,

42(2-3):213–261, 1990.
6. V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategy-proofness. In

AAAI/IAAI, pages 392–397, 2002.
7. V. Conitzer and T. Sandholm. Communication complexity of common voting rules. In ACM

Conference on Electronic Commerce, pages 78–87, 2005.
8. F. Dietrich and C. List. Strategy-proof judgment aggregation. STICERD - Political Economy

and Public Policy Paper Series 09, Suntory and Toyota International Centres for Economics
and Related Disciplines, LSE, Aug 2005.

9. B. Dunin-Keplicz and R. Verbrugge. Collective intentions. Fundam. Inf., 51(3):271–295,
2002.

10. B. Grosz and L. Hunsberger. The dynamics of intention in collaborative activity. Cognitive
Systems Research, 7(2-3):259–272, 2007.

11. S. Hartmann, G. Pigozzi, and J. Sprenger. Reliable methods of judgment aggregation. Jour-
nal of Logic and Computation, forthcoming.

12. N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artif. Intell., 75(2):195–240, 1995.

13. S. Konieczny and R. Pino-Pérez. Merging with integrity constraints. Lecture Notes in Com-
puter Science, 1638/1999:233–244, 1999.

14. L. Kornhauser and L. Sager. The one and the many: Adjudication in collegial courts. Cali-
fornia Law Review, 81:1–51, 1993.

15. F. Kröger. Temporal Logic of programs. Springer, Berlin, 1987.
16. H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings of the

Eighth National Conference on Artificial Intelligence, pages 94–99, 1990.
17. C. List and C. Puppe. Judgment aggregation: A survey. In P. Anand, C. Puppe, and P. Pat-

tanaik, editors, Oxford Handbook of Rational and Social Choice. Oxford, 2009.
18. E. Lorini and D. Longin. A logical account of institutions: From acceptances to norms via

legislators. In KR, pages 38–48, 2008.
19. E. Lorini, D. Longin, B. Gaudou, and A. Herzig. The logic of acceptance. Journal of Logic

and Computation, 19(6):901–940, 2009.
20. G. Pigozzi, M. Slavkovik, and L. van der Torre. A complete conclusion-based procedure for

judgment aggregation. In First International Conference on Algorithmic Decision Theory
Proceedings, pages 1–13, 2009.

21. A. S. Rao and M. P. Georgeff. Intentions and rational commitment. In In First Pacific Rim
Conference on Artificial Intelligence (PRICAI-90) Proceedings, pages 94–99, 1993.

22. K. Schild. On the relationship between bdi logics and standard logics of concurrency. Au-
tonomous Agents and Multi-Agent Systems, 3(3):259–283, 2000.

23. T.Icard, E.Pacuit, and Y. Shoham. A dynamic logic of belief and intention. In Principles
of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Con-
ference (KR-10), page forthcoming, 2010.

24. R. Tuomela and K. Miller. Groups beliefs. Synthese, 91:285–318, 1992.

131

Appendix – Relations between AGELTL and acceptance logic and
axiomatization ofAGELTL

Here we elaborate in more detail on the fusion logic AGELTL we use. The modal
operator ASφ we use is equivalent to the modal operator AS:xφ of the acceptance logic
of [19] with one syntactic and one semantic exception.

The operatorAS:xφ uses x ranging over a set of labels to describe the context under
which the acceptance is made. In our case the context is that of the group and since we
deal with only one group, we have no use of these labels. The context labels play no
role in the semantics of the acceptance logic formulas.

On the semantic level, the axioms for ASφ are all the axioms of AS:xφ except two:
the axiom inclusion (Inc.) and the axiom unanimity (Un.). Dropping (Un.) and (Inc.)
does not affect the decidability of the logic of acceptance. (Un.) (not to be confused
with unanimity in judgment aggregation) states that if AN :xφ, then @i P N , Atiu:xφ.
In our case, it is the aggregation of individual acceptances that determines the collective
acceptance. Since we use the acceptances to model judgments, we do not want an axiom
that states that the individual judgments mirror the collective judgments. The agents use
the collective acceptance when functioning as a group and their private beliefs when
acting as individuals. In our framework we do not model the private mental states, but
only individual acceptances which are “declared” to all the agents in the group.

(Inc.) states that if a the group C accepts ϕ, so will any subgroup B � C. In our
case, the judgment aggregation over the profile containing only the judgment sets of
B can produce a different collective judgment set than the profile containing all the
judgment sets of C.

The axiomatization of the AGELTLlogic is thus:

(ProTau) All principles of propositional calculus
(LTLTau) All axioms and derivation rules of LTL
(K-G) GpφÑ ψq Ñ pGφÑ Gψq
(K-E) EpφÑ ψq Ñ pEφÑ Eψq
(K-A) ASpφÑ ψq Ñ pASφÑ ASψq
(PAccess) ASφÑ AMASφ if M � S
(NAccess) ASφÑ AM ASφ if M � S
(Mon) ASK Ñ AMK if M � S
(MP) From $ φ and $ pφÑ ψq infer $ ψ
(Nec-A) From $ φ infer $ ASφ
(Nec-G) From $ φ infer $ Gφ
(Nec-E) From $ φ infer $ Eφ

GivenM � xW,R ,G ,E ,A, Ly and s PW , the truth conditions for the formulas of
AGELTL(in a situation s) are:

– M, s * K;
– M, s |ù p if and only if p P Lppq;
– M, s |ù φ if and only ifM, s * φ;
– M, s |ù φ^ ψ if and only ifM, s |ù φ andM, s |ù ψ;
– M, s |ù AN φ if and only ifM, s1 |ù φ for all ps, s1q P A;

132

– M, s |ù Gφ if and only ifM, s1 |ù φ for all ps, s1q P G ;
– M, s |ù Eφ if and only ifM, s1 |ù φ for all ps, s1q P E ;
– M, s |ù Xφ if and only ifM, s1 |ù φ for the s1, ps, s1q P R
– M, s |ù φUψ if and only ifM, s |ù φ ;M, si |ù φ for all si, i P t1, 2, . . . , ku such

that tps, s1q, ps1, s2q, . . . psk�1, skqu P R and for sk�1 such that psk, sk�1q P R it
holdsM, sk�1 * φ andM, sk�1 |ù ψ.

A formula φ is true in an AGELTLmodel M if and only if M, s |ù φ for every
situation s PW . The formula φ is valid (noted |ùAGELTL

) if and only if φ is true in all
AGELTLmodels. The formula φ is AGELTL-satisfiable if and only if the formula ϕ
is not AGELTLvalid.

133

MERCURIO: An Interaction-oriented
Framework for Designing, Verifying and

Programming Multi-Agent Systems?

Matteo Baldoni1, Cristina Baroglio1, Federico Bergenti4, Antonio Boccalatte3,
Elisa Marengo1, Maurizio Martelli3, Viviana Mascardi3, Luca Padovani1,
Viviana Patti1, Alessandro Ricci2, Gianfranco Rossi4, and Andrea Santi2

1 Università degli Studi di Torino
{baldoni,baroglio,emarengo,padovani,patti}@di.unito.it

2 Università degli Studi di Bologna
{a.ricci,a.santi}@unibo.it

3 Università degli Studi di Genova
{martelli,mascardi}@disi.unige.it, nino@dist.unige.it

4 Università degli Studi di Parma
{federico.bergenti,gianfranco.rossi}@unipr.it

Abstract. This is a position paper reporting the motivations, the start-
ing point and the guidelines that characterize the MERCURIO5 project
proposal, submitted to MIUR PRIN 20096. The aim is to develop formal
models of interactions and of the related support infrastructures, that
overcome the limits of the current approaches by explicitly representing
not only the agents but also the computational environment in terms of
rules, conventions, resources, tools, and services that are functional to
the coordination and cooperation of the agents. The models will enable
the verification of interaction properties of MAS from the global point of
view of the system as well as from the point of view of the single agents,
due to the introduction of a novel social semantic of interaction based
on commitments and on an explicit account of the regulative rules.

1 Motivation

The growing pervasiveness of computer networks and of Internet is an impor-
tant catalyst pushing towards the realization of business-to-business and cross-
business solutions. Interaction and coordination, central issues to any distributed
system, acquire in this context a special relevance since they allow the involved
groups to integrate by interacting according to the agreed contracts, to share best
practices and agreements, to cooperatively exploit resources and to facilitate the
identification and the development of new products.

? Position paper
5 Italian name of Hermes, the messenger of the gods in Greek mythology.
6 Despite the label “2009”, it is the just closed call for Italian National Projects,

http://prin.miur.it/index.php?pag=2009.

134

The issues of interaction, coordination and communication have been re-
ceiving great attention in the area of Multi-Agent Systems (MAS). MAS are,
therefore, the tools that could better meet these needs by offering the proper ab-
stractions. Particularly relevant in the outlined application context are a shared
and inspectable specification of the rules of the MAS and the verification of
global properties of the interaction, like the interoperability of the given roles,
as well as properties like the conformance of an agent specification (or of its
run-time behavior) to a protocol. In open environments, in fact, it is important
to have guaranties on how interaction will take place, coping with notions like
responsibility and commitment. Unfortunately, current proposals of platforms
and languages for the development of MAS do not supply high level tools for
directly implementing this kind of specifications. As a consequence, they do not
support the necessary forms of verification, with a negative impact on the ap-
plicability of MAS to the realization of business-to-business and cross-business
systems.

Let us consider, for instance, JADE [4, 18, 16, 17], which is one of the best
known infrastructures, sticking out for its wide adoption also in business con-
texts. JADE agents communicate by exchanging messages that conform to FIPA
ACL [3]. According to FIPA ACL mentalistic approach, the semantics of mes-
sages is given in terms of preconditions and effects on the mental states of the
involved agents, which are assumed to share a common ontology. Agent platforms
based on FIPA exclusively provide syntactic checks of message structures, en-
trusting the semantics issues to agent developers. This hinders the applicability
to open contexts, where it is necessary to coordinate autonomous and heteroge-
neous agents and it is not possible to assume mutual trust among them. In these
contexts it is necessary to have an unambiguous semantics allowing the verifi-
cation of interaction properties before the interaction takes place [52] or during
the interaction [9], preserving at the same time the privacy of the implemented
policies.

The mentalistic approach does not allow to satisfy all these needs [40]; it is
suitable for reasoning from the local point of view of a single agent, but it does
not allow the verification of interaction properties of a MAS from a global point of
view. One of the reasons is that the reference model lacks an abstraction for the
representation, by means of a public specification, of elements like (i) resources
and services that are available in the environment/context in which agents inter-
act and (ii) the rules and protocols, defining the interaction of agents through the
environment/context. All these elements belong to (and contribute to make) the
environment of the interacting agents. Such an abstraction, if available, would be
the natural means for encapsulating resources, services, and functionalities (like
ontological mediators) that can support the communication and the coordination
of agents [67, 66, 43], thus facilitating the verification of the properties [13]. It
could also facilitate the interaction of agents implemented in different languages
because it would be sufficient that each language implements the primitives for
interacting with the environment [1]. One of the consequences of the lack of an
explicit representation of the environment is that only forms of direct commu-

135

nication are possible. On the contrary, in the area of distributed systems and
also in MAS alternative communication models, such as the generative com-
munication based on tuple spaces [32], have been put forward. These forms of
communication, which do not necessarily require a space-time coupling between
agents, are not supported.

The issues that we mean to face have correspondences with issues concerning
normative MAS [70] and Artificial Institutions [31, 65]. The current proposals in
this field, however, do not supply all of the solutions that we need: either they
do not account for indirect forms of communication or they lack mechanisms for
allowing the a priori verification of global properties of the interaction. As [31,
65] witnes, there is, instead, an emerging need of defining a more abstract notion
of action, which is not limited to direct speech acts. In this case, institutional
actions are performed by executing instrumental actions that are conventionally
associated with them. Currently, instrumental actions are limited to speech acts
but this representation is not always natural. For instance, for voting in the
human world, people often raise their hands rather than saying the name corre-
sponding to their choice. If the environment were represented explicitly it would
be possible to use a wider range of instrumental actions, that can be perceived
by the other agents through the environment that acts as a medium.

Our goal is, therefore, to propose an infrastructure that overcomes such lim-
its. The key of the proposal is the adoption of a social approach to communication
[45, 14, 13, 12], based on a model that includes an explicit representation not only
of agents but also of their environment, as a collection of virtual and physical
resources, tools and services, “artifacts” as intended in the Agents & Artifacts
(A&A) meta-model [43], which are shared, used and adapted by the agents,
according to their goals. The introduction of environments is fundamental to
the adoption of an observational (social) semantics, like the one used in commit-
ment protocols, in that it supplies primitives that allow agents to perceive and to
modify the environment itself and, therefore, to interact and to coordinate with
one another in a way that satisfies the rules of the environment. On the other
hand, the observational semantics is the only sufficiently general semantics to
allow forms of interaction and of communication that do not rely solely on direct
speech acts. As a consequence we will include models where communication is
mediated by an environment, that encapsulates and applies rules and constraints
aimed at coordinating agents at the organization level, and integrates ontological
mediation functionalities. The environment will provide the contract that agents
should respect and a context into which interpreting their actions. In this way,
it will be possible to formally verify the desired properties of the interaction, a
priori and at execution time.

2 Vision

The focus of our proposal is on the definition of formal models of interactions
and of the related support infrastructures, which explicitly represent not only
the agents but also the environment in terms of rules of interaction, conventions,

136

resources, tools, and services that are functional to the coordination and coop-
eration of the agents. These models must allow both direct and indirect forms
of communication, include ontological mediators, and enable the verification of
interaction properties of MAS from the global point of view of the system as well
as from the point of view of the single agents. The approach we plan to pursue
in order to define a formal model of interaction is based on a revision in social
terms of the interaction and of the protocols controlling it, along the lines of [14,
13, 12]. Furthermore, we will model the environment, in the sense introduced by
the A&A meta-model [43]. This will lead to the study of communication forms
mediated by the environment. The resulting models will be validated by the
implementation of software tools and of programming languages featuring the
designed abstractions. More in details, with reference to Fig. 1, the goals are:

Fig. 1. The MERCURIO architecture.

To introduce a formal model for specifying and controlling the interaction.
The model (top level of Fig. 1) must be equipped with an observational
(commitment-based) semantics and must be able to express not only di-
rect communicative acts but also interactions mediated by the environment.
This will enable forms of verification that encompass both global interaction
properties and specific agent properties such as interoperability and confor-
mance [11]. The approach does not hinder agent autonomy, it guarantees the
privacy of the policies implemented by the agents, and consequently favors
the composition of heterogeneous agents. The model will be inspired by the
social approach introduced in [45] and subsequently extended in [14, 13, 12].

To define high-level environment models supporting the forms of interac-
tions and coordination between agents outlined above. These models must

137

support: interaction protocols based on commitments; the definition of rules
on the interaction; forms of mediated communication and coordination be-
tween agents (such as stigmergic coordination). They must also enable forms
of a priori and runtime verification of the interaction. To these aims, we plan
to use the A&A meta-model [58, 67, 43, 56] and the corresponding notion of
programmable environment [57] (programming abstractions level of Fig. 1).

To integrate ontologies and ontological mediators in the definition of the
models so as to guarantee openness and heterogeneity of MAS. Mediation
will occur at two distinct levels: the one related to the vocabulary and do-
main of discourse and the one that characterizes the social approach where
it is required to bind the semantics of the agent actions with their meaning
in social terms. Ontological mediators will be realized as artifacts.

To integrate the abstractions defined in the above models within program-
ming languages and frameworks. In particular, we plan to integrate the no-
tions of agents, of environment, of direct and mediated communication, and
of ontological mediators. Possible starting points are the aforementioned
FIPA ACL standard and the works that focus on the integration of agent-
oriented programming languages with environments [55]. The JaCa platform
[57], integrating Jason and CArtAgO, will be taken as reference. This will
form the execution platform of Fig. 1 and will supply the primitives for
interacting with the environments.

To develop an open-source prototype of software infrastructure for the ex-
perimentation of the defined models. The prototype will integrate and ex-
tend existing technologies such as JADE [18, 16, 17] (as a FIPA-compliant
framework), CArtAgO [1] (for the programming and the execution of envi-
ronments), Jason (as a programming language for BDI agents), MOISE [35]
(as organizational infrastructure).

To identify applicative scenarios for the evaluation of the developed mod-
els and prototypes. In this respect we regard the domain of Web services
as particularly relevant because of the need to deploy complex interactions
having those characteristics of flexibility that agents are able to guarantee.
Another interesting application regards the verification of adherence of bu-
reaucratic procedures of public administration with respect to the current
normative. Specific case studies will be defined in collaboration with those
companies that have stated interest towards the project.

3 State of Art

These novel elements, related to the formation of and the interaction within de-
centralized structures, find an initial support in proposals from the literature in
the area of MAS. Current proposals, however, are still incomplete in that they
supply solutions to single aspects. For instance, electronic institutions [28, 10, 35,
34] regulate interaction, tackle open environments and their semantics allows the
verification of properties but they only tackle direct communication protocols,
based on speech acts, and do not include an explicit notion of environment. Com-
mitment protocols [45, 69], effective in open systems and allowing more general

138

forms of communication, do not supply behavioral patterns, and for this reason
it is impossible to verify properties of the interaction. Eventually, most of the
models and architectures for environments prefigure simple/reactive agent mod-
els without defining semantics, that are comparable to the ones for ACL, and
without explaining how such proposals could be integrated with direct commu-
nication models based on speech acts. We classify the relevant contributions in
the literature according to the objectives and the methodological aspects that
will be examined in-depth along the project.

3.1 Formal Models for Regulating the Interaction in MAS

This topic has principally been tackled by modeling interaction protocols. Most
of protocol representations refer to classic models, such as Petri nets, finite state
machines, process algebras, and aim at capturing the expected interaction flow.
An advantage of this approach is that it supports the verification of interaction
properties [52, 21, 11], such as: verifying the interoperability of the system and
verifying if certain modifications of a system preserve some desired properties (a
crucial issue in open domains where agents can enter/leave the system at any
time). Singh and colleagues criticize the use of procedural specifications because
too rigid [60, 24, 69]: agents cannot take advantage of opportunities that emerge
along the interaction and that are not foreseen by their procedure. Another
issue is that communication languages use a BDI semantics (FIPA ACL is an
example), where each agent has goals and beliefs of its own. At the system
level, however, it is impossible to perform introspection of agents, which are, for
this reason, black boxes. For what concerns the verification of properties this
approach allows agents to draw conclusions about their own behavior but not to
verify global properties of the system [40, 64].

Both problems are solved by commitment protocols [45, 60], which rely on an
observational semantics of the interaction and offer adequate flexibility to agents.
Moreover, they do not require the spatio-temporal coupling of agents (as instead
direct communication does). Another advantage is that, though remaining black
boxes, agents agree on the meaning of the social actions of the protocol. Since
interactions are observable and their semantics is shared, each agent should
be able to draw conclusions concerning the system as a whole. Unfortunately,
besides some preliminary studies [61], the state of art does not contain proposals
on how performing the verifications in a MAS, ruled by this kind of protocols. A
relevant feature seems to be the introduction, within commitment protocols, of
behavioral rules which constrain the possible evolutions of the social state [13,
12].

3.2 Environment Models

The notion of environment has always played a key role in the context of MAS;
recently, it started to be considered as a first-class abstraction useful for the de-
sign and the engineering of MAS [67]. A&A [43] follows this perspective, being
a meta-model rooted upon Activity Theory and Computer Support Cooperative

139

Work that defines the main abstractions for modeling a MAS, and in particular
for modeling the environment in which a MAS is situated. A&A promotes a
vision of an endogenous environment, that is a sort of software/computational
environment, part of the MAS, that encapsulates the set of tools and resources
useful/required by agents during the execution of their activities. A&A intro-
duces the notion of artifact as the fundamental abstraction used for modeling the
resources and the tools that populates the MAS environment. The introduction
of the environment as a new first-class abstraction requires new engineering ap-
proaches for programming the MAS environment. The CArtAgO framework [57]
has been devised precisely for copying this new necessity. It provides the basis for
the engineering of MAS environments on the base of: (i) a proper computational
model and (ii) a programming model for the design and the development of the
environments on the base of the A&A meta-model. In particular, it provides
those features that are important from a software engineering point of view: ab-
straction, it preserves the agent abstraction level, since the main concepts used
to define application environments, i.e. artifacts and workspaces, are first-class
entities in the agents world, and the interaction with agents is built around the
agent-based concepts of action and perception (use and observation); modularity
and encapsulation, it provides an explicit way to modularize the environment,
where artifacts are components representing units of functionality, encapsulat-
ing a partially-observable state and operations; extensibility and adaptation, it
provides a direct support for environment extensibility and adaptation, since
artifacts can be dynamically constructed (instantiated), disposed, replaced, and
adapted by agents; reusability, it promotes the definition of types of artifact
that can be reused as tools in different application contexts, such as in the case
of coordination artifacts empowering agent interaction and coordination, such
as blackboards and synchronizers. These features will be advantageous in the
realization of the second goal of the project, w.r.t. approaches like [25], where
commitment stores, communication constraints and the interaction mechanisms
reside in the middleware, which shields them from the agents. This has two dis-
advantages: the first is that even though all these elements are accounted for in
the high level specification, the lack of a corresponding programming abstraction
makes it difficult to verify whether the system corresponds to the specification;
the second is a lack of flexibility, in that it is not possible for the agents to
dynamically change the rules of interaction or to adopt kinds of communication
that are not already implemented in the middleware.

In the state of the art numerous applications of the endogenous environments,
i.e. environments used as a computational support for the agents’ activities, have
been explored, including coordination artifacts [44], artifacts used for realizing
argumentation by means of proper coordination mechanisms [42], artifacts used
for realizing stigmergic coordination mechanisms [54, 48], organizational artifacts
[34, 49, 50]. Even if CArtAgO can be considered a framework sufficiently mature
for the concrete developing of software/computational MAS environments it can
not be considered “complete” yet. Indeed at this moment the state of the art and
in particular the CArtAgO framework are still lacking: (i) a reference standard

140

on the environment side comparable to the existing standards in the context of
the agents direct communications (FIPA ACL), (ii) the definition of a rigorous
and formal semantics, in particular related to the artifact abstraction, (iii) an
integration with the current communication approaches (FIPA ACL, KQML,
etc.), and finally (iv) the support of semantic models and ontologies.

3.3 Multi-agent Organizations and Institutions

The possibility of controlling and specifying interactions is relevant also for areas
like the organizational theory [39, 70, 15, 35] and electronic institutions [28, 10]
areas. Tendentiously, the focus is orthogonal to the one posed on interaction
protocols, in that it concerns the modeling of the structure rather than of the
interaction.

The abstract architecture of e-Institutions (e.g. Ameli [28]), places a middle-
ware composed of governors and staff agents between participating agents and
an agent communication infrastructure (e.g. JADE [18, 16, 17]). The notion of
environment is dialogical: it is not something agents can sense and act upon but
a conceptual one that agents, playing within the institution, can interact with by
means of norms and laws, based on specific ontologies, social structures, and lan-
guage conventions. Agents communicate with each other by means of speech acts
and, behind the scene, the middleware mediates such communication. The ex-
tension proposed for situated e-Institutions [10] introduces the notion of “World
of Interest” to model the environment, that is external to the MAS but which is
relevant to the MAS application. The infrastructure of the e-Institution, in this
case, mediates also the interaction of the agents in the MAS with the view of
the environment that it supplies. Further along this line, but in the context of
organizations, ORA4MAS [34] proposes the use of artifacts to enable the access
of the agents in the MAS to the organization, providing a working environment
that agents can perceive, act upon and adapt. Following the A&A perspective,
they are concrete bricks used to structure the agents’ world: part of this world is
represented by the organizational infrastructure, part by artifacts introduced by
specific MAS applications, including entities/services belonging to the external
environment.

According to [10] there are, however, two significant differences among ar-
tifacts and e-Institutions: (i) e-Institutions are tailored to a particular, though
large, family of applications while artifacts are more generic; (ii) e-Institutions
are a well established and proven technology that includes a formal foundation,
and advanced engineering and tool support, while for artifacts, these features are
still in a preliminary phase. One of the aims of MERCURIO is to give to artifacts
both the formal foundation (in terms of commitments and interaction patterns)
and the engineering tools that they are still missing. The introduction of inter-
action patterns with an observational nature, allowing the verification of global
properties, that we aim at studying, will allow the realization of e-Institutions
by means of artifacts. The artifact will contain all the features necessary for
monitoring the on-going interactions and for detecting violations. A second step
will be to consider organizations and realize them again by means of artifacts.

141

To this aim, it is possible to exploit open source systems like CArtAgO [1],
for the programming and the execution of environments, and MOISE [35], as
organizational infrastructure.

3.4 Semantic Mediation in MAS

The problem of semantic mediation at the vocabulary and domain of discourse
levels was faced for the first time by the “Ontology Service Specification” [8]
issued by FIPA in 2001. According to that specification, an “Ontology Agent”
(OA, for short) should be integrated in the MAS in order to provide services such
as translating expressions between different ontologies and/or different content
languages and answering queries about relationships between terms or between
ontologies. Although the FIPA Ontology Service Specification represents the first
and only attempt to analyze in a systematic way the services that an OA should
provide for ensuring semantic interoperability in an open MAS, it has many
limitations. The main one is the assumption that each ontology integrated in
the MAS adheres to the OKBC model [6]. Currently, in fact, the most widely
accepted ontology language is OWL [7] which is quite different from OKBC and
cannot be converted to it in an easy and automatic way. Also, agents are allowed
to specify only one ontology as reference vocabulary for a given message, which
is a strong limitation since an agent might use terms from different ontologies in
the same message, and hence it might want to refer to more than one ontology
at the same time.

Maybe due to these limitations, there have been really few attempts to de-
sign and implement OAs. The first dates back to 2001 [62] and realizes an OA
for the COMTEC platform that implements a subset of the services of a generic
FIPA-compliant OA. In 2007 [46] integrated an OA into AgentService, a FIPA
compliant framework based on .NET [63]. Ontologies in AgentService are repre-
sented in OKBC, and hence the implementation of their OA is fully compliant
with the FIPA specification, although the offered services are a subset of the
possible ones. The only two attempts of integrating a FIPA-compliant OA into
JADE, we are aware of, are [41], and [23]. Both follow the FIPA specification
but adapt it to ontologies represented in OWL. The first proposal is aimed at
storing and modifying OWL ontologies: the OA agent exploits the Jena library
[36] to this aim. The second proposal, instead, faces the problem of “answering
queries about relationships between terms or between ontologies”. The solution
proposed by the authors exploits ontology matching techniques [29]. Apart from
[23], no other existing proposal faces that problem. Among non FIPA-compliant
solutions, we mention [37], which focuses on the process of mapping and inte-
grating ontologies in a MAS thanks to a set of agents which collaborate together,
and the proposal in [47], which implements the OA as a web service, in order to
offer its services also over the Internet.

As far as semantic mediation at the social approach level is concerned, we are
aware of no proposals in the literature. In order to take the context of count-as
rules into account, we plan to face this research issue by exploiting context aware
semantic matching techniques, that extend and improve those described in [38].

142

3.5 Software Infrastructures for Agents

The tools currently available to agent developers fail in supporting both seman-
tic interoperability and goal-directed reasoning. Nowadays, the development of
agents and multi-agent systems is based on two kinds of tools: agent platforms
and BDI (or variations) development environments. Agent platforms, such as
JADE [18, 16, 17] and FIPA-OS [2] provide only a transport layer and some ba-
sic services, but they do not provide any support for goal-directed behavior.
Moreover, they lack support for semantic interoperability because they do not
take into account the semantics of the ACL they adopt. The available BDI devel-
opment environments, such as Jadex [22] and 2APL [27], support only syntactic
interoperability because they do not exploit their reasoning engines to integrate
the semantics of the adopted ACL.

The research on Agent Communication Languages (ACL) is constantly head-
ed towards semantic interoperability [33] because the most common ACLs, e.g.,
KQML [30] and FIPA ACL [3], provide each message with a declarative semantics
that was explicitly designed to support goal-directed reasoning. Unfortunately,
the research on ACLs only marginally investigated the decoupling properties of
this kind of languages (see, e.g., [19, 20]). To support the practical development
of software agents, several programming languages have thus been introduced
to incorporate some of the concepts from agent logics. Some languages use ac-
tions as their starting point to define commitments (Agent-0, [59]), intentions
(AgentSpeak(L), [53]) and goals (3APL, [26]).

4 Expected Results

The achievements expected from this research are of different natures: scientific
result that will advance the state of the art, software products deriving from the
development of implementations, and upshots in applicative settings.

The formal model developed in MERCURIO will extend commitment pro-
tocols by introducing behavioral rules. The starting point will be the work done
in [14, 13, 12]. This will advance the current state of the art with respect to the
specification of commitment protocols and also with respect to the verification
of interaction properties (like interoperability and conformance), for which there
currently exist only preliminary proposals [61]. Another advancement concerns
the declarative specification of protocols and their usage by designers and soft-
ware engineers. The proposals coming from MERCURIO conjugate the flexibility
and openness features that are typical of MAS with the needs of modularity and
compositionality that are typical of design and development methodologies. The
adoption of commitment protocols makes it easier and more natural to represent
(inter)actions that are not limited to communicative acts but that include in-
teractions mediated by the environment, namely actions upon the environment
and the detection of variations of the environment ruled by “contracts”.

For what concerns the coordination infrastructure, a first result will be the
definition of environments based on the A&A meta-model and on the CArtAgO

143

computational framework, that implement the formal models and the interac-
tion protocols mentioned above. A large number of the environments, described
in the literature supporting communication and coordination, have been stated
considering purely reactive architectures. In MERCURIO we will formulate en-
vironment models that allow goal/task-oriented agents (those that integrate pro-
activities and re-activities) the participation to MAS. Among the specific results
related to this, we foresee an advancement of the state of the art with respect
to the definition and the exploitation of forms of stigmergic coordination [54] in
the context of intelligent agent systems. A further contribution regards the flex-
ible use of artifact-based environments by intelligent agents, and consequently
the reasoning techniques that such agents may adopt to take advantage of these
environments. First steps in this direction, with respect to agents with BDI
architectures, have been described in [51, 48].

The MERCURIO project aims at putting forward an extension proposal for
the FIPA ACL standard, where the FIPA ACL-based communication is inte-
grated with forms of interactions, that are enabled and mediated by the envi-
ronment. This will lead to an explicit representation of environments as first-class
entities (in particular endogenous environments based on artifacts) and of the re-
lated model of actions/perceptions. Furthermore we will formulate an improved
version of the MAS programming language/framework JaCa, where we plan to
integrate the agent-oriented programming language Jason, which is based on a
BDI architecture, with the CArtAgO computational framework. This result will
extend the work done so far in this direction [55, 57].

In MERCURIO we will implement a prototype of the reference infrastruc-
tural model defined by the project. The prototype will be based on the develop-
ment and integration of existing open-source technologies including JADE [4],
the reference FIPA platform, CArtAgO [1], the reference platform and tech-
nology for the programming and execution of environments, and agent-oriented
programming languages such as Jason [5] and 2APL [27]. The software platform
will include implementations of the “context sensitive” ontology alignment al-
gorithms developed in MERCURIO. The algorithms will be evaluated against
standard benchmarks and also against the case studies devised in MERCURIO.

Aside from the effects on research contexts, we think that the project may
give significant contributions also to industrial applicative contexts, in particular
to those companies working on software development in large, distributed sys-
tems and in service-oriented architectures. Among the most interesting examples
are the integration and the cooperation of e-Government applications (services)
spread over the nation. For this reason, MERCURIO will involve some compa-
nies in the project, and in particular in the definition of realistic case studies
against which the project’s products will be validated. As regards (Web) services,
some fundamental aspects promoted by the SOA model, such as autonomy and
decoupling, are addressed in a natural way by the agent-oriented paradigm. De-
velopment and analysis of service-oriented systems can benefit from the increased
level of abstraction offered by agents, by reducing the gap between the modeling,
design, development, and implementation phases.

144

Acknowledgements

We thank S. Mantix for the valuable support and helpful discussions.

References

1. CARTAGO. http://cartago.sourceforge.net.

2. FIPA OS. http://fipa-os.sourceforge.net.

3. FIPA specifications. http://www.fipa.org.

4. JADE. http://jade.tilab.com/.

5. JASON. http://jason.sourceforge.net.

6. OKBC. http://www.ai.sri.com/ okbc/.

7. OWL. http://www.w3.org/TR/owl-features/.

8. Fipa architecture board, fipa ontology service specification, 2001.
http://www.fipa.org/specs/fipa00086/.

9. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Verifi-
able agent interaction in abductive logic programming: The sciff framework. ACM
Trans. Comput. Log., 9(4), 2008.

10. J. L. Arcos, P. Noriega, J. A. Rodŕıguez-Aguilar, and C. Sierra. E4MAS Through
Electronic Institutions. In Weyns et al. [68], pages 184–202.

11. M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, and M. P. Singh. Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In Proc. of the 8th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2009, pages 843–850. IFAAMAS, 2009.

12. M. Baldoni, C. Baroglio, and E. Marengo. Behavior-oriented Commitment-based
Protocols. In H. Coelho and M. Wooldridge, editors, Proc. of 19th European Con-
ference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 2010. To
appear.

13. M. Baldoni, C. Baroglio, and E. Marengo. Commitment-based Protocols with
Behavioral Rules and Correctness Properties of MAS. In A. Omicini, S. Sardina,
and W. Vasconcelos, editors, Proc. of International Workshop on Declarative Agent
Languages and Technologies, DALT 2010, held in conjuction with AAMAS 2010,
pages 66–83, Toronto, Canada, May 2010.

14. M. Baldoni, C. Baroglio, and E. Marengo. Constraints among Commitments: Reg-
ulative Specification of Interaction Protocols. In A. Artikis, J. Bentahar, A. Artikis,
and F. Dignum, editors, Proc. of International Workshop on Agent Communica-
tion, AC 2010, held in conjuction with AAMAS 2010, pages 2–18, Toronto, Canada,
May 2010.

15. M. Baldoni, G. Boella, and L. van der Torre. Bridging Agent Theory and Ob-
ject Orientation: Agent-like Communication among Objects. In R. H. Bordini,
M. Dastani, J. Dix, and A. Seghrouchni, editors, Post-Proc. of the International
Workshop on Programming Multi-Agent Systems, ProMAS 2006, volume 4411 of
Lecture Notes in Artificial Intelligence (LNAI), pages 149–164. Springer, 2007.

16. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent De-
velopment Framework. In R. H. Bordini, M. Dastani, J. JDix, and A. El Fallah-
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Ap-
plications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, 2005.

145

17. F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE: A software framework
for developing multi-agent applications. Lessons learned. Information & Software
Technology, 50(1-2):10–21, 2008.

18. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a
FIPA-compliant agent framework. Softw., Pract. Exper., 31(2):103–128, 2001.

19. F. Bergenti and F. Ricci. Three Approaches to the Coordination of Multiagent Sys-
tems. In Proceedings of the 2002 ACM Symposium on Applied Computing (SAC),
pages 367–372, Madrid, Spain, March 2002. ACM.

20. F. Bergenti, G. Rimassa, M. Somacher, and L. M. Botelho. A FIPA Compliant Goal
Delegation Protocol. In M.-P. Huget, editor, Communication in Multiagent Sys-
tems, Agent Communication Languages and Conversation Polocies, volume 2650
of Lecture Notes in Computer Science, pages 223–238. Springer, 2003.

21. L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services
Compatible? In M.-C. Shan, U. Dayal, and M. Hsu, editors, Technologies for E-
Services, 5th International Workshop, TES 2004, volume 3324 of Lecture Notes in
Computer Science, pages 15–28, Toronto, Canada, August 2004. Springer.

22. L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A bdi agent system combining
middleware and reasoning. In Software Agent-Based Applications, Platforms and
Development Kits. Birkhauser Book, 2005.

23. D. Briola, A. Locoro, and V. Mascardi. Ontology Agents in FIPA-compliant Plat-
forms: a Survey and a New Proposal. In M. Baldoni, M. Cossentino, F. De Paoli,
and V. Seidita, editors, Proc. of WOA 2008: Dagli oggetti agli agenti, Evoluzione
dell’agent development: metodologie, tool, piattaforme e linguaggi. Seneca Edizioni,
2008.

24. A. K. Chopra and M. P. Singh. Nonmonotonic Commitment Machines. In
F. Dignum, editor, Advances in Agent Communication, International Workshop
on Agent Communication Languages, volume 2922 of Lecture Notes in Computer
Science, pages 183–200, Melbourne, Australia, July 2003. Springer.

25. A. K. Chopra and M. P. Singh. An Architecture for Multiagent Systems: An
Approach Based on Commitments. In Proceedings of the AAMAS Workshop on
Programming Multiagent Systems (ProMAS), 2009.

26. M. Dastani, B. M. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A Programming
Language for Cognitive Agents Goal Directed 3APL. In M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Programming Multi-Agent Systems, First Inter-
national Workshop, PROMAS 2003, volume 3067 of Lecture Notes in Computer
Science, pages 111–130, Melbourne, Australia, July 2003. Springer.

27. Mehdi Dastani. 2apl: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

28. M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An Agent-
Based Middleware for Electronic Institutions. In AAMAS, pages 236–243. IEEE
Computer Society, 2004.

29. J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

30. T. Finin, Y. Labrou, and J. Mayfield. Kqml as an agent communication language.
In Bradshaw J., editor, Software Agents. MIT Press, Cambridge, 1997.

31. N. Fornara, F. Viganò, and M. Colombetti. Agent communication and artificial
institutions. Autonomous Agents and Multi-Agent Systems, 14(2):121–142, 2007.

32. David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

33. S. Heiler. Sematic Interoperability. ACM Computing Surveys, 27(2):271–273, 1995.

146

34. J. F. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organ-
isations with organisational artifacts and agents: “Giving the organisational power
back to the agents”. Autonomous Agents and Multi-Agent Systems, 20, 2009.

35. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Developing organ-
ised multiagent systems using the MOISE. IJAOSE, 1(3/4):370–395, 2007.

36. Jena – A Semantic Web Framework for Java. Online, accessed on June, 14th,
2010. http://jena.sourceforge.net/.

37. L. Li, B. Wu, and Y. Yang. Agent-based ontology integration for ontology-based
application. In Australasian Ontology Workshop, AOW 2005, Proceedings, pages
53–59, 2005.

38. V. Mascardi, A. Locoro, and F. Larosa. Exploiting Prolog and NLP techniques for
matching ontologies and for repairing correspondences. In 24th Convegno Italiano
di Logica Computazionale, CILC 2009, Proceedings, 2009.

39. C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social Roles and their Descriptions. In D. Dubois, C. A. Welty,
and M.-A. Williams, editors, Principles of Knowledge Representation and Reason-
ing: Proceedings of the Ninth International Conference (KR2004), pages 267–277,
Whistler, Canada, June 2004. AAAI Press.

40. P. McBurney and S. Parsons. Games That Agents Play: A Formal Framework for
Dialogues between Autonomous Agents. Journal of Logic, Language and Informa-
tion, 11(3):315–334, 2002.

41. M. Obitko and V. Snáěl. Ontology repository in multi-agent system. In M. H.
Hamza, editor, Conference on Artificial Intelligence and Applications, AIA 2004,
Proceedings, 2004.

42. E. Oliva, P. McBurney, and A. Omicini. Co-argumentation Artifact for Agent
Societies. In I. Rahwan, S. Parsons, and C. Reed, editors, Argumentation in Multi-
Agent Systems, 4th International Workshop, ArgMAS 2007, volume 4946 of Lecture
Notes in Computer Science, pages 31–46, Honolulu, HI, USA, May 2007. Springer.

43. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-
agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

44. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
Artifacts: Environment-Based Coordination for Intelligent Agents. In 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), pages 286–293, New York, USA, August 2004.

45. Singh M. P. An Ontology for Commitments in Multiagent Systems. Artif. Intell.
Law, 7(1):97–113, 1999.

46. A. Passadore, C. Vecchiola, A. Grosso, and A. Boccalatte. Designing agent interac-
tions with Pericles. In 2nd International Workshop on Ontology, Conceptualization
and Epistemology for Software and System Engineering, ONTOSE 2007, Proceed-
ings, 2007.

47. A. Peña, H. Sossa, and F. Gutierrez. Web-services based ontology agent. In 2nd
International Conference on Distributed Frameworks for Multimedia Applications,
DFMA 2006, Proceedings, pages 1–8, 2006.

48. M. Piunti and A. Ricci. Cognitive Use of Artifacts: Exploiting Relevant Information
Residing in MAS Environments. In J.-J. Ch. Meyer and J. Broersen, editors,
Knowledge Representation for Agents and Multi-Agent Systems, First International
Workshop, KRAMAS 2008, volume 5605 of Lecture Notes in Computer Science,
pages 114–129, Sydney, Australia, September 2008. Springer.

49. M. Piunti, A. Ricci, O. Boissier, and J. F. Hübner. Embodied Organisations in MAS
Environments. In L. Braubach, W. van der Hoek, P. Petta, and A. Pokahr, editors,

147

Multiagent System Technologies, 7th German Conference, MATES 2009, volume
5774 of Lecture Notes in Computer Science, pages 115–127, Hamburg, Germany,
September 2009. Springer.

50. M. Piunti, A. Ricci, O. Boissier, and J. F Hübner. Embodying Organisations in
Multi-agent Work Environments. In Proceedings of the 2009 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT, pages 511–518.
IEEE, 2009.

51. M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-Directed Interactions in
Artifact-Based MAS: Jadex Agents Playing in CARTAGO Environments. In IAT,
pages 207–213. IEEE, 2008.

52. S. K. Rajamani and J. Rehof. Conformance Checking for Models of Asynchronous
Message Passing Software. In Computer Aided Verification CAV’02, number 2404
in LNCS, pages 166–179. Springer, 2002.

53. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In W. Van de Velde and J. W. Perram, editors, MAAMAW, volume 1038
of Lecture Notes in Computer Science, pages 42–55. Springer, 1996.

54. A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva. Cognitive stigmergy:
Towards a framework based on agents and artifacts. In Weyns et al. [68], pages
124–140.

55. A. Ricci, M. Piunti, D. L. Acay, R. H. Bordini, J. F. Hübner, and M. Dastani.
Integrating heterogeneous agent programming platforms within artifact-based en-
vironments. In L. Padgham, D. C. Parkes, J. Müller, and S. Parsons, editors,
AAMAS (1), pages 225–232. IFAAMAS, 2008.

56. A. Ricci, M. Piunti, and M. Viroli. Environment Programming in MAS – An
Artifact-Based Perspective. Autonomous Agents and Multi-Agent Systems. To
appear.

57. A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment Programming in
CArtAgO. In Multi-Agent Programming II: Languages, Platforms and Applica-
tions, Multiagent Systems, Artificial Societies, and Simulated Organizations. 2009.

58. A. Ricci, M. Viroli, and A. Omicini. The A&A programming model and technology
for developing agent environments in mas. In M. Mehdi Dastani, A. El Fallah-
Seghrouchni, A. Ricci, and M. Winikoff, editors, PROMAS, volume 4908 of Lecture
Notes in Computer Science, pages 89–106. Springer, 2007.

59. Y. Shoham. Agent-Oriented Programming. Artif. Intell., 60(1):51–92, 1993.
60. M. P. Singh. A social semantics for agent communication languages. In F. Dignum

and M. Greaves, editors, Issues in Agent Communication, volume 1916 of Lecture
Notes in Computer Science, pages 31–45. Springer, 2000.

61. M. S. Singh and A. K. Chopra. Correctness Properties for Multiagent Systems.
In M. Baldoni, J. Bentahar, M. B. van Riemsdijk, and J. Lloyd, editors, DALT,
volume 5948 of Lecture Notes in Computer Science, pages 192–207. Springer, 2009.

62. H. Suguri, E. Kodama, M. Miyazaki, H. Nunokawa, and S. Noguchi. Implemen-
tation of FIPA Ontology Service. In Workshop on Ontologies in Agent Systems,
OAS’01, Proceedings, 2001.

63. C. Vecchiola, A. Grosso, and A. Boccalatte. AgentService: a framework to de-
velop distributed multi-agent systems. Int. J. Agent-Oriented Software Engineer-
ing, 2(3):290 – 323, 2008.

64. M. Venkatraman and M. P. Singh. Verifying compliance with commitment proto-
cols. Autonomous Agents and Multi-Agent Systems, 2(3), 1999.

65. M. Verdicchio and M. Colombetti. Communication Languages for Multiagent Sys-
tems. Computational Intelligence, 25(2):136–159, 2009.

148

66. M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, and F. Zambonelli. Infrastructures
for the environment of multiagent systems. Autonomous Agents and Multi-Agent
Systems, 14(1):49–60, 2007.

67. D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30,
2007.

68. D. Weyns, H. Van Dyke Parunak, and F. Michel, editors. Environments for Multi-
Agent Systems III, Third International Workshop, E4MAS 2006, Hakodate, Japan,
May 8, 2006, Selected Revised and Invited Papers, volume 4389 of Lecture Notes
in Computer Science. Springer, 2007.

69. P. Yolum and M. P. Singh. Commitment machines. In Proc. of ATAL, pages
235–247, 2001.

70. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
The Gaia methodology. ACM Trans. Softw. Eng. Methodol., 12(3):317–370, 2003.

149

Contextual Integrity and Privacy Enforcing
Norms for Virtual Communities

Yann Krupa, Laurent Vercouter

Laboratory for Information Science and Technology (LIST),
ISCOD team

École des Mines de Saint-Étienne
Saint-Étienne, France

{krupa,vercouter}@emse.fr

Abstract. Contextual Integrity has been proposed to define privacy in
an unusual way. Most approaches take into account a sensitivity level or
a “privacy circle”: the information is said to be private or public and to
be constrained to a given group of agents, e.g. “my friends”. In the oppo-
site, Contextual Integrity states that any information transmission can
trigger a privacy violation depending on the context of the transmission.
We use this theory to describe a framework that one can use in an open
and decentralised virtual community to handle privacy in a socially en-
forced way. This paper describes a framework, in which we can formally
describe privacy constraints, that are used to detect privacy violations
according to the Contextual Integrity theory. This framework is part of
an ongoing work aiming at applying social control to agents that handle
the information, so that malicious agents are excluded from the system.

1 Introduction

Most of the works on privacy focus on security as a means of preserving privacy,
either by using a central authority that controls the information access[2, 3],
cryptography[11], or by using trusted computing techniques[8, 6]. Some other
views[9, 4] aim at designing some preferences that users can attach to the data
they “own” without taking into account the possibility of deception by other
agents.

While a central authority may be a good solution for a range of applica-
tions, it is not possible when working in a decentralized and open system with
autonomous agents. Therefore, solutions like Purpose Based Access Control[3]
cannot be applied.

One of the problems with Digital Right Management and Trusted Comput-
ing measures in general, is that they are very constraining. They impose the
use of heavy infrastructure or limit the possibilities of information exchange.
These constraints, if they are unacceptable for the users, lead them to interact
outside the system that is provided, making every implemented security feature
inefficient.

Social regulation is another approach where it is physically possible that vio-
lations occur in the system. However, users are observed by the society (usually

150

2 Yann Krupa, Laurent Vercouter

their neighbours) that can spot them and socially exclude them by ostracism if
they commit violations.

So far, very few works consider privacy preserving under the social angle.
Yet, it is a prominent problem in applications such as social networks, virtual
communities and multi-agent systems, where a social framework will cope natu-
rally with all the social components already working in these systems like trust,
reputation, roles for exemple.

Our work tackles the problem of privacy by using social control in decen-
tralized and open multiagent systems. It is based on Nissenbaum’s “Contextual
Integrity” theory[7] which defines privacy in a socially relevant way. Therefore it
is possible to assess privacy violations from the agent point of view, and apply
a social control relying on available social mechanisms, such as the use of trust
management techniques, to prevent further violations. Privacy violations will be
reduced without requiring a central authority or invasive security measures.

Contextual Integrity states that any information, as inoffensive as it could
seem, can potentially harm a set of agents. It means that Contextual Integrity
does not make assessment towards the degree of sensitivity of a given informa-
tion. All information is regarded as evenly sensitive/insensitive. We call the set
of agents that can be harmed by an information, its Targets. We say that an
agent is harmed by an information if it makes the agent lose any kind of re-
source e.g. time, reputation, acquaintances, role. An agent sending information
is called Propagator and the agent receiving the information is called Receiver.
During the different moments of the process and depending on the information,
those attributions may change from one agent to another.

The goal of our work is to provide means to a propagator to use logical rea-
soning and trust mechanisms to make assessments about a further transmission:
“will the transmission of information i to agent z be a violation of contextual
integrity?”. A receiver should also be able to do the same process when receiving
an information: “was the reception of information i from agent a a violation?”. If
a violation is detected, social sanctions are thrown against the violating agents.

This paper describes this ongoing work, it proposes a framework in which we
can formally describe privacy constraints according to the Contextual Integrity
theory and norms in order to enforce these constraints. This framework is then
used to detect the occurrence of privacy violations. The sequel of this article
is organized as follows. Section 2 presents Nissenbaum’s Contextual Integrity
theory and how we interpret it to build appropriateness laws. The characteristics
of the application that we consider, virtual communities, is described in section 3
and it is formally described in order to be able to detect automatically privacy
violations. Then, a set of privacy enforcing norms are defined in order to give
a roadmap for agent’s behavior in section 4. Finally, section 5 shows how these
social mechanisms are used to prevent and punish privacy violations on a sample
application, and we conclude the paper in section 6.

2 Contextual Integrity

In this section we present the theory of Contextual Integrity[7] and introduce
the concept of appropriateness extracted from this theory.

151

Handling Privacy as Contextual Integrity in Virtual Communities 3

2.1 Original Works

In some approaches[8] privacy is viewed as binary (either the information is
private or not). Other models consider different levels of privacy[2] or circles[4],
whereas contextual integrity focuses on the appropriateness of a transmission,
or use of information. Every information is potentially sensitive.

In order to have a complete description of the foundations of the theory, the
reader should refer to the original article[7]. Here we will only focus our work on
the concept of “violation”. Nissenbaum says that “whether a particular action
is determined a violation of privacy is a function of :

1. the nature of the situation/context
2. nature of the information with regard to the context
3. roles of agents receiving the information
4. relation of agents to information subject
5. terms of dissemination defined by the subject”

Those ideas are way too vague to be used as-is in a software application, we
define hereafter a more precise definition of the concepts.

2.2 Appropriateness

We use the term appropriateness to define the set of laws that makes a trans-
mission inappropriate (i.e. will trigger a violation of privacy) if one of these laws
is violated. The term “Appropriateness” is inspired by[1].

We use the term “target” instead of Nissenbaum’s term “subject”. A subject
is directly related to the information, while a target may not even appear in the
information. For example, if the information is a picture of Mr X’s dog doing
bad things on X’s neighbour’s grass, the subject is the dog but the target, the
one that can be harmed by the disclosure of the picture, is X. Therefore, we
think that considering the target instead of the subject is more versatile.

We can then define a flow as appropriate if all of the following conditions hold,
and inappropriate if one of the conditions does not hold (numbers in parenthesis
refers to the corresponding statement in Nissenbaum’s definition above):

1. Transmission context must correspond to the information nature (1+2),
2. Agent must have a role within the transmission context (3),
3. Agents must not have incompatible relations with target1 (4),
4. The target’s preferences must be respected (5)

If a flow is inappropriate then there is a privacy violation. Here we can see
the point of this approach: an information is not “public” or “private”, every
information can trigger a privacy violation if it is used inappropriately.

Thereafter, we illustrate the 4 statements of appropriateness with examples:

1 This item is a work in progress and is not taken into account in the following parts.

152

4 Yann Krupa, Laurent Vercouter

1. In the large sense, the context of a transmission can be seen as the envi-
ronment where and when the transmission takes place. In our framework,
for simplification means, we will say that the context of a transmission is
declared by the propagator. A context corresponds to the information if
it reflects the nature of the information, e.g.: personal health information
corresponds to medical context.

2. Agents participating in the transaction should have a role associated to this
context[1]. For example, a medical doctor has a role belonging to the medical
context.

3. Sometimes, it is not sufficient that the agent has some roles belonging to the
context of the transmission. Because some relations between the target of the
information and the agent receiving the information may be inappropriate.
For example, consider the case of an agent A who has an illness, and an agent
B who is both a medical doctor and A’s boss. It may be inappropriate for
B to know A’s disease because those agents are having an “out of context”
relationship (hierarchical relationship).

4. If one of the targets of the information specifies preferences regarding the
propagation of the information, it is inappropriate to violate those prefer-
ences.

As appropriateness has been defined it is now necessary to define the kind
of application we consider, information transmission in virtual communities. Af-
terwards, we propose a formalism of appropriateness to be used in this kind of
application.

3 Framework

This section presents the application domain and all the components needed
to handle contextual integrity as defined in the previous section, as well as a
formalism of appropriateness.

3.1 Privacy Preservation in Virtual Communities

In several types of virtual communities, such as social networks or virtual enter-
prises2, users communicate and share information using software systems that
support the community. These applications raise a difficult problem of privacy
preservation. On the one hand, it is the main goal of these communities to enable
communication so that users can easily send information to their contacts. On
the other hand, as it is stated by the contextual integrity theory, each piece of
communicated information may result in a privacy violation. Indeed, if we con-
sider the case of a virtual enterprise, the community includes users with different
hierarchical roles, belonging to different services but also different enterprises.
It is obvious that all information should not be sent to other users without
analysing the nature of information and of the concerned users. The same case

2 A virtual enterprise is a temporary collaborative network of enterprises made in
order to share resources and competences.

153

Handling Privacy as Contextual Integrity in Virtual Communities 5

occurs in professional or personal social networks in which users’ contacts can
be her colleagues, siblings, friends.

The goal of our work is to specify a software assistant agent that is able
to help a user to preserve privacy in a virtual community. The assistance is
both to preserve the user’s privacy by providing advices when an information
is communicated (should he send this information or not to a given contact?),
and to preserve the other users’ privacy by detecting when a privacy violation
occurred and should be punished. This paper describes the first steps of this
ongoing work by defining a language to express privacy constraints and means
to detect privacy violations.

The virtual community that we consider has the following characteristics. It
works as a peer-to-peer network, meaning that information is exchanged by a
communication between one sender and one receiver. Moreover, it is a decen-
tralized and open system. It is thus impossible to define a centralized control
that relies on a global and complete perception of communications. We have
chosen a system with these features to be as general as possible. By proposing
a local assistance to users, the assistant agent can be used both in centralized
and decentralized systems and it does not constrain the system scalability. The
choice of peer-to-peer communication is also general enough to be able to rep-
resent other kinds of communications. For instance, if we want to consider a
social network in which information is exchanged by publishing it on a page
or a “wall” readable by the user’s contacts, it can be represented by several
one-to-one communications.

In order to be able to define privacy preservation according to contextual
integrity, we need to introduce two concepts in the virtual community: con-
text and role. The context describes the situation in which an information is
exchanged. Examples of context are “Dave’s work”, “John’s family”, “health”.
Roles are defined within a context and attached to users. Examples of roles in the
three contexts mentioned above are respectively “Dave’s boss”, “John’s father”,
“medical doctor”. There can multiple roles per context. In this paper, we assume
that users’ roles and their corresponding contexts are provided by organisational
entities that act as repositories. These entities are able to return the role asso-
ciated to a specific user and the context associated with a specific role. For this
purpose, it is possible to use organisational multiagent infrastructures[5].

These concepts are useful to be able to express rather fine rules for Contextual
Integrity. We use them in the next subsections to allow the assistant agent to
reason on privacy violations.

3.2 Message Structure

Users exchange information encapsulated in a message. Information is raw
data. We don’t make assessment about the structure of the information and leave
it free. A message encapsulates information plus meta-information described
below.

First, from a given information, can be computed a unique reference that
allows to refer unambiguously to the information without carrying itself the
information (Hash algorithms like Message Digest[10] can be used).

154

6 Yann Krupa, Laurent Vercouter

Then, the message adds the following meta-information:

– Context Tags: tags referring to the context of the information
– Target Tags: tags referring to the targets of the information
– Privacy Policies: policies expressing preferences regarding further distribu-

tion of information
– Transmission Chain: a chain of transmissions that allows to keep track of

the message path in the system

Each of these components may be digitally signed by agents that wish to
support the meta-information accountability. When signing a meta-information
an agent engages his responsibility. The semantics that relies behind the signa-
ture is a certification: i.e. the agent that signs the context tag “medical context”
certifies that the information is about medical context. Therefore, it is very
important that a meta-information, even if it can be detached from the infor-
mation (which is possible), cannot be reattached to another information. We
prevent that from happening by including the information hash before signing.
Signatures are formed by a name and a signature (RSA signature for exam-
ple[11]). The transmission chain allows to keep track of the message path among
the agents. Every agent is required to sign the chain before propagating a mes-
sage, an agent adds his signature including his own name and the name of the
receiver of the message.

3.3 Primitives

To allow the agent to recover data regarding the concepts described earlier, like
the meta-information or the roles of agents, we need to provide the agents a set
of logical primitives. These primitives can then be used to express constraints
about transmission of information.

1. Primitives based on meta-information:
– information(M,I). Means that I is the information3 encapsulated in

message M.
– contexttag(C,A,M). Means that C is the context tag for message M

signed by agent A.
– targettag(T,A,M). T is the target tag for message M, signed by A.
– policy(P,A,I). There is a policy P signed by agent A for information

I.
2. Primitives based on transmission roles:

– receiver(X,M). Agent X is receiving the message M.
– propagator(X,M). Agent X is sending the message M.

3. Primitives based on agent beliefs:
– target(X,I). The agent believes that agent X is targeted by the in-

formation I.

3 The primitives are referring to an information I or a message M. This is because some
primitives will be specific to a given message M, and some others will be common
to all messages containing the same piece of information I.

155

Handling Privacy as Contextual Integrity in Virtual Communities 7

– policyvalid(P,I). The agent believes that the preferences expressed
by policy P are respected for the information I.

– context(C,I). Means that the agent believes that C is the context
of information I

– role(A,R). The agent believes that Agent A has the role R.
– rolecontext(R,C). The agent believes that role R belongs to context

C (role “surgeon” belongs to Medical context).
– link(X,Y). The agent believes that agent X is capable of communi-

cating with Y.
Now, based on this primitives, we are able to express preferences or norms.

3.4 Appropriateness Laws

Our goal is to obtain some simple laws that agents can rely on to be able to
decide if a given transmission of information should be seen as a violation or
not.
These appropriateness laws are thereafter abbreviated as A-laws.
This is the definition of the A-laws we propose in Prolog-like code:

– Context declared by the propagator must be equal to the information context
(Fig. 1).

– Receiver must have a role within the transmission context (Fig. 2).

fitcontext(C,M):-

information(M,I),

propagator(P,M),

context(C,I),

contexttag(C,P,M).

Fig. 1. fitcontext

fitrole(C,M):-

receiver(Rc,M),

role(Rc,R),

rolecontext(R,C).

Fig. 2. fitrole

– The target’s preferences must be respected:
• In the case there is no4 policy defined by a target then fitpolicy(M)

holds (Fig. 3).
• If there is a policy defined by the target, the agent must respect it (Fig.

4).

Therefore, a transmission is defined as appropriate for a message M if the
following formula holds:

appropriate(M):-

fitcontext(C,M),

fitrole(C,M),

fitpolicy(M).

If the definition above does not hold, then we can say that the transmission
is inappropriate, there is a violation of the contextual integrity.

4 \+ is the negation-as-failure in Prolog.

156

8 Yann Krupa, Laurent Vercouter

fitpolicy(M):-

information(M,I),

\+ (

policy(P,T,I),

target(T,I)

).

Fig. 3. fitpolicy (when no policy is defined)

fitpolicy(M):-

information(M,I),

policy(P,T,I),

target(T,I),

policyvalid(P,I).

Fig. 4. fitpolicy (when a policy exists)

3.5 Policies

The A-laws define what is appropriate or not in a general point of view, but
targets can define policies (preferences) in order to constrain the information.
These preferences are defined for a given information by a given agent who signs
the policy. In the system, it is not possible to insure that a policy cannot be
detached from the information it is referring to, i.e. an agent may erase the policy
at some point. But it is ot possible to reattach a policy to another information,
because the policy is signed, and contains a pointer to the information it refers
to.

A policy is composed by several statements. A statement is composed
by several primitives from the ones described in section 3.3 and by a type of
statement that can be:

– forbidden(I):-

Declares a situation that should not occur within a transmission of informa-
tion I.

– mandatory(I):-

Declares a situation that has to occur within a transmission of information
I.

A given policy is fulfilled if none of its forbidden statements holds (if one
holds, then it is unfulfilled) and one of its mandatory statements holds[1]5.

An example of policy for a given information identified by ’info99’ is given
below. It is composed by two forbidden statements (do not send data to an agent
who has a common contact with the target AND don’t send data to the target)
and one empty mandatory statement.

forbidden(info99):-

information(M,info99),

receiver(X,M),

target(T,info99),

link(X,Z),

link(Z,T).

forbidden(info99):-

information(M,info99),

receiver(X,M),

target(X).

mandatory(info99).

5 A statement is composed by a conjunction of primitives, therefore the disjunction
is expressed by defining multiple statements of the same kind. This is why only
one mandatory statement is required to validate the policy and one forbidden to
invalidate it.

157

Handling Privacy as Contextual Integrity in Virtual Communities 9

In order to test the primitive policyvalid(P,I), an agent adds to his
memory all the statements contained in policy P (we suppose here that we have
a primitive addpolicy(P) to do just that):

policyvalid(P,I):-

addpolicy(P),

\+ forbidden(I),

mandatory(I).

4 Privacy Enforcing Norms

As shown in the previous sections, we need the agents to check the transmissions,
to be able to see if there are violations and punish the responsibles. This section
propose a set of norms that defines what should be the behavior of a compliant
agent in the system. Then it describes the punition mechanisms and finally
discusses the inherent problems regarding the subjectivity of beliefs.

4.1 Definition

The basic component of the system is the set of A-laws, that express Contextual
Integrity violation. But the keystone of the system are the Privacy Enforcing
Norms (PENs), defined in this section, that instruct the agents to respect the
A-laws and punish those who do not.
The PENs are the following :

1. Respect the Appropriateness laws
2. Sign the transmission chain before sending
3. Do not send information to untrusted agents
4. Delete information from violating or untrusted agents
5. Punish agents violating these norms (this one included)

The first norm (PEN 1) that we propose is meant to protect the A-laws from
being violated : “Respect the Appropriateness laws”.

From our point of view, every agent must take responsibility when doing a
transmission. Thus we define a norm stating that every agent has to sign the
transmission chain (in order to backtrack the potential violation to its source).
We also consider that sending information to an agent while knowing that he will
commit a violation, is a violation itself. Two new norms are then defined : “Sign
the transmission chain before sending (PEN 2) ; Do not send information to
untrusted agents (PEN 3).” The PEN 3 also implements the social punishment,
because agents will stop communicating with these untrusted agents.

The fourth norm aims at minimizing the violations by deleting information
received from unreliable agents (PEN 4).

Norms that the agents should respect have been defined, but we want to be
sure that the agents in the system will punish those who do not respect the
norms, henceforth punishing those that do not punish agents not respecting the
norms. This last norm (PEN 5) insures consistency of the PENs, because an

158

10 Yann Krupa, Laurent Vercouter

agent that decides to violate a norm will be punished, others will stop trusting
him and eventually he will become socially isolated.

Therefore norms are not enforced by the system but by the agents themselves
and agents refusing to enforce the norms will be punished by other agents. For
now, the punishment is implemented as a social punishment: an agent witnessing
a violation has to send a message to all of its contacts stating the details of
this violation. The following section gives more details about this punishment
mechanism.

4.2 Punishment

When an agent detects a violation of the PENs, PEN 5 states that he has to
send a punishment message. This message is meant to describe the violation so
that other agents can punish the culprit. The message has the same structure
than all the messages in the system: information and meta-information. Here
the information part contains:

– The meta-information of the original message source of the violation
– A description of the violation usign the primitives of section 3.3

Sending the meta-information of the original message is useful to provide
evidence to other agents that may not believe that there was a violation. The
advantage of sending only the meta-information is that the agent will not trans-
mit the information itself (which could in turn trigger a violation and so on).

The violation is described using the primitives, and the PEN that has been
violated. For instance, if the PEN 3 has been violated by Bob, the following
primitives will be sent:

pen3violation(Bob,mess45),

receiver(John,mess45),

propagator(Bob,mess45),

untrustworthy(John).

These primitives will be handled and verified by the receiving agent. If the
agent agrees with every primitive in the argument, then he can propagate the
punishment message and punish the culprit by revising its trust. There are sit-
uations where the agents may not have the same beliefs, e.g. John may or may
not be trustworthy depending on the agent making the assesment.

4.3 Discussions on Subjectivity

Some of the PENs are very subjective, because they are based on beliefs. There-
fore 2 given agents in the system may not have the same belief and interpret the
norms differently. For instance, two agents, A and B may have different beliefs
regarding agent X trustworthiness: A trusts X but B does not. Now A sends a
message to X who in turn sends the message to B. In the transmission chain,
B is able to see that the transmission occured between A and X, which violates
norm 3. Going back from A point of view, it would not be fair to be punished
for this transmission as X seems trustworthy for him.

159

Handling Privacy as Contextual Integrity in Virtual Communities 11

B witnessed a violation so he has to send a punishment message. The punish-
ment message has to argue about the punition. More than just saying “A does
not respect the norms”, B makes a message stating that “A violated the third
norm because B believes that X is untrustworthy and A sent a message to X”.
The agent receiving this violation message is going to check these statements
and if he agrees, he can revise his trust level towards A.

Along with the violation description, the punishment message contains the
meta-information of the original message. This allows other agents to check the
PENs and violation description. For instance, it will allow agents to check that
A did sent the information to X by looking at the transmission chain contained
in the meta-information.

4.4 Usage

This section describes how the agents are meant to protect privacy using the
tools provided in the previous sections. As it is said in the introduction, our goal
here is to handle privacy from the agent perspective to minimise the number of
violations in the whole system.

There will be two main situations:

– Receiving: When the agent receives an information: “Does the agent that
sent me this information made a violation by sending it to me?”

– Propagating: When the agent is about to send information: “Am I going to
make a violation if I send the information to this agent?”

Trust In the framework presented in this article, agents may perceive things
differently. If we take a closer look at the primitive context(C,I) described
earlier, for instance, it is stated that it means that the “agent believes that C is
the context of information I”. Therefore, some agent X may believe for a given
information that the context is O, and another agent Y may believe that the
context is P. This situation can happen because the agents are autonomous and
have beliefs that can be different from one to another. As they have different
beliefs, some agent may think that a given transmission is inappropriate, and
another may think that it is not. Because of this uncertainty, when an agent
detects a violation, he is not able to be sure that the other agent made the
violation on purpose, therefore it will be unfair to kick him directly from the
system. This is where trust comes in, this kind of “soft security” is able to
cope with detection errors while still being able to exclude the ones that make
violations. Trust is one of the main components to decide who is reliable or not
for handling our information. If someone is untrustworthy, we are not willing to
send him any piece of information.

The trust management component of agents is not yet implemented and is
being defined in our current ongoing work. We will probabaly use an adaptation
of existing computational trust models for multi-agent systems such as LIAR[13]
or Repage[12].

160

12 Yann Krupa, Laurent Vercouter

Receiving When the agent is receiving a message, he has to check if the trans-
mission that just occured is a PEN violation or not. First, the agent has to
check the A-laws to see if the transmission is appropriate (PEN 1), as described
in section 2.2. To do that, the agent will have to infer multiple things, for exam-
ple: who is the target of the message? what is the context of the message? This
is possible either by using personal knowledge, by using the context tags and
target tags or by analysing the information directly. As the context tags (and
target tags) are signed, it is possible to trust the agent that signed the given
tag, to come to believe that this context tag corresponds to the context of the
information.

If the agent detects a PEN violation, he sends a “punishment message” to
other agents.

Finally, the agent readjusts the trust level he has towards the propagator
that just made the violation.

Propagating This second situation happens when the agent is about to send
information. Before sending, it is necessary to attach to the information all
possible meta-information:

– If the agent can identify the target of the information (by using knowledge
or information analysis), he adds a target tag for target Z that he signs. This
states that the agents confirms that the target of the information is Z.

– If the agent is able to determine the context of the information (by using
knowledge or information analysis), he adds and signs a context tag.

– If the agent is the target, he can specify some restrictions regarding further
dissemination of the information, in this case, he adds a policy that he signs.

– The agent also signs the transmission chain to insure PEN 2.

Then, the agent should make all PEN assessments towards the receiver:

– Does the agent violates the A-laws (PEN 1) by sending the information to
the receiver? An agent never violates A-laws, except if he is malevolent or
ignorant, which in both cases, will be punished by other agents.

– Does the agent trust the receiver? (PEN 3) If he is untrustworthy, it means
that he has probably made some privacy violations in the past. As the agent
aims at protecting the information he holds, he only sends to the ones he
trusts.

– And so on with the other PENs.

At the end, the agents send information from one to another, checking before
sending and after receiving if some violation has occurred. When violations are
detected, agents send “punishment messages” to their contacts, so that others
become aware of the violation that occurred. Eventually, agents that make viola-
tions will be socially excluded from the system, because no agents communicate
with untrustworthy agents.

5 Sample Application

Our aim here is to define a sample application to show how all the framework
components instantiate on this application.

161

Handling Privacy as Contextual Integrity in Virtual Communities 13

5.1 Photo Sharing

The application that we consider here is a photo sharing social network. Basi-
cally, users can share pictures with their contacts who can, in turn, share again
those pictures with their own contacts and so on. We provide the users with an
assistant agent that will do all the assessment described before to inform the user
of any violation. The final decisions lies in the hands of the user, the assistant
does not take any decision.

In this system, the pictures are the information that is exchanged.

5.2 Primitives Instantiation

Some of the primitives we defined earlier need to be specified for this application.
The primitives based on meta-information always remain the same, because
the nature of the meta-information does not change. So do the primitives for
transmission roles.

We can explain in more detail the primitives based on agent beliefs because
the way they are inferred is what is interesting here:

– context(C,I) For the agent to believe that C is the context of information
I, there are alternative solutions:

• Look if there is a context tag emitted by a trusted agent

• Analyse the picture to find its context (using image analysis techniques)

• Ask the user attached to the agent to determine the context of the picture

– target(X,I) The same process can be used for the agent to believe that
X is the target of I:

• Look if there is a target tag emitted by a trusted agent

• Analyse the picture to find if the target is on the picture

• Ask the user attached to the agent to determine the target of the picture

– link(X,Y) By analysing the transmission chain in the meta-information,
the agent can discover links between other agents.

– knows(X,I) Using the same technique, the agent can extract from the
transmission chain the list of agents that received the information in the
past.

– role(A,R) The agent asks the organisational infrastructure to know the
possible roles of A.

– rolecontext(R,C) The agent asks the organisational infrastructure to
know the possible roles fitting in context C.

– policyvalid(P,I) The agent infers on his belief base to see if the policy
is valid as explained in section 3.5.

With the primitives instantiated, it is easy to check the policies, the A-laws
and all needed components. In the next section we show an example of what
happens in the application.

162

14 Yann Krupa, Laurent Vercouter

5.3 Use Case

Alice wants to share a picture with Bob. The target of the information is James,
who is in an awkward position on the picture. Some of James’ friends already
had this information before, therefore, there are tags describing the context as
“James friends” and the target as “James”. No policy has been attached. The
unique identifier of the information is “pic254”. The message is identified by
“mess412”.

When Alice clicks on the button to send the picture to Bob, the assistant
agent checks the PENs:

– PEN 1: Does the agent violates the A-laws by sending the information to
the receiver? This is the instantiation of the laws described in section 3.4:
• The declared context is set by the agent, so the declared context fits

the context the agent believes to be the real one, the following formula
holds:
fitcontext(’James friends’,mess412):-

information(mess412,pic254),

propagator(’Alice’,mess412),

context(’James friends’,pic254),

contexttag(’James friends’,’Alice’,mess412).

• The assistant agent is not able to find a role for Bob that fits into the
context “James friends”, the formula does not hold:

fitrole(’James friends’,mess412):-

receiver(’Bob’,mess412),

role(’Bob’,?),

rolecontext(?,’James friends’).

• No policies were defined, therefore, the first fitpolicy(M) statement
holds (no policy exists for none of the target of the information).

The following Appropriateness formula does not hold, because Bob is not a
friend of James (the target):

appropriate(mess412):-

fitcontext(’James friends’,mess412),

fitrole(’James friends’,mess412),

fitpolicy(mess412).

Beyond this point, the assistant agent knows that the transmission will be
inappropriate, and therefore violates the PENs. Anyway, he asks the user
(Alice), what to do: continue or abort the transmission?

Alice wants to continue. The message containing the picture and meta-
information is sent to Bob.

Bob’s agent handles the information by checking the PENs:

– Does the message violates contextual integrity? Bob’s agent runs here the
same test that Alice’s agent did (using his own beliefs). As Bob is not a
friend of James, no roles fits in the context “James friends” and a violation
is therefore detected.

163

Handling Privacy as Contextual Integrity in Virtual Communities 15

Bob’s agent adjusts his beliefs, he does not trust Alice anymore because it is
not the first time that Alice deceives Bob. He sends to all his contacts a “pun-
ishment message” containing the meta-information (context tags, target tags,
transmission chain) and the following description:

pen1violation(Alice,mess412),

information(mess412,pic254),

context(C,mess412),

\+ fitrole(C,mess412).

Dave’s agent is one among those who receives this message. Dave was about
to send a message to Alice, when he clicks the “send” button, his agent checks
the PENs. Then PEN 3 forbids to send a message to an untrusted partner.
Dave’s agent warns him that Alice is untrustworthy and that the transmission
will violate the PENs.

Users stop communicating with Alice because of the violation she made.
Alice is now socially excluded, she is yet still in the system but nobody keeps
communicating with her.

The example is a little bit hard on Alice in order to show the power of social
exclusion. Normally, it will take multiple violations for someone to be excluded
from the system and forgiveness could occur after a certain time.

6 Conclusions

The framework we presented in this article allows to protect users privacy in a
decentralised and open system when it is not possible to apply computer security
approaches. Based on Nissenbaum’s Contextual Integrity theory, we propose
an approach using appropriateness laws that defines what is an appropriate
information transmission (and therefore, what is inappropriate). Primitives are
defined to express these laws and to allow agents to define preferences over the
transmission of some specific information.

Agents in the system play both roles of actors and judge: they transmit
information, and they detect violations. Agents also inform others when they
spot a violation, so that the violating agents are excluded of the system. This
behavior is directed by the Privacy Enforcing Norms (PEN) described in this
article.

There are still some unsolved problems in the system, that may prevent it
from working correctly:

– The trust related problems: “what happens if there are too many malevolent
agents in the system?”

– “Journalist Problem”: “what happens if an agent decides to sacrifice himself
to become a relay for information that violates privacy?” (the original source
is never punished, only the journalist).

– Reputation Paradox: Information about reputation is libellous in a way, so
it can generate privacy violation. But at the same time, it is required for
maintaining information regarding agents that make violations.

164

16 Yann Krupa, Laurent Vercouter

In our future works, we will integrate the trust mechanisms directly in the
decision process, i.e. decompose the primitives that rely on trust in predicates.
We will, at the same time, investigate the problems related to the subjectivity
and related to strategic manipulation (agents sending fake violation messages
for example). Then an application will be developped to probe the system in the
real world by providing assistant agents to users.

References

1. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and Contextual In-
tegrity: Framework and Applications. 2006 IEEE Symposium on Security and
Privacy (S&P’06) pp. 184–198, http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1624011

2. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Tech. rep., Technical Report MTR-2547 (1973)

3. Byun, J., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: Proceedings of the tenth ACM symposium on Access control
models and technologies. p. 110. ACM (2005)

4. Crépin, L.: Les Systèmes Multi-Agents Hippocratiques. Ph.D. thesis (2009)
5. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent or-

ganisations with organisational artifacts and agents. Autonomous Agents and
Multi-Agent Systems 20(3), 369–400 (mai 2009), http://www.springerlink.com/
content/g115t233633v6h16

6. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services. In: Database and
Expert Systems Applications, 2003. Proceedings. 14th International Workshop on.
pp. 377–382 (2003)

7. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review pp.
101–139 (2004)

8. Piolle, G.: Agents utilisateurs pour la protection des données personnelles:
modélisation logique et outils informatiques (2009)

9. Reagle, J., Cranor, L.F.: The platform for privacy preferences. Communications of
the. ACM 42(2), 48–55 (1999)

10. Rivest, R.: The MD5 Message-Digest Algorithm. Distribution (1992)
11. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures

and Public- Key Cryptosystems. Communications 21(2) (1978)
12. Sabater, J., Paolucci, M., Conte, R.: Repage: REPutation and ImAGE Among

Limited Autonomous Partners. Journal of Artificial Societies and Social Simulation
9(2), 3 (2006)

13. Vercouter, L., Muller, G.: L.i.a.r.: Achieving social control in open and decen-
tralised multi-agent systems. Applied Artificial Intelligence (2010), to appear

165

	
	

	
	
	
	
	
	

IEEE	 FIPA	 Workshop	 on	 Design	 Process	

Documentation	 and	 Fragmentation	

	

Co-located	 with	 the	 MALLOW	 2010	 Conference	

	
	
	
	
	
	
	
	
	
	
	
	
	

Domaine	 Valpré,	 Lyon	 (France)	
30-‐31,	 August	 2010	

Conference Organization

Programme Chairs

Massimo Cossentino Vincent Hilaire Ambra Moselini

Programme Committee

Estefania Argente Villaplana, Carole Bernon, Vicent Botti, Giacomo Cabri,
Scott DeLoach, Giancarlo Fortino, Ruben Fuentes-Fernandez, Stephane Galland,
Alfredo Garro, Nicolas Gaud, Paolo Giorgini, Alma Gomez, Juan Carlos Gonza-
lez Moreno, Zahia Guessoum, Marc-Philippe Huget, Renato Levy, Gleizes Marie-
Pierre, Frederic Migeon, Vito Morreale, Andrea Omicini, Sascha Ossowski, Juan
Pavon, Joaquin Pena, Anna Perini, Jolita Ralyte, Wolfgang Renz Luca Sabatucc,
i Valeria Seidita, Alberto Sienna, Pietro Storniolo, Jan Sudeikat, Angelo Susi,
Kuldar Taveter, Juha-Pekka Tolvanen, Inge van de Weerd.

External Reviewers

Mariachiara Puviani

1

Table of Contents

Towards a New Approach for MAS Situational Method Engineering: a
Fragment Definition . 3

Sara Casare, Zahia Guessoum, Anarosa Brandão, Jaime Sichman

A Glimpse of the ASPECS Process documented with the FIPA DPDF
Template . 17

Massimo Cossentino, Stẽphane Galland, Nicolas Gaud, Vincent Hi-
laire, Abderrafiaa Koukam

Process Documentation Standardization: An Initial Evaluation 29
Massimo Cossentino, Juan Carlos Gonzãlez Moreno, Alma Gõmez Rodrĩguez,
Andrea Omicini, Ambra Molesini

Describing GORMAS using the FIPA Design Process Documentation
and Fragmentation Working Group template . 43

Sergio Esparcia, Estefania Argente, Vicente Botti

The O-MaSE Process: a Standard View . 55
Juan C. Garcia-Ojeda, Scott DeLoach

Applying Process Document Standarization to INGENIAS 67
Juan Carlos Gonzãlez Moreno, Alma Gõmez Rodrĩguez

Exploring the Boundaries: when Method Fragmentation is not Convenient 79
Chiara Leonardi, Luca Sabatucci, Angelo Susi, Massimo Zancanaro

2

Towards a New Approach for MAS Situational Method
Engineering: a Fragment Definition

Sara Casare1, Zahia Guessoum 2, Anarosa A. F. Brandão1, Jaime Sichman1
1 Intelligent Techniques Laboratory – University of São Paulo - Brazil

{sara.casare, anarosa.brandao, jaime.sichman}@poli.usp.br
2 Laboratoire d’Informatique de Paris 6 - LIP6 – University Pierre et Marie Curie - France

zahia.guessoum@lip6.fr

Abstract. This paper introduces a new definition of method fragment intended
to represent MAS development approaches in a more standardized and coherent
way, thus facilitating the configuration of situational methods. In order to do
that, we take into account three complementary notions: (i) a method fragment
description based on SPEM 2.0 elements; (ii) two method fragment
perspectives, the internal and the external view, and (iii) four method fragment
granularity layers. Moreover, this definition establishes some mechanisms for
method fragments’ encapsulation and identification. The proposed method
fragment definition is illustrated through an example using Tropos.

Keywords: multiagent oriented software engineering, situational method
engineering, method fragment, SPEM

1 Introduction

In order to structure the development and to manage the complexity associated with
Multiagent Systems (MAS), several development methods have been proposed during
the last decade, e.g. Gaia [18], Tropos [2], PASSI [6], and Adelfe [1]. The variety of
Agent Oriented Software Engineering (AOSE) methods is due to the specific needs
raised on MAS development and to the different approaches adopted by MAS
developers. It shows that a method cannot be general enough in order to be applied to
every MAS development project without some level of customization [11]. Moreover
this customization requires deep knowledge on both the method and the MAS
research field. Nevertheless, it seems that reinventing a new method for each new
project situation wouldn’t be a best practice, given that there are a great number of
available methods for MAS development. This scenario suggests that Method
Engineering techniques and, particularly, Situational Method Engineering [3] seems
to be promising approaches to be considered for MAS development.

Situational Method Engineering is the sub-area of Method Engineering that
addresses the controlled, formal and computer-assisted construction of situational
methods out of method fragments. Roughly speaking, building a situational method
consists of reusing parts of existing methods taking into account a given project
situation that encompasses, for example, notions related to the class of the desired
application (like traditional and pervasive computing) and project perspectives.

3

Several approaches concerning the notions of a part of a method and situational
method building have been proposed in the Situational Method Engineering field. For
instance, Brinkkemper and colleagues [3][4] introduce a Method Fragment notion,
and Karlsson [14] introduces a Method Component notion. Method Fragments [3][4]
are standardized building blocks based on a coherent part of a method that can reside
on one of five layers of granularity: method, stage, model, diagram or concept. The
notion of coherence should be interpreted while considering a method as a connected
graph of products or processes. For instance, an entire process can be considered as a
method fragment. A situational method can be built by combining a number of
method fragments in a bottom-up fashion. Such a combination must follow certain
assembly rules in order to adhere to the construction principles into the process
perspective and the product perspective.

A Method Component [14] consists of an exchangeable and reusable part of
method composed of descriptions for actions, notations, artifacts and concepts that
can be viewed into two perspectives: an internal view and an external view. While the
internal view presents all method component elements (as action, artifacts, and roles),
the external view aims to describe method component output in order to identify how
it contributes to a chain of goal achievements. On the one hand, this approach
emphasizes principles as method modularization and method reusability. On the other
hand, it proposes a way for using these principles in order to define a procedure for
method configuration involving the notion of Base Method: a method chosen as
starting point for the configuration process, allowing a top-down fashion to create
situational methods, eliminating, adding or exchanging additional fragments captured
from another method.

This paper proposes a definition of method fragment that combines these two
notions of part of a method. This definition allows representing MAS development
approaches in a more standardized and coherent way. Moreover, it establishes
mechanisms for method fragments encapsulation and identification in order to
provide a solid base for developing / building MAS situational methods. The paper is
organized in five sections. Section 2 presents the proposed definition for MAS
method fragment, while Section 3 shows an application of such definition to Tropos.
Section 4 presents an overview of the current research concerning situational method
engineering applied to MAS field. Finally, Section 5 presents a discussion about the
proposed approach for MAS method fragment definition.

2 A New Definition for MAS Method Fragment

The MAS Method Fragment definition proposed in this paper has been mainly
inspired on the Method Fragment notion proposed by Brinkkemper and colleagues
[3][4] as well as on the notions of method component view and Base Method
proposed by Karlsson [14]. From Brinkkemper and colleagues we adopted the simple
and intuitive idea of part of a method and from Karlsson we adopted the black box
perspective of part of a method offered by the Method Component view, as well as
the Base Method notion to provide a solid foundation for top-down situational method
configuration. Additionally, we have adopted some concepts of Software Engineering
proposed by Jacobson and colleagues [13] and have used SPEM 2.0 (Software and

4

Systems Process Engineering Metamodel) [15] as a common meta-model for
describing method fragment. The former is among the most popular software
development processes and the latter is the standard “de facto” to model development
process.

Our proposed definition is:
“A MAS Method Fragment is a standardized building block based on a coherent

part of a MAS development approach”.
The standardization of building blocks considers the notions of (i) identification of

method fragments using well established naming rules in order to convey their desired
semantics; (ii) encapsulation of original work products; (iii) utilization of common
roles for MAS developers to be used as task performers; and (iv) classification of
method fragment based on a semiotic criteria [5]. The coherence of method fragments
is assured by the notions of (i) a method fragment description based on the SPEM 2.0
elements (task, work product, role, activity and so on) and their associations; (ii) the
proposition of two method fragment views (internal and external views); and (iii) the
use of four method fragment granularity layers (activity, phase, iteration, process).

In the following subsections, we will describe the main characteristics of the
proposed definition for coherence.

2.1 Standardizing Building Blocks

In order to have a standardized and common semantics for specifying method
fragment objectives and work products, we have defined a MAS Work Product
Framework mainly based on the MAS components proposed in the Vowel approach
[9] - Agent, Environment, Interaction, Organization. This approach offers a natural
and coherent way for describing MAS components and has been adopted in several
MAS research [16] with successful results. Nevertheless, it does not deal with the
notion of users requirements that should be gathered before specifying MAS
components. Then, the proposed MAS Work Product Framework involves also an
element related to MAS User Requirement, in order to encapsulate work products
used to describe the system-to-be requirements.

 Such a work product framework is used to encapsulate original MAS development
work products, explicitly stating their involvement with user requirements or to the
main MAS components. This approach allows enhancing work product flow into a
situational method and making clear the main goal of each work product
independently of their name in the context of the original MAS development
approach. Finally, the method fragment characteristics are specified through the MAS
Semiotic Taxonomy [5] that provides a set of semiotic criteria to categorize MAS
Method Fragments taking into account their meaning, usage, structure and so on.

2.2 MAS Method Fragment Main Elements

The proposed MAS Method Fragment description is based on SPEM 2.0 elements and
related associations. To improve readability we use Arial font to concepts proposed in

5

this work and Comic Sans font to describe SPEM elements. Therefore, the main
elements used to compose a MAS method fragment description are: Process Pattern,
Activity, Phase, Milestone, Iteration, Task Definition, Task Use, Step, Role
Definition, Role Use, Work Product Definition, Work Product Use, Category, and
Guidance. As proposed by SPEM 2.0, these elements are separated into method
content elements (Task Definition, Step, Role Definition, Work Product Definition)
and their application in the development process (Process Pattern, Activity, Phase,
Milestone, Iteration, Task Use, Role Use, Work Product Use).

A Process Pattern represents building blocks for assembling processes. It
describes a reusable cluster of Activities that provides a consistent development
approach to common problems. An Activity represents a general unit of work
assignable to specific roles, relying on input work products and producing output
work products. We have chosen this as the main element of MAS Method Fragment in
the Activity Layer. A Phase consists of a significant period in a project, ending with
major management checkpoint, as a Milestone that represents a significant event for a
development project. We have used Phase and Milestone as main elements of MAS
Method Fragment in the Phase Layer. Moreover, Milestone is used to define
fragments in the Process Layer. An Iteration is a set of nested Activities that are
repeated more than once, allowing the organization of work in repetitive cycles. It has
been used to define MAS Method Fragments in the Iteration Layer.

A Task Definition represents an assignable unit of work involving generally a few
hours to a few days and usually affecting one or only a small number of work
products. A Step describes a meaningful and consistent part of the overall work
described for a Task Definition. A Task Use represents a proxy for a Task Definition
in the context of one specific Activity. Tasks and Steps constitute the main element
of the Activities used to build MAS Method Fragments.

A Role Definition describes a set of related skills, competencies, and
responsibilities of an individual or a set of individuals. A Role Use represents a Role
Definition in the context of one specific Activity. Roles represent both the
development roles originally specified by the AOSE methods and the common MAS
role set involved in the MAS Method Fragments definition. Work Product Definition
represents pieces of work that are used, modified, and produced by Task Definitions,
while a Work Product Use represents a Work Product Definition in the context of a
specific Activity. Work Product Definitions represent the artifacts proposed by the
MAS development approaches, as models, specifications and diagrams.

A Category represents the classification structure used to group SPEM elements
based on the user’s criteria. It allows defining tree-structures of nested categories used
for browsing MAS Method Fragments based on a semiotic criteria [5]. A Guidance
represents a specific description related to other SPEM elements. It can be a formal
description, such as concepts description, or informal description such as guidelines,
white papers, checklists, examples or roadmaps. Guidance represents some elements
proposed by the MAS development approaches, such as work product examples, main
references, concepts and tool mentor.

6

The aforementioned elements will be depicted in conjunction of the proposed
method fragment views and some standardization notions in Fig. 1. Finally, we have
applied an important notion proposed by SPEM - called Variability Elements - to
improve tasks and work products defined according to the original MAS development
approaches. It allows reaching the completeness and standardization involved in a
MAS Method Fragment definition without modifying the original method elements.
For example, we can use a Task Variability to complete a task definition introducing
performing role and a Work Product Variability to define composite work products,
as Agent Model or Requirement Model.

2.3 Method Fragment Views

The Internal and External views of MAS Method Fragments depict, respectively, the
whole set of elements that compose them and the main elements that constitute their
interface. They have been inspired on the method component views concept proposed
by Karlsson [14]. The Internal View offers a detailed and deep representation of a
method fragment that allows analyzing all elements involved in its composition, such
as activities, roles, tasks, guidance, categories, work products and milestone, as well
as their relationships (see Fig. 1 for details).

Role
Definition

Role
Definition

Task UseTask Use

Task
Definition

Task
Definition

Work
Product

Definition

Work
Product

Use

Work
Product

Use

ActivityActivity

Role UseRole Use

GuidanceGuidance

CategoryCategory

PhasePhase

IterationIteration

MilestoneMilestone

Process PatternProcess Pattern

Objectives
&

Work
Products
(input and

output)

Semiotic
Classification

Naming Rules

Internal view External view

Fig. 1 Main elements of MAS Method Fragment

The External View goals are twofold. First, it describes, in a standard way how a
method fragment can be used in a situational method configuration by: (i)
identifying the method fragment through naming rules, (ii) specifying method
fragment objectives in terms of milestones and/or work products, and (iii) describing
fragment characteristics as meaning, usage, structure and so on. Second, it describes
how a method fragment can contribute to achieve a situational method objective,
specifying fragment output work products through a common semantic. The naming

7

rules adopted to identify method fragments are based on simple concepts and will be
explained through the method fragments examples in the next section.

These two method fragment perspectives improve method fragment coherence
because it allows analyzing method fragments as standard black boxes without
loosing the details of the description. Fig. 1 shows the views and associated elements
in a diagrammatic perspective. For instance, it depicts Process Pattern as a kind of
“logical container” for building MAS Method Fragments, Category to define part of
the External View of MAS Method Fragment, called Method Fragment Semiotic
Classification and the use of Milestone to represent MAS Method Fragment expected
objectives.

2.4 Method Fragment Layers

The four layers of MAS Method Fragment – activity, iteration, phase and process -
have been defined according to Jacobson et al [13] and SPEM homonym concepts.

The definition of a MAS method fragment in the Activity Layer, for short an
Activity Method Fragment, is based on the notion of Activity proposed by Jacobson et
al [13]. An Activity Method Fragment consists of a tangible unit of work performed
by a worker that yields a well-defined result based on a input set of artifacts. The unit
of work has defined boundaries that are likely to be referred in a project plan when
tasks are assigned to individuals.

Fig. 2 depicts the components of an Activity Method Fragment. It is worthy to notice
that this figure represents only the main relationships between SPEM elements used
to define an Activity Method Fragment. For instance, relationships between Category
and Roles, Tasks and Work Products are not depicted. Moreover, we have labeled the
relationship arrows with cardinalities that constitute a constraint over SPEM elements
definition. For example, in general a Process Pattern can be associate to zero or
many Activities, while the Process Pattern used in the context of an Activity Method
Fragment must be associated with exactly one Activity.

An Activity Method Fragment is composed of one Process Pattern associated with
one Activity and one or more Categories. Such Activity must be associated with at
least one Task Use that must produce one or more Work Products as output.
However, in the context of an Activity Method Fragment an Activity must not be
associated with an Iteration nor to a Phase or Milestone elements, given that these
elements are used to define other layers of method fragment. As we can see in Fig. 2,
Category and Work Product elements constitute the external view of the Activity
Method Fragment. In summary, an Activity Method Fragment must contain one
Activity that is composed by at least one Task, one Role and one output Work
Product. Moreover, it must be classified by Categories.

The definition of a MAS method fragment in the Phase layer, for short a Phase
Method Fragment, is based on the notion of phase proposed by Jacobson et al [13].
These authors consider that a phase should be concluded with a major milestone.
Moreover, they state that any software process needs to have a sequence of clearly
articulated milestone in order to be effective. Therefore, a Phase Method Fragment
represents a significant period in a project and consists of a Process Pattern

8

classified by Categories, associated with exactly one Phase, one (major) Milestone
and several Activity Method Fragments and/or Iteration Method Fragments.

GuidanceGuidance

Role
Definition

Task Use

Task
Definition

Work
Product

Definition

Work
Product

Use

Activity

Role Use

1..n

1

Category

< output>
<input>0..n

1..n

1..n

Process Pattern

1..n

Role
Definition

Role
Definition

Task UseTask Use

Task
Definition

Task
Definition

Work
Product

Definition

Work
Product

Use

Work
Product

Use

ActivityActivity

Role UseRole Use

1..n

1

CategoryCategory

< output>
<input>0..n

1..n

1..n

Process PatternProcess Pattern

1..n

Fig. 2: Activity Method Fragment representation as UML Class Diagram

The definition of a MAS method fragment in the Iteration layer, for short an
Iteration Method Fragment, is based in the SPEM homonym element. An Iteration
Method Fragment consists of a Process Pattern that involves a set of Activity Method
Fragments and/or a set of Phase Method Fragments that are repeated more than once
during the process development lifecycle, offering a structuring fragment to organize
work in repetitive cycles. Moreover, it must be classified by Categories.

Finally, a MAS method fragment in the Process layer, for short a Process Method
Fragment, represents a whole MAS development cycle. It is composed of a Process
Pattern classified by Categories that contains several Phase Method Fragments
and/or Iteration Method Fragments and ends with a (major) Milestone. The goal of a
Process Method Fragment is twofold. First, it depicts the notion of Base Method
presented in Section 2, allowing a top-down fashion to configure a MAS situational
Method. Second, it allows describing MAS original methods as a MAS Method
Fragment ready to be used when an existing MAS method totally matches a given
project situation.

The main advantages of having these four method fragment layers are: (i) the reuse
of original AOSE methods in several level of granularity; (ii) the representation of
MAS development approaches that do not provide a full development method (such
as method fragments related to Agent Organizations models), and (iii) the utilization
of bottom-up or top-down mechanisms for situational method configuration.

3 Applying the Proposed Definition to Tropos

In this section, we use the proposed definition to describe MAS method fragments
sourced from Tropos. Tropos proposes a process for building MAS involving the
following phases: Early Requirements, Late Requirements, Architectural Design,
Detailed Design and Implementation. The goal of the first two phases is to provide a
set of functional requirements as well as non-functional requirements for the system

9

to be built, while Architectural Design and Detailed Design phases focus on the
system specification. Finally, the Implementation phase transforms the results of the
preceding phases using an agent development platform in order to code the MAS.

We have used the Eclipse Process Framework Composer (EPF Composer) [12] to
represent the MAS Method Fragments extracted from Tropos. EPF Composer is a tool
developed by Eclipse Foundation that fully implements SPEM 2.0. After using the
adequate SPEM element to represent each activity, step, role, diagram and model
proposed by Tropos we have defined MAS Method Fragments into the Activity Layer,
Phase Layer and Process Layer. We have not defined fragments into the Iteration
Layer because Tropos does not propose iteration development cycles. Due to space
constraints, we will describe only one example of fragment for each layer.

Fig. 3 depicts the External View of the Process Method Fragment called MMF
Tropos Base Method, represented as a Process Pattern (called Capability Pattern in
EPF Composer). On the left frame we can see that this fragment is classified in
several categories of the MAS Semiotic Taxonomy, e.g. in the social level and
iteration degree, it is classified as part of the Low Iteration Fragment Category.

Fig. 3 External view of the MAS Method Fragment Tropos Base Method

On the right frame we can see that this fragment is composed of four Phase
Method Fragments - MMF Requirement Phase with Tropos, MMF Analysis Phase with
Tropos, MMF Design Phase with Tropos and MMF Implementation Phase with Tropos.
As said before, we propose applying standard naming rules for method fragment
identification. For instance, phase names should convey either the software
development discipline covered by the phase - as Requirement, Analysis, Design,
Implementation, Test - or the phase main development goal - as Inception,
Elaboration, Construction, Transition – as currently used in iterative development
approaches [13].

Moreover, the MMF Tropos Base Method fragment is composed of a Milestone
called Tropos Base Method Milestone - MAS ready to be used that involves three
work products: MP Tropos Agent Model, MP Tropos Interaction Model and MP Tropos
Requirement Model, where MP stands for MAS work Product. Such work products
encapsulate Tropos original work products and provide a standardized and common
semantic for describing MAS work products based on the Vowels approach, as

10

proposed in Section 2. For instance, the work product MP Tropos Requirement Model
encapsulates the Tropos Actor Diagram and Tropos Goal Diagram, both related to
Tropos requirement phase.

As we have seen in Section 2, given that MMF Tropos Base Method is a Process
Layer Fragment it can be used into two distinct ways: as standard representation of
Tropos or as a Base Method in a top-down configuration mechanism in order to build
a MAS situational Method.

Fig. 4 depicts the External View of the method fragment called MMF Requirement
Phase with Tropos as well as some elements of its Internal View (highlighted
rectangle of the right frame). On the left we can see the fragment classification using
the MAS Semiotic Taxonomy. On the right we can see that this fragment is composed
of three Activity Method Fragments: MMF Identify Initial Requirement with Tropos,
MMF Detail Requirement with Tropos, and MMF Identify Additional Requirement with
Tropos. Moreover, it contains the MAS Objectives Described Milestone that involves
the work product MP Tropos Requirement Model.

Fig. 4 Phase MAS Method Fragment - Requirement Phase with Tropos

The Internal View of the MMF Detail Requirement with Tropos involves an
homonym Activity that contains a Task Use (Task Description in EPF Composer)
called MTV Analyze Goals and Plans. The acronym MTV used as task name prefix
stands for MAS Task Variability and indicates that we are dealing with a task that
extends another one. Such task variability has been defined over the Tropos original
task in charge of analyzing goals and plans in order to provide basic MAS roles. In
addition, it also changes Tropos original work products by the related MAS work
products that forms the External Fragment View (see Fig. 5 for more details).

It is worthy to notice that the fragment MMF Detail Requirement with Tropos is
executed twice in the MMF Requirement Phase with Tropos: first after identifying
initial requirements (concerning stakeholders identification) and latter after
identifying additional requirements (defining system actors).

Finally, Fig. 5 complements the Internal View of the fragment MMF Detail
Requirement with Tropos showing its main elements.

11

Fig. 5 Internal View of the fragment MMF Detail Requirement with Tropos

As the fragment MMF Detail Requirement with Tropos consists of an Activity
Method Fragment, its elements are defined through the task MTV Analyze Goals and
Plans. These are the following: (i) the roles System Analyst and MAS Designer, (ii)
the mandatory input work product MPV Tropos Actor Diagram, (iii) the output work
product MPV Tropos Goal Diagram, and (iv) several steps, as Analyzing goals through
means-end analysis and decomposing goals.

These examples of usage show that the proposed definition of MAS Method
Fragment offers a more standardized way for representing each phase and activity of
Tropos, as well as Tropos own method as a whole. Moreover, it establishes
mechanisms for the encapsulation and identification of original Tropos tasks, roles
and work products. Finally, it allows reusing method fragments even in the context of
its original method.

4. Related Work

In AOSE field there are several researches concerning method fragment notion.
Among them we can cite the FIPA method fragment definition [10] and its refinement
proposed by Cossentino et al. [7], as well as the fragment description for adaptive
methodology proposed by Rougemaille et al. [17] and the three method fragment
levels of granularity introduced by [8]. In general, such researches propose the use of
SPEM as a common meta-model for representing MAS method fragment. For
instance, Rougemaille et al. [17] highlight how SPEM can participate to design
adaptive methodology process and claim that being compliant with SPEM is
important to broaden the use of agent-oriented methodologies and principles.
Nevertheless, the method fragment levels of granularity (atomic, composed, and
phase level) proposed in [8] do not involve any metamodel. Instead, these method
fragment levels are only briefly outlined in natural language.

12

The preliminary version of the FIPA method fragment definition [10], published in
2003 by the FIPA Methodology Technical Committee (TC)1, states that a method
fragment is a portion of the development process that involves the following
elements: (i) a definition of a portion of process using SPEM describing what should
be done; (ii) one or more deliverables; (iii) a required input data representing the
preconditions to start the process specified in the fragment; (iv) a list of concepts
related to the MAS meta-model to be defined / refined for the fragment; (v) guidelines
that illustrate how to apply the fragment as well as best practices related to that; (vi) a
glossary of terms used in the fragment; (vii) composition guidelines describing the
context/ problem treated by the fragment; (viii) aspects of fragment such as the
platform to be used, and finally (ix) the dependency relationships useful to assemble
fragments. It is worthy noting that some of these elements are not mandatory, as input
data and guidelines.

Our MAS method fragment definition is based on SPEM, as shown in Section 2,
and it is fully compliant with this FIPA definition since the portion of process is
represented by a Task element while Work Product elements describe fragment
deliverables as well as fragment inputs. Moreover, we use Guidance elements to
describe MAS concepts, to provide fragment guidelines and glossary of terms.
Finally, our method fragment definition encompasses an external view that aims to
describe the aspects that should be taken into account during method fragment
selection and assembling, applying Category elements to classify the fragments based
on their context use, their deliverable work products and their development platforms,
among other criteria covered by the MAS Semiotic Taxonomy.

The refinement of FIPA definition proposed by Cossentino et al. [7] involves four
different point of views for describing method fragments: (i) the process fragment
view that deals with the process related aspects of a fragment, including workflows,
activities and work products; (ii) the reuse fragment view for representing fragment
elements such as the MAS meta-model, glossary of terms, guidelines and fragment
dependency; (iii) the fragment storing view that deal with retrieving method
fragments from the method base and, finally, (iv) the implementation view that
concerns the implementation aspects of the process fragment view elements.
This refinement is distinct of our MAS method fragment definition in two main
points: the SPEM compliance and the representation of MAS components. First, our
approach is fully defined over SPEM (since we do not introduce new elements
neither new associations in order to define method fragment elements) while
Cossentino et al. [7] introduce new elements such as the Workflow and the MAS
Model elements. In our opinion the SPEM compliance offer important benefits: on the
one hand, SPEM is the “de facto” standard for method metamodel and, on the other
hand, such compliance allows using SPEM based tools, as EPF Composer, for
building the Method Base and configuring the MAS Situational Method. Second, this
refinement requires dealing with MAS metamodel elements in a fine grained
granularity and involves MAS metamodel integration while we propose representing
MAS components in a coarse grained granularity based on the Vowel approach
(Agent, Environment, Interaction, Organization). Therefore, our definition of method

1 The activity of this TC stopped during the transition towards the new FIPA structure as part of

IEEE Computer Society Standards Committee since 2005

13

fragment does not depend on a previous MAS metamodel integration in order to
configure MAS situational methods. Such independence represents an important
benefit since it allows taking advantage of Situational Method Engineering techniques
for creating MAS situational methods without waiting for MAS community reaching
a consensus about MAS main concepts.

Summing up, at the best of our knowledge, in the AOSE field there is no explicit
method fragment definition tailored to facilitate the use of situational configuration
mechanisms and to offer a standardized description of a method fragment elements
and objectives. The IEEE-FIPA Design Process Documentation and Fragmentation
Working Group2 (DPDF WP), recently formed to deal with a definition of method
fragment for situational method engineering process, corroborates that these topics
constitute open issues in AOSE field.

5 Conclusions

In this paper, we presented a new definition for MAS method fragment based on
Situational Method Engineering and Software Engineering techniques that can be
used to represent MAS development approaches in a more standardized and coherent
way. It offers two method fragment perspectives - internal and external fragment view
- and four method fragment granularity layers: activity, iteration, phase and process.
According to the proposed definition, a method fragment is considered coherent when
its internal view is described using SPEM 2.0 and their elements and associations
follow one of these four method fragment layers definition.

Moreover, we show how this definition can be used to represent method fragments
extracted from Tropos, that is a well known MAS method. However, we think that it
is not possible to identify a univocal criteria to set the best level of granularity for
extracting method fragments, since fragment creation depends more on the
experience of the method engineers than on a rigid extraction criteria. We claim that
the absence of such a univocal criteria could be mitigated in two ways. First, using a
common model, like SPEM, to represent method fragment. Second, establishing a
procedure for extracting and storing fragments in a method repository. Such
procedure is part of our research future work.

It is worthy to notice that part of the proposed method fragment definition is
general enough to be applied to classical software development methods and not only
to MAS methods. In fact, the MAS methods distinctive aspects are taken into account
mainly through the following notions of our definition: the MAS Work Product
Framework based on Vowel approach and some semiotic criteria, as MAS approach
(agent /organization centered) and MAS nature (open/closed MAS). Therefore, in
general lines, the proposed method fragment definition could be used to represent
fragments sourced from classical software development methods after replacing these
notions for other more suitable to a giving development paradigm.

We claim that this MAS Method Fragment definition can provide the backbone for
defining a method repository for MAS situational method configuration, given that it
provides mechanisms for (i) identifying method fragments using a well established

2 http://www.fipa.org/subgroups/DPDF-WG.html

14

naming rules, (ii) conveying method fragment objectives and encapsulating original
work products using a common work product framework, and (iii) categorizing
method fragment based on a semiotic criteria. Finally, given that we propose distinct
method fragment granularity layers, we can build a method repository involving
fragments extracted from AOSE methods as well as from other MAS development
approaches, such as Agent Organization models. In a top-down situational method
configuration fashion, the former could provide a Base Method for the configuration
while the latter could contribute with specific Activity Method Fragments in order to
improve and complete a original MAS method.

Acknowledgments. This work is a product of the MEDEIA project, supported by
FAPESP (Brazil) and CNRS (France). The first and the last two authors are partially
supported by CNPq and CAPES (Brazil).

References

[1] Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-Agent
Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P. (eds) Agent-
Oriented Methodologies, Idea Group Pub. USA, 171—202 (2005)

[2] Bresciani, P.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J.; Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems, vol 8(3), 203--236 (2004)

[3] Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, vol. 38 (4), 275--280 (1996)

[4] Brinkkemper S.; Saeki, M.; Harmsen, F. Meta-Modelling Based Assembly Techniques for
Situational Method Engineering, Information Systems, 24(3), 209--228 (1999)

[5] Casare, S.; Brandão, A. A. F.; Sichman, J. S. A Semiotic Perspective for Multiagent
Systems Development (Extended Abstract), Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance,
Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, 1373-1374 (2010)

[6] Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:
Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented Methodologies, Idea Group
Publishing, 79--106 (2005)

[7] Cossentino, M.; Gaglio, S.; Garro, A. ; Seidita, V. Method Fragments for agent design
methodologies: from standardization to research. In: International Journal on Agent
Oriented Software Engineering (IJAOSE). 1(1) (2007)

[8] Cossentino,M.; Fortino, G.; Garro, A.; Mascillaro, S. ; Russo. W..PASSIM: a simulation-
based process for the development of multi-agent systems. Int. Journal of Agent-Oriented
Software Engineering, 2(2):132:170, Inderscience Enterprises Ltd., UK (2008)

[9] Demazeau, Y. From interactions to collective behavior in agent-based systems. Proc. of
the 1st. European Conference on Cognitive Science. Saint-Malo, 117—132 (1995)

[10] FIPA. Foundation for Intelligent Physical Agents, Methodology TC. Method Fragment
Definition, Preliminar version 2003/11/21 (2003) Available on
<http://www.pa.icar.cnr.it/cossentino/FIPAmeth)>.

[11] Guessoum, Z; Cossentino, M.; Pavón, J.: Roadmap of Agent-Oriented Software
Engineering – The AgentLink Perspective. In: F. Bergenti, M. P. Gleizes, & F. Zambonelli

15

(Eds.), Methodologies and software engineering for agent systems, Kluwer Academic
Publishers, 431--450 (2004)

[12] Haumer, P. Eclipse Process Framework Composer – Part 1 – Key Concepts. (2007)
Available on: <http://www.eclipse.org/epf>.

[13] Jacobson, I.; Booch, G.; Rumbaugh, J. The unified software development process.
Addison-Wesley (1999)

[14] Karlsson, F.: Method Configuration - Method and Computerized Tool support. Doctoral
Dissertation Dept. of Computer and Information Science, Linkoping University (2005)

[15] OMG. Object Management Group. Software & Systems Process Engineering Meta-Model
Specification, version 2.0. OMG document number: formal/2008-04-01 (2008) Available
on http://www.omg.org/spec/SPEM/2.0/PDF.

[16] Pavon, J. Ingenias: Développement Dirigé par Modèles des Systèmes Multi-Agents.
Dossier d’Habilitation à Diriger des Recherches de l’Université Pierre et Marie Curie.
Paris, France (2006)

[17] Rougemaille S.; Migeon, F.; Millan, T.; Gleizes, M.-P.: Methodology Fragments
Definition in SPEM for Designing Adaptive Methodology: A First Step. In: Luck, M.;
Gomez-Sanz, J.J. (Eds.): AOSE 2008, LNCS, vol. 5386, Springer, 74–-85 (2009)

[18] Zambonelli, F., Jenningns, N. R.; Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transaction on Software Engineering and Methodology, vol
12(3), 417--470 (2003)

16

A Glimpse of the ASPECS Process documented
with the FIPA DPDF Template

Massimo Cossentino1, Stéphane Galland2, Nicolas Gaud2, Vincent Hilaire2,
and Abderrafiaa Koukam2

1Istituto di Calcolo e Reti ad Alte Prestazioni
Consiglio Nazionale delle Ricerche

Palermo, Italy
cossentino@pa.icar.cnr.it

2University of Technology of Belfort Montbéliard.
90010 Belfort cedex, France

vincent.hilaire@utbm.fr
+33 384 583 009

Abstract. The FIPA DPDF working group aims at proposing a defi-
nition of method fragment to be used during a situational method en-
gineering process, the fundamental elements it is composed of and the
metamodel it is based on. Using the FIPA DPDF template, this paper
introduces fragments issued from the aspecs methodology. The process
of this methodology, the underlying metamodel and the workproducts re-
lated to its first main phase, dedicated to system requirements analysis,
are presented.

1 Introduction

It is currently admitted in mainstream software engineering and agent oriented
software engineering that there is no one-size-fit-all methodology or process.
Indeed, as stated in [6] ”traditional rigid IS engineering methods are inadequate
to provide the necessary support in new IS developments. New methods, more
flexible and better adaptable to the situation of every IS development project,
must be constructed”.

One possible solution is based on the situational method engineering paradigm
[5]. This latter provides means for constructing ad-hoc software engineering pro-
cesses following an approach based on the reuse of portions of existing design
processes, the so-called method fragments, stored in a repository called method
base.

The Foundation for Intelligent Physical Agents (FIPA) is part of the IEEE
Computer Society and promotes agent-based technology and interoperability
of its standards with other technology. Among the current existing FIPA sub-
groups, the Design Process Documentation and Fragmentation (DPDF) working
group aims at proposing a definition of method fragment to be used during a
situational method engineering process, the fundamental elements it is composed
of and the metamodel it is based on.

17

The result of the work of the working group members is the definition of a
template in order to document method fragments [8]. This paper illustrates the
use of this template for a specific methodology, namely aspecs 1 [1].

The paper structure respects the FIPA DPDF template. Section 2 introduces
aspecs with its global process and the metamodel which defines the underlying
concepts of the methodology. After this initial section, the FIPA DPDF template
contains a section per phase of the methodological process. Due to the lack
of space, only a part of the first phase of aspecs is described in Section 3.
Eventually, Section 4 concludes.

2 Documented introduction to ASPECS

2.1 Global process overview

The aspecs life cycle consists of three phases that are explained below and illus-
trated by Figure 1. It is not very different from typical iterative processes. Each
iteration (through a phase) refine previous ones. The System Requirements
phase aims at identifying a hierarchy of organisations, whose global behaviour
may fulfil the system requirements under the chosen perspective. It starts with
a Domain Requirements Description activity where requirements are identified
by using classical techniques such as use case driven functional analysis. Domain
knowledge and vocabulary associated to the problem domain are then collected
and explicitly described in the Problem Ontology Description activity. Then, re-
quirements are associated to newly defined organisations. Each organisation will
therefore be responsible for exhibiting a behaviour that fulfils the requirements
it is responsible for. This activity is called Organisation Identification and it pro-
duces an initial hierarchy of organisations that it is later extended and updated,
with further iterations, in order to obtain the global organisation hierarchy repre-
senting the system structure and behaviour. The behaviour of each organisation
is realised by a set of interacting roles whose goals consist in contributing to
the fulfilment of (a part of) the requirements of the organisation within which
they are defined. In order to design modular and reusable organisation models,
roles are specified without making any assumptions on the structure of the agent
that may play them. To meet this objective, the concept of capacity has been
introduced. A capacity is an abstract description of a know-how, i.e. a compe-
tence of a role. Each role requires certain skills to define its behaviour and these
skills are modelled by capacities. Besides, an entity that wants to play a role
has to be able to provide a concrete realisation for all the capacities required by
the role. Finally, the last step of the system requirements phase is the capacity
identification activity. It aims at determining the capacities required by each
role.

The second phase is the Agent Society Design phase that aims at de-
signing a society of agents whose global behaviour is able to provide an effective
solution to the problem described in the previous phase and to satisfy associated

1 https://aspecs.org

18

requirements. The objective is to provide a model in terms of social interactions
and dependencies among entities (holons and agents). Previously identified ele-
ments such as ontology, roles and interactions, are now refined from the social
point of view (interactions, dependencies, constraints, etc). At the end of this
design phase, the hierarchical organisation structure is mapped into a holarchy
(hierarchy of holons) in charge of realising the expected behaviours. Each of the
previously identified organisations is instantiated in form of groups. Correspond-
ing roles are then associated to holons or agents. This last activity also aims at
describing the various rules that govern the decision-making process performed
inside composed holons as well as the holons’ dynamics in the system (creation
of a new holon, recruitment of members, etc). All of these elements are finally
merged to obtain the complete set of holons involved in the solution.

The third and last phase (that may be decomposed in two sub-phases),
namely Implementation and Deployment firstly aims at implementing the
agent-oriented solution designed in the previous phase by deploying it to the
chosen implementation platform, in our case, Janus [4]. Secondly, it aims at de-
tailing how to deploy the application over various computational nodes. Based
on Janus, the implementation phase details activities that allow the description
of the solution architecture and the production of associated source code and
tests. It also deals with the solution reusability by encouraging the adoption of
patterns. The code reuse activity aims at integrating the code of these patterns
and adapting the source code of previous applications inside the new one. It is
worth to note that system developed by using other platforms can be designed
as well with the described process. This phase ends with the description of the
deployment configuration; it also details how the previously developed appli-
cation will be concretely deployed; this includes studying distribution aspects,
holons physical location(s) and their relationships with external devices and re-
sources. This activity also describes how to perform the integration of parts of
the application that have been designed and developed by using other modelling
approaches (i.e. object-oriented ones) with parts designed with aspecs.

Fig. 1. aspecs phases

19

2.2 Metamodel

The Problem Domain metamodel (see Figure 2), describing the concepts of
the first phase, includes elements that are used to catch the problem require-
ments and perform their initial analysis: Requirements (both functional and
non-functional) are related to the organisation that fulfils them. An organisa-
tion is composed of Roles, which are interacting within scenarios while executing
their Role plans. An organisation has a context that is described by an ontol-
ogy. Roles participate to the achievement of their organisation goals by means
of their behaviours and capacities. In this subsection we will discuss the three
most important elements of this domain: organisation, role, capacity. Definitions
of all aspecs metamodels can be found in [1] and on the aspecs website2.

An organisation is defined by a collection of roles that take part in systematic
institutionalised patterns of interactions with other roles in a common context.
This context consists in a shared knowledge, social rules/norms, social feelings,
and it is defined according to an ontology. The aim of an organisation is to
fulfil some requirements. An organisation can be seen as a tool to decompose a
system, and it is structured as an aggregate of several disjoint partitions. Each
organisation aggregates several roles and it may itself be decomposed into sub-
organisations.

In our approach, a Role defines an expected behaviour as a set of role tasks
ordered by a plan, and a set of rights and obligations in the organisation con-
text. The goal of each Role is to contribute to the fulfilment of (a part of) the
requirements of the organisation within which it is defined.

In order to cope with the need of modelling system boundaries and system
interactions with the external environment, we introduced two different types
of roles: Common Role and Boundary Role. A Common Role is located inside
the designed system and interacts with either Common or Boundary Roles. A
Boundary Role is located at the boundary between the system and its environ-
ment and it is responsible for interactions happening at this border (i.e. GUI,
Database wrappers, etc).

Roles use their capacities for participating to organisational goals fulfilment;
a Capacity is a specification of a transformation of a part of the designed system
or its environment. This transformation guarantees resulting properties if the
system satisfies a set of constraints before the transformation. It may be consid-
ered as a specification of the pre- and post-conditions of a goal achievement. This
concept is a high level abstraction, which proved to be very useful for modelling
a portion of the system capabilities without making any assumption about their
implementations as it should be at the initial analysis stage.

A Capacity describes what a behaviour is able to do or what a behaviour
may require to be defined. As a consequence, there are two main ways of using
this concept:

2 http://janus-project.org

20

– it can specify the result of some role interactions, and consequently the
results that an organisation as a whole may achieve with its behaviour. In
this sense, it is possible to say that an organisation may exhibit a capacity.

– capacities may also be used to decompose complex role behaviours by ab-
stracting and externalising a part of their tasks into capacities (for instance
by delegating these tasks to other roles). In this case the capacity may be
considered as a behavioural building block that increases modularity and
reusability.

In order to complete the description of the possibilities offered by the ap-
plication of our definitions of Organisation, Roles and Capacity, let us consider
the need of modelling a complex system behaviour. We assume it is possible to
decompose it from a functional point of view, and in this way we obtain a set
of more finer grained (less complex) behaviours. Depending on the considered
level of abstraction, an organisation can be seen either as a unitary behaviour
or as a set of interacting behaviours. The concept of organisation is inherently
a recursive one [2].

The same duality is also present in the concept of holon as it will be shown
later in this article. Both are often illustrated by the same analogy: the compo-
sition of the human body. The human body, from a certain point of view, can
be seen as a single entity with an identity, its own behaviour and personal emo-
tions. Besides, it may also be regarded as a cluster/aggregate of organs, which
are themselves made up of cells, and so on. At each level of this composition
hierarchy, specific behaviours emerge. The body has an identity and a behaviour
that is unique for each individual. Each organ has a specific mission: filtration
for kidneys, extraction of oxygen for lungs or blood circulation for the heart.

An organisation is either an aggregation of interacting behaviours, and a
single behaviour composing an organisation at an upper level of abstraction; the
resulting whole constitutes a hierarchy of behaviours that has specific goals to be
met at each level. This recursive definition of organisation will form the basis of
the analysis activities performed within aspecs. In most systems, it is somewhat
arbitrary as to where we leave off the partitioning and what subsystems we take
as elementary (cf. [7, chap. 8]). This remains a pure design choice.

3 Phase: Domain

3.1 Process roles

Two roles are involved in the System Requirements discipline: the System Ana-
lyst and the Domain Expert. They are described in the following subsections.

System Analyst. S/he is responsible of:

1. Use cases identification during the Domain Requirements Description (DRD)
activity. Use cases are used to represent system requirements.

21

Fig. 2. Metamodel of the aspecs problem domain

Fig. 3. System Requirements Phase: activities and workproducts

22

2. Use cases refinement during the DRD activity. Use cases are refined with the
help of a Domain Expert.

3. Definition of an ontology for the conceptualisation of the problem during the
Problem Ontology Description (POD) activity.

4. Use cases clustering during the Organisation Identification (OID) activity.
The System Analyst analyses the use case diagrams resulting from the first
activity and the domain concepts resulting from the second activity and
attempts to assign use case to organisations in charge of their realisation.

5. Identification of interacting roles for the previously identified organisations
and use cases constitutes the Interaction and Role Identification (IRI) activ-
ity.

6. Refinement of the interactions between roles during the Scenario Description
(SD) activity by means of scenarios designed in form of sequence diagrams
thus depicting the details of role interaction.

7. Refinement of role behaviours during Role Plan (RP) activity by means of
state-transition diagrams specifying each role behaviour.

8. Identification of capacities that are required by roles or provided by the
organisations during the Capacity Identification (CI) activity. The capaci-
ties are added to the class diagram depicting the organisations composed of
interacting roles.

Domain Expert. The domain expert has knowledge about the domain of the
problem to be solved and is able to decide if the requirements are identified (end
of the Domain Requirements Phase).

3.2 Activity details

Fig. 4. Domain Requirement Description activity

23

Domain Requirement Description (DRD) The global objective of the Do-
main Requirements Description (DRD) activity is gathering needs and expec-
tations of application stake-holders and providing a complete description of the
behaviour of the application to be developed. In the proposed approach, these
requirements should be described by using the specific language of the appli-
cation domain and a user perspective. This is usually done by adopting use
case diagrams for the description of functional requirements; besides, conven-
tional text annotations are applied to use cases documentation for describing
non-functional requirements. In aspecs, we advocate the use of a combination
between use-case driven and goal-oriented requirements analysis where the de-
scription of functional requirements is completed by the one of associated goals
and goal failures.

Table 1. aspecs Domain Requirement Description tasks

Activity Task Task description Roles involved

Domain Re-
quirements
Description

Identify Use
Cases

Use cases are used to represent system re-
quirements

System Analyst
(perform)

Domain Re-
quirements
Description

Refine Use
Cases

Use cases are refined with the help of a Do-
main Expert

System Ana-
lyst (perform)
Domain Expert
(assist)

Organisation Identification (OID) The goal of the Organisation Identifi-
cation activity is to bind each requirement to a global behaviour, embodied by
an organisation. Each requirement is then associated to a unique organisation
in charge of fulfilling it. As already said, an organisation is defined by a set of
roles, their interactions and a common context. The associated context is defined
according to a part of the Problem Ontology, described in the previous activity.

Starting from use cases defined in the DRD activity, different approaches
could be used to cluster them and identify organisations. We advocate the use
of a combination between a structural (or ontological) approach mainly based
on the analysis of the problem structure described in the POD and a functional
approach based on requirement clustering.

Structural analysis focuses on the identification of the system structure. It
is based on the association between use cases and related ontological concepts.
In structural organisation identification, use cases that deal with the same onto-
logical concepts are often put together in the same organisation. This approach
assumes the same knowledge is probably shared or managed by the different
members of the organisation. The structure of the ontology itself can often con-

24

Fig. 5. Organisation Identification activity

stitute a good guideline to identify organisations, their composition relationships,
and later their roles.

Behavioural analysis aims at identifying a global behaviour for the organisa-
tion intended to fulfil the requirements described in the corresponding use case
diagram. The set of organisation roles and their interactions have to generate
this higher-level behaviour. For this task, the use of Organisational Design Pat-
terns may be useful to the designer. In behavioural organisation identification,
use cases dealing with related pieces of the system behaviour are grouped (for
instance an use case and another related to it by an include relationship). This
means that members of the same organisation share similar goals.

3.3 Workproducts

The global objective of the Domain Requirements Description (DRD) activity
is gathering needs and expectations of application stake-holders and providing a
complete description of the behaviour of the application to be developed. In the
proposed approach, these requirements should be described by using the specific
language of the application domain and a user perspective. This is usually done
by adopting use case diagrams for the description of functional requirements;
besides, conventional text annotations are applied to use cases documentation
for describing non-functional requirements.

The global objective of the Problem Ontology Description is to provide an
overview of the problem domain. Problem ontology is modelled by using a class
diagram where concepts, predicates and actions are identified by specific stereo-
types.

25

Domain description

CRIO structures

System requirements
model

Requirement

Ontology

D

D

Q

Organisation

Role

Interaction

D

D

D

Capacity

Q

Q

Q

Fig. 6. aspecs System Requirements Workproducts

Table 2. aspecs Workproduct kinds

Name Description Workproduct kinds

DRD document A text document composed by the Do-
main Description diagram, a documenta-
tion of use cases reported in it and the non-
functional requirements of the system

Composite (Structured + Behavioural)

POD document An ontology in the form of a class diagram
stereotyped according to [3]

Structured

OID document A class diagram reporting use cases and
organisations as packages

Composite (Structured + Behavioural)

IRI document A stereotyped class diagram Structured

SD document A stereotyped sequence diagram Behavioural

RP document An activity diagram Behavioural

CI document A stereotyped class diagram Structured

26

The workproduct of the Organisation Identification activity (OID) refines
the use case diagram produced by the DRD activity and add organisations as
packages encapsulating the fulfilled use cases.

The result of the Interaction and Role Identification is a class diagram where
classes represent roles (stereotypes are used to differentiate common and bound-
ary roles), packages represent organisations and relationships describe interac-
tions among roles or contributions (to the achievement of a goal) from one or-
ganisation to another.

Scenarios of the Scenario Description (SD) activity are drawn in form of UML
sequence diagrams and participating roles are depicted as object-roles. The role
name is specified together with the organisation it belongs to.

The resulting work product of the Role Plan (RP) activity is an UML ac-
tivity diagram reporting one swimlane for each role. Activities of each role are
positioned in its swimlane and interactions with other roles are depicted in form
of signal events or object flows corresponding to exchanged messages.

The workproduct produced by the Capacity Identification is a refinement of
the IRI diagram by adding capacities (represented by classes) and relating them
to the roles that require them.

4 Conclusion

This paper has presented the use of the FIPA DPDF working group template
with a specific MAS methodology, namely aspecs [1]. Only the first of the
three phases composing aspecs is presented and in this phase two activities are
detailed. The aim were twofold, first to prove the usability of the FIPA DPDF
template and second to show a glimpse of the fragmentation of the aspecs
methodology. For more details about the methodology, the reader may refer to
either the aspecs reference paper [1] or its website: http://aspecs.org.

In this section we will discuss the work done for and the results obtained
by adopting the novel FIPA process documentation template to the ASPECS
process in order to evaluate its suitability and to estimate possible advantages of
producing such a documentation. There are several steps to consider in the path
towards the documentation of a process according to the new FIPA template.
First, the (original) process has to be documented at a level of detail that is not
common to most existing contributions from literature. Second, the documenta-
tion has to be converted to the FIPA specification. This means: (i) adopting the
SPEM metamodel for process-related aspects, (ii) adopting a proper decomposi-
tion of the process (according to FIPA template), (iii) conveniently documenting
the different parts, and finally, (iv) studying the metamodel and its relationship
with activities and workproducts. The documentation of ASPECS according has
proved to be quite an easy task. This is due to the specific origin of ASPECS.
Differently from almost all the other AOSE processes, ASPECS has been built by
rigorously following a situational method engineering approach (PRODE more
specifically). This means ASPECS is essentially composed by process fragments
originating from PASSI, RIO and from specifically created new ones. In such an

27

approach, the fragments have been built (and documented) largely before the
new process and therefore their resulting assembly has been easily documented.
Referring to the previously listed of steps for obtaining a FIPA compliant doc-
umentation, the first step (obtaining a sufficiently refined documentation) has
not really been an effort. The ASPECS development history directly produced
that. As regards the second step (converting the documentation to the FIPA
specification), we will discuss the specific details: (i) as regards SPEM adoption,
we already were adopting it during ASPECS development so we had no troubles
with that, (ii) as regards process decomposition, we identified the correct gran-
ularities and (iii) we extracted the proper information from existing ASPECS
documents. This has been the greatest part of the job and it took about one
day of work. Finally, the metamodel-related part of the work (iv) was really
straightforward because creating ASPECS with PRODE caused to have a deep
study of metamodel and its relationships with activities and work products as
required by the FIPA template. Trying an evaluation of the obtained results,
we can say that the work done was not so much but the outcome documenta-
tion has some evident advantages. The most evident consisting in highlighting
the similarities (and differences) with the methodologies that are the parents of
ASPECS: PASSI and RIO. Summarizing, the template proved to be efficient, of
easy application to a huge process like ASPECS and it supported all the needs
we faced in the work.

References

1. Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and Ab-
derrafiaa Koukam. aspecs: an Agent-oriented Software Process for Engineering
Complex Systems. Autonomous Agents and Multi-Agent Systems, 20(2):260–304,
march 2010.

2. Jacques Ferber. Multi-Agent Systems. An Introduction to Distributed Artificial In-
telligence. Addison Wesley, London, 1999.

3. Foundation For Intelligent Physical Agents. FIPA RDF Content Language Specifi-
cation, 2001. Experimental, XC00011B.

4. Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiâa Koukam. An
Organisational Platform for Holonic and Multiagent Systems. In PROMAS-
6@AAMAS’08, Estoril, Portugal, May 12-16th 2008.

5. Brian Henderson-Sellers. Method engineering: Theory and practice. In Proc. of
Information Systems Technology and its Applications, 5th International Conference
ISTA 2006, pages 13–23, 2006.

6. Jolita Ralyté and Colette Rolland. An approach for method reengineering. Lecture
Notes in Computer Science, 2224:471–484, 2001.

7. Herbert A. Simon. The Science of Artificial. MIT Press, Cambridge, Massachusetts,
3rd edition, 1996.

8. FIPA DFDG WG. Design Process Documentation Template. Technical report,
2010.

28

Process Documentation Standardization: An
Initial Evaluation

Massimo Cossentino1, Alma Gómez-Rodŕıguez2, Juan C. González-Moreno2,
Ambra Molesini3, and Andrea Omicini3

1 Istituto di Calcolo e Reti ad Alte Prestazioni
National Research Council, Palermo, Italy

cossentino@pa.icar.cnr.it
2 Departamento de Informática, Universidade de Vigo, Ourense, Spain,

{alma,jcmoreno}@uvigo.es
3 Alma Mater Studiorum – Università di Bologna, Italy
ambra.molesini@unibo.it, andrea.omicini@unibo.it

Abstract. The creation of new ad-hoc methodologies through the Sit-
uational Method Engineering approach needs the process fragments to
be defined and available. Thus, it is necessary to previously define and
extract such fragments from the global development process. So, it is
important to provide the means of documenting the whole process from
which fragments will be obtained. This paper presents an experimen-
tal evaluation of the methodologies documentation template proposed
by the IEEE FIPA Design Process Documentation and Fragmentation
working group. The template will be used for documenting three dif-
ferent agent-oriented methodologies in order to evaluate the template’s
strengths and weaknesses.

1 Introduction

Nowadays, in the software engineering field, there is a common agreement about
the fact that there is not a unique methodology or process that fits all the appli-
cation domains; this means that the methodology or process must be adapted to
the particular characteristics of the domain for which the new software is devel-
oped. There are two major ways for adapting methodologies: tailoring (partic-
ularisation or customisation of a pre-existing processes) or Situational Method
Engineering (SME) [1, 2]. In the last case the process is assembled from pre-
existing components, called fragments, according to user’s needs. This approach
enhances reusability since a method component can be used several times.

The research on SME has become crucial in the Agent-Oriented Software
Engineering (AOSE) since a variety of (special-purpose) agent-oriented (AO)
methodologies have been defined in the past years [3–7] to discipline and sup-
port the multi-agent system (MAS) development. Each of the AO methodologies
proposed up to now exhibits a specific metamodel, notation, and process. All of
these features are fundamental for a correct understanding of a methodology,
and should be suitably documented for supporting the creation of new ad-hoc

29

AO methodologies. In fact, the SME technique is strictly related to the docu-
mentation of the existing methodologies since the successfully construction of
a new process is based on the correct integration of different fragments that
should be well formalized. So, methodologies’ documentation should be done in
a standard way in order to facilitate the user’s understanding, and the adoption
of automatic tools able to interpret the fragment documentation.

In this context, the IEEE FIPA Design Process Documentation and Frag-
mentation (DPDF) working group [8] has recently proposed a template for doc-
umenting AO methodologies. This template takes into account the three afore-
mentioned methodologies’ features. In first place, it has been conceived without
considering any particular process or methodology, and this should guarantee
that all processes can be documented using the proposed template. Moreover,
the template is also neutral regarding the MAS metamodel and/or the mod-
elling notation adopted in describing the process. Secondly, the template has a
simple structure resembling a tree. This implies that the documentation is built
in a natural and progressive way, addressing the process general description and
metamodel definition which constitute the root elements of the process itself.
Then, the process phases are described as branches of the tree. Finally, thin-
ner branches like activities or sub-activities can be documented. This means the
template can support complex processes and very different situations. In third
place, the use of the template is easy for any software engineer as it relies on very
few previous assumptions. Moreover, the suggested notation is the OMG’s stan-
dard Software Process Engineering Metamodel (SPEM) [9] with few extensions
[10].

So, the goal of this paper is to present an experimental evaluation of the
FIPA DPDF template by means of the application of such a template to three
different AO methodologies: PASSI [11], INGENIAS [12], and SODA [13].

Accordingly, the remainder of the paper is organized as follows. Section 2 pro-
vides a brief description of the FIPA DPDF template, while Section 3 presents
the application of the template to the three chosen AO methodologies. Sec-
tion 4 presents some proposals for the improvement of the current version of
the FIPA template, whereas Section 5 presents a discussion about the results
obtained by the applicaiton of the template to the documentation of the three
chosen methodologies. Finally, the conclusions of the whole work are reported
in Section 6.

2 Process Documentation Template in a Nutshell

The IEEE FIPA DPDF working group has recently proposed a template for
documenting AO methodologies. Here we report only a brief presentation of the
template—interested readers can refer to [8] for the details of the template.

The template is based on the definition of process and process model as pro-
posed by [14]. A process model is supposed to have three basic components: the
stakeholders (i.e. roles and workers), the consumed and generated products (i.e.
work products), and the activities and tasks undertaken during the process—

30

these being particular instances (i.e. work definitions) of the work to be done.
Another important component of the template is the MAS metamodel, as pre-
viously considered in [10], because it is thought that the MAS metamodel may
constrain the way in which fragments can be defined and reused.

1.Introduction
1.1.The (process name) Process lifecycle
1.2.The (process name) Metamodel
1.2.1. Definition of MAS metamodel elements

2.Phases of the (process name) Process
2.1.(First) Phase
2.1.1.Process roles
2.1.2.Activity Details
2.1.3.Work Products

2.2 (Second) Phase
2.2.1.Process roles
2.2.2.Activity Details
2.2.3.Work Products

. . . (further phases) . . .
3.Work Product Dependencies

Table 1. The proposed process template

The template schema reported in Table 1 introduces the fundamental com-
ponents of the process model definition. As it can be easily seen, the template
has a structure that provides a natural decomposition of the process elements
in a tree-like structure where the Introduction – including a description of the
process lifecycle and the MAS metamodel – is at the root. Introduction is meant
to give a general overview of the process detailing the original objectives of
the process/methodology, its intended domain of application, scope, limits and
constraints (if any), etc. The Metamodel part provides a complete description
of the MAS metamodel adopted in the process with the definitions of its com-
posing elements. This means the different conceptual elements considered when
modeling the system must be identified and described. The focus on the MAS
metamodel is not new in the agent-oriented community, and is also coherent
with the current emphasis on model-driven approaches, which are always based
on the system metamodel. The process is supposed to be composed – from the
work-to-be-done point of view – by phases. Each phase is composed of activi-
ties that, in turn, may be composed of other activities or tasks. This structure is
compliant to the SPEM specification which is explicitly adopted as a part of this
template although with some (minor) extensions (see [10]). The next template
part is represented by several Phase sections, one for each phase composing the
whole process. The main aim of each phase is to define the phase from a pretty
process-oriented point of view; that is, workflow, work products and process
roles are the center of the discussion. Initially, the phase workflow is introduced
by using a SPEM activity diagram which reports the activities composing the

31

phase, and by doing a quick description of work products and roles. A SPEM
diagram follows reporting the structural decomposition of each activity in terms
of the involved elements: tasks, roles and work products.

In the last section, the template discusses work products with a twofold goal:
the first part aims at detailing the information content of each work product by
representing which MAS model elements are reported in it (and which operations
are performed on them). The second part focuses on the modeling notation
adopted by the process in the specific work product. The work products are
described by using a SPEM work product structured document. This diagram
is a structural diagram reporting the main work product(s) delivered by each
phase, and the diagrams are completed by a table that describes the scope of
each work product. Finally, work product dependencies are reported in a specific
diagram.

3 Case Studies

The next subsections discuss the documentation of three AO processes (PASSI,
INGENIAS, and SODA) using the previously proposed template. In this way,
the paper tries to evaluate the suitability of the template for modeling pro-
cesses. The validation is significant because the chosen methodologies follow
different kinds of process and have significant differences in other composing
elements. For space reason, here we report only some excerpts of the method-
ologies documentation—the interested reader can found more details in [8]. In
particular, the next subsections present the requirement analysis phase for each
of the three AO methodologies considered in this paper.

3.1 PASSI

PASSI (Process for Agent Societies Specification and Implementation) is a step-
by-step requirement-to-code methodology for designing and developing multi-
agent societies.4 The methodology integrates design models and concepts from
both object oriented software engineering and artificial intelligence approaches.

The PASSI design process is composed of five models: the System Require-
ments Model regards system requirements; the Agent Society Model deals with
the agents involved in the solution in terms of their roles, social interactions,
dependencies, and ontology; the Agent Implementation Model is a model of the
solution architecture in terms of classes and methods; the Code Model depicts
the solution at the code level; and the Deployment Model describes the distri-
bution of the parts of the system.

Following the schema proposed in Section 2, Figure 1 summarize the de-
scription of the System Requirements phase. In particular, this phase involves
two different process roles, eight work products (four UML models and four text

4 PASSI documentation can be found at http://www.pa.icar.cnr.it/cossentino/

fipa-dpdf-wg/docs/PASSI_SPEM_2_0_ver0.2.8.pdf.

32

Fig. 1. The System Requirements activities, work products and stakeholders

documents) and four guidance documents (one for each UML model). The phase
is composed of four activities: Domain Requirements Description, Agents Iden-
tification, Roles Identification and Task Specification, each of them composed
of one or more tasks (for instance Identify Use Cases and Refine Use Cases)
and delivering one work product as described by Figure 1. Tasks are under the
responsibility of one or more stakeholders involved with the responsibility to
perform or assist in the work to be done.

The System Requirements Model generates four composed work products
(text documents including diagrams). Their relationships with the MAS meta-
model elements (MMM) are described in Figure 2 where the containment rela-
tionship between each MMM element and a work product is labelled according
to the action performed on the element (D means define/instantiate, R means
relate, Q means quote/cite, RF means refine).

3.2 INGENIAS-UDP Process

The INGENIAS methodology covers the analysis and design of MAS and is in-
tended for general use—that is, with no restrictions on application domains.5

The software development process proposed by the methodology is based on
Rational Unified Process [15]. The methodology distributes the tasks of analysis

5 INGENIAS documentation can be found at http://www.pa.icar.cnr.it/

cossentino/fipa-dpdf-wg/docs/INGENIAS.pdf.

33

Fig. 2. The PASSI System Requirements documents structure

and design in three consecutive phases: Inception, Elaboration and Construc-
tion. Each phase may have several iterations (where iteration means a complete
cycle of development). The sequence of iterations of each phase leads to the pro-
curement of the final system. Figure 3 shows a detailed description of Inception
phase of INGENIAS process.

Fig. 3. INGENIAS Inception activities, workproducts and stakeholders

INGENIAS considers the development as starting from the document de-
scribing the problem, which is a mandatory input in this phase. The Inception
phase is composed of several activities: generate use cases, create the Environ-

34

ment Model, Obtain the Organization Model and Generate Prototype. All these
activities imply an important set of tasks and produce several workproducts as
output, such as the Environment Model, the Organization Model or the Proto-
type. Besides, two roles are responsible as this phase: the System Analyst and
the Designer.

Fig. 4. INGENIAS Inception work products

As discussed above, one of the diagrams proposed in the template relates
workproducts to the metamodel elements. In 4, the diagram is used for describ-
ing that the INGENIAS organisation models defines (D) the organization of
the system and the agents related (R) to this organisation; while goal and role
elements are only used (Q) but must have been defined previously.

3.3 SODA Process

SODA (Societies in Open and Distributed Agent spaces) [7, 16] is an agent-
oriented methodology for the analysis and design of agent-based systems, which
adopts the Agents & Artifacts meta-model (A&A) [17], and introduces a layer-
ing principle as an effective tool for scaling with the system complexity, applied
throughout the analysis and design process.6 The SODA process is organised in
two phases, each structured in two sub-phases: the Analysis phase, which in-
cludes the Requirements Analysis and the Analysis steps, and the Design phase,
including the Architectural Design and the Detailed Design steps. In addition,
since the SODA process is iterative and incremental, each step can be repeated
several times, by suitably exploiting the layering principle: so, for instance, if,
during the Requirements Analysis step (Figure 5), the Requirements Analyst –
one of the roles involved in the SODA process – recognizes some omissions or
lacks in the requirements’ definition, he/she can restart the Requirements mod-
elling activity adding a new layer in the system or selecting a specific layer and
then refining it through the Requirement Layering activity.

6 SODA documentation can be found at http://www.pa.icar.cnr.it/cossentino/

fipa-dpdf-wg/docs/SODA.pdf.

35

Requirements
Modelling

Relations Modelling

Environment Modelling

Relation
Descriptions

Actors
Description Requirements

Description

<<input>>

<<performs,

primary>>

Requirement
Analyst

Legacy-
Systems

Description

Requirements
specification

<<
pr

ed
ec

es
so

r>
>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<output>>

<<output>>

<<performs, primary>>

<<output>>

<<output>>

Environment
Analyst

Requirement
Analyst

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Domain
Expert

<<perform
s, assist>>

Domain
Expert

<<perform
s, assist>>

Requirement
Table

Actor-
Requirement

Table

<<perform
s, assist>>

<<output>>
Actor Table

<<input>>

<<performs, assist>>

Domain
Expert

LegacySystem
Table

<<input>>

<<
pr

ed
ec

es
so

r>
>

Environment
Analyst

<<perform
s, assist>>

Relation Table
<<output>>

Requirement-
Relation Table

<<output>>

LegacySystem-
Relation Table

<<input>>

<<
in

pu
t>

>

Requirements
specification

Requirements
specification

<<input>>

<<input>>

Environment
Layering

<<predecessor>>

<<predecessor>> <<output>>

Zooming Table

<<input>>

Requirement
Layering

<<predecessor>> <<predecessor>>

<<output>>

Zooming Table<<input
>>

<<input>>

Relation
Layering

<<predecessor>>

<<predecessor>>

<<output>>

Zooming Table

<<input>>

Layering

<<predecessor>>

<<predecessor>>

<<output>>

<<output>>

ExternalEnvironm
ent-LegacySystem

Table

Fig. 5. The Requirements Analysis activities, work products and stakeholders

R

QR

Q

D

Actor

Actor

Requirement

D

LegacySystem

R

c

Requirements
Tables

Actor Table

0..1

Requirement
Table

Actor-
Requirement

Table

D

Requirement

0..1

R

c

Domain Tables

LegacySystem
Table

ExternalEnvironm
ent-LegacySystem

Table

D

External
Environment

c

Relation Tables

Relation Table

Requirement-
Relation Table

LegacySystem-
Relation Table

D

Relation

Q

Requirement

R

LegacySystem

Q R

Zooming Table

Actor
LegacySystem

Requirement Relation

F F F FR R R R
R R

D D D D

Fig. 6. The Requirements Analysis documents structure

36

In particular, the Requirements Analysis step involves three different pro-
cess roles, nine work products (relational tables). The step is composed of three
normal activities and four layering activities: the normal are Requirements Mod-
elling, Relations Modelling, Environment Modelling, while the layering are Re-
quirement Layering, Relation Layering, Environment Layering, and Layering.
Tasks are under the responsibility of one or more roles involved with the respon-
sibility to perform or assist in the work to be done.

Figure 6 reports only an excerpt of the Requirements Analysis documents
structure. In SODA the work products are represented as relational tables or-
ganized in different sets. In particular, the diagram in Figure 6 reports the Re-
quirements Tables set. This set describes the system requirements in terms of
Requirement and Actor concepts of the SODA’s metamodel: each table has a
specific relationships with one or more MAS metamodel elements. For example,
the Actor table and the Requirement table define (D) [10] respectively the Actor
and the Requirement while Actor-Requirement table quote (Q) both and relate
(R) Actor and Requirement.

4 Proposals for FIPA DPDF Template Improvement

During the application of the FIPA DPDF template to the three methodologies,
we collected some important feedbacks on its effectiveness. Most of them will
be discussed in the next section as an assessment of the work done, whereas a
couple are now proposed in terms of proposals for the improvement of the FIPA
DPDF template.

The first issue concerns the absence in the template of a clear indication of
where to describe the techniques and guidances [9] applied both in the overall
process and in some specific part of the process. In particular, when trying to
document SODA we had some problems in the documentation of the layering
technique. This is quite a peculiar aspect of SODA, which adopts the layering
principle as a tool for managing the system complexity and it spreads all over the
process—excluding the Detailed Design phase. We found two issues related to
the layering documentation: (i) where to put the layering technique description;
(ii) the definition of the best structure for the documentation.

In order to manage the above issues we created a new sub-section in the
template introduction (Table 1); this is like the description of the single phases,
since the layering technique has a portion of process with its specific activities
and tasks, and obviously its work products. The proposed change perfectly suits
the need for introducing the layering technique before the description of the
details of the process and the structure of the section is flexible enough to fit
similar needs arising in other processes.

Another limit we found in the FIPA DPDF template is the lack of a specifi-
cation for detailing the content of a task. Activities are decomposed – or better
decomposable according to the needs – in tasks in section 2.1.2 (see Section 2) of
the template but this may not be general enough. What about the description
of quite a complex task? SPEM provides the method engineer with the opportu-

37

nity to use the Step element for decomposing tasks. It is worth to remind that –
according to SPEM specification [9] – a Step is “a Section and Work Definition
that is used to organize a Task Definition as Content Description into parts or
subunits of work. . . . A Step describes a meaningful and consistent part of the
overall work described for a Task Definition. The collection of Steps defined for a
Task Definition represents all the work that should be done to achieve the overall
development goal of the Task Definition”. According to this definition the usage
of the Step element may prove to be very useful. It may happen – and we actu-
ally found some occurrences of that in our processes – that one specific task is
too complex to be exhaustively described in the text proposed in section 2.1.2 of
the template (see Section 2). It may be even the case to describe a task with an
activity diagram reporting the flow of work to be done. Steps would be the main
components of this diagram and, in turn, they would need a text description of
the work to be done inside them.

Actually, the FIPA DPDF template specification document [8] proposes the
structure for describing activities as showed in Table 2.

4.1.2.1. Activity 1
GOAL: Describe the work to be done within this activity
STRUCTURE: Details of tasks and sub-activities are specified with
a table that includes the following columns:

- Activity: name of the activity studied in this subsection.
- Tasks/Sub-Activity: sub-activity or task described in this row.
- Task/Sub-activity Description.
- Roles involved.

Optionally, the control flow within a Task can be illustrated by a stereotyped UML
Activity Diagram. These diagrams explain the execution of complicated Tasks by
denoting the possible sequences of Steps, which are identified by the << steps >>
stereotype. Details on this modeling of Tasks can be found in the current SPEM
specification.
When documenting a Task in this way, the diagrams are appended and each
diagram is discussed in a separated paragraph that explains the illustrated
steps and theirx relations.

Table 2. The activity description section in the current FIPA DPDF template

The FIPA DPDF template already prescribes the possibility to detail tasks
by using steps in forms of activity diagrams, however it does not give any hint on
how to document them. In order to improve the template, we propose to intro-
duce a new optional subsection in each activity description section as depicted
in Table 3.

As an example of such an extension, the decomposition of the INGENIAS
Identify Environment Application task is presented in Table 4. The activity
diagram depicting the workflow is omitted because of space concerns and also
because the steps are performed one after the other in a simple way.

38

4.1.2.1.1 Decomposition of Task x of Activity 1
GOAL: Describe the work to be done within Task x of Activity 1.
STRUCTURE: The workflow may be depicted by using an activity diagram
reporting the steps to be done within the task.
Details of steps are specified with a table reporting the following columns:

- Activity: name of the activity the task studied in this subsection belongs to.
- Task: name of the task detailed in this subsection.
- Step: name of the Step described in this row of the table
- Step Description: plain text describing the work to be done within this step.
- Roles involved: roles involved in executing this step.

Table 3. The proposed extension to the FIPA DPDF template for a detailed descrip-
tion of tasks decomposition in steps.

Activity Task Step Step Description Roles
involved

Create the
Environment
Model

Identify Envi-
ronment Ap-
plications

Identify External
Applications

Find standard packages
and external software
agents need to use or to
communicate with

System
Analyst

Create the
Environment
Model

Identify Envi-
ronment Ap-
plications

Identify Internal
Applications

Identify centralized soft-
ware services agents has
to shared and whose na-
ture is not like that of an
agent

System
Analyst

Table 4. Steps in the INGENIAS Identify Environment Application Task

5 Discussion

This paper evaluates a template for process documentation that seems to provide
a good framework in the documentation of processes for AO development. This
template is based on an approach similar to the one proposed by Rumbaugh
[18] in introducing UML. The approach prescribes the removal of all cluttering
information – for instance, different notations – in order to highlight common-
alities (and differences). As a result, the study of a new methodology becomes
easier to a designer who is already fluent with the documentation style adopted
in this approach. The FIPA DPDF template proposes a division of the process
in phases, activities and tasks as introduced in Section 2. In this paper, we were
able to identify (with a similar granularity) the phases, activities and tasks for
the processes introduced in PASSI, INGENIAS and SODA (see Figures 1, 3 and
5) without specific problems—thus proving the soundness of the approach.

In particular, the figures show the flow of activities, the work products and
the stakeholders of the first phase of each methodology. By analysing the figures,
it is easy to understand the specific flow of activities and tasks to be followed
when using the methodologies. On the other hand, the diagrams highlight the

39

differences among the three methodologies such as for instance the different
attention paid to the environment modelling. This is a primary activity in SODA,
a task in INGENIAS, while PASSI delays the study of the environment to the
next phase. Another difference regards the identification of roles and agents: this
is done in the first phase of the process in PASSI and INGENIAS, whereas SODA
defines the same abstractions only in the design phase.

An important feature of the template is the attention paid to the MAS meta-
model adopted in the process. Such a feature provides an interesting point in
methodological comparison. For instance, from the comparison of the documen-
tations produced in this study, we easily deduce that INGENIAS (Figure 4) has
a reduced set of models, which however are quite complex since each of them
includes many concepts. On the other hand, PASSI and SODA – Figures 2, 6 –
have respectively more diagrams and tables, but each of them introduces only a
few concepts. The use of the template easily supports the identification of such
differences.

Furthermore, in the template, the MAS metamodel elements and their rela-
tionships are also related with work products depicting them—see respectively
Figures 2, 4, and 6. Considering work products as a part of the process is fun-
damental for fragment definition and usage, as long as, the user must take into
account the desirable results for selecting a fragment or she/he must consider
what inputs are needed before it is possible to initiate a phase or an activity of
the process. Moreover, the definition of different processes for several method-
ologies using this template – see also [8] for the documentation of others AO
methodologies – suggests that it is general enough, because good results have
been obtained for three different methodologies.

As previously discussed, we point out several benefits in using the proposed
template. First of all, the template makes it easier to understand the process
workflow, and also produces a documentation that may help in studying it.
Moreover, it seems evident that it will be easier to study a new methodology
when this new one is documented with an already known approach. For instance,
PASSI and SODA metamodels are different in the content – different elements,
concepts and models – but the similar description approach largely allows for an
easy identification and study of differences between them.

Another important benefit of defining the process is that it provides a start-
ing point for fragments extraction, and therefore for process elements reuse. The
reuse would start by identifying fragments considering, for instance, as a start-
ing point the work products produced by the fragment. The template provides
diagrams that facilitate the identification. For instance the work products de-
pendencies diagram makes it possible to introduce an order in the work products
obtained. On the other hand, the diagrams detailing the activities identify the
input and output work products of each task. All such information should be
considered when defining a fragment.

Some limitations where noticed when documenting the processes. One issue
is related to the SPEM notation: the presence of the layering activities in SODA
leads to the construction of diagrams that are very difficult to understand due

40

to the huge number of strictly-related activities. In particular, in Figure 5 there
are four different layering activities – one for the iteration and three for the
models refinement –, and the only predecessor relation is not powerful enough
for explaining the right flow of activities in the Requirements Analysis phase—so
this diagram alone is not sufficiently expressive. In this diagram, at the best of
our knowledge, there is no way for expressing too many information in a clear
way. The problem mainly arises in SODA because of the adoption of the layering
technique but generally speaking it may regard other methodologies. The essence
of the problem is deeply relied to the SPEM notation and we have not solved
this problem yet; we plan to find alternative solutions in the future.

Some other minor problems have arisen when documenting the processes.
These problems are more related with identifying specific details of the process
from available documentation rather than with the template itself. Usually, when
defining a methodology authors are more worried about identifying the models
to construct, the concepts to define, etc. than in detailing phases and activities to
be done or in indicating the order of these activities. In some way, the adoption
of the template would force the designer for a new methodology to produce a
complete specification thus improving the quality of the result.

6 Conclusions and Further Work

In this paper we used the FIPA DPDF template for documenting three different
AO design processes. Documentation of processes has many advantages such as:
comparing and evaluating methodologies in an easy way, simplifying fragment
definition and selection, and so on. This work has demonstrated the power of
the template in process documentation, and sketched some of its advantages.
Nevertheless, it has been made available to the scientific community, so that
other processes and/or other methodologies may be defined used the template.

This work is an initial step toward the definition of a standard for fragment
documentation, extraction and use. This means that in the future the models
produced for these methodologies will be used for identifying and documenting
fragments. The fragments will then be reused and integrated so as to provide
new ways of developing AO systems. Besides, although all this work has been
done within the frame of AO development, we guess that the template could be
general enough to define methodologies in other fields of development. Further
work should be done to prove such a statement.

7 Acknowledgements

This work has been partially supported by the project Novos entornos colabora-
tivos para o ensino supported by Xunta de Galicia with grant 08SIN009305PR
and by the FRASI project of the Italian Ministry of Education and Research
(MIUR).

41

References

1. Brian Henderson-Sellers, C.G.P.: Metamodelling for software engineering. ACM
Press New York, NY, USA (2003)

2. Sorbonne, U.D.P., Rolland, C., Rolland, C.: A primer for method engineering. In:
Proceedings of the INFORSID Conference. (1997) 10–13

3. Cuesta, P., Gómez, A., González, J., Rodŕıguez, F.J.: The MESMA methodol-
ogy for agent-oriented software engineering. In: Proceedings of First Interna-
tional Workshop on Practical Applications of Agents and Multiagent Systems (IW-
PAAMS’2002). (2002) 87–98

4. O’Malley, S.A., DeLoach, S.A.: Determining when to use an agent-oriented software
engineering pradigm. In Wooldridge, M., Wei, G., Ciancarini, P., eds.: Agent-
Oriented Software Engineering. Second Int. Workshop, AOSE 2001. Volume 2222
of Lecture Notes in Computer Science. Springer-Verlag (2002)

5. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl.
Eng. Rev. 20 (2005) 99–116

6. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS.
Multi-Agent Systems and Applications III 2691 (2003) 394–403

7. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented
Software Engineering. Volume 1957 of LNCS. Springer-Verlag (2001) 185–193

8. IEEE FIPA Design Process Documentation and Fragmentation: IEEE
FIPA Design Process Documentation and Fragmentation Homepage.
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/ (2009)

9. O.M.G.: Software Process Engineering Metamodel Specification. Version 2.0,
formal/2008-04-01. http://www.omg.org/ (accessed on June 25, 2009) (2008)

10. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the spem specifications
to represent agent oriented methodologies. In Luck, M., Gómez-Sanz, J.J., eds.:
AOSE. Volume 5386 of Lecture Notes in Computer Science., Springer (2008) 46–59

11. Cossentino, M.: From requirements to code with the PASSI methodology. [19]
chapter IV 79–106

12. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
[19] chapter IX 236–276

13. Molesini, A., Nardini, E., Denti, E., Omicini, A.: Situated process engineering
for integrating processes from methodologies to infrastructures. In Shin, S.Y.,
Ossowski, S., Menezes, R., Viroli, M., eds.: 24th Annual ACM Symposium on
Applied Computing (SAC 2009). Volume II., Honolulu, Hawai’i, USA, ACM (2009)
699–706

14. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based de-
velopment. Engineering Applications of Artificial Intelligence 18 (2005) 205–222

15. Kruchten, P.: The Rational Unified Process, An Introduction. Addison Wesley
(1998)

16. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Engineering Societies in the Agents
World VI. Volume 3963 of LNAI. Springer (2006) 49–62

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17 (2008) 432–456

18. Rumbaugh, J.E.: Notation notes: Principles for choosing notation. JOOP 9 (1996)
11–14

19. Henderson-Sellers, B., Giorgini, P., eds.: Agent Oriented Methodologies. Idea
Group Publishing, Hershey, PA, USA (2005)

42

Describing GORMAS using the FIPA Design
Process Documentation and Fragmentation

Working Group template

Sergio Esparcia, Estefańıa Argente and Vicente Botti

Grupo de Tecnoloǵıa Informática - Inteligencia Artificial
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera, s/n, 46022 Valencia, Spain
{sesparcia,eargente,vbotti}@dsic.upv.es

Abstract. This work presents a way to describe GORMAS, an Agent-
Oriented Software Engineering methodology, using the template pro-
posed by the FIPA Design Process Documentation and Fragmentation
Working Group. This template uses SPEM 2.0 notation and it is aimed
at identifying the fragments of each process, in order to extract and reuse
them in some different processes.

Key words: agent-oriented software engineering, design process, frag-
mentation, GORMAS

1 Introduction

When developing Multi-Agent Systems (MAS), designers should be provided
with methodologies and design processes that can help them to achieve well-
designed systems. In the last years, the community of Agent-Oriented Software
Engineering (AOSE) researchers has proposed several methods (see [1] for a
survey on this topic). Some of the most recent methodologies are a refinement
of previous methodologies, such as GORMAS [2], that refines INGENIAS [3],
and ANEMONA [4] methodologies. Some others are the composition of different
processes, such as MEnSA [5], that integrates concepts from Tropos [6], Gaia
[7], SODA [8] and PASSI [9]. Therefore, it can be seen that designers of new
methodologies make use of fragments from existing methods. It is necessary
to be equipped with techniques that help designers to extract the fragments
of a given design process. For example, the Situational Method Engineering
(SME) [10] paradigm provides means for constructing ad-hoc software engineer-
ing processes following an approach based on the reuse of portions of existing
design processes, the so-called method fragments stored in a repository, called
method base. Each existing design process can be considered as composed of
self-contained components, named fragments. Nowadays, a standard definition
of fragment does not exist, so it is an open issue for designers, that have to
decide what is a fragment in each method. Therefore, techniques for fragment
selection and composition are required.

43

To give support in these topics, the IEEE FIPA Design Process Documen-
tation and Fragmentation working group1 (IEEE FIPA DPDF WG) is working
on providing a solution in terms of a shared and easily adoptable specification
for the documentation of the design process and of the process fragment. More
in details, this working group aims to propose a definition of method fragment
to be used during a situational method engineering process, the fundamental
elements of which it is composed, and the metamodel on which it is based. The
first step (currently undergoing) is the identification of the most suitable meta-
model and notation for the process: (i) for the representation of the existing
design processes from which the fragments have to be extracted; and (ii) for
the representation of fragments themselves. This step will outcome in the defini-
tion of a proper template for the description of agent-oriented design processes.
Such a template will, obviously, refer to the selected process metamodel and
will suggest the adoption of good practices in documenting existing processes as
well as defining new ones. The final step will be the definition of the Method
Fragment Structure and Documentation Template. This template claims the au-
thors to use SPEM 2.0 notation to describe their processes, in order to achieve a
standardization. Currently, this FIPA group is working on specifications of the
following methodologies: ADELFE [11], ASEME [12], ASPECS [13], INGENIAS
[3], PASSI [9], SODA [8] and GORMAS [2].

This paper describes an application of the FIPA DPDF WG template to a
specific MAS methodology. The main objective of this work is to describe the
GORMAS methodology by means of the template proposed by the IEEE FIPA
Design Process Documentation and Fragmentation working group. By using this
template, we are looking to achieve the following:

– To facilitate the knowledge and diffusion of the GORMAS methodology by
using a standardized description of the process.

– To make an assessment of the possibilities that the proposed template offers,
evaluating its advantages and the changes that the document could need.

– To establish the fragments of the GORMAS process, that can be reused to
improve other proposed processes.

The rest of this work is organized as follows. Section 2 describes the FIPA
DPDF WG template. Section 3 gives an example of using the template with the
GORMAS process. Section 4 presents a discussion on the proposed template.
Finally, section 5 gives our conclusions on this work.

2 FIPA DPDF WG Template

In the same way that the Unified Modeling Language (UML) [14] does, the
template [15], proposed by the FIPA DPDF WG to describe a process, identifies
the fundamental concepts in the definition of design processes (regarding Agent-
Oriented Systems) independently of the notation (text, icon, diagram, etc.) used
for defining such concepts.

1 http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg

44

The design process documentation template proposed in this specification
is also particularly relevant to researchers and practitioners working on Situa-
tional Method Engineering (SME) [10] approaches. SME proposes the reuse of
fragments from known methods to obtain ad-hoc methods suitable for specific
development situations. The method fragment (i.e. a portion of a design process)
is the key-concept in SME and, although different definitions can be found for it,
all of them share the idea of fragment as a self-contained component. Following
this idea, in order to build a new process, designers have different previously de-
fined fragments available that can be assembled [16, 17]. The method fragment
process, must then be focused on the definition of these fragments, by requir-
ing the whole process to be previously described in a standard way that makes
identifying and defining them easier. Therefore, this must be the main aim of
the FIPA DPDF WG specification, being important to provide here the means
of defining the whole process from which fragments will be obtained.

The proposed template is suitable for process definition, since it has been
conceived without referring to any specific process or methodology. Moreover,
the template has a simple structure resembling a tree. This allows the definition
to be given in a natural and progressive way. The proposed documentation is
composed of three main sections (Introduction, Phases of the Process, and Work
Product Dependencies). The Introduction section contains an overview of the
process and a description of the metamodel used on it. The second section is
split into as many subsections as phases that the process has. Every subsection
contains a description of the activities executed in that phase, the roles that are
involved into it and the work products that will be generated in this phase.

Finally, the template allows presumably easy use by process designers with
a background on software engineering. It relies only on a few initial assumptions
common in the field. Moreover, the notation suggested for documenting the
process is the SPEM [18] standard with few extensions.

The next section uses this template for the GORMAS methodology.

3 Describing GORMAS with the FIPA DPDF WG
template

The GORMAS methodology was completely described using the DPDF WG
proposed template. This description can be found in a technical report [19] which
is available on the web2. Due to space limitations, in this section we will only
describe the Mission Analysis phase of GORMAS using the proposed template.

3.1 Introduction

GORMAS (Guidelines for ORganizational Multi-Agent Systems) defines a set
of activities for the analysis and design of Virtual Organizations, including the
design of their organizational structure and their dynamics. With this method,

2 http://www.dsic.upv.es/docs/bib-dig/informes/etd-05182010-133045/

GORMASTechRep.pdf

45

all services offered and required by the Virtual Organization are clearly defined,
as well as its internal structure and the norms that govern its behavior.

GORMAS is based on a specific method for designing human organizations
by Moreno-Luzón et al. [20], which consists of diverse phases for analysis and
design. These phases have been appropriately adapted to the MAS field, to
catch all the requirements of the design of an organization from the agents’ per-
spective. Thus, the methodological guidelines proposed in GORMAS cover the
typical requirement analysis, architectural and detailed designs of many relevant
Organization-Centered Multi-Agent Systems (OCMAS) [21], (such as SODA and
INGENIAS) methodologies, but it also includes a deeper analysis of the system
as an open organization that provides and offers services to its environment.

3.2 Phases of the process

The proposed guideline allows being integrated into a development process of
complete software, which may include the phases of analysis, design, implemen-
tation, installation and maintenance of MAS. GORMAS methodology is focused
on the analysis and design processes, and it is composed of four phases (see Fig.
1), covering the analysis and design of a MAS: first phase is mission analysis,
that involves the analysis of the system requirements, the use cases, the stake-
holders and the global goals of the system; the service analysis phase specifies
the services offered by the organization to its clients, as well as its behavior,
and the relationships between these services; the organizational design phase
defines the structure for the Virtual Organization, establishing the relationships
and restrictions that exist in the system; and finally, at the organization dy-
namics design phase, communicative processes between agents are established,
as well as processes that control the acquisition of roles along with processes that
enable controlling the flow of agents entering and leaving the organization. Ad-
ditionally, some norms that are used to control the system are defined. Finally,
the organization dynamics design phase is responsible of designing guides that
establish a suitable reward system for the organization. Implementation is car-
ried out in the THOMAS [22] framework which mostly covers the organization
software components that are required, such as organizational unit life-cycle
management, service searching and composition and norm management.

Fig. 1. GORMAS design process

This methodology allows designing large scale, open and service-oriented
MAS, where organizations are able to accept external agents into them. In order

46

to model this kind of systems, GORMAS is supported by a CASE tool named
EMFGormas [23], that uses the MDA Eclipse Technology.

3.3 Mission Analysis phase

The Mission Analysis phase, the first of the GORMAS methodology, involves the
analysis of the system requirements, identifying the use cases, the stakeholders
and the global goals of the system. This phase involves two different process
roles, four work products (one model diagram and three text documents) and
one guidance document, as described in figure 2. This phase is composed of five
activities. The process flow at the level of activities is reported in figure 3.

Fig. 2. Resources and products used in mission analysis phase

As a result of the activities carried out in this phase, a diagram of the Func-
tional Dimension Model is drawn, detailing the products and services offered
by the system, the global goals (mission) pursued, the stakeholders, the existing
links between them, the system results and the resources or services needed.

start

Identify

Stakeholders
Identify Organization

Results

Identify Environment

Conditions

[Are all elements well related?]

[no]

Justify the MAS system

[yes]

[Is the MAS necessity well defined?]

[no]

[yes]

Define the System Mission

Fig. 3. Activity diagram of Mission Analysis phase

47

Process roles. There are two roles involved in the Mission Analysis phase:
the System Analyst and the Domain Expert. The System Analyst is responsi-
ble for: (i) defining the mission and the context of the organization, by means
of identifying the system results, the stakeholders and the environment of the
organization; (ii) creating the documents that define the mission of the system;
and (iii) defining the Functional Dimension Model diagram. The Domain Ex-
pert is responsible of supporting the system analyst during the Mission Analysis
phase, by giving him all the information that he could need.

Activity details. In the Mission Analysis phase, the following concepts are
defined:

– The global goals of the system (mission).

– The services and products that the system provides to other entities.

– The stakeholders with whom the system contacts (clients or suppliers of
resources/services), describing their needs and requirements.

– The conditions of the environment or context in which the organization exists
(i.e. complexity, diversity, restrictions, etc.).

– The justification of the existence of the MAS system that it is being designed,
in order to look that the GORMAS definition on a MAS could contribute
on defining an organization.

In order to identify all these items, five activities are needed, detailed in table
1. These activities are aimed at looking for the system mission, by means of: (i)
identifying the organization results; (ii) identifying the stakeholders; and (iii)
identifying the environment conditions. Moreover, global goals of the system are
described. Finally, it is necessary to justify whether the GORMAS approach for
creating organizations is suitable for the current problem under study.

Activity Activity Description Roles Involved
Identify organiza-
tion results

Describe the results (products or services) that the system
provides, to understand what the result is, what it does and
who is interested in.

System analyst
and domain
expert

Identify stakehold-
ers

Identify and describe the main stakeholders that the orga-
nization is related to (external actors, clients, users, etc.)

System analyst
and domain
expert

Identify environ-
ment conditions

Identify and define the kind of environment in which the
organization will be developed, knowing if it is a physical
environment or a virtual environment; if it is a distributed
environment, etc.

System analyst
and domain
expert

Define the System
Mission

Identify the global goals pursued by the system. These goals
compose the mission of the organization.

System analyst
and domain
expert

Justify the MAS sys-
tem

Justify the existence of this kind of system, comparing it to
other existing similar systems (that can use agents or not),
and analyzing the advantages and disadvantages, and the
singularities of the proposed system.

System analyst

Table 1. Mission Analysis phase activities

48

Work products. The following section describes the products generated on
the Mission Analysis phase. Firstly, the Functional Dimension Model diagram
is defined, and three documents, related to organizational mission, stakeholders
and environment conditions are generated (see table 2).

Fig. 4 describes their relation with the elements of the GORMAS metamodel
[19]. In this figure, each of the work products reports one or more elements from
the GORMAS meta-model; each MAS meta-model element is represented using
a UML class icon and, in the documents, such elements can be Defined, reFined,
Quoted, Related or Relationship Quoted, as explained in the template [15].

Name Description Work Product
Kind

Functional Dimension
Model

A diagram using the GORMAS graphical notation (based
on GOPPR notation) that details the specific functionality
of the system, based on services, tasks and goals.

Behavioral

Organizational Mis-
sion

A document describing the basic aspects of the organization
that will be defined.

Structured text

Stakeholders A document describing the stakeholders that will take part
in the organization.

Structured text

Environment condi-
tions

A document describing the conditions that the environment
of the organization will have.

Structured text

Table 2. Product for Mission Analysis phase

Fig. 4. Mission Analysis phase. Relations between work products and metamodel ele-
ments. Caption: D: defined element, introduced for the first time; F: element refined;
Q: quoted element, already defined; R: element related with another element.

Organizational Mission. This document is employed to define the mission
of the organization. It is a structured text document, whose template is shown in

49

table 3. As shown, it is necessary to give a name, a domain and an environment
for the organization. Additionally, it is necessary to set the results that the
system will provide and the stakeholders that are interested on keeping a relation
with the organization. Finally, a justification for designing the system must be
provided.

Organizational mission
Name: general name of the system or organization to be generated
Domain: kind of market or interest area of the organization
Results: set of products or services offered by the organization to its clients
- Purpose: Description of the motivation because this result is offered.
- Is it tangible?: If the result is storable, printable and/or reusable, it is a product. If it is a used
up functionality, then it is a service.
Stakeholders: actors that set up the market of the organization.
- Is it a consumer?: the actor consumes the products or services that the organization provides.
- Is it a producer?: the actor provides some resources or services that are required by the organi-
zation to work.
Kind of environment: location of the system (unique or distributed): Ability to access to the
real and physical world.
Context restrictions: a set of restrictions that are imposed by the context or environment of the
organization, and could affect to its structure, services, etc.
Justification: reason of the existence of the organization
- Similar systems: to detail the existing systems that provide a similar orientation than the one
we are considering.
- Advantages: set of advantages that we want to offer with the new proposal, i.e. optimal use of
the resources or services.
- Disadvantages: limitations that the new proposal has.
- Singularities: competitive elements of the organization.

Table 3. Template for Organizational Mission document

Stakeholders. This document is employed to describe the stakeholders of
the organization, that have been defined in the Organizational Mission docu-
ment. It is also a structured text document, whose template is shown in table
4. The identification of the stakeholders must be completed by providing the
kind of stakeholder, the objectives that each group follows, their products and
services provided and required, the benefits obtained by them and their position
into the organization.

Stakeholders
Name An identifier for the stakeholder
Beneficiary Indicate if the stakeholder is a primary (essential) or a secondary beneficiary.
Type Indicate if the stakeholder is a client, a provider or a regulator.
Objectives Describe the objectives pursued by the stakeholder.
Requires A set of products and/or services that the stakeholder consume.
Provides A set of products and/or services that the stakeholder offers to the organization.
Frequency To point out if this stakeholder contacts the organization frequently, occasionally

or in an established period of time.
Benefits Describe the benefits that the stakeholder wants to achieve.
Decision power Indicate if their needs are affecting to the requirements of products or services.
Under the influ-
ence of the sys-
tem?

Indicate if the organization can affect the interests of the stakeholder.

Contribution To point out what the organization obtains for its relationship with stakeholders.

Table 4. Stakeholders document

Environment conditions. This document is employed to describe the envi-
ronmental conditions in which the organization will be placed. It is a structured
text document, whose template is shown in table 5. This document analyzes five

50

conditions: the change rate, the complexity, the uncertainty, the receptivity and
the diversity of an environment.

Environment conditions
Change rate: Are the stakeholders constants through time? Are their requirements constants?
Are they modified in a cyclical and a predictable way? Is it possible to estimate the consumption
of a product? Is the demand of a product or a service constant through time? If the answer is
affirmative, the environment is stable. If not, it is an unstable or dynamic environment.
Complexity: Is there a lot of different elements? Are there a lot of clients? Are there a lot of
types of products and services to offer? Are there a lot of types of providers? Are providers not
related between them? If any of the answers is affirmative, the environment is complex. If not, it
is a simple environment.
Uncertainty: If the environment is dynamic and complex, uncertainty is high. If the environment
is stable and simple, uncertainty is low.
Receptivity: Are the inputs and resources available? Are they obtained in an easy and secure way?
If the answer is affirmative, the environment is munificent. If not, it is an hostile environment.
Diversity: Are different groups of clients served? Is it provided a set of different products or
services, with no relationship between them? If any of the answers is affirmative, the environment
is diverse. If not, it is a uniform environment.

Table 5. Environment Conditions document

Functional Dimension Model. This work product is a GORMAS dia-
gram. GORMAS uses a UML-like graphical notation called GOPPR [24] (used
to define diagrams in INGENIAS and ANEMONA methodologies), but adding
some entities proposed by GORMAS like services and norms.

As stated before, the Functional Dimension Model details the specific func-
tionality of the system, based on services, tasks and goals, as well as system
interactions. Figure 5 shows an example of a Functional Dimension Model di-
agram. An Organizational Unit representing the system (UPV), as well as the
stakeholders (Students, Governing organs and Teachers), the objectives pursued
by the organization (’Efficient management of the financial resources’, ’Increase
scientific production’), the products (Databases and Bills) and the services (Bud-
get mnt. and PhD mnt.) of the system are defined on this diagram.

Fig. 5. Example of a Functional Dimension Model diagram

4 Discussion

This section describes the advantages and disadvantages presented by the pro-
posed template. On the one hand, the advantages found during this work are:

51

– This template allows describing a development process using a standard
language like SPEM 2.0. The use of a standard will improve the comparison
of GORMAS with other methodologies.

– The phases of the GORMAS methodology were clearly depicted in its orig-
inal definition. Therefore, a correct fragmentation of the process was easily
obtained after applying the template to GORMAS.

– The metamodel used by the GORMAS methodology has its own section
inside the template, providing a clear and easy-reading description of it.

– The activities developed inside every phase of GORMAS can be easily de-
fined. Therefore, the methodology is not only described in an overview, but
in a detailed way.

– The work products are described and an example is given. Additionally, their
evolution during the whole process is shown and their dependencies.

– The roles participating in the process are identified and the activities that
they are responsible for are identified.

– Several tables are used in order to improve the identification of some elements
such as the work products and the activities of the methodology.

On the other hand, these are the disadvantages of this template:

– The Phases of the process section of the template describes the functional-
ity of every phase by means of its activities, and the tasks composing each
activity. Activities are provided with a deeper description than tasks. How-
ever, in the Organizational Dynamics Design phase of our example, tasks are
more important than activities as they contain the most relevant information
related to this phase. In order to solve this problem, we defined the tasks
of Organizational Dynamics Design phase using the best possible way that
the template guidelines allowed us, by means of descriptive tables. Designers
should be allowed to describe tasks in a similar way to activities, i.e. with a
similar deep description, so as to achieve the desired level of detail in every
phase of a process.

– The template has not a discussion nor conclusion section. It can be very
useful to add a section like this, in order to provide developers with the pos-
sibility of remarking or pointing out some features that could be considered
as important. Additionally, a section describing guidance documents can be
very interesting, in which work products were described.

– The template provides a deep and detailed description of a design process,
but it does not include a ’light view’ of the process. This feature reduces
the focus of possible future readers, that will be mainly bounded to process
designers and developers.

– The adaptation of a methodology from its classic representation to the rep-
resentation proposed by the template must be done by a human. That is, we
must know how to deal with human errors, that could make a methodology
not to be properly translated to the structure of the template.

As seen, there are more interesting advantages than disadvantages on using
this template. The use of a well-known standard graphic language such as SPEM

52

2.0 drives the methodologies to a better understanding of their processes and
approaching them to the standardization. Moreover, the usage of this template
will improve the task of identifying and extracting the fragments of a methodol-
ogy. These fragments will be available for the rest of the AOSE community, that
would use them to improve their existing methodologies or to create new design
processes based on a compilation of these fragments.

Possibly, the main lack of AOSE is a standard methodology. Using this tem-
plate, all the methodologies will adopt the same structure, allowing the authors
to compare them to test every feature of the processes, in order to find which
is the methodology that best solves a concrete problem. After this analysis,
there will be possible to define a methodology, taking the best from the existing
methodologies, that could be considered as a standard.

5 Conclusion

This work presents the template to describe an AOSE methodology proposed
by the IEEE FIPA DPDF WG. As an example, the GORMAS methodology,
used to describe Virtual Organizations, was described using this template. After
using this template over a concrete design process, it becomes expressed in a
standard notation such as SPEM 2.0 and their fragments are identified. In our
concrete example, GORMAS became properly translated into the structure of
the template. Nevertheless, there could be some methodologies whose adaptation
to the template is harder. As a conclusion, we can state that the template allows
to describe a methodology in a proper way and it is recommended to adopt it
to improve the understanding and study of the design processes.

Acknowledgments. This work is supported by TIN2009-13839-C03-01,
TIN2008-04446 and PROMETEO/2008/051 projects of the Spanish government
and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. E. Argente, G. Beydoun, R. Fuentes-Fernandez, B. Henderson-Sellers, G. Low, and
F. Migeon. Modelling with agents. In Postprocedings of AOSE 2009, page In Press.
Springer, 2010.

2. E. Argente, V. Botti, and V. Julian. Organizational-Oriented Methodological
Guidelines for Designing Virtual Organizations. In Proc. 10th International Work-
Conference on Artificial Neural Networks, page 162. Springer, 2009.

3. J. Pavón, J. Gómez-Sanz, and R. Fuentes. The INGENIAS methodology and tools.
Agent-Oriented Methodologies, pages 236–276, 2005.

4. V. Botti and A. Giret. Anemona. A Multi-agent Methodology for Holonic Manu-
facturing Systems. Springer Series in Advanced Manufacturing. Springer, 2008.

5. R. Ali, V. Bryl, G. Cabri, M. Cossentino, F. Dalpiaz, P. Giorgini, A. Molesini,
A. Omicini, M. Puviani, and V. Seidita. MEnSA Project - Methodologies for the
Engineering of complex Software systms: Agent-based approach. Technical Report
1.2, UniTn, 2008.

6. P. Bresciani, P. Girogini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems, 8:203–236, 2004.

53

7. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstractions
for the analysis and design of multi-agent systems. In 1st Int. Workshop on Agent-
Oriented Software Engineering, pages 127–141, 2000.

8. A. Omicini. SODA: Societies and Infrastructures in the Analysis and Design of
Agent-based Systems. Agent-Oriented Software Engineering, 1957:185–193, 2001.

9. M. Cossentino. From requirements to code with the PASSI methodology. Agent-
oriented methodologies, pages 79–106, 2005.

10. S. Brinkkemper. Method engineering: engineering of information systems develop-
ment methods and tools. Inf. Softw. Technol., 38(4):275–280, 1996.

11. C. Bernon, V. Camps, M.P. Gleizes, and G. Picard. Engineering adaptive multi-
agent systems: The ADELFE methodology. Agent-oriented methodologies, pages
172–202, 2005.

12. N. Spanoudakis and P. Moraitis. The Agent Systems Methodology (ASEME): A
Preliminary Report. In Proc. 5th European Workshop on Multi-Agent Systems,
2007.

13. M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam. ASPECS: an
agent-oriented software process for engineering complex systems. Autonomous
Agents and Multi-Agent Systems, 20(2):260–304, 2010.

14. J. Rumbaugh. Notation notes: Principles for choosing notation. Journal of Object-
Oriented Programming, 9(2):11–14, 1996.

15. M. Cossentino. Design Process Documentation Template. Technical report, FIPA,
2010.

16. J. Ralyté and C. Rolland. An assembly process model for method engineering. In
Advanced information systems engineering, pages 267–283. Springer, 2001.

17. D.G. Firesmith and B. Henderson-Sellers. The OPEN process framework: An in-
troduction. Addison-Wesley Professional, 2002.

18. V. Seidita, M. Cossentino, and S. Gaglio. Using and extending the SPEM specifi-
cations to represent agent oriented methodologies. In 9th Int. Workshop on Agent
Oriented Software Engineering (AOSE), Estoril, Portugal, 2008.

19. S. Esparcia, E. Argente, V. Julian, and V. Botti. GORMAS: A methodological
guideline for organizational-oriented MAS. Technical report, Universidad Politec-
nica de Valencia, 2010.

20. M.D. Moreno-Luzón, F.J. Peris Bonet, and T.F. González Cruz. Gestión de la
calidad y diseño de organizaciones. Pearson Educación, SA, 2001.

21. E. Argente, A. Giret, S. Valero, V. Julian, and V. Botti. Survey of MAS Methods
and Platforms focusing on organizational concepts. In Recent Advances in Artifi-
cial Intelligence Research and Development, volume 113 of Frontiers in Artificial
Intelligence and Applications, pages 309–316. IOS Press, 2004.

22. A. Giret, V. Julian, M. Rebollo, E. Argente, C. Carrascosa, and V. Botti. An
open architecture for service-oriented virtual organizations. In PROMAS 2009
Post-Proceedings, pages 1–15. Springer, 2010.

23. E. Garcia, E. Argente, and A. Giret. A modeling tool for service-oriented open mul-
tiagent systems modeling tool. In Proc. 12th Int. Conf. on Principles of Practice
in Multi-Agent Systems, volume 5925 of LNAI, pages 345–360. Springer-Verlag,
2009.

24. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+: A fully configurable multi-user
and multi-tool CASE and CAME environment. Lecture Notes in Computer Science,
1080:1–21, 1996.

54

The O-MaSE Process: a Standard View

Juan C. Garcia-Ojeda1 and Scott A. DeLoach2

1 Facultad de Ingenieria de Sistemas, Universidad Autonoma de Bucaramanga,
Calle 48 No 39-234, El Jardin. Bucaramanga, Santander - Colombia

jgarciao@unab.edu.co

2 Kansas State University, 234 Nichols Hall, Manhattan, Kansas USA
sdeloach@k-state.edu

Abstract. Method engineering has widely been proposed as an approach to
delivering industrial strength software development processes to spur the
adoption of agent-based software in industry. The Foundation for Physical
Agents Technical Committee (FIPA-TC) Methodology group is currently
attempting to define a template for documenting process fragments. This paper
presents our experience in applying the template for the Organization-based
Multiagent System Engineering methodology

Keywords: agent-oriented software engineering, method engineering, design
process documentation, software processes

1 Introduction

Today’s software industry is tasked with building ever more complex software
applications. Businesses today are demanding applications that operate autonomously,
adapt in response to dynamic environments, and interact with other distributed
applications in order to provide wide-ranging solutions [8,10]. Multiagent system
(MAS) technology is a promising approach capable of meeting these new demands
[10]. Unfortunately, there is a disconnect between the advanced technology being
created by the multiagent community and its application in industrial software. The
obstacles to industrial adoption have been the focus of several discussions. Jennings,
Sycara, and Wooldrige [8] mention two major obstacles to widespread adoption of
agent technologies in the industry: (1) the lack of complete processes to help
designers to specify, analyze, and design agent-based applications, and (2) the lack of
industrial-strength agent-based toolkits. To overcome this situation, several MAS
researchers and engineers have suggested the use of method engineering [1,2,9,11].
Method engineering is a discipline in which process engineers construct processes
(i.e., methodologies) from a set of existing method fragments.

In a related effort, the Foundation for Physical Agents Technical Committee
(FIPA-TC) Methodology group is currently attempting to define reusable method
fragments from existing agent-oriented processes [13]. As part of this effort, the
group is currently defining a Design Process Documentation Template (DPDT)

55

specification, which uses SPEM 2.0 as its base [5]. In this paper, we present our
experience of applying the DPDT guidelines for the Organization-based Multiagent
System Engineering (O-MaSE) methodology. After discussing background material
in Section 2, we present a partial definition of O-MaSE following the DPDT in
Section 3 followed by a discussion of our experiences with the template in Section 4.

2 Background

Method Engineering is an approach where process engineers construct processes (i.e.,
methodologies) from a set of method fragments as opposed to modifying or tailoring
monolithic, “one-size-fits-all” processes to suit their needs. Method fragments are
generally created by extracting useful tasks and techniques from existing processes
and redefining them in terms of a common metamodel. The fragments are then stored
in a repository for later use. During creation, process engineers select suitable method
fragments from the repository and assemble them into complete processes meeting
project specific requirements [1].

The Software and Systems Process Engineering Meta-model (SPEM) is “a process
engineering meta-model as well as conceptual framework, which can provide the
necessary concepts for modeling, documenting, presenting, managing, interchanging,
and enacting developments processes” [12]. SPEM distinguishes between reusable
method content and the way it is applied in actual processes. SPEM method content
captures and defines the key Tasks, Roles, and Work Products1 in a software
development processes. Essentially, Tasks are performed by Roles, taking a set of
Work Products as inputs and producing set of Work Products as its output.

Development processes are assembled into a set of Activities, populated with
Tasks and their associated Roles and Work Products. Thus, Activities are aggregates
of either basic content or other Activities. SPEM defines three special types of
Activities: Phases, Iterations and Processes. Phases are special Activities that take a
period of time and end with a major milestone or set of Work Products. Iterations are
Activities that group other Activities that are often repeated. Finally, Processes are
special Activities that specify the structure of a software development project.

2.2 FIPA Design Process Documentation Template Specification

The Design Process Documentation Template specification [5] introduces a set of
guidelines whose goal is the identification of the fundamental concepts in the design
of agent-oriented design processes independent of the notation (text, icons, diagrams,
etc.). This specification follows the situational method engineering approach for
reusing fragments from known methods to obtain custom methods suitable for
specific development situations. For designing agent-oriented processes, the
specification suggests the use of a process documentation template. The template

1 SPEM 2.0 defines as Method Content with Task Uses, Role Uses, and Work Product Uses as

instances of Task Definitions, Role Definitions, and Work Product Definitions in actual
processes. This paper refers to both forms as Tasks, Roles or Work Products.

56

guides process designers to build processes by documenting three main sections:
Introduction, Phases of the Process, and Work Product Dependencies. The goal of the
Introduction is: (i) to introduce the scope and limits of the process, (ii) organize the
design process phases according to the selected lifecycle and, (iii) to provide a
complete description of the MAS metamodel adopted in the process with the
definition of its composing elements. The aim of the Phases of the Process is to detail
the whole process by decomposing it on the basis of workflows at different levels of
granularity (phase-activity-task). Finally, the Work product dependencies represent
the dependencies between the work products and thus (indirectly) between the
activities that produce them. Finally, the template suggests the adoption of SPEM 2.0
as the standard for modeling some design process aspects.

3 Applying the DPDT to O-MaSE

In this section, we present a partial definition of O-MaSE using the DPDT. Due to
page length considerations, we show selected diagrams with abbreviated descriptions.

3.1 Introduction

O-MaSE is a new approach in the analysis and design of agent-based systems, being
designed from the start as a set of method fragments to be used in a method
engineering framework [7]. The goal of O-MaSE is to allow designers to create
customized agent-oriented software development processes. O-MaSE consists of three
basic structures: (1) a metamodel, (2) a set of methods fragments, and (3) a set of
guidelines. The O-MaSE metamodel defines the key concepts needed to design and
implement multiagent systems. The method fragments are tasks that are executed to
produce a set of work products, which may include models, documentation, or code.
The guidelines define how the method fragments are related to one another.

The aT3 Process Editor (APE) [6] supports the creation of custom O-MaSE
compliant processes [6]. APE has five key elements: a Method Fragment Library, the
Process Editor, a set of Task Constraints, a Process Consistency checker, and a
Process Management tool. The Library is a repository of O-MaSE method fragments,
which can be extended by APE users. The Process Editor allows users to create and
maintain O-MaSE compliant processes. The Task Constraints view helps process
engineers specify Process Construction Guidelines to constrain how tasks can be
assembled, while the Process Consistency mechanism verifies the consistency of
custom processes against those constraints. Finally, the Process Management tool
provides a way to measure project progress using the custom process.

The O-MaSE Lifecycle. As O-MaSE was designed as a set of fragments to be
assembled by developers to meet their specific requirements, it does not actually
commit to any specific set of phases. This is a major difficulty with trying to map O-
MaSE to the DPDT. To alleviate this problem, we assume we are following a
traditional waterfall approach shown in Figure 1. There are three main Phases:
Requirements Analysis, Design, and Implementation, with the main Activities

57

allocated as expected. When actually using O-MaSE, the process designer must define
their own set of phases and iterations and then assign Activities and Tasks to those
phases and iterations. As this will be unique for each system being developed, there
are no hard and fast rules on what activities should be placed in which phase.

The O-MaSE Metamodel. The O-MaSE metamodel defines the main concepts and
relationships used to define multiagent systems. The O-MaSE metamodel is based on
an organizational approach and includes notions that allow for hierarchical, holonic,
and team-based decomposition of organizations. The O-MaSE metamodel was
derived from the Organization Model for Adaptive Computational Systems
(OMACS). OMACS captures the knowledge required of a system’s organizational
structure and capabilities to allow it to organize and reorganize at runtime [3]. The
key decision in OMACS-based systems is which agent to assign to which role in
order to achieve which goal. As shown in Figure 2, an Organization is composed of
six entities: Goals, Roles, Agents, Organizational Agents, a Domain Model, and
Policies, which are defined in Table 1.

Figure 1. Using Waterfall Phases with O-MaSE

Figure 2. O-MaSE Metamodel

58

3.2 Phases

As a reminder, the phases presented here are not actually part of the O-MaSE
definition, but only included to help define O-MaSE according the DPDT.

Requirements Analysis. In traditional software engineering practice, the requirement
analysis phase attempts to define and validate requirements for a new or modified
software product, taking into account the views of all major stakeholders. A generic
example of an O-MaSE requirements analysis phase is shown in Figure 3.

Table 1. Metamodel Entities

Goal Goals are a desirable state; goals capture organizational objectives
Role Roles capture behavior that achieves a particular goal or set of goals
Agent Agents are autonomous entities that perceive and act upon their

environment; agents play roles in the organization
Capability Capabilities capture soft abilities (algorithms) or hard abilities of agents
Domain model Captures the environment including objects and general properties

describing how objects behave and interact
Policy Policies constrain organization behavior often in the form of liveness and

safety properties
Protocol Protocols define interaction between agents, roles, or external Actors;

they may be internal or external
External actor External Actors exist outside the system and interact with the system
Plan Plans are abstractions of algorithms used by agents; plans are specified in

terms of actions with the environment and messages in protocols

Figure 3. Requirements Analysis Phase

59

Process Roles. This phase uses five roles: Requirements Engineer, Goal Modeler,
Domain Modeler, Organization Modeler, and Role Modeler. The Requirements
Engineer captures and validates the requirements of the system. Thus, the person in
this role must be able to think abstractly, work at high-levels of abstraction, and be
able to collaborate with stakeholders, domain modelers, and project managers. The
Goal Modeler is responsible for the generation of the GMoDS goal model. Thus, Goal
Modeler must understand the system description/SRS, be able to interact openly with
various domain experts and customers, and must be proficient in GMoDS AND/OR
Decomposition and ATP Analysis [4]. The Domain Modeler captures the key
concepts and vocabulary in the current and envisioned environment of the system,
helping to further refine and validate requirements. The Organization Modeler is
responsible for documenting the Organization Model. Thus, the Organization Modeler
must understand the system requirements, Goal Model, and the Domain Model and be
skilled in organizational modeling techniques. The Role Modeler creates the Role
Model and the Role Description work products, which requires knowledge of the role
model specification, and a general knowledge of the system.

Activity Details. In the Requirements Analysis phase, there are three activities:
Requirements Gathering, Problem Analysis, and Solution Analysis. Requirements
Gathering is the process of identifying software requirements from a variety of
sources. Typically, requirements are either functional requirements, which define the
functions required by the software, or non-functional requirements, which specify
traits of the software such as performance quality, and usability. Problem Analysis
captures the purpose of the product and documents the environment in which it will
be deployed. O-MaSE captures this information in a Goal Model, which captures the
purpose of the product, and a Domain Model that captures the environment in which
the product exits. Finally, Solution Analysis defines the required system behavior
based on the goal and domain models. The end result is a set of roles and interactions
in the Organization Model.

Work product kinds. There are six work products produced in the Requirements
Analysis phase: System Description Specification, Goal Model, GModS Model,
Domain Model, Organization Model, and Role Model as defined in Table 2.

Table 2. Requirements Analysis Work Products

Name Description Work Product
Kind

System Description
Specification

describes the technical requirements for a
particular agent-oriented software Textual

Goal Model
captures the purpose of the organization as a goal
tree; includes goal attributes, precedence
relationships and triggering relationships

Behavioral

Organizational
Model

documents the interaction between the
organization and the external actors Structural

Role Model
depicts organization roles, the goals they
achieve and interactions between roles/external
actors

Behavioral

60

Design. The design phase consists of two activities: Architecture Design and Low
Level Design. Once the goals, the environment, the behavior, and interactions of the
system are known, Architecture Design is used to create a high-level description of
the main system components and their interactions. This high-level description is then
used to drive Low Level Design, where the detailed specification of the internal agent
behavior is defined. This low-level specification is then used to implement the
individual agents during the Implementation phase (see Figure 4).

Process Roles. There are six roles in the design phase: Agent Class Modeler, Protocol
Modeler, Policy Modeler, Capability Modeler, Plan Modeler, and Action Modeler.
The Agent Class Modeler is responsible for creating the Agent Class Model and
requires general modeling skills and knowledge of the O-MaSE Agent Class Model
specification. The Protocol Modeler designs the protocols required between agents,
roles, and external actors and requires protocol modeling skills. The Policy Modeler is
responsible for designing the policies that govern the organization. The Capability
Modeler is responsible for defining the Capability Model and requires modeling skills
and O-MaSE Capability Model specification knowledge. The Plan Modeler designs
the plans necessary to play a role; required skills include understanding of Finite State
Automata and O-MaSE Plan Model specification knowledge. Finally, the Action
Modeler documents the Action Model, which requires the ability to specify
appropriate pre- and post-conditions for capability actions.

Design

Architecture
Design

Low-level
Design

Model Agent
Classes

Model
Policies

Model
Protocols

Model
Capabilities

Model
Actions

Model
Plans

Protocol
Model

Policy
Model

Action
Model

Capability
Model

Agent Class
Modeler

Policy
Modeler

Action
Modeler

Capability
Modeler

Protocol
Modeler

Plan
Model

Plan
Modeler

Agent Class
Model

Figure 4. Design Phase

61

Activity Details. In the Architecture Design we focus on documenting the different
agents, protocols, and policies using three tasks: Model Agent Classes, Model
Protocols, and Model Policies. The Model Agent Classes task identifies the types of
agents that may participate in the organization. Agent classes may be defined to play
specific roles, or they may be defined in terms of capabilities, which implicitly define
the types of roles that may be played. The Model Protocols task defines the details of
the interactions between agents or roles. The Protocol Model produced defines the
types of messages sent between the two entities. Finally, the Model Policies task
defines a set of formally specified rules that describe how an organization may or may
not behave in particular situations. During the organization design, the Policy
Modeler captures the desired system properties and documents them in a formal or
informal notation.

Figure 5. Relationship among several Work Products and the Metamodel

62

In the Low-level design we focus on the capabilities possessed by, actions
performed by, and plans followed by agents. The Model Capabilities task defines the
internal structure of the capabilities possessed by agents in the organization, which
may be modeled as an Action or a Plan. An action is an atomic functionality
possessed by an Agent and defined using the Model Actions task. A plan is an
algorithmic definition of a capability and is defined using the Model Plans task. The
Model Plans task captures how an agent can achieve a specific type of goal using a
set of actions specified as a Plan Model (a Finite State Machine). Finally, the Model
Actions task defines the low-level actions used by agents to perform plans and achieve
goals. Actions are typically defined as a function with a signature and a set of pre and
post-conditions. In some cases, actions may be modeled by providing detailed
algorithmic information. Figure 5 shows the relationship between some work products
(i.e., Goal Model, Role Model, Agent Class Model, Capability Model, Plan Model,
and Action Model) and the entities used to design a typical system. Notice for
instance, that the Goal Model defines goals; the Capability Model defines capabilities,
while the Role Model uses those goals and capabilities to define roles and protocols in
the Role Model. Likewise, the Plan Model defines plans in terms of actions defined
by the Action Model.

Work product kinds. There are six work products produced in the Design phase:
Agent Class Model, Protocol Model, Policy model, Capability Model, Plan Model,
and Action Model as defined in Table 3.

Implementation. Finally, the design is translated to code. The purpose of this phase
is to take all the design models created during the design and convert them into code
that correctly implements the models. Obviously, there are numerous approaches to
code generation based on the runtime platform and implementation language chosen.
In this phase there is a single Role, the Programmer who is responsible for writing
code based on the various models produced during the Design phase. The output of
the Generate Code task is the source code of the application. While not currently
covered in the process, system creation ends with testing, evaluation, and deployment
of the systems.

Table 3. Requirements Analysis Work Products

Name Description Work
Product Kind

Agent Class
Model

defines the agent classes and sub-organizations that
will populate the organization. Structural

Protocol Model represents the different relations/interaction between
external actors and agents/roles. Structural

Policy Model describes all the rules/constraints of the system Behavioral

Capability Model defines the internal structure of the capabilities
possessed by agents in the organization. Structural

Plan Model
captures how an agent can achieve a specific type of
goal using a set of actions (which includes sending
and receiving messages).

Behavioral

Action Model defines the low-level actions used by agents to
perform plans and achieve goals. Structural

63

3.3 Workproduct Dependencies

Table 4 shows the dependencies between the different work products in O-MaSE.
These dependencies characterize different pieces of information or physical entities
produced during the different stages of the development process and serve as inputs to
and outputs of work units (i.e., either activities or tasks). Also, each work product is
specified in terms of the kind of model/information/data documented. For instance, a
structural work product is used to model static aspects of the system. In turn, a
behavioral work product is used to model dynamic aspects of the system. Finally, a
composite work product is used to model both static and dynamic aspects of the
system (for further details on the different work product kind’s see [13]). Figure 6
presents the dependencies between the various O-MaSE work products.

4 Conclusions and Future Work

In this paper, we presented a part of the O-MaSE documentation produced by
following the DPDT specification. To be able to fit into the DPDT template, we had
to select an example set of phases, which we did base on a simple waterfall approach.
Then, we proceeded to document the different phases of our simple process in terms
of the different activities, tasks, roles, and work products.

Based on our experience, we do not believe that requiring the process to be defined
in terms of phases is necessarily the best approach. While we were able to use a
simple waterfall model and describe our activities and tasks as if they were all be used

Table 4. Work Product Dependencies

Work product Work product Kind Dependency
System Description Structural None
Goal Model Behavioral System Description
GMoDS Behavioral System Description, Goal Model
Domain Model Structural System Description
Organization Model Structural System Description
Role Model Structural GMoDS, Organization Model
Role Description
Document

Behavioral Role Model

Role-Goal Model Behavioral GMoDs, Role Model
Agent Class Model Structural Organization Model, GMoDS
Protocol Model Structural Role Model, Agent Class Model
Plan Model Behavioral Role Model, Agent Class Model, GMoDS
Policy Model Behavioral Agent Class Model, Role Description

Document, GMoDS
Capability Model Structural Domain Model, Agent Class Model, Role

Model
Action Model Behavioral Domain Model, Capability Model
Code Composite Capability Model, Action Model

64

in a straightforward, sequential manner, this might not always be the case.
Specifically, it is unclear how to document activities and tasks that might take
differing approaches and thus would likely be incompatible within the same process.
In addition, forcing O-MaSE into any predefined set of phases masks the flexibility of
the general approach proposed in O-MaSE.

We also believe it to be the case that the DPDT was defined assuming that
fragments would be defined at the Activity level. However, when we create custom
O-MaSE compliant processes, we generally use fragments at the Task level. Since
Tasks are broken down only within an Activity and exist as rows in a table, there is
not a natural mechanism for referring to them other than to call them by name and
refer to the Activity in which they are defined. This breakdown also makes it difficult
to document tasks that can be used in more than one Activity. For example, we have a
Model Protocols task that is nominally defined in the Architecture Design activity.
However, we can also model protocols within the Solution Analysis activity as well.
Actually, you can Model Protocols in five ways: between organizations and external
actors, between external actors and roles, between external actors and agents, between
roles and roles, and between agents. We could make five copies of the Model
Protocols task and specify the Work Product inputs slightly differently in each case;
however, this seems redundant. In our original O-MaSE definition, we have one task
called Model Protocols that has several optional Work Product inputs.

Although we believe the DPDT specification is headed in the right direction by
supporting the construction of custom agent-based processes, there is considerable
work to do before the DPDT will make an impact on industrial acceptance. While the
DPDT will allow fragments to be documented in a common format, this is not useful
unless tools for creating, maintaining, and transforming fragments are developed.
While APE is an initial step in this direction, additional effort should be pursued to
further support industrial acceptance.

Specifically, taking the DPDT as a starting point, research should be performed to
extend this work to (i) develop qualitative and quantitative methods for helping
process designers in creating custom processes based on the functional, non-

Figure 6. Requirement Analysis Phase´s Work Product

Dependencies

65

functional, and general architectures of new systems; (ii) formalize process guidelines
in order to avoid ambiguities between the metamodel and the method fragments used
to assembly agent-oriented applications, (iii) provide a set of guidelines on how to
integrate different agent-oriented metamodels.

References

1. Brinkkemper, S. Method engineering: engineering of information systems development
methods and tools. Information and Software Technology. 38(4) 1996, pp 275-280.

2. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardization to research. Intl Jnl of Agent-Oriented Software
Engineering, 1(1), 91–121, 2007.

3. DeLoach, S.A., Oyenan, W., Matson, E.T. A capabilities based model for artificial
organizations. Autonomous Agents and Multiagent Systems. 16(1), 13-56, 2008.

4. DeLoach, S.A., and Miller, M. A Goal Model for Adaptive Complex Systems. International
Journal of Computational Intelligence: Theory and Practice. Volume 5, no. 2, 2010. (in
press).

5. FIPA Design Process Documentation and Fragmentation Working Group. Design Process
Documentation Template (08-06-2010). http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/.

6. Garcia-Ojeda, J.C., DeLoach, S.A. Robby. agentTool process editor: supporting the design
of tailored agent-based processes. In Proc. of the 2009 ACM Symp on Applied Computing,
ACM: New York, 2009.

7. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H.,Valenzuela, J. O-MaSE: a
customizable approach to developing multiagent development processes. In M. Luck (ed.),
Agent-Oriented Software Engineering VIII: The 8th Intl Workshop on Agent Oriented
Software Engineering (AOSE 2007), LNCS 4951, 1-15, Springer: Berlin.

8. Jennings, N. R., Sycara, K., Wooldridge, M. A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems 1(1) 7-38, 1998.

9. Low, G., Beydoun, G., Henderson-Sellers, B., Gonzalez-Perez, C. Towards method
engineering for multi-agent systems: a validation of a generic MAS metamodel. In 10th
Pacific Rim Intl Conf on Multi-Agent Systems, PRIMA 2007, Bangkok, Nov 21-23, 2007. A.
Ghose, G. Governatori, R. Sadananda, Eds. LNAI 5044. Springer: Berlin, 255-267, 2009.

10. Luck, M. McBurney, P. Shehory, O. Willmott, S. Agent technology: a roadmap for agent
based computing. AgentLink, Southampton, UK, 2005.

11. Molesini, A., Denti, E., Nardini, E., Omicini, A. Situated process engineering for
integrating processes from methodologies to infrastructures. In Proc. of the 2009 ACM
Symposium on Applied Computing, ACM: New York, 699-706, 2009.

12. OMG (2008) “Software & Systems Process Engineering Meta-Model Specification”,
v2.0. Formal/2008-04-01, http://www.omg.org/docs/formal/08-04-01.pdf.

13. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems design.
In Proc. of the 7th Workshop from Objects to Agents (WOA 2006), Catania, Italy, pp. 130–
137, 2006.

66

Applying Process Document Standarization to
INGENIAS

Alma Gómez-Rodŕıguez1 and Juan C. González-Moreno1

Departamento de Informática (University of Vigo)
Ed. Politécnico, Campus As Lagoas,

Ourense E-32004 (SPAIN),
{alma,jcmoreno}@uvigo.es

http://gwai.ei.uvigo.es/

Abstract. The increasing interest on Agent Oriented Software
Engineering in the last years is mainly due to its suitability for the
design and implementation of huge, complex, distributed systems. In
this field, special attention has been paid to development processes,
because of direct correlation between the quality of the product and
the process followed to obtain it. At the moment, there is neither a
formal specification to define the activities to develop, the participants
and the deliverables, nor guidance about the elements to introduce in the
model or how these relate with each other. The use of standard notations
may make it easier to describe the process, the resources and the
mandatory deliverables. The IEEE FIPA Design Process Documentation
and Fragmentation working group has proposed a template in order to
cover this gap. This paper provides a first attempt at considering the
results obtained by applying the proposed template to a well known
development process proposed by the INGENIAS methodology for the
construction of a multi-agent system.

1 Introduction

The software quality assurance discipline considers that the development process
is very important because of the direct relation between process quality and final
product quality. In particular, in Agent Oriented Software Engineering (AOSE)
many methodologies and their associated processes of development have been
proposed in the latest years [1–4]. All of them introduce all the conceptual
abstractions that must be taken into account in any MultiAgent System (MAS)
development.

Nevertheless, it is necessary to pay attention to the introduction of standards
for the formal definition of these processes and methodologies.The use of
standards provides better understanding and simplifies the task of sharing
information among several groups of developers. At this moment, there is a
ongoing work impelled by FIPA that proposes a template for standardizing
methodological definition in AOSE field. The template provides a way of
describing processes as well as some guidelines of how to use it. The detailed
definition of the template is available at [5].

67

Following the key lines included in the template, this paper addresses
the definition of a well known development process in the AOSE field. The
process defined using the template is the one originally proposed by INGENIAS
methodology [6–8] which is based on the Rational Unified Process (RUP)[9] also
known as the Unified Development Process(UDP).

The remainder of the paper is organized according to the different sections
of the template proposed by FIPA. This means that next section starts with an
introduction to the methodology, with indication of its most relevant features.
Section 3 details one of the phases defined by INGENIAS for MAS development
and after, we introduce the definition of work-products dependencies. And finally,
the paper ends with the conclusions obtained from template usage.

Analysis Design

Phases

Inception To generate use cases and identify
actions of these use cases with the
corresponding Interaction Model
To outline the system architecture
with an Organisation Model
To generate
Environment Models which reflects
Requirement elicitation

To generate a prototype using RAD
tools such as ZEUS or AgentTool

Elaboration To refine use cases
To generate Agent Models that
detail the elements of the system
architecture
To continue with the Organisation
Models, identifying workflows and
tasks
To obtain Task and Goal Models to
highlight control constraints (main
goals, goal decomposition)
To refine the Environment Model
including new elements

To focus the Organisation Model on
workflow
To refine Tasks and Goal Models
reflecting the dependencies and
needs identified in workflows and
the relationships with system’s
goals
To show how tasks are executed
using Interaction Models
To generate Agent Models which
show required mental state patterns

Construction To study the remaining use cases To generate new Agent models or
refining existing ones
To study social relationships in
order to refine the organisation

Table 1. Phases and tasks for Ingenias Development Process

2 INGENIAS Process Documentation: Introduction

The INGENIAS methodology covers the analysis and design of MAS and it is
intended for general use; that is, with no restrictions on application domain. It

68

Fig. 1. Lifecycle for INGENIAS Methodology

has shown its capability and maturity as the supporting specification for the
development of Multi-Agent Systems (MAS). The methodology provides the
INGENIAS Development Kit (IDK), which contains a graphical editor for MAS
specifications. Besides, the INGENIAS Agent Framework (IAF) [10], which is
integrated in the IDK, enables a full model-driven development and transforms
automatically specifications into code in the Java Agent DEvelopment (JADE)
Framework.

Following the Rational Unified Process (RUP)[9], INGENIAS methodology
distributes the tasks of analysis and design in three consecutive phases (see
Fig. 1): Inception, Elaboration and Construction, with several iterations (where
iteration means a complete cycle of development, which includes the performance
of some analysis, design, implementation and proofs tasks). The sequence of
iterations leads to the procurement of the final system.

The process of such development process is often represented by its authors
in a tabular form (see Table 1). In the table, the three development phases are
presented jointly with two different types of workflows for Analysis and Design.
The methodology pays few attention, compared to RUP, to Implementation and
Test workflows, because it provides some tools which automatically generate
code, in parallel with system’s specification. Attending this facility, these
workflows are considered not to be modeled as a fundamental part of the process.

INGENIAS tries to follow a Model Driven Development (MDD) [11]
approach, so it is based on the definition of a set of meta-models that describe
the elements that could be used to specify a MAS following five viewpoints [12]:

1. Agent: It specifies the definition, control and management of each agent
mental state

2. Interaction: The model is used to describe the agents’ interactions
3. Organization: It details MAS architecture
4. Environment: This viewpoint is used to model the environment of the MAS
5. Task and goals: This meta-model present a detailed view of the tasks and

goals assigned to each agent

The development process is supported by a set of tools, which are generated
from the meta-models specification by means of a meta-modeling processor
(which is the core of the IDK). MAS modeling is facilitated by a graphical editor
and a verification tool. The methodology has been used in several examples
from different domains, such as PC management, stock market, word-processor
assistant, and specially collaborative filtering information systems.

Detailed references of the methodology from their authors can be found in
[6, 7, 12].

69

Fig. 2. Global meta-model of INGENIAS Methodology

2.1 The INGENIAS Process lifecycle

As pointed in the introduction INGENIAS methodology distributes the tasks
of analysis and design in three consecutive phases: Inception, Elaboration and
Construction. Each phase may have several iterations (where iteration means a
complete cycle of development)1.

Following the idea proposed by RUP to take the system architecture as
guideline for development, INGENIAS propose the use of the Organization
Model as basis for the MAS definition and construction (see Table 1)

2.2 The INGENIAS Meta-model

From the point of view of INGENIAS, a meta-model defines the primitives
and the syntactic and semantic properties of a model. Following this idea the
methodology provides five meta-models that define five different views of the
system.

An important characterictis of INGENIAS meta-models is that they are quite
detailed fine grained). This is due to that they are intended to be a precise
definition of the system, and also because each meta-model is the basis for the
automatic code generation provided by the INGENIAS Development Kit (IDK).

As an example of how meta-models are detailed in INGENIAS, Fig. 3 shows
the graphical definition of of the Agent Meta-model. An agent is identified
as an autonomous entity, with particular goals and a unique identity. Three
fundamental elements are identified for each agent: the roles the agent must

1 the definition of INGENIAS can be found in http://www.pa.icar.cnr.it/

cossentino/fipa-dpdf-wg/docs/INGENIAS.pdf

70

Fig. 3. Agent meta-model proposed by INGENIAS Methodology

play, the tasks the agent must accomplish and its mental state. The relationships
among them show how an agent can pursue its goals and how it achieves that
goals executing a particular tasks. This meta-model is selected because the
entities (Agents and Roles) are also included in other MAS meta-models.

2.3 Definition of MAS meta-model elements

In table 2, the basic elements taken from the meta-model are introduced. As
the meta-models of INGENIAS are very detailed, only the most important
concepts have been defined. For further details, the original documentation of
the methodology must be reviewed [6, 7, 12]

3 INGENIAS Process Documentation: Inception Phase

Following the recommendation of the template each phase must be specified in a
section, due to space limitations this paper is focused on the first phase proposed
by the methodology. According to INGENIAS, meta-models are a key issue in the
MAS development, but these models must be associated to the activities done
to obtain them. This integration is the key point covered on the specification
introduced in this section.

Figure 4 gives a general view of the INGENIAS Inception Phase. The
methodology considers that the development process is initiated from the
document describing the problem, so that, this can be considered the initial
input of the process. From this document, the Inception phase introduces several
activities that are described in Fig. 4. Regarding the Analysis workflow at this
level the activities are:

71

Concept Definition Cross-
References

Agent An agent entity is an autonomous entity with identity,
purposes and that performs activities to achieve its goals

Autonomous
Entity

Application An application is a wrapper to computational system
entities. Computational represents a system having an
interface and a concrete behavior

Autonomous
Entity

Root concept that represents an entity with identity and
that pursues goals

Goal

Goal According to the BDI model, a goal is a desired state that
an agent wants to reach. In planning, a goal is represented
by a world state. Here a goal is an entity by itself,
however it can be related with a representation of the
world state using satisfaction relationships with tasks.
This relationships contains references to descriptions of
mental states of agents, so they refer to the image of the
world that agent have

Agent

Interaction Interaction represents an exchange between two or more
agents or roles. There can be only one initiator and at
least one collaborator. An interaction also details the goal
that pursues. This goal should be related with the goals
of the participants.

Agent, Role &
Goal

MentalState A mental state represents the information an agent has
in a certain moment. A MentalState is an aggregate of
mental entities.

Agent

Organisation An organisation is a set of agents, roles and resources
that get together to achieve one or several goals. Inside
an organisation there are not other organisations, just
groups. You can think of an organisation as an enterprise.
Internally it is composed by departments that may be
restructured without affecting the external image of an
enterprise.

Agent

Resource Resource describes a resource according to TAEMS
notation. Opposite to TAEMS, there is no distinction
between consumable and non-consumable resources.

Role A role is a self-contained grouping of functionalities.
When an agent plays a role we want to express that you
have to execute tasks associated to a role and participate
in the same interactions that role

Agent

Task Tasks is the encapsulation of actions or non-distributable
algorithms. Tasks can use Applications and resources.
Tasks generate changes in the mental state of the agent
that executes them. Changes consist of: (a) modifying,
creating or destroying mental entities; or (b) changes in
the perception of the world by acting over applications
(applications act over the world producing events, that
are perceived by the agent). Though tasks can be also
assigned to roles, at the end, it will belong to an agent

Role

Workflow A workflow is an abstraction to a process that
has been automatised using activities and identifying
responsibility relationships

Table 2. Definition of MAS meta-model Elements

72

Fig. 4. Activities and workflows of Inception phase proposed by INGENIAS
Methodology

Fig. 5. Detailed tasks of Inception activities

– Generate Use Cases
– Initiate the architecture using the Organization Model
– Generate the Environment Model

In what respects to Design only the construction of a rapid prototype must
be addressed.

All these activities and the tasks associated to each of them are shown in Fig.
5. From this figure, we can identify the different tasks proposed by INGENIAS
for Inception and the produced work-products. Moreover, the roles responsible
of each task as well as the kind of responsibility they assume are also shown.

3.1 Process roles

The template says that the roles that are responsible of each task must be
identified. Nevertheless, INGENIAS methodology makes no explicit reference to
the roles implied in the development. We consider roles identification proposed by
the template very helpful because it solves a problem previously detected when

73

using the methodology in real environments. In some cases, the team members
have difficulties to known what activity or task they must done and what their
responsibilities where according to the process.

To state the roles involved in this phase, it has been take into consideration
that INGENIAS follow RUP development and it has been considered also the
activities to be done and the level of abstraction of such activities. From this
analysis, we propose only two roles to participate in this phase: the System
Analyst and the Designer.

The System Analyst is responsible or performs the most part of the activities
proposed in this phase. In particular, he will:

– Identify the Use Cases and construct and refine the Use Cases Diagram.
From the initial description of the problem to solve, the analyst must obtain
the use cases that will guide after the creation of the Interaction Model.

– Define the Environment Model, showing the interaction of the system with
its environment. This will imply to: identify applications (in INGENIAS,
all the software and hardware that interact with the system and can’t be
designed as an agent will be considered an application); associate operations
to particular applications and define agents perception on applications.

– Obtain the Architectural view of the System using the Organization Model.
This means to generate a structural definition of the system by identify
groups in the organization, generate group members and identify goals.

The second role identified: the Designer must be responsible of generating
the prototypes. According to INGENIAS literature, this will be done using a
rapid application development tool such as ZEUS, Agent Tool or others.

3.2 Activity Details

Following the template recommendation [5], this section details the activities
previously outlined for Inception Phase.

Generate Use Cases.- The generation and refining of Use Cases has been
identified as a unique task. The goal of this task will be to identify the intended
functioning of the system. Knowing the functionalities the system must provide,
will allow to identify interaction collaborators and initiators and also to discover
the nature of such interactions that will affect the type of control applied to the
agent: planning, cooperation, contract-net or competition.

Generate the Environment Model.- The Environment Model tries to
show the elements that constitute the environment of the system, and in
consequence, the perceptions of the agents. The elements defined in this model
are of three basic kinds: agents, resources and applications.

Figure 6 shows the task to be accomplished for obtaining an Environment
Model of the system to construct. These task are further explained in Table 3.

Initiate the architecture.- One of the key activities in Inception Phase is
to start the definition of system architecture. This is done by constructing the
Organization Model, which reflects mainly the system’s workflows.

74

Fig. 6. Obtaining the Environment Model in the Inception Phase of INGENIAS

Activity Task Description Roles Involved

Generate the
Environment
Model

Identify the
Environment
Applications

All the software and hardware that
interact with the system and that can
not be designed following an agent
oriented approach will be considered an
application

System Analyst

Generate the
Environment
Model

Associate the
Applications
and Operations

Operations are associated to
the applications defined by requirements.
These operations have a signature,
a precondition and a postcondition.
The identification of operations is a
conventional engineering task.

System Analyst

Generate the
Environment
Model

Define Agents
Perception

The main aim of this task is to
define agents perception on environment
applications, at this moment of process
it is enough to relate agents and
applications

System Analyst

Table 3. Task of Activity Generate the Environment Model of Inception Phase of
INGENIAS

In Figure 7 the basic tasks related with the procurement of Organization
Model in Inception activity are shown. These activities try to obtain an
organizational view of the system, attending its structural, functional and social
aspects. The detailed definition of tasks are addressed in Table 4.

Construction of a prototype.- The generation of a prototype is a unique
and simple task, that is supposed to be done using a RAD tool.

3.3 Work Products

The last aspect to be covered to complete the specification of a phase following
the template recommendation [5] is to detail the Work products used. The
INGENIAS Inception Phase produces as result four basic work-products: a
Use Cases diagram, an Environment Model, one or more Organization Models

75

Fig. 7. Obtaining the Organization model in the Inception Phase of INGENIAS

Fig. 8. Structure of Inception Work-products

and a prototype of the system to be built. The relationships among the models
and the the meta-model elements are shown in Figure 8. Organization model,
for instance, defines the organization meta-model element and the agents and
uses the roles and goals previously defined. In this particular case, organization
concept includes also the groups within the system (see organization definition
in table 2). On the other hand, the Environment Model defines the internal and
external applications the system interacts with, as well as the resources available.

4 INGENIAS Process Documentation: Work-product
dependencies

Following the template [5], a final aspect that must be detailed after the
specification of the process phases is the Work-product dependencies. Figure
9 introduces a global view of INGENIAS work-products, as well as their
dependencies. As shown in the Figure, Agent Model depends on Organization
and Environment Models, while the Interaction Model shows dependencies from
Agent and Task/Goal Models among others.

76

Activity Task Description Roles Involved

Obtain the
Organization
Model

Identify groups The groups in the system must be
identified. In this way the participants in
a particular work flow will be organized.

System Analyst

Obtain the
Organization
Model

Generate group
members

Members (agents, roles, resources and
applications) are assigned to groups
creating the corresponding relationships.
If needed, the groups can be decomposed
in order to reduce complexity.

System Analyst

Obtain the
Organization
Model

Identify groups The organization has a set of goals
that must justify collaboration between
agents. The goals identified in this task
will after be assigned to individual agents
or roles in the Task and Goals Model.

System Analyst

Table 4. Task of Activity Initiate Architecture of Inception Phase of INGENIAS

5 Conclusions and Further Work

Most times a methodology proposes a particular development process in its
description. This process may be common to different methodologies, but it is
not specified using a common notation. This gap is being covered by the IEEE
FIPA Design Process Documentation and Fragmentation working group with
the proposal of a template for its definition. This paper provides a first attempt
at the application of the proposed template to model the original development
process of INGENIAS methodology.

The standard has been very useful for the definition an the results have been
satisfactory. Thanks to the use of the the template jointly with the standard
notation, we have been able to improve some how the definition of INGENIAS
RUP based process. For instance, we have identified roles and responsibilities for
each of the tasks that were not previously defined. Moreover, the dependencies
among work-products indicate some relationships that must be taken into
account when adapting the methodology to Agile development processes.

Acknowledgements This work has been supported by the project Novos
entornos colaborativos para o ensino supported by Xunta de Galicia with grant
08SIN009305PR.

References

1. Cuesta, P., Gómez, A., González, J., Rodŕıguez, F.J.: The MESMA
methodology for agent-oriented software engineering. In: Proceedings of First
International Workshop on Practical Applications of Agents and Multiagent
Systems (IWPAAMS’2002). (2002) 87–98

2. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl.
Eng. Rev. 20 (2005) 99–116

77

Fig. 9. Dependencies among INGENIAS Work-products

3. Federico Bergenti, Marie-pierre Gleizes, F.: Methodologies And Software
Engineering For Agent Systems: The Agent-oriented Software Engineering
Handbook. Springer (2004)

4. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies / Brian
Henderson-Sellers, Paolo Giorgini. Idea Group Pub., Hershey, PA (2005)

5. IEEE FIPA Design Process Documentation and
Fragmentation: IEEE FIPA Design Process Documentation and Fragmentation
Homepage. http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/ (2009)

6. Gómez-Sanz, J.: Modelado de Sistemas Multi-agente. PhD thesis, Universidad
Complutense de Madrid. Facultad de Informática (2002)

7. Gómez-Sanz, J.J., Pavón, J.: Meta-modelling in agent oriented software
engineering. In: Advances in Artificial Intelligence - IBERAMIA 2002, 8th Ibero-
American Conference on AI, Seville, Spain, November 12-15, 2002, Proceedings.
Volume 2527 of Lecture Notes in Computer Science. (2002) 606–615

8. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS.
Multi-Agent Systems and Applications III 2691 (2003) 394–403

9. Rational Software: Rational Unified Process: White Paper (1998)
10. Gómez-Sanz, J.: Ingenias Agent Framework. Development Guide V. 1.0. Technical

report, Universidad Complutense de Madrid. (2008)
11. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.

Software, IEEE 20 (2003) 36–41
12. Grupo de Investigación en Agentes Software: Ingenieŕıa y Aplicaciones. INGENIAS

Section. http://grasia.fdi.ucm.es/main/?q=es/node/61 (2010)

78

Exploring the Boundaries:
when Method Fragmentation is not Convenient

Chiara Leonardi1, Luca Sabatucci1, Angelo Susi1, and Massimo Zancanaro1

Fondazione Bruno Kessler IRST, Via Sommarive, 18 I-38050 Trento, Italy
{cleonardi,sabatucci,susi,zancana}@fbk.eu

Abstract. This paper presents an approach to explore the coupling of
User-Centred Design and Tropos methodologies. The two methodologies
have been employed in a real project aiming at developing smart en-
vironment for nursing home to support medical and assistance staff. In
particular Tropos has been used for modeling (and reason about) the do-
main and the system, whereas User-Centred Design has been useful for
establishing an interface for communicating with stakeholders. The in-
tegration was challenging due to the epistemological differences between
the two design approaches.

1 Introduction

Goal-oriented Requirements Engineering (GORE) plays a fundamental role in
the development of user intensive systems, enabling reasoning about the domain
features with the aim of identifying conflicts and of checking for validity of func-
tional and non-functional requirements. Nevertheless, we experienced the need
for an effective way to center the design on the users of the system. The strength
of Goal-Oriented techniques in modelling the domains can be still enhanced
by coupling the engineering perspective with a creative perspective typical of
User-Centred Design (UCD) approaches. Basic principles of this integration are:
(i) early focus on users, tasks and environment, (ii) the active involvement of
users in the design process, (iii) allocation of functions between user and system,
(iv) the incorporation of user-derived feedback into system design, (v) iterative
design whereby a prototype is designed, tested and modified.

Both approaches ground their processes in information about the people that
are directly or indirectly involved by the technology that has to be developed.
Yet, they not only have different set of techniques and incompatible vocabularies
but also they are based on two diverging epistemological foundations. UCD
practitioners shun from any formal method at risk of compromising the actual
use of the knowledge gained in the field. On the other side, RE practitioners
often loose contacts with “real” people because formalizations cannot easily be
shared with them: user analysis thus becomes a single-player game rather than
a meaningful dialogue with stakeholders.

Context. The need of reconciliating the two approaches raised up from the
work in a large research project aimed at developing a smart environment in

79

nursing home as support to medical and assistance staff1. Coming from some
experiences in situational method engineering [1, 2] we supposed to use method
fragment composition and meta-model unification for creating an ad-hoc design
process for our aims. Anyway the attempt to define a common vocabulary for
engineers and sociologists team members was the source for long philosophical
discussions that terminated with the feeling that other ways should be walked.
In particular the main problem was to find an agreement on identifying pre-
cise relations between terms coming from different vocabularies. In addition, the
situation became more complicated when we tried to understand phases and ac-
tivities to perform (and work product to produce); whereas Tropos life-cycle is
clear and well-defined, UCD practitioners refuse to decide a-priori the activities
to perform in a project and their order. Anyway, the attempt was not useless:
we reached the awareness that the problem is not only dialectical, but epistemo-
logical; the two research teams intend their process and language from different
points of view. It was clear that a combination of the two approaches was nec-
essary but that combination should avoid reducing either one approach and the
other. We perceived the paradigm should change from fragment composition to
fragment collaboration.

Contribution. The contribution of this paper is the analysis of foundations
for the integration of the engineering perspective of Tropos with the qualitative
prospective of the UCD approach. While goal oriented requirement engineering
provides accountable procedures and formal or semi-formal methods for elicit-
ing requirements and providing systematic and complete system description, the
UCD process encompasses less formal practices aimed at envisioning sparking
ideas by inspirational techniques ranging from ethnographic fieldwork for un-
derstanding users, to design storm to inspire ’blue sky’ concepts. We propose
a framework for mediating these two different approaches without compromis-
ing their very nature: in the differences, it lies the power of the integration and
its risks. The framework is based on a novel concept for creating a synergy be-
tween methodologies (or parts) that is the definition of communication protocols
between methods. This concept is based on the exploration of methodological
and linguistic boundaries and the definition of channels for sharing and tracking
design data among practitioners of the involved methodologies.

2 Challenges

Traditionally, two main trends can be identified for composing research ap-
proaches of different nature: from one hand, there is the tendency to privilege
a disciplinary perspective and, on the other hand, the effective effort to inte-
grate different epistemologies [3]. In the first case one disciplinary approach is
usually modified to be assimilated into the other approach: while the risk is to
limit the potential of the approach itself; the advantage is to work in a situation
of ’methodological purity’. In the case of disciplinary integration, practitioners
should accept to work in a situation of methodological pluralism: the goal is not

1 ACube project, funded by the Autonomous Province of Trento. http://acube.fbk.eu/

80

to transform or to assimilate a specific approach to make it fits into another
one, but rather to bridge the gap between different research traditions and take
advantages of their mutual strengths.

This distinction can be borrowed from social science to be applied in soft-
ware engineering. Indeed, the Situational Method Engineering [4, 5] is grounded
on the assimilation approach: constructing ad-hoc software engineering processes
by reusing fragments of existing design processes; the basis for the assimilation
technique is the method fragment [6], a self contained component that can be
used as building block for the process composition. Techniques for fragment
manipulation (extraction, selection, and composition) are still open points, and
even if there is a disagreement about the level of precision, it is clear that frag-
ment specification requires a language for describing at least the process and its
products. Some recent approaches [7] make use of the SPEM notation for de-
scribing the process as a workflow and meta-models as linguistic keys for bridging
activities and artifacts coming from different methodologies [8].

The preconditions for applying situational method engineering is to analyze
core elements of a methodology for building model descriptions of activities and
artifacts. There are cases in which these preconditions do not apply, and a for-
malization of the process is not feasible without the risk to loose all advantages of
the process. In our case, whereas Tropos phases and diagrams can be formalized
by using meta-models and SPEM diagrams [8, 7], UCD practitioners are very
resistant in providing any kinds of structure for framing their theories and tech-
niques; they shun from any formal method at risk of compromising the actual
use of the knowledge gained in the field. They claim the freedom is the key for
flexibility of procedures and for quickly adapting to the context. In addition, the
language they use exploits ambiguity as a design opportunity and not as a prob-
lem: the everyday world is inherently ambiguous, and allowing this ambiguity
to be reflected in design has the advantage to encourage people to interpret sit-
uations, by establishing deeper and personal relations with the meaning offered
by situations [9].

For these reasons UCD artifacts have typically a descriptive form that pre-
serves every information about the domain, ranging from users’ motivations to
the empathy versus the product. Therefore, it is not reasonable (and productive)
to generate a meta-model without reducing the expressiveness of these artifacts.
In these cases the integration approach may be useful, as a replacement of the
assimilation approach; this because it does not require transforming the methods
specific to each research tradition but it is based on creating preconditions for a
beneficial dialogue between the two [10]. Maintaining the different epistemolog-
ical and methodological traditions is grounded on managing the dialectic issues
concerning the concurrent usage of different research paradigms.

By exploring the boundaries between Tropos and UCD, two sub-challenges
have emerged and are discussed in the following.

81

2.1 Epistemological challenge

The first issue is to consider epistemological foundations and validity criteria of
both the approaches, to manage differences without weakening and distorting
the two research paradigms. While Tropos is grounded on a positivist research
tradition [11], several methods employed in UCD derive from a constructivist
perspective.

Positivism is an epistemological perspective which holds that knowledge is
based on sensorial experience and positive verification. One of the key features
of positivism is the ability of demonstrating the logical structure and coherence
of a concern by axiomatization. Tropos is classified as a positivist approach —
even if the debate on the positivist nature of many RE methods has recently
been criticized [12] — by providing a precise frame for the modeling activity and
the reasoning process.

Constructivism is a different epistemological perspective which holds that
the Ontological Reality is utterly incoherent as a concept, since there is no way
to verify how one has finally reached a definitive notion of Reality: scientific
knowledge is built by scientists and not discovered from the world. In this con-
text, there is no single valid methodology and researchers play an active role
in defining the reality. UCD is grounded on this research tradition: hence the
scarce formality of methods, the subjective insights developed by practitioners,
and the ambiguities in the analysis are, if correctly managed, not only accepted
but actively perused [9, 13].

Each methodology has its own basic axioms that not only guide the re-
search process, but also the way method is perceived and applied. In the spirit
of integration rather than assimilation, the concrete procedure proposed in this
paper does not dictate a choice or a priority among the two approaches but
rather leaves analysts free to choose the most promising techniques in the two
domains. Indeed, the process boundary to explore and to overcome is peculiar:
making explicit and reason on these differences is the first step to exploit the
complementary nature of UCD practices and RE approaches.

2.2 Linguistic boundary

Beside the methodological boundary, a linguistic boundary exists. The concur-
rent usage of both approaches requires that a common language exists in order
to make a dialogue possible. Several concepts exist in both Tropos and UCD that
suggest an integration is possible and profitable. Examples of these are the pairs
of goal/need, actor/persona, task/activity; yet these terms have slight different
meanings in the two methodologies that hinder the composition process.

The integration of the two methodologies must pass through a reconciliation
of terms. Two alternatives were possible: (i) to create a unified meta-model
of the integrated process, or (ii) to tie up terms with similar meanings while
keeping them separate. The first way was fascinating but it failed because of
the difficulty to identify a meta-model for the UCD process. Just as an example,
during the attempt to formalize a term like ’persona’, we had the feeling to loose

82

the flexibility and the expressivity of the instrument. Thereafter, the definition
of a communication protocol for allowing an exchange of data between the two
processes revealed preferable even if it required an additional effort for creating
a framework in which data of different nature can be easily interchanged.

The proposed framework maintains the original nature of the instruments
and it introduces new methodological and conceptual tools for tracing all data
transformations along the process. In the following, some differences are iden-
tified between Tropos and UCD techniques. For example, in our case the field
study leads to the identification of a number of institutional roles for our stake-
holders. Then, Tropos engineers used these data for defining relevant actors of
the domain, their main goals and dependencies. Afterwards, the analysis tried to
generalize information in order to discover high level interdependencies among
these actors. On the other side, UCD practitioners focused on the behaviour of
individual workers, during their daily job, keeping track of attitudes and per-
sonal motivations that may influence the final value of the design. From the de-
scription of stakeholder daily activities (including routines, methodologies, but
also unexpected situations to front) the Tropos engineers extracted goal/task
decomposition and resource usage. The UCD designer, again, focused more on
problems, stressing situations, lacks of methodologies and expectations over the
system under design. These activities were continuously intermingled until the
awareness of the knowledge of the domain was considered deep enough.

3 Methodology Integration

The Tropos methodology [14] is a goal-oriented design process that relies on a set
of concepts, such as actors, goals, plans, resources, and dependencies to formally
represent the knowledge about a domain and the system requirements. An actor
represents an entity that has strategic goals and intentionality within the system
or the organizational setting. Goals represent states of affairs an actor wants to
achieve. A Plan is a means to realize a goal. Actors may depend on other actors
to attain some goals or resources or for having plans executed.

Tropos distinguishes five phases in the software development process: Early
Requirements, where the organizational domain is described, Late Requirements,
where the system-to-be is introduced in the organization, System Architecture
Design, System Design and System Implementation.

User Centered Design is a design philosophy that exploits a number of differ-
ent techniques within a iterative design process. Tenets of UCD are: early focus
on users, tasks and environment, the active involvement of users in the design
process, allocation of functions between user and system, the incorporation of
user-derived feedbacks into system design, iterative design by which a prototypes
is designed, tested and modified. UCD exploits a series of well-defined methods
and techniques coming from social sciences and psychology for analysis, design,
and evaluation technologies. Contextual inquiries, personas and scenarios - that
we adopted in our project - are widely used when researchers aim at obtaining a
rich picture of a context (organizational, social, physical), at easily communicat-

83

Field Data
Collection

[missing
details]

Data
Interpretation

[study complete OR
insufficient resources] [new dimension]

Consolidation
[low quality

model]

+ domain context analysis

+ Tropos early requirements

+ criticality identification

+ persona authoring

+ activity scenario authoring

Envisioning

+ Tropos late requirements

+ envisioning scenarios

[validation
success]

REQUIREMENTS

[validation
success]

[new system
aspect]

!

!

!

!

[validation
success]

+ contextual inquiry

Fig. 1: Phases of the process and life-cycle

ing it to stakeholders in order to envision acceptable and innovative technological
solutions.

The framework for the integration of the two methodologies considers both
epistemological and language boundaries discussed in the previous section. The
result is an integrated methodology where the component processes maintain
their own identity, even if their activities are interleaved and an intensive ex-
change of data is supported by specific communication protocols.

3.1 Integration of lifecycles

The process model is represented in Figure 1, that shows phases, activities and
conditions for moving along the steps. Every macro-phase of the process is repre-
sented as a box with a title and activities are placed inside. The execution order
of activities in a phase is not specified: they are concurrently managed and iter-
ated as well as some conditions are met. Generally, each phase terminates with
a validation according to assigned criteria, in which typically also stakeholders
are involved.

The process begins with the investigation of the domain in order to under-
stand the organizational setting and to derive possible needs and services that
the system could provide to users. Several methods exists to analyse the domain:
recently ethnographic methods, such as contextual inquiry, demonstrated their
capacity to satisfy the needs for a deep but at the same time rapid understand-
ing of complex domain. Data interpretation provides a first classification and
abstraction in order to create a believable model of the domain, but avoiding
to loose important details typical of a narrative analysis. In our process, data
interpretation is concurrently carried out in a twofold way: one is the domain
context analysis and one is the Tropos early identification. The data consolida-
tion acts as a filter in order to focus on relevant characteristics to consider in the
following phases. Finally, the envisioning phase lets the analysis team to reason
on the system-to-be in order to expand designers’ prospective, to look at the
problems from different points of view, to figure out how their ideas can work in

84

a real context, to identify design criticalities, and to generate requirements. The
process ends with the validation of requirements with stakeholders, essential for
moving to the next design phase.

3.2 Exploring Methodological Boundaries

The modeling activity in the Tropos methodology follows a ’positivist’ approach,
indeed, Tropos algorithms and meta-model [8] provide well-defined descriptions
for the design activity. A typical shortcoming of positivist approaches is that
they can not easily provide general techniques for interpreting the domain, and
transforming perception data into model elements. In the case of Tropos, for
instance, it is the analyst’s responsibility to decide how to model the domain,
managing trade-offs and choices: the process does not provide general guidelines
about what actors and goals to include in the model, how to handle and/or
decomposition, and so on.

On the other side UCD is a ’constructivist’ approach, thus it avoids prescrib-
ing a process to follow, but it provides criteria for achieving project objectives
and supporting the designer decisions. For instance, the contextual inquiry phase,
in which the designer gathers detailed data needed for the design and discovers
implicit aspects of work that would normally be invisible. This activity may be
conducted by using different techniques (interviews, direct observation, ques-
tionnaires, and so on) to use in isolation or to interleave according to the needs
emerging from the context.

Data captured by contextual inquiry is greatly useful for leading decisions
during the early requirement; between these two activities there is a method-
ological boundary that may be used to create a method synergy. The contextual
inquiry produces a huge documentation concerning observed users/customers
and their needs. If opportunely analyzed and filtered this data can feed the Tro-
pos entity identification, by providing criteria for motivating the introduction of
new elements and tracing the source.

Nevertheless, another methodological boundary exists in the opposite di-
rection: filtered data, modeled with Tropos, is an input for UCD designers in
order to feed the following consolidation phase. An example is the Tropos early
requirement that produces a model of the domain, organization dependencies
and stakeholders’ strategies for goal commitments. This model can be profitable
used by UCD designers in order to summarize relevant aspects of the domain
preliminary to the envisioning of the new system.

3.3 Exploring Linguistic Boundaries

A linguistic boundary is due to a mismatching in the dictionary used in the two
methodologies. This aspect is specifically evident in the integration between a
well-specified language (Tropos) and a language that is intentionally verbose and
sometimes ambiguous (UCD). The identification of these linguistic boundaries
is important for the reconciliation of incompatible concepts and for creating the
framework for data sharing.

85

An example of linguistic boundary exists between the Tropos ’task’ and the
UCD ’activity’ terms. A Tropos ’task’ is defined as the conceptualization of a
plan that provides the means for the operationalization of a goal. An example
of task is [caregivers monitor guests’ behavior]. The UCD ’activity’ concept captures
additional information about the context in which it is carried out, including the
user point of view and the empathy aspect. An instance of activity description
is extracted from an interview to a caregiver:

”. . . during my job it is important to continuously observe patients’ behavior,

but this is often an heavy activity to carry on together with other our duties.

This is due to the high number of guests compared to the low number of

professionals. This working overhead causes we are incapable of concentrating

on the human aspect of our job as well as we would do . . . ”

Maintaining and tracking this difference along the unified process is funda-
mental for the following design phases, but it requires a reconciliation: it requires
to explore how a Tropos task is related to an UCD activity. The solution we ex-
plored is to connect the two concepts with a different kind of relationships respect
to classical ones used in meta-modeling. We introduce a loose relationship among
linguistic elements that is based on collaboration protocols. This is discussed in
the following section.

3.4 Defining Collaboration Protocols

In a situation of methodological pluralism, in which at least two design teams
collaborate, a collaboration protocol relates linguistic elements that need to be
reconciliate. A protocol defines crossing terms, steps, guidelines and instruments
for translating and tracking design data from one methodology to the other.

The exploration of methodological boundaries provides hooks in which a col-
laboration is possible and beneficial, whereas linguistic boundaries identify ele-
ments that must be reconciliate in order to realize the collaboration. An instance
of collaboration protocol is defined for the boundary existing when moving from
the Tropos early identification to the UCD consolidation activity, which — in
our project — was conducted with activity scenarios and personas authoring.

The Tropos Early Requirement activity depicts the strategic and organi-
zational views of the domain. During this phase the relevant stakeholders are
identified, along with their respective objectives; stakeholders are represented
as actors, while their objectives are represented as goals. Goal and plan models
allow the designer to analyze goals and plans from the perspective of a specific
actor. This phase results from the analysis of social and system actors, as well
as of their goals and dependencies for goal achievement.

The use of Scenarios in RE is pretty established as an instrument to de-
scribe instances of behavior of the system, but their use ranges for several pur-
poses and it is aimed at very different concerns [15]. We used activity scenarios,
which are stories about people carrying out activities; they describe a context in
which personas act with the aim of summarizing, clarifying and reasoning on the

86

collected information; these scenarios are narrative description of the behavior
of personas in critical contexts of the domain [16]. Another difference respect
to classical software engineering scenarios is the use of personas. Personas are
powerful instruments for creating descriptive models of system-to-be users [17].
Mikkelson and Lee [18] introduced user archetypes that describe classes or types
of user of a product, further refined by Cooper [17] that introduces “personas”
as composite archetypes based on behavioral data gathered from many actual
users encountered in ethnographic study. They provide a tangible representation
of the user to act as a believable agent in the setting of scenario. Summarizing,
personas are hypothetical but significant user archetypes for which to motivate
the design; they are defined as [19–22]: (i) attitudes, experiences, aspirations;
(ii) general expectations the persona may have about the experience of using
the product; (iii) behaviors that persona will expect from the product; (iv) how
the persona think about basic elements or units of data.

A linguistic boundary was identified between the Tropos concept of ’actor’
and the UCD concept of ’persona’. Whereas both of them identify users of the
system-to-be, an actor is a powerful instrument to abstract a role in the organi-
zation, while a persona is an archetype of user, sufficiently concrete to provide
the understanding of the empathy emerged from ethnographic study and per-
sonal motivations within a scenario. The cognitive and emotional dimensions are
important factors persona try to catch for helping the designer to take decisions
in the design process, characteristics that are missing in an actor.

The collaboration protocol for this couple — methodological/linguistic — of
boundaries is based on the identification of criticalities that tie up the organi-
zation model with the concrete context in which actors play their roles. The
Criticality Identification bridges the Tropos early requirement analysis with the
following persona and scenario authoring, by connecting linguistic terms like
actor and persona.

A criticality is an exceptional situation to front in the organization for which
the system is designed. The criticality is discovered in the Tropos goal-models,
by analyzing and/or decomposition and by the conflict analysis. A criticality is
identified as a view on the organization model that focuses on highlighting actors,
goals and tasks when a critical situation occurs. The description is enriched with
information about the context in which the problem may occur and the impact
on the standard stakeholder activities.

The aim of this protocol is to highlight every possible breakdown or problem
that may occur in the organization that hinders the achievement of goals; this in-
formation — given to UCD designers — leads the construction of scenarios that,
subsequently, have a specific significance for reasoning of system requirements
in the creative sessions. Criticalities are initially classified and prioritized on the
base of their relevance in the domain. Subsequently for each relevant criticality
at least one scenario is authored and a cast of personas is engaged. The aim of
the scenario is to highlight concrete instances in which the problem occurs, and
to reveal stakeholders’ behavior in the circumstance.

87

4 Discussion

The first point we want to discuss in this paper is whether fragmentation activity
is always possible or — as well as in the case of ’constructivist’ approaches — it is
a risk to reduce the advantages of methodology synergy. The difficulty to frame
a design process within a precise formalization may hinder the applicability of
situation method engineering techniques.

In our framework we maintained the two epistemologically different method-
ologies, by creating some communication channels for the teams of engineers
and sociologists to easily communicate and share information. This activity re-
quired a deep analysis of the two approaches, in order to identify where the two
methodologies present similarities and where they where conceptually different.
At the beginning, for this purpose, the teams spent time in defining a common
vocabulary. During these meetings the participants identified pairs of terms that
may be re-conciliated (actor/persona, goal/need, task/activity), but they failed
in identifying a precise relation between them even if relations have been in-
vestigated. The problem were not only dialectical, but epistemological: the two
teams have different sensibility and a different vision about the problem and
how to solve it. For instance, an actor identifies the ’abstraction’ of a role in an
organization, whereas a persona is an ’archetype’ of users for which the system
is going to be designed; the actor is featured with institutional goals that hold
for every person will play the role, whereas each person is unique due to his/her
personal attributes. This way the failure in the definition of a unified vocabu-
lary raised up the need for the exploration of the boundary between component
methodologies. Boundaries have to be interpreted as an additional value for the
integration, because they allow for defining how to share design data even if
talking different languages.

The second point of this discussion is the systematization of the approach we
exploited. The goal is to reconciliate the use of communication protocols with ex-
isting situational method engineering techniques for constructing methodologies.
In our opinion it is possible to consider a communication protocol as a specific
fragment, built ad-hoc for the specified situation. Considering, for instance, the
criticality identification activity used to tie up the Tropos early requirement with
personas/scenarios authoring: this activity did not exist neither in Tropos nor in
UCD. The concept of critical aspect and the technique for identifying criticalities
in the domain have been created ad-hoc for linking Tropos activities/concepts
with UCD ones. Now, we are investigating whether a communication protocol
can be framed inside the situational method engineering by introducing a loose
methodological and linguistic link for integrating fragments. It is worth noting
this is a loose relationship, that is different from a ’strong’ structural relationship
because it does not introduce destructive modifications. For instance, aggrega-
tion is the classic meta-model link among elements, and it is typically used when
blending two meta-models (or portions) [6]. Another advantage of the ’communi-
cation’ link is that it does not require a full formalization of the process and the
products concerning the fragment. It may work even when the process model is

88

partially defined or in other cases — as UCD — in which the process frequently
changes with the context and the language is flexible but ambiguous.

References

1. M. Cossentino, L. Sabatucci, and V. Seidita, “A collaborative tool for designing
and enacting design processes,” in SAC, S. Y. Shin and S. Ossowski, Eds. ACM,
2009, pp. 715–721.

2. M. Cossentino, L. Sabatucci, V. Seidita, and S. Gaglio, “An agent oriented tool for
method engineering,” in EUMAS, ser. CEUR Workshop Proceedings, B. Dunin-
Keplicz, A. Omicini, and J. A. Padget, Eds., vol. 223. CEUR-WS.org, 2006.

3. A. Pickard and P. Dixon, “The applicability of constructivist user studies: how can
constructivist inquiry inform service providers and systems designers,” Information
Research, vol. 9, no. 3, pp. 9–3, 2004.

4. S. Brinkkemper, “Method engineering: engineering of information systems devel-
opment methods and tools,” Information and Software Technology, vol. 38, no. 4,
pp. 275–280, 1996.

5. B. Henderson-Sellers and J. Ralyté, “Situational Method Engineering: State-of-the-
Art Review,” Journal of Universal Computer Science, vol. 16, no. 3, pp. 424–478,
2010.

6. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita, “Method fragments for agent
design methodologies: from standardisation to research,” International Journal of
Agent-Oriented Software Engineering, vol. 1, no. 1, pp. 91–121, 2007.

7. V. Seidita, M. Cossentino, and S. Gaglio, “A Repository of Fragments for Agent
Systems Design,” in Proc. Of the Workshop on Objects and Agents (WOA’06),
Catania, Italy, September 2006.

8. A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini, “The tropos metamodel and its
use,” Informatica, vol. 29, no. 4, pp. 401–408, 2005.

9. W. Gaver, J. Beaver, and S. Benford, “Ambiguity as a resource for design,” in
Proceedings of the SIGCHI conference on Human factors in computing systems.
ACM New York, NY, USA, 2003, pp. 233–240.

10. R. Weber, “The rhetoric of positivism versus interpretivism: A personal view,”
MIS Quarterly, vol. 28 (1), pp. 3–12, 2004.

11. C. Potts and W. Newstetter, “Naturalistic inquiry and requirements engineering:
reconcilingtheir theoretical foundations,” in Proc. of the Third IEEE International
Symposium on Requirements Engineering, 1997, pp. 118–127.

12. C. Hinds, “The case against a positivist philosophy of requirements engineering,”
Requirements Engineering, vol. 13, no. 4, pp. 315–328, 2008.

13. T. Wolf, J. Rode, J. Sussman, and W. Kellogg, “Dispelling design as the black art
of CHI,” in Proceedings of the SIGCHI conference on Human Factors in computing
systems. ACM, 2006, p. 530.

14. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos, “High variability design for
software agents: Extending Tropos,” TAAS, vol. 2, no. 4, 2007.

15. C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N. Maiden, M. Jarke,
P. Haumer, K. Pohl, E. Dubois et al., “A proposal for a scenario classification
framework,” Requirements Engineering, vol. 3, no. 1, pp. 23–47, 1998.

16. P. Wright, “What’s in a scenario?” ACM SIGCHI Bulletin, vol. 24, no. 4, p. 12,
1992.

89

17. A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of interaction
design. Wiley India Pvt. Ltd., 2007.

18. N. Mikkelson and W. Lee, “Incorporating user archetypes into scenario-based de-
sign,” in Proc. UPA, 2000.

19. P. Junior and L. Filgueiras, “User modeling with personas,” in Proceedings of the
2005 Latin American conference on Human-computer interaction. ACM, 2005, p.
282.

20. J. Pruitt and J. Grudin, “Personas: practice and theory,” in Proceedings of the
2003 conference on Designing for user experiences. ACM New York, NY, USA,
2003, pp. 1–15.

21. Y. Chang, Y. Lim, and E. Stolterman, “Personas: from theory to practices,” in
Proceedings of the 5th Nordic conference on Human-computer interaction: building
bridges. ACM, 2008, pp. 439–442.

22. J. Nieters, S. Ivaturi, and I. Ahmed, “Making personas memorable,” in CHI’07
extended abstracts on Human factors in computing systems. ACM, 2007, p. 1824.

90

Pre-Proceedings of the Third International
Workshop on LAnguages, methodologies and
Development tools for multi-agent systemS

LADS @ MALLOW 2010

Organised by

Mehdi Dastani, Utrecht University, The Netherlands
Amal El Fallah Seghrouchni, University of Paris VI, France
Jomi F. Hübner, Federal University of Santa Catarina, Brazil

João Leite, New University of Lisbon, Lisbon

Held with The Multi-Agent Logics, Languages, and Organisations
Federated Workshops (MALLOW 2010),

August 30th - September 2nd, Lyon, France

Preface

These are the pre-proceedings of the third international workshop on languages,
methodologies and development tools for multi-agent systems (LADS’010).
LADS’010 workshop aims to address both theoretical and practical issues related
to developing and deploying multi-agent systems. In particular, it will constitute
a rich forum where leading researchers from both academia and industry share
their experiences on formal approaches, programming languages, methodologies,
tools and techniques that support the development and deployment of multi-
agent systems. From theoretical point of view, LADS’010 aims to address issues
related to theories, models, and approaches that are needed to facilitate the de-
velopment of multi-agent systems ensuring their predictability and verifications.
From practical point of view, the workshop aims at stimulating research and dis-
cussion on how multi-agent system specifications and designs can be effectively
implemented and tested. LADS’010 workshop promises to provide interesting
discussion and exchange of ideas concerning theories, methodologies, techniques
and principles that are important for multi- agent programming technology. The
programme of the workshop consists of three sessions covering models, theories
and tools for multi-agent systems. More details on the programme can be found
at: http://www.cs.uu.nl/lads2010.

The co-chairs of this workshop would like to thank all authors, programme
committee members, and additional reviewers for their outstanding contribu-
tion to the success of LADS’010. The co-chairs would also like to thank all the
sponsors and Springer. We are particularly grateful to MALLOW 2010 organ-
isers, Olivier Boissier, Amal El Fallah Seghrouchni, Salima Hassas, and Nicolas
Maudet, for their technical support and for hosting the workshop.

LADS’010 Programme Co-chairs Mehdi Dastani
Amal El Fallah Seghrouchni

Jomi F. Hübner
João Leite

August 31, 2010

Organisation

Organising Committee

Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
Jomi F. Hübner Federal University of Santa Catarina, Brazil
João Leite New University of Lisbon, Lisbon

Steering Committee

Mehdi Dastani Utrecht University, The Netherlands
Amal El Fallah Seghrouchni University of Paris VI, France
João Leite New University of Lisbon, Lisbon
Paolo Torroni University of Bologna, Italy

Program Committee

Marco Alberti New University of Lisbon, Portugal
José Júlio Alferes New University of Lisbon, Portugal
Matteo Baldoni University of Torino, Italy
Juan A. Bot́ıa Murcia University, Spain
Lars Braubach University of Hamburg, Germany
Yves Demazeau Institut IMAG, Grenoble, France
Juergen Dix Clausthal University, Germany
Paolo Giorgini University of Trento, Italy
Koen Hindriks Delft University, The Netherlands
Shinichi Honiden NII, Tokyo, Japan
Wojtek Jamroga Clausthal University, Germany
Peep Küngas SOA Trader, Ltd., Tallin, Estonia
Brian Logan University of Nottingham, UK
Alessio Lomuscio Imperial College London, UK
Viviana Mascardi University of Genova, Italy
John-Jules Meyer Utrecht University, The Netherlands
Alexander Pokahr University of Hamburg, Germany
Alessandro Ricci University of Bologna, Italy
Patrick Taillibert Thales Airborne Systems, Elancourt, France
Paolo Torroni University of Bologna, Italy
Leon van der Torre University of Luxembourg, Luxembourg
M. Birna van Riemsdijk Delft University, The Netherlands
Pinar Yolum Bogazici University, Istanbul, Turkey
Yingqian Zhang Delft University, The Netherlands

Additional Reviewers

Natasha Alechina
Cristina Baroglio
Tristan Behrens
Akin Gunay
Ozgur Kafali
Yasuyuki Tahara

Table of Contents

ACRE: Agent Communication Reasoning Engine . 7
David Lillis, Rem Collier

OperettA: Organization-Oriented Development Environment 14
Virginia Dignum, Huib Aldewereld

A Dialogic Dimension for the MOISE+ Organizational Model 21
Alexandre Hübner, Graçaliz Dimuro, Antonio Carlos da Rocha Costa,
Viviane Mattos

From Signed Information to Belief in Multi-Agent Systems 27
Laurent Perrussel, Emiliano Lorini, Jean-Marc Thévenin

Towards efficient multi-agent abduction protocols . 34
Gauvain Bourgne, Katsumi Inoue, Nicolas Maudet

Validation of Agile Workflows using Simulation . 41
Kai Jander, Lars Braubach, Alexander Pokahr, Winfried Lamersdorf

JaCa-Android: An Agent-based Platform for Building Smart Mobile
Applications . 48
Andrea Santi, Marco Guidi, Alessandro Ricci

Exploiting Agent-Oriented Programming for Building Advanced Web
2.0 Applications . 55
Mattia Minotti, Alessandro Ricci, Andrea Santi

Using HDS for Realizing Multi-Agent Applications . 62
Federico Bergenti, Enrico Franchi, Agostino Poggi

Author Index . 69

ACRE: Agent Conversation Reasoning Engine
David Lillis

School of Computer Science and Informatics
University College Dublin

Email: david.lillis@ucd.ie
Rem W. Collier

School of Computer Science and Informatics
University College Dublin

Email: rem.collier@ucd.ie

Abstract—Within Multi Agent Systems, communication by
means of Agent Communication Languages has a key role to
play in the co-operation, co-ordination and knowledge-sharing
between agents. Despite this, complex reasoning about agent
messaging and specifically about conversations between agents,
tends not to have widespread support amongst general-purpose
agent programming languages.

ACRE (Agent Communication Reasoning Engine) aims to
complement the existing logical reasoning capabilities of agent
programming languages with the capability of reasoning about
complex interaction protocols in order to facilitate conversations
between agents. This paper outlines the aims of the ACRE project
and gives details of the functioning of a prototype implementation
within the AFAPL2 agent programming language.

I. INTRODUCTION

Communication is a vital part of a Multi Agent System
(MAS). Agents make use of communication in order to aid
mutual cooperation towards the achievement of their individual
or shared objectives. The sharing of knowledge, objectives
and ideas amongst agents is facilitated by the use of Agent
Communication Languages (ACLs). The importance of ACLs
is reflected by the widespread support for them in agent
programming languages and toolkits, many of which have
ACL support built-in as core features.

In many MASs, communication takes place by way of
individual messages without formal links between them. An
alternative approach is to group related messages into con-
versations: “task-oriented, shared sequences of messages that
they observe, in order to accomplish specific tasks, such as a
negotiation or an auction” [1].

This paper presents the Agent Conversation Reasoning
Engine (ACRE). The principal aim of the ACRE project is
to integrate interaction protocols into the core of existing
agent programming languages. This is done by augmenting
their existing reasoning capabilities and support for inter-
agent communication by adding the ability to track and
reason about conversations. Currently at the stage of an initial
prototype, ACRE has been integrated with the AFAPL2 Agent
Programming Language [2], which runs on the Agent Factory
platform [3]. The longer-term goals of ACRE include its use
within other mainstream programming languages.

The principal aim of this paper is to outline the goals of the
ACRE project and to present the integration of the prototype
system into AFAPL2.

This paper is laid out as follows: Section II outlines some
related work on agent interaction. Section III then provides
an overview of the aims and scope of the ACRE project.
Following this, details of the integration of ACRE into the
Agent Factory framework are given in Section IV. The re-
lationships between message performatives and agent goals
are discussed in Section V, followed by an example of a
simple one-shot auction implemented via ACRE in Section VI.
Finally, Section VII outlines some conclusions along with
ideas for future work.

II. RELATED WORK

In the context of Agent Communication Languages, two
standards have found widespread adoption. The Knowledge
Query and Manipulation Language (KQML) was the firstly
widely-adopted format for agent communication [4]. An alter-
native agent communication standard was later developed by
the Foundation for Intelligent Physical Agents (FIPA). FIPA
ACL utilises what it considers to be a minimal set of English
verbs that are necessary for agent communication. These are
used to define a set of performatives that can be used in ACL
messages [5]. These performatives, along with their associated
semantics, are defined in [6].

Recognising that one-off messages are limited in their power
to be used in more complex interactions, FIPA also defined a
set of interaction protocols [7]. These are designed to cover
a set of common interactions such as one agent requesting
information from another, an agent informing others of some
event and auction protocols.

Support for either KQML or FIPA ACL communication is
frequently included as a core feature in many agent tookits
and frameworks, native support for interaction protocols is less
common. The JADE toolkit provides specific implementations
of a number of the FIPA interaction protocols [8]. It also
provides a Finite State Machine (FSM) behaviour to allow
interaction protocols to be defined. Jason includes native sup-
port for communicative acts, but does not provide specific tools
for the development of agent conversations using interaction
protocols. This is left to the agent programmer [9, p. 130]. A
similar level of support is present within the Agent Factory
framework [10].

There do exist a number of toolkits, however, that do include
support for conversations. For example, the COOrdination

7

Language (COOL) uses FSMs to represent conversations [11].
Here, a conversation is always in some state, with messages
causing transitions between conversation states. Jackal [12]
and KaOS [13] are other examples of agent systems mak-
ing use of FSMs to model communications amongst agents.
Alternative representations of Interaction Protocols include
Coloured Petri Nets [14] and Dooley Graphs [15].

III. ACRE OVERVIEW

ACRE is aimed at providing a comprehensive system for
modelling, managing and reasoning about complex interac-
tions using protocols and conversations. Here, we distinguish
between a protocols’ and conversations. A protocol is defined
as a set of rules that dictate the format and ordering of
messages that should be passed between agents that are
involved in prolonged communication (beyond the passing of a
single message). A conversation is defined as a single instance
of multiple agents following a protocol in order to engage
in communication. It is possible for two agents to engage in
multiple conversations that follow the same protocol.

Such an aim can only be realised effectively if a number of
features are already available. These include:

• Protocol definitions understandable by agents: Inter-
action protocols must be declared in a language that all
agents must be able to understand and share. This also
has the advantage that the protocol definition is separated
from its implementation in the agent, thus providing a
programmer with a greater understanding of the format
the communication is expected to take. ACRE uses an
XML representation of a finite state machine for this
purpose.

• Shared ontologies: A shared vocabulary is essential to
agents understanding each other’s communications. A
shared ontology defines concepts about which agents
need to be capable of reasoning.

• Plan repository: With the two above features in place, an
agent may reason about the sequence of messages being
exchanged, as well as the content of those messages.
This reasoning will typically result in an agent deciding
to perform some action as a consequence of receiving
certain communications. In this case, it is useful to have
available a shareable repository of plans that agents may
perform so that new capabilities may be learned from
others.

The presence of these features aid greatly in the realisation
of ACRE’s aims. The principal aims are as follows:

• External Monitoring of Interaction Protocols: At its
simplest level, conversation matching and recognition
of interaction protocols allows for a relatively simple
tool operating externally to any of the agents. This can
intercept and read messages at the middleware level and is
suitable for an open MAS in which agents communicate
via FIPA ACL. This is a useful tool for debugging pur-
poses, allowing developers to monitor communication to
ensure that agents are following protocols correctly. This
is particularly important where conversation management
has been implemented in an ad-hoc way, with incoming

and outgoing messages being treated independently and
without a strong notion of conversations.

• Internal Conversation Reasoning: On receipt of a FIPA
ACL message, it should be possible to identify the
protocol being followed by means of the protocol
parameter defined in the message (for the specification
of the parameters available in a FIPA ACL message
see [16]). Similarly, the initiator of a conversation should
also set the conversation-id parameter, which is a
unique identifier for a conversation. By referring to the
the protocol identifier, an agent can make decisions about
its response by consulting the protocol specification.
Similarly, the conversation identifier may be matched
against the stored history of ongoing conversations.
ACRE aims to use this information to analyse the status
of conversations and generate appropriate goals for the
agent to successfully continue the conversation along the
appropriate lines for the protocol that is specified. The
use of goals follows [17]. Goals represent the motivations
of the participants in a conversation. Thus the agents’
engagement in a particular conversation is decoupled
from the individual messages that are being exchanged,
allowing greater flexibility in reasoning about their reac-
tions and responses.

• Organisation of Incoming Messages: It is possible that
an agent communicating with agents in another system
may receive messages that do not specify their protocol
and/or conversation identifier. In this case, it is useful for
the agent to have access to definitions of the protocols in
which it is capable of engaging so as to match these with
incoming messages so as to categorise the messages.

• Agent Code Verification: The ultimate aim of ACRE is
to facilitate the verification of certain aspects of agent
code. In particular, given integration of conversation
reasoning into a programming language, it should be
possible to verify whether or not an agent is capable
of engaging in a conversation following a particular
protocol.

IV. AGENT FACTORY

Agent Factory is an extensible, modular and open frame-
work for the development of multi agent systems [3]. The
primary agent programming language packaged with Agent
Factory is AFAPL2 [2], although it also includes support for
other agent programming languages such as ALPHA [18] and
AgentSpeak [9].

This principal aim of this paper is to outline the integration
of ACRE with AFAPL2. AFAPL2 is an agent programming
language that was initially based on the Agent0 language,
with notions of belief and commitment at its core [19]. Its
capabilities have been augmented since, however, with the
addition of such features as goal reasoning [20] and roles [10].

The existing goal-reasoning capabilities of AFAPL2 (out-
lined in [20]) required some extension in order to be usable
for the purposes of ACRE.

AFAPL2 contains two types of activities (code that allows
an agent to perform some task): actions and plans. An action is

8

a simple activity that is implemented by way of a single Java
class, known as an actuator. Actions are designed to be used
as primitive activities that can be grouped together to carry
out more complex tasks. A plan is such a grouping, making
use of plan operators (such as operators to carry out several
actions in sequence or in parallel) to combine actions. Each
activity has three components:

• A precondition that specifies the circumstances in which
the activity may be executed. This is expressed in terms
of beliefs that the agent must have when attempting to
execute the activity.

• A postcondition that indicates the anticipated mental state
on successful completion of the activity. This is expressed
in terms of beliefs the agent will expect to have once the
activity has completed.

• The body indicates how the activity can be carried out:
for actions this is a Java class name whereas for plans
this is the expression of how the actions are combined
for a more complex activity.

In the existing implementation of goal-handling, goals are
achieved by comparing them with the postconditions of the
activities that the agent is capable of performing. Figure 1
shows an example definition of a plan designed to check
whether a host (identified by an IP address contained in
the ?ip_addr variable) is responding to ping requests (the
actual code implementing the plan is omitted). The precon-
dition BELIEF(true) is always satisfied. The postcondi-
tion BELIEF(pingStatus(?ip_addr,?status)) in-
dicates that on successful execution of this plan, the agent
will expect to have a belief about the status of the IP address
that it attempted to check.

PLAN checkPingStatus(?ip_addr) {
PRECONDITION BELIEF(true);
POSTCONDITION BELIEF(pingStatus(?ip_addr,?status));

...
}

Fig. 1. AFAPL2 Plan Definition (plan body omitted)

GOAL(pingStatus(192.168.1.1,?status)) in-
dicates that the agent aims to have a belief about the status of
the host with the IP address 192.168.1.1. This interpreta-
tion of the goal would be contained in the relevant ontology.
Here, ?status is a variable (indicated by the ? sigil) that
can match against anything. Thus it is not a goal to bring about
a particular status; rather just to find out what that status is.

An agent having this goal would identify the
checkPingStatus plan to be a candidate plan for
its achievement.. This is the case for two reasons. Firstly, its
postcondition matches the goal, meaning that the agent will
anticipate its goal being achieved by a successful execution of
this plan and secondly because its precondition is satisfied by
the current belief set of the agent (since an agent will always
believe true to be true). In deciding on the appropriate
course of action, the goal reasoning engine will identify all
such candidate activities and execute one. In the event that
no candidate activities can be found, the goal is dropped as
unachievable.

A significant drawback with this method of reasoning is
that if no activity is available that can directly result in a goal
state being brought about, no further effort is made to achieve
it. However, this does not necessarily mean that the agent is
incapable of achieving its goal. In the event of an activity being
identified whose postcondition is expected to satisfy the goal
but whose precondition is not satisfied by the current state of
the agent, the modified goal reasoning engine examines other
activities to evaluate whether any are available that can satisfy
that precondition. An example of this reasoning process is
given in Section VI.

V. MAPPING PERFORMATIVES TO GOALS AND BELIEFS

In AFAPL2, the existing method of handing message re-
ceipts is simply to adopt a belief that the message has
been received, leaving it as an exercise to the application
programmer to deal with this event. One reason behind this
method is that there is currently no support for messages to be
linked into conversations. In contrast, ACRE can analyse the
conversations and protocols about which the agent is aware
and generate more appropriate goals and beliefs whenever
messages are received and sent.

The goals or beliefs that are generated depend on the context
within which a message is sent. For example, a propose
message is used to indicate that the sender proposes to perform
some action under certain conditions. There are, however,
more than one reason why an agent may receive such a
message. In one situation, the proposal is unsolicited (for
example to initiate a FIPA Propose Interaction Protocol [21]).
In this case, the message has no prior context and is unrelated
to any previous experience of the recipient. By its nature, a
propose message requires a response and so the recipient
agent must evaluate the proposal and communicate whether or
not it is willing to accept the proposal. As such, this situation
will result in the adoption of a goal indicating that this type
of evaluation should take place.

In contrast, a proposal may have been solicited by the recip-
ient. The message may be matched to an existing conversation,
either by means of an explicit conversation ID or by matching
its content against that expected by the relevant protocol. By
analysing this conversation, the agent can identify whether or
not a call for proposals was previously sent out. In sending
such a call, the agent will have been pursuing some other goal
and so the adoption of an additional goal to handle the proposal
is not desirable. Instead, a belief is adopted to indicate that the
proposal has been received.

This approach also allows the agent to engage in separate
but related conversations with different agents concurrently, as
is shown in the example in Section VI.

Another example of the run-time conversation reasoning is
on the receipt of an accept-proposal message. In this
case, the treatment is different because of the future messages
that the relevant protocol may or may not require to be sent
in response. Under some protocols, an accept-proposal
message is the final message in the conversation (e.g. the
FIPA Propose Interaction Protocol [21] or the Vickrey Auction
shown in Section VI). Here, a goal should be adopted merely

9

to perform the task that has been proposed and accepted. No
further communication is required.

In other cases, such as within a FIPA Contract Net Interac-
tion Protocol [22], the recipient of the accept-proposal
message is required to communicate the result of performing
the stated action back to the sender. In this case, the goal to
be satisfied is twofold: firstly to perform the action and then
communicate the result of this action to the sender. In reality,
only one goal is necessary, as it is impossible to communicate
the result of an action that has not been committed. This
should be reflected in the preconditions of any activity that
communicates the result of an action.

In the case of the sender of a message, it is not necessary
to generate these goals. Here, the message is sent by the agent
as a result of it having a goal that must be satisfied.

VI. EXAMPLE: VICKREY AUCTION

In order to demonstrate how the ACRE system works, we
use a Vickrey Auction Interaction Protocol. Figure 2 illustrates
the protocol using Agent UML [23].

A Vickrey auction is a non-iterated auction, in that each
bidder submits only a single bid, which is either accepted
or rejected. It is also a sealed-bid auction, in that bids are
communicated only to the auctioneer. In a Vickrey Auction,
the winner of the auction is the bidder who submits the highest
bid, though the ultimate price paid is equal to the second-
highest bid.

In this example, one agent is assumed to desire that a task
be performed by another agent and requests other agents to
submit proposals for the performance of this task. This agent is
referred to as the “Auctioneer”. The auction is initiated by the
Auctioneer sending a cfp message to a number of potential
“Bidder” agents. Each bidder considers the call for proposals
and decides whether or not to participate in the auction. Having
done so, it indicates its decision to the Auctioneer either by
submitting a bid (via a propose message) or by explicitly
declining to do so (using a refuse message).

After receiving all of these responses, the Auctioneer must
decide which is the winner of the auction and communicate
its decision to each of the Bidders. This is done by sending a
accept-proposal message to the successful bidder and a
reject-proposal message to those that are unsuccessful.

A. ACRE Implementation Example

As noted in the above section, a Vickrey auction is typically
initiated by an agent that wishes to have some task performed
by another agent. This will generally be indicated by the agent
adopting a goal to have the task performed.

In this example, we consider a MAS consisting of agents
that are situated in a virtual grid world that contains items that
the agents are required to collect. We begin the case study in a
situation where one agent (which will become the Auctioneer
agent) has discovered the location of an item and wishes to
have it collected. This is reflected by the adoption of a goal,
which is shown in Figure 4.

The addition of this goal to the agent’s mental state will
cause the goal reasoning engine to evaluate the options open

Fig. 2. AUML Diagram for a Vickrey-style auction

GOAL(performedTask(collected(item(20,25))))

Fig. 4. Initial goal to trigger a Vickery Auction

to it to satisfy this goal. One option may be to execute a plan
such as that defined in Figure 5. This is a plan that allows
the agent to carry out the task (i.e. collect the referenced
item) itself, without the need for engaging in conversation
with other agents. However, it may alternatively be the case
that the agent is not capable of performing the collection itself
(if, for example, it is a coordinator of other agents). In such a
scenario, it may be necessary to engage with other agents in
order to find another that will be capable of (and willing to)
carry out the task instead. The holding of an auction is one
common way of solving such a problem.

PLAN collectItem(?x,?y) {
PRECONDITION BELIEF(true);
POSTCONDITION

BELIEF(performedTask(collected(item(?x,?y))));
...

}

Fig. 5. Plan Definition to allow an agent collect items (plan body omitted)

Sample code to implement an Auctioneer agent is presented
in Figure 3. This include two plans used in the implementation
of a Vickrey Auction. In addition to the two plans, the
agent also includes an AuctionModule, which contains the
code to reason about the bids that have been received and
decide upon a winner. Two actuators are also present: one
(addBid) to add a received bid to the AuctionModule and
the other (endAuction) to trigger the ending of the auction
and cause a winner to be decided upon. Finally, a perceptor
is also present (auctionPerceptor) that monitors the state of
the AuctionModule and adopts beliefs based thereon. These
include beliefs about who the winners and losers of the auction
are, following the end of the auction.

As outlined in Section IV, the goal reasoning engine firstly
seeks an activity (either an action or a plan) whose postcon-

10

IMPORT com.agentfactory.afapl2.core.agent.FIPACore;
IMPORT agent.ACREAgent;

PLAN cfpTaskSolver(?task) {
PRECONDITION BELIEF(haveProposal(bidfor(?task,?bid),?agentID,?cid));
POSTCONDITION BELIEF(performedTask(?task));

BODY
SEQ (

FOREACH (haveProposal(bidfor(?task,?amount),?agentID,?cid),
addBid(?task,?agentID,?amount,?cid),

),
endAuction,
FOREACH (BELIEF(status(?task,?agentID,winner)),

accept-proposal(?agentID,?task)
),
FOREACH (BELIEF(status(?task,?agentID,loser)),

reject-proposal(?agentID,?task)
),
ADOPT(performedTask(?task))

);
}

PLAN solicitProposals(?task) {
PRECONDITION BELIEF(neighbour(agentID(?aname,?aaddr)));
POSTCONDITION BELIEF(haveProposal(bidfor(?task,?bid),agentID(?aname,?aaddr),?cid));

BODY
FOREACH (BELIEF(neighbour(?agentID)),

SEQ (
cfp(?agentID,bidfor(?task)),
OR (

AWAIT(BELIEF(haveProposal(?bid,agentID(?aname,?aaddr),?cid))),
AWAIT(BELIEF(haveRefusal(?task,agentID(?aname,?aaddr),?cid))),
SEQ(DELAY(20), ADOPT(BELIEF(timeout(?agentID))))

)
)

);
}

LOAD_MODULE AuctionModule module.AuctionModule;

PERCEPTOR auctionPerceptor {
CLASS perceptor.AuctionPerceptor;

}

ACTION endAuction {
CLASS actuator.EndAuctionActuator;

}

ACTION addBid(?task, ?agentID, ?amount, ?cid) {
actuator.AddBidActuator;

}

Fig. 3. AFAPL2 Auctioneer Agent

dition satisfies the goal. In this example, the postcondition
of the cfpTaskSolver plan will match the goal. This
postcondition contains the variable ?task, which is matched
against the goal. This has the effect that the plan will be
invoked with collected(item(20,25)) set as the value
for the ?task variable.

However, this plan by itself will not be capable of bringing
about successful achievement of the goal. This is because it
also has a precondition that indicates that in order for the plan

to succeed, the agent must already believe that it has received
at least one other proposal from another agent to perform the
task. As this is not the case, the goal reasoner must identify
another activity that will bring about that precondition.

The solicitProposals plan has a postcondition that
satisfies the precondition of cfpTaskSolver and is ex-
ecutable if the agent is aware of at least one neighbour-
ing agent that it can invite to the auction. Thus the strat-
egy the Auctioneer will employ will be to firstly execute

11

IMPORT agent.ACREAgent;

PLAN cfpProposal(?task, ?initiator, ?cid) {
PRECONDITION BELIEF(canBid(?task, ?amount, ?cid));
POSTCONDITION BELIEF(respondedToCfp(bidfor(?task), ?initiator, ?cid));

BODY
propose(?initiator,bid(?task,?amount));

}

PLAN cfpRefusal(?task,?initiator,?cid) {
PRECONDITION BELIEF(noBid(?task,?cid));
POSTCONDITION BELIEF(respondedToCfp(bidfor(?task),?initiator,?cid));

BODY
refuse(?initiator,bid(?task));

}

ACTION generateBid(?task, ?cid) {
PRECONDITION BELIEF(conversation(?cid,acre-vickrey));
POSTCONDITION BELIEF(canBid(?task,?amount,?cid));

CLASS is.lill.acre.actuator.GenerateBidActuator;
}

Fig. 6. AFAPL2 Bidder Agent

solicitProposals and then cfpTaskSolver in the
expectation that the goal will be satisfied afterwards (by
another agent performing the task).

The body of solicitProposals firstly considers
all of the agents it has knowledge of (the FOREACH
plan operator will execute the following code in paral-
lel for every belief in the agent’s belief set that matches
BELIEF(neighbour(?agentID)), where ?agentID
can is bound in turn to the contents of each belief). For each
of these agents it firstly sends a message to initiate the auction
(the cfp action is part of the standard FIPACore agent that
is imported at the top of the file). It then either waits until
one of the following events has occurred: a) it believes it has
received a proposal from the bidder, b) it believes that it has
received a rejection from the bidder or c) some timeout period
elapses, following which it adopts a belief to that effect. Once
one of these things has occurred, the plan has completed.

It is important to note at this stage that the postcondition of
solicitProposals may not be satisfied by its execution.
The postcondition is designed to indicate the intended result of
the plan, rather than enumerating all of its possible outcomes.
In this case, the purpose of the plan is to solicit bids from
other agents as part of an auction. Although it is possible that
all agents could refuse to participate or fail to respond, it is not
logical for an agent to issue a call for proposals in the hope
that this will occur. From a goal-reasoning point of view, if no
bids are received then the precondition of cfpTaskSolver
is not satisfied and the goal is considered to be unsolvable.
This is a logical outcome since the agent has no capability of
performing the task itself and has failed to find another agent
that is willing to do so on its behalf.

The beliefs about the receipt of a proposal or refusal are
generated by ACRE reasoning about the conversations. This
is an example of the situation presented in Section V where

ACRE is aware that the proposal or refusal are in response to
a call for proposals that was issued by the Auctioneer and so
generates a belief rather than a goal.

If at least one bid is received then the precondition of
cfpTaskSolver is satisfied and that plan may be executed.
In this plan, the Auctioneer evaluates each of the proposals
it has received and adds it to the AuctionModule that takes
care of the decision-making with regard to the winner of the
auction. Once all of the bids have been added, the auction
can be ended. The auction perceptor will cause a set of
beliefs about the auction to be adopted. These are used
to send accept-proposal messages to the winner and
reject-proposal messages to each of the losers of the
auction.

In the context of the auctioneer, one advantage of this
approach is that these plans are not limited to use within a
Vickrey Auction. For example, a Contract Net Protocol [22]
is also initiated by sending a cfp message and awaiting a
response by means of either a propose or refuse message.

Figure 6 contains the AFAPL2 code for the Bidder agents.
These agents must respond to the cfp message sent by the
Auctioneer to initiate the auction. This is done by means of
ACRE posting an appropriate goal for the agent’s goal reasoner
to solve. In this example, the goal is satisfied by the identi-
cal postconditions of the cfpProposal and cfpRefusal
plans. However, there is no activity available with a postcon-
dition that matches the precondition of cfpRefusal. On the
other hand, cfpProposal’s precondition can be satisfied
by executing the generateBid action (providing that its
precondition that the conversation, represented by the variable
?cid is of the type “acre-vickrey”). This is executed, followed
by cfpProposal, assuming a belief that the agent is in a
position to bid has been created.

The generateBid action may, however, cause the agent

12

to decline to make a bid (indicated by adopting a belief of the
type noBid). This would mean that the precondition for the
cfpProposal plan has not been satisfied and so it cannot
be executed to satisfy the goal. At this point, the goal reasoner
will re-evaluate the goal against the current belief set of the
agent and, on finding the belief that the agent will not make a
bid, now sees that the precondition of cfpRefusal is already
satisfied by the current mental state of the agent. Thus this plan
is called instead, causing a refuse message to be sent to the
Auctioneer.

This example demonstrates one drawback of the use of
postconditions in AFAPL2 to indicate the desired outcomes of
activities. In this case, planning would be better facilitated by
the express inclusion of noBid as a belief that will be adopted
as an alternative outcome of the generateBid plan. As no
express support is available for the enumeration of byproducts
of activites (or the beliefs associated with a plan failing in its
purpose).

No particular code is required to handle the response
from the Auctioneer. In the event of the receipt of a
accept-proposal message, this indicates that the Bidder
is required to carry out some task that it has proposed
to do, and so ACRE will adopt a goal to that effect. A
reject-proposal, on the other hand, does not require any
further action from the Bidder, so ACRE will merely adopt a
belief to that effect that can be reasoned about by the agent.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype of the ACRE conversation
reasoning system and specifically its integration into the
AFAPL2 agent programming language. Although currently
limited to AFAPL2, it is intended that ACRE will be used in
conjunction with several other agent programming languages.

Although full integration with several languages is desirable,
it may be necessary to adapt ACRE’s workings to the specific
needs and capabilities of particular languages. For example,
not all languages support the use of preconditions and postcon-
ditions of activities to facilitate reasoning about them. On the
other hand, support for ACL standards is widespread and so
the grouping of messages into conversations is part of ACRE
that is likely to be more widely applicable in its current form.

The availability of cross-platform communication tools such
as ACRE, together with shared ontologies and protocol def-
initions can only aid interoperability between distinct agent
platforms, toolkits and programming languages.

REFERENCES

[1] Y. Labrou, “Standardizing agent communication,” Multi-
Agents Systems and Applications (Advanced Course on
Artificial Intelligence), pp. 74–97, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=567252

[2] C. Muldoon, G. OHare, R. W. Collier, and M. OGrady,
Towards Pervasive Intelligence: Reflections on the Evolution
of the Agent Factory Framework. Boston, MA: Springer
US, 2009, ch. 6, pp. 187–212. [Online]. Available:
http://www.springerlink.com/content/g813865gq77731p1

[3] R. Collier, G. O’Hare, T. Lowen, and C. Rooney, “Beyond Prototyping
in the Factory of Agents,” in Multi-Agent Systems and Application III:
3rd International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS 2003), Prague, Czech Republic, 2003.

[4] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent
Communication Language,” in Proceedings of the Third International
Conference on Information and Knowledge Management, Gaithersburg,
MD, 1994, pp. 456–463.

[5] S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS Agent Plat-
form: Open Source for Open Standards,” in Proceedings of the 5th
International Conference and Exhibition on the Practical Application
of Intelligent Agents and Multi-Agents (PAAM2000), Manchester, 2000,
p. 368.

[6] Foundation for Intelligent Physical Agents, “FIPA Commu-
nicative Act Library Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00037/

[7] ——, FIPA Interaction Protocol Library Specification, Std., 2000.
[Online]. Available: http://www.fipa.org/specs/fipa00025/

[8] F. Bellifemine, G. Caire, T. Trucco, and G. Rimass,
“Jade Programmer’s Guide,” 2007. [Online]. Available:
http://jade.tilab.com/doc/programmersguide.pdf

[9] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge,
Programming multi-agent systems in AgentSpeak using
Jason. Wiley-Interscience, 2007. [Online]. Available:
http://books.google.com/books?hl=en&lr=&id=AJHD4GkIQs0C&pgis=1

[10] R. Collier, R. Ross, and G. M. P. O’Hare, “A Role-Based Approach
to Reuse in Agent-Oriented Programming,” in AAAI Fall Symposium
on Roles, an Interdisciplinary Perspective (Roles 2005), Arlington, VA,
USA, 2005.

[11] M. Barbuceanu and M. S. Fox, “COOL: A language for describing
coordination in multi agent systems,” in Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), 1995,
pp. 17–24.

[12] S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield,
and A. Boughannam, “Jackal: a Java-based Tool for Agent Develop-
ment,” in Working Papers of the AAAI-98 Workshop on Software Tools
for Developing Agents. AAAI Press, 1998.

[13] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley, “KAoS:
Toward an industrial-strength open agent architecture,” Software Agents,
pp. 375–418, 1997.

[14] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng,
“Modeling agent conversations with colored petri nets,” in
In: Workshop on Specifying and Implementing Conversation
Policies, Third International Conference on Autonomous Agents
(Agents ’99), Seattle, 1999, pp. 59–66. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6521

[15] H. Parunak, “Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis,” in Proceedings of the Second
International Conference on Multi-Agent Systems (ICMAS), 1996.

[16] Foundation for Intelligent Physical Agents, “FIPA ACL
Message Structure Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00061/

[17] L. Braubach and A. Pokahr, “Goal-Oriented Interaction Protocols,” in
MATES ’07: Proceedings of the 5th German Conference on Multiagent
System Technologies, vol. 4687. Leipzig, Germany: Springer, 2007, pp.
85–97.

[18] R. Collier, R. Ross, and G. M. P. O’Hare, “Realising Reusable Agent Be-
haviours with ALPHA,” in Proceedings of the 3rd German Conference
on Multi-Agent System Technologies (MATES 05), Koblenz, Germany,
2005, pp. 210–215.

[19] Y. Shoham, “Agent0: An agent-oriented programming language and its
interpreter,” Journal of Object-Oriented Programming, vol. 8, no. 4, pp.
19–24, 1991.

[20] M. Dragone, D. Lillis, R. W. Collier, and G. M. P. O’Hare, “Practical
Development of Hybrid Intelligent Agent Systems with SoSAA,” in
Proceedings of the 20th Irish Conference on Artificial Intelligence and
Cognitive Science, Dublin, Ireland, August 2009.

[21] Foundation for Intelligent Physical Agents, “FIPA Propose
Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00036

[22] Foundation For Intelligent Physical Agents, “FIPA Contract
Net Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00029

[23] B. Bauer, J. Müller, and J. Odell, “Agent UML: A Formalism for
Specifying Multiagent Software Systems,” Int. Journal of Software
Engineering and Knowledge Engineering, vol. 11, no. 3, pp. 207–230,
2001.

13

OperettA: Organization-Oriented Development
Environment

Virginia Dignum
Delft University of Technology, The Netherlands, m.v.dignum@tudelft.nl

Huib Aldewereld
Utrecht University, The Netherlands, huib@cs.uu.nl

Abstract—The increasing complexity of distributed applica-
tions requires new modeling and engineering approaches. Such
domains require representing the regulating structures explicitly
and independently from the acting components (or agents). Or-
ganization computational models, based on Organization Theory,
have been advocated to specify such systems. In this paper,
we present the organizational modeling approach OperA and
a graphical environment for the specification and analysis of
organizational models, OperettA. OperA provides an expressive
way for defining open organizations distinguishing explicitly
between the organizational aims, and the agents who act in it.

I. INTRODUCTION

The engineering of applications for complex and dynamic
domains is an increasingly difficult process. Requirements
and functionalities are not fixed a priori, components are not
designed nor controlled by a common entity, and unplanned
and unspecified changes may occur during runtime. There
is a need for representing the regulating structures explicitly
and independently from the acting components (or agents).
Organization computational models, based on Organization
Theory, have been advocated to specify such systems.

Traditionally, Multi-Agent Systems (MAS) stress the auton-
omy and encapsulation characteristics of agents. In such agent-
centric view, interactions between agents are mostly seen as
speech acts whose meaning may be described in terms of
the mental states of an agent. As systems grow to include
hundreds or thousands of agents, it is necessary to move
from an agent-centric view of coordination and control to an
organization-centric one. Organizations provide stable means
for coordination that enable the achievement of global goals.
In this sense, organization models play a critical role in the
development of larger and more complex MAS [5].

Comprehensive analysis of several agent systems has shown
that different design approaches are appropriate for different
domain characteristics [6]. In particular, agent organization
frameworks are suitable to model complex environments
where many independent entities coexist witing explicit nor-
mative and organizational structures and global specification
of control measures is necessary.

Models for agent organizations must, on the one hand, be
able to specify global goals and requirements but, on the other
hand, cannot assume that participating actors will always act
according to the needs and expectations of the system design.
Concepts as organizational rules [21], norms and institutions

[9], [10], and social structures [15] arise from the idea that the
effective engineering of organizations needs high-level, actor-
independent concepts and abstractions that explicitly define the
organization in which agents live [22]. These are the rules and
global objectives that govern the activity of an organization.

The OperA model [4] proposes an expressive way for
defining agent organizations distinguishing explicitly between
the organizational aims, and the agents who act in it. OperA
enables the specification of organizational structures, require-
ments and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities
and demands. OperA has been applied is many domains,
including knowledge management, work practice analysis, and
serious games and social simulation. Space constraints do not
allow for a comparison of OperA with other approaches. For
this effect, we refer the reader to [2].

In this paper, we present OperettA, a graphical environment
for the specification, validation and analysis of organizational
models, based on the OperA formalism [4]. This organization
specification tool builds heavily on mechanisms from Model
Driven Engineering (MDE), which enables the introduction
and combination of different formal methods hence enabling
the modeling activity through systematic advices and model
design consistency checking.

The paper is organized as follows: first, in section II we
introduce and briefly explain the OperA framework. In section
III the specification of organizational models in OperA is de-
tailed. In section IV we introduce the OperettA Environment.
In section V we provide some design guidelines for organiza-
tion models. Finally, section VI gives our conclusions.

II. ORGANIZATION MODELING: THE OPERA FRAMEWORK

Organizational models should enable the explicit represen-
tation of structural and strategic concerns and their adaptation
to environment changes in a way that is independent from the
behavior of the agents. Organization models, combining global
requirements and individual initiative, have been advocated
to specify open systems in dynamic environments [11], [4].
We take formal processes and requirements as a basis for the
modeling of complex systems that regulate the action of the
different agents.

The deployment of organizations in dynamic and unpre-
dictable settings brings forth critical issues concerning the

14

design, implementation and validation of their behavior [16],
[13], [20], and should be guided by two principles.

• Provide sufficient representation of the institutional re-
quirements so that the overall system complies with the
norms.

• Provide enough flexibility to accommodate heterogeneous
components.

Therefore, organizational models must provide means to
represent concepts and relationships in the domain that are rich
enough to cover the necessary contexts of agent interaction
while keeping in mind the relevance of those concepts for the
global aims of the system.

The OperA model [4] proposes an expressive way for
defining open organizations distinguishing explicitly between
the organizational aims, and the agents who act in it. That is,
OperA enables the specification of organizational structures,
requirements and objectives, and at the same time allows
participants to have the freedom to act according to their
own capabilities and demands. At an abstract level, an OperA
model describes the aims and concerns of the organization
with respect to the social system. These are described as
organization’s externally observable objectives, that is, the
desired states of affairs for the organization.

The OperA framework consists of three interrelated models.
The Organizational Model (OM) is the result of the observa-
tion and analysis of the domain and describes the desired be-
havior of the organization, as determined by the organizational
stakeholders in terms of objectives, norms, roles, interactions
and ontologies. The OM provides the overall organization
design that fulfills the stakeholders requirements. Objectives
of an organization are achieved through the action of agents,
which means that, at each moment, an organization should
employ the relevant agents that can make its objectives happen.
However, the OM does not specify how to structure groups
of agents and constrain their behavior by social rules such
that their combined activity will lead to the desired results.
The Social Model (SM) maps organizational roles to agents
and describes agreements concerning the role enactment and
other conditions in social contracts. Finally, the Interaction
Model (IM) specifies the interaction agreements between
role-enacting agents as interaction contracts. IM specification
enable variations to the enactment of interactions between role-
enacting agents.

The OperettA framework is developed to specify organi-
zation models, according to the OperA OM, which will be
described in more detail in section III, using as example the
conference organization scenario taken from [8]. In section
IV-B we describe the use of MDE principles to implement
this framework.

III. THE ORGANIZATION MODEL

A common way to express the objectives of an organization
is in terms of its expected functionality, that is, what is
the organization expected to do or produce.In OperA, the
Organization Model (OM) specifies the means to achieve such
objectives. That is, OM describes the structure and global

characteristics of a domain from an organizational perspective,
where global goals determine roles and interactions, specified
in terms of Social and Interaction Structures. E.g., how should
a conference be organized, its program, submissions, etc.

Moreover, organization specification should include the de-
scription of concepts holding in the domain, and of expected
or required behaviors.Therefore, these structures should be
linked with the norms, defined in Normative Structure, and
with the ontologies and communication languages defined in
the Communication Structure.

A. The Social Structure.

The social structure of an organization describes the roles
holding in the organization. It consists of a list of role defi-
nitions, Roles (including their objectives, rights and require-
ments), such as PC-member, program chair, author, etc.; a list
of role groups’ definitions, Groups; and a Role Dependencies
graph.

Abstract society objectives form the basis for the definition
of the objectives of roles. Roles are the main element of the
Social Structure. From the society perspective, role descrip-
tions should identify the activities and services necessary to
achieve society objectives and enable to abstract from the
individuals that will eventually perform the role. From the
agent perspective, roles specify the expectations of the society
with respect to the agent’s activity in the society. In OperA,
the definition of a role consists of an identifier, a set of role
objectives, possibly sets of sub-objectives per objective, a set
of role rights, a set of norms and the type of role. An example
of role description is presented in table I.

design, implementation and validation of their behavior and
should be guided by two principles [?].

• Provide sufficient representation of the institutional re-
quirements so that the overall system complies with the
norms.

• Provide enough flexibility to accommodate heterogeneous
components developed independently.

Therefore, organizational models must provide means to
represent concepts and relationships in the domain that are rich
enough to cover the necessary contexts of agent interaction
while keeping in mind the relevance of those concepts for the
global aims of the system.

****The OperA model [4] proposes an expressive way for
defining open organizations distinguishing explicitly between
the organizational aims, and the agents who act in it. That is,
OperA enables the specification of organizational structures,
requirements and objectives, and at the same time allows
participants to have the freedom to act according to their own
capabilities and demands.

At an abstract level, an OperA model describes the aims
and concerns of the organization with respect to the social
system. These are described as organization’s externally ob-
servable objectives, that is, the desired states of affairs for the
organization.

The OperA framework consists of three interrelated models.
The Organizational Model (OM) is the result of the observa-
tion and analysis of the domain and describes the desired be-
havior of the organization, as determined by the organizational
stakeholders in terms of objectives, norms, roles, interactions
and ontologies. The OM provides the overall organization
design that fulfills the stakeholders requirements. Objectives
of an organization are achieved through the action of agents,
which means that, at each moment, an organization should
employ the relevant agents that can make its objectives happen.
However, the OM does not specify how to structure groups
of agents and constrain their behavior by social rules such
that their combined activity will lead to the desired results.
The Social Model (SM) maps organizational roles to agents
and describes agreements concerning the role enactment and
other conditions in social contracts. Finally, the Interaction
Model (IM) specifies the interaction agreements between
role-enacting agents as interaction contracts. IM specification
enable variations to the enactment of interactions between role-
enacting agents.

The OperettA framework is developed to specify organi-
zation models, according to the OperA OM, which will be
described in more detail in section III, using as example the
conference organization scenario taken from [8].

III. THE ORGANIZATION MODEL

A common way to express the objectives of an organization
is in terms of its expected functionality, that is, what is
the organization expected to do or produce.In OperA, the
Organization Model (OM) specifies the means to achieve such
objectives. That is, OM describes the structure and global
characteristics of a domain from an organizational perspective,

where global goals determine roles and interactions, specified
in terms of its Social and Interaction Structures. E.g., how
should a conference be organized, its program, submissions,
etc.

Moreover, organization specification should include the de-
scription of concepts holding in the domain, and of expected
or required behaviors.Therefore, these structures should be
linked with the norms, defined in Normative Structure, and
with the ontologies and communication languages defined in
the Communication Structure.

A. The Social Structure.

The social structure of an organization describes the roles
holding in the organization. It consists of a list of role defi-
nitions, Roles (including their objectives, rights and require-
ments), such as PC-member, program chair, author, etc.; a list
of role groups’ definitions, Groups; and a Role Dependencies
graph.

Abstract society objectives form the basis for the definition
of the objectives of roles. Roles are the main element of the
Social Structure. From the society perspective, role descrip-
tions should identify the activities and services necessary to
achieve society objectives and enable to abstract from the
individuals that will eventually perform the role. From the
agent perspective, roles specify the expectations of the society
with respect to the agent’s activity in the society. In OperA,
the definition of a role consists of an identifier, a set of role
objectives, possibly sets of sub-objectives per objective, a set
of role rights, a set of norms and the type of role. An example
of role description is presented in table I.

Id PC member
Objectives paper reviewed(Paper,Report)
Sub-objectives {read(P), report written(P, Rep), review received(Org, P, Rep)}
Rights access-confmanager-program(me)
Norms & PC member is OBLIGED to understand English
Rules IF paper assigned THEN PC member is OBLIGED

to review paper BEFORE given deadline
IF author of paper assigned is colleague

THEN PC member is OBLIGED to refuse to review asap

TABLE I
PC member ROLE DESCRIPTION.

Groups provide means to collectively refer to a set of roles
and are used to specify norms that hold for all roles in the
group. Groups are defined by means of an identifier, a non-
empty set of roles, and group norms. An example of a group
in the conference scenario is the organizing team consisting of
the roles program chair, local organizer, and general chair.

The distribution of objectives in roles is defined by means of
the Role Hierarchy. Different criteria can guide the definition
of Role Hierarchy. In particular, a role can be refined by
decomposing it in sub-roles that, together, fulfill the objectives
of the given role.

This refinement of roles defines Role Dependencies. A
dependency graph represents the dependency relations be-
tween roles. Nodes in the graph are roles in the society.

TABLE I
PC member ROLE DESCRIPTION.

Groups provide means to collectively refer to a set of roles
and are used to specify norms that hold for all roles in the
group. Groups are defined by means of an identifier, a non-
empty set of roles, and group norms. An example of a group
in the conference scenario is the organizing team consisting of
the roles program chair, local organizer, and general chair.

The distribution of objectives in roles is defined by means of
the Role Hierarchy. Different criteria can guide the definition
of Role Hierarchy. In particular, a role can be refined by
decomposing it in sub-roles that, together, fulfill the objectives
of the given role.

This refinement of roles defines Role Dependencies. A
dependency graph represents the dependency relations be-
tween roles. Nodes in the graph are roles in the society.

15

Arcs are labelled with the objectives for which the parent
role depends on the child role. Part of the dependency graph
for the conference society is displayed in figure 1. For
example, the arc between nodes PC-Chair and PC-member
represents the dependency between PC-Chair and PC-member
concerning paper-reviewed (PC − Chair �paper reviewed

PC−Member).The way objective g in a dependency relation
r1 �g r2 is actually passed between r1 and r2 depends on the
coordination type of the society, defined in the Architectural
Templates. In OperA, three types of role dependencies are
identified: bidding, request and delegation.

organizer
role

session
chair
role

author
role

PC
member

role

presenter
role

conference_organized

paper_submitted

PC chair
role

program _fixed session_organized

paper_reviewed paper_presented

Fig. 1. Role dependencies in a conference.

B. The Interaction Structure.

Interaction is structured as a set of meaningful scenes that
follow pre-defined abstract scene scripts. Examples of scenes
are the registration of participants in a conference, which
involves a representative of the organization and a potential
participant, or paper review, involving program committee
members and the PC chair. A scene script describes a scene
by its players (roles), its desired results and the norms regu-
lating the interaction. In the OM, scene scripts are specified
according to the requirements of the society. The results
of an interaction scene are achieved by the joint activity
of the participating roles, through the realization of (sub-)
objectives of those roles. A scene script establishes also the
desired interaction patterns between roles, that is, a desired
combination of the (sub-) objectives of the roles. Table II gives
an example of a scene script.

Scene Review Process
Roles Program-Chair (1), PC-member(2..Max)
Results r1 = ∀ P ∈ Papers: reviews done(P, rev1, rev2)
Interact. Pattern PATTERN(r1): see figure 2
Norms & Rules Program-Chair is PERMITTED to assign papers

PC-member is OBLIGED to review papers assigned
before deadline

TABLE II
SCRIPT FOR THE Review Process SCENE.

OperA interaction descriptions are declarative, indicating
the global aims of the interaction rather than describing exact
activities in details. Interaction objectives can be more or less
restrictive, giving the agent enacting the role more or less
freedom to decide how to achieve the role objectives and

interpret its norms. Following the ideas of [17], [14], we call
such expressions landmarks, defined as conjunctions of logical
expressions that are true in a state. Landmarks combined
with a partial ordering to indicate the order in which the
landmarks are to be achieved are called a landmark pattern.
Figure 2 shows the landmark pattern for the Review Process.
Several different specific actions can bring about the same

start

assign
paper
PC1

end

assign
paper
PC2

Assign
deadline

receive
review
PC1

receive
review
PC2

Review
deadline

Fig. 2. Landmark pattern for Review Process.

state, that is, landmark patterns actually represent families of
protocols. The use of landmarks to describe activity enables
the actors to choose the best applicable actions, according to
their own goals and capabilities. The relation between scenes is

Send Call
for Papers

Form PC

Send Call for
Participation

Paper
Submission

Review
Process

Registration

Paper
Acceptance

Conference
onsite

registration

Conference
Sessions

M

start end

Workshops
N

Fig. 3. Interaction Structure in the Conference scenario.

represented by the Interaction Structure (see figure 3). In this
diagram, transitions describe a partial ordering of the scenes,
plus eventual synchronization constraints. Note that several
scenes can be happening at the same time and one agent can
participate in different scenes simultaneously. Transitions also
describe the conditions for the creation of a new instance of the
scene, and specify the maximum number of scene instances
that are allowed simultaneously. Furthermore, the enactment of
a role in a scene may have consequences in following scenes.
Role evolution relations describe the constraints that hold for
the role-enacting agents as they move from scene to scene.

C. The Normative Structure.

At the highest level of abstraction, norms are the values of
a society, in the sense that they define the concepts that are
used to determine the value or utility of situations. For the
conference organization scenario, the desire to share informa-
tion and uphold scientific quality can be seen as organization
values. However, values do not specify how, when or in
which conditions individuals should behave appropriately in
any given social setup.

In OperA, norms are specified in the Normative Structure
using a deontic logic that is temporal, relativized (in terms
of roles and groups) and conditional. For instance, the fol-
lowing norm might hold: “The authors must submit their

16

contributions before the deadline”, which can be formalized
as: Oauthor(submit(paper) ≤ Deadline)

Furthermore, in order to check norms and act on possible
violations of the norms by the agents within an organization,
abstract norms have to be translated into actions and concepts
that can be handled within such organizations. To do so, the
definition of the abstract norms are iteratively concretized into
more concrete norms, and then translated into specific rules,
violations and sanctions.

Concrete norms are related to abstract norms through a map-
ping function, based on the counts-as operator as developed
in [1]. For example, in the context of Org, submit(paper)
can be concretized as:send mail(organizer, files) ∨
send post(organizer, hard copies)→Org submit(paper)

D. The Communication Structure.

Communication mechanisms include both the representation
of domain knowledge (what are we talking about) and proto-
cols for communication (how are we talking). Both content
and protocol have different meanings at the different levels of
abstraction (e.g. while at the abstract level one might talk of
disseminate, such action will most probably not be available
to agents acting at the implementation level). Specification of
communication content is usually realized using ontologies,
which are shared conceptualizations of the terms and predi-
cates in a domain. Agent communication languages (ACLs)
are the usual means in MAS to describe communicative
actions. ACLs are wrapper languages in the sense that they
abstract from the content of communication.

In OperA, the Communication Structure describes both the
content and the language for communication. The content
aspects of communication, or domain knowledge, are spec-
ified by Domain Ontologies and Communication Acts define
the language for communication, including performatives and
protocols.

IV. OPERETTA ENVIRONMENT

In order to support developers designing and maintain-
ing organization models, tools are needed that provide an
organization-oriented development environment. The require-
ments for such a development environment are the following.

1) Organizational Design: The tool should provide means
for designing organizational models in an ‘intuitive’
manner. The tool should allow users to create and
represent organizational structures, define the parties
involved in an organization, represent organizational and
role objectives, and define the pattern of interactions
typically used to reach these objectives.

2) Organizational Verification: The tool should provide
verification means and assistance in detecting faults in
organizational designs as early as possible, to prevent
context design issues from being translated to the other
levels of system specification.

3) Ontology Design: The tool should to be able to specify,
import, and maintain domain ontologies. Domain on-
tologies specifying the knowledge for a specific domain

of interaction should be able to be represented, existing
ontologies containing such information should be able
to be included (and provide inputs for organizational
concepts, such as role or objective names). Ontologies
should be maintainable and updatable.

4) Connectivity to System Level: The output of the or-
ganizational design tool is intended for use by system
level tools, namely MAS environments and agent pro-
gramming languages. The output of the tool thus needs
to provide easy integration and connection between the
organization and system level.

5) User-Friendly GUI: A user-friendly graphical interface
is to be provided for users to create and maintain
organizational models easily. Help and guidelines are
useful for beginners to use the tool.

6) Availability: The tool should be available under open
source license and for use by other projects.

We have developed the OperettA development environment as
an open-source solution on the basis of these requirements.
OperettA enables the specification and verification of OperA
OMs, which satisfies requirements 1 and 2. OperettA combines
multiple editors into a single package. It provides separate
editors on different components of organizational models;
i.e., it has different (graphical) editors for each of the main
components of an organizational model as defined in the
OperA framework. These specialized editors correspond to
the OperA OM structures: social, interaction, normative and
communicative. The OperettA Ontology Manager enable the
specification and import of domain ontologies, as in require-
ment 3.

The OperettA tool is a combination of tools based on the
Eclipse Modeling Framework (EMF) [18] and tools based on
the Graphical Modeling Framework (GMF) integrated into a
single editor. Developed as an Eclipse plug-in, OperettA is
fully open-source and follows the MDE principles of tool de-
velopment. In the following we look at the editors provided by
OperettA, and how OperettA connects to MAS solutions, thus
satisfying requirement 4. A graphical interface (requirement 5)
for OperettA has been developed and is currently being user-
tested within the ALIVE project [12]. Finally, in accordance
to the last requirement, OperettA is available opensource at
sourceforge1.

A. OperettA Components

The main element of OperettA is the OperA Meta-Model
(see figure 4 for an overview of the tools in OperettA and their
functionalities). The meta-model, created with the EMF tools,
provides the (structural) definition of what organizational
models should look like. This meta-model is extended with
the default EMF edit and editor plug-ins to provide model
accessors and the basic tree-based editor for the creation
and management of OperA models. The basic editor has
been extended with graphical interfaces for editing parts of
the organization model: the social diagram editor, and the

1http://ict-alive.svn.sourceforge.net/

17

!"#$%&'$()%$*+
,)-.*+

!/."0+,.1$2,)-.*+
3%.14'54&61$*&7.4)/.".8$9+

,)-.*+066.'')"'+
3%.14'54&61$*&7.4)/.".8$4.-&19+

!/.".80+:-&1)"+
3%.14'54&61$*&7.4)/.".8$4.-&1)"9+

;)6&$*+<&$#"$=+
:-&1)"+

3%.14'54&61$*&7.4)/.".8$4-&$#"$=4''9+

>%1."$6()%+<&$#"$=+
:-&1)"+

3%.14'54&61$*&7.4)/.".8$4-&$#"$=4&'9+

?")7&-.'+.-&(%#+5@%6()%$*&1A+
1)+!"#$%&'$()%$*+,)-.*+

<.B%.'+
'1"@61@".+

C'.'+,,+-.B%&()%'+

D".$1.E=$%$#.+!,+

:%
$F
*.
'+
-&
G
."
.%

1+
.-

&1
)"
+7
&.
H
'+

I$*&-$()%+
J"$=.H)"K+

3%.14'54&61$*&7.4)/.".8$46L.6K9+

I."&B.'+=)-.*+

!"#$%&'#()*+",)-.&/+")
3/*$%%.-9+

!%1)*)#A+
,$%$#.=.%1+

3%.14'54&61$*&7.4)/.".8$4)%1)*)#A9+

>=/)"1'E:M/)"1'+)%1)*)#A+

,)-.*+N"$6K."+
3%.14'54&61$*&7.4)/.".8$4=)-.*N"$6K."9+

O@&*-'+".)"#$%&'$()%+'6"&/1'+

Fig. 4. OperettA Tool Components.

interaction diagram editor. A third graphical editor is planned
for editing and managing formulas and norms.

Next to the graphical editing extensions, OperettA contains
three other plug-ins for additional functionality. The Validation
Framework provides an improvement over the default valida-
tion of EMF-based tools to provide validation of additional
restrictions. An ontology managing plug-in is included as well
to allow the ontology developed with OperettA to be exported
to OWL, as well as allowing for importing existing ontology
into the organization to boot-strap the organization design.
Finally, OperettA contains a Model Tracker plug-in that can
generate re-organization descriptions based on changes made
in the OperettA organization editors.

We discuss the graphical editors and additional plug-ins in
more details in the following.

1) Social Diagram Editor: This graphical editor provides
a view of the Social Structure element of OMs. It allows the
graphical creation of organizational Roles and Dependencies,
thus specifying the social relations between important parties
that play a part in the organization. The Social Diagram Editor
also provides editing capabilities to specify and manage Role
related Objectives, to provide context for the different Roles
in an organization. Figure 5 depicts the Social Diagram Editor
of OperettA that is used to enter organizational roles and
dependencies between roles. Role objectives are created and
managed via the objectives editor shown in the bottom part of
the figure.

2) Interaction Diagram Editor: Similar to the Social Di-
agram Editor, the Interaction Diagram Editor provides a
graphical view of the Interaction Structure element of OMs.
This editor allows for the specification and management of
the interaction elements of the organization; that is, it is for
the specification and management of the different interactions
that take place in the organization in order to achieve the
different (role) objectives specified in the social part of the
OM. The specification of the interaction is done in terms
of scenes and transitions (the connection and synchronization

Fig. 5. OperettA Social Diagram Editor.

points between scenes). Together, these define the order in
which objectives are to be reached and how the organization
works (though specified on a high level of abstraction). The
Interaction Diagram Editor allows for the graphical creation
and maintenance of scenes, transitions and arcs (links between
scenes and transitions). The graphical editor provides a user-
friendly overview of the structural aspect of the organization,
defining how different interactions within the organization are
supposed to help achieve the organizational objectives. Finally,
OperettA allows for the specification and editing of scene
properties (like the scene results, the players active in the
scene, the landmark pattern, etc).

3) Ontology Manager: The Ontology Manager part of the
OperettA tool is a plug-in for importing and exporting (do-
main) ontologies. The creation and maintenance of ontologies
is done by external tools (like, for example, Protégé). Parts of
the functionality of organizational ontology editing is included
in the OperettA editors:

• Automatic creation of organizational ontology while de-
signing the organization. As the designer is inputting the
organizational model in OperettA, OperettA maintains
an ontology of role names, objective names, and logical
atoms that the designer uses to define the organization.

• Using an included (existing) ontology for the naming of
organizational model elements; that is, if an (external)
ontology is present in the organizational model it can
be used to pick concept names for different parts of
an organizational model (e.g., the name of a role can
be picked from an existing ontology included in the
model). The addition of the (external) ontology to an
organizational model is done via the ontology manager.

The functionality of ontology editing in the OperettA tools
is limited to organizational ontologies. The Ontology manager
plug-in extends OperettA with the following capabilities:

• Importing an ontology from a file (e.g., RDF or OWL
[19]). Ontologies about the domain or organization that
is to provide the context of a system might be already
available. These ontologies tend to be stored in some

18

conventional ontology file-format. The Ontology Man-
ager allows OperettA to import and use such ontologies.

• Exporting (generated) organizational ontologies to file. In
order to align an use the organizational ontology created
by OperettA, the Ontology Manager extends the OperettA
tool with the capability to export the default ontology to
an owl file.

The organizational ontology created by OperettA is stored
in the Organizational Model. The ontological elements need
to be available to the system level of design, and thus need
to be included in the domain ontology. The integration of
organizational concepts in a domain ontology is not trivial, as
it should respect the structure of the domain ontology while
adding organizational concepts as roles, objectives, etc. and the
instances of these concepts; role names, objective names, etc.
The alignment between the exported ontology and the domain
ontology will have to be done by hand in an external editor.
The inclusion of the ontology manager satisfies requirement
3.

4) Model Tracker: To support reorganization, OperettA is
extended with a model tracker. This model tracker allows a
designer to view the changes made on the organizational model
since a last save (but not necessarily the previous one). By
storing the changes to the organizational model in a history
file, the model tracker can be used to generate scripts that
express how an organization is changed. Reorganization scripts
capture changes in a precise and concise manner, and can
be used to communicate organizational changes to the system
level.

5) Validation Framework: The validation plug-in of Op-
erettA overwrites the basic validation provided by the EMF
framework. Instead of just verifying constraints specified in
the OperA meta-model, the validation has been extended with
additional verification constraints to minimize organizational
design mistakes. The overall purpose of the validation plug-in
is to provide OM designers meaningful feedback to eliminate
design errors as early as possible (in the design process).
The validation plug-in is installed separately from OperettA,
but after installation it can be invoked from within each of
the different OperettA editing views. The validation plug-in
seamlessly overwrites the standard EMF validation, making it
the new default manner of validating OperettA models.

The validation plug-in works directly on the model instance
to verify various modeling constraints, accessing the model via
the meta-model definitions. Some examples of the constraints
validated are checking that roles have a name, checking
that role names are unique, checking that all roles have an
objective, and so on. Less stringent constraints are checked as
well, like, for example, whether roles are connected to other
roles via dependencies; i.e., while it does not hold for every
OM, in most models roles should be connected to other roles
(that is, it should be depending upon (an)other role(s) or being
depended upon by (an)other role(s)). Such “soft” constraints
are presented to designer as a warning, intended to have the
designer rethink their model and update if appropriate. The
validation plugin fulfills requirement 3.

Fig. 6. A Norm in OperettA.

6) Norm Editor: Norms are an important part of the or-
ganizational Model, providing lead ways on a high level of
abstraction for the agents to follow. Norms can be inputted in
the current version of OperettA via the basic EMF generated
editor. This editor is not user-friendly. An example norm in
OperettA is shown below in figure 6. The norm shown in this
figure describes that buyers should have paid for the items
they have won in an auction before one week has expired.
The norm is input using several logical formulas; one for
the activation condition expressing when the norm is active
(the item is bid on and won), one for the expiration condition
expressing that the norm is no longer active (the item has
been paid for), one for the maintenance condition expressing
the formula to be checked when the norm is active to see if
violations have happened (the buyer has not paid and the week
has not yet expired), and one for the deadline expressing a state
of affairs before which the norm should have been fulfilled. A
user-friendlier (graphical) interface for inputting and managing
the norms of an organizational model is planned for a future
version of OperettA. This extension, with the graphical editors
for the social and interaction structures, fulfills requirement 5.

B. Connectivity to System Level

The OperettA tool has only off-line functionalities; it is
used by designers to create the context of the system and
their linked ontologies. It provides design and validation
functionalities for the creation and management of OperA
organizational models. For the connection to implementations
OperettA depends on the Model Driven Engineering (MDE)
approach by providing a meta-model of the modeling concepts.

MDE refers to the systematic use of models as primary
artifacts throughout the Software Engineering lifecycle. The
defining characteristics of MDE is the use of models to
represent the important aspect of the system, be it require-
ments, high-level designs, user data structures, views, interop-
erability interfaces, test cases, or implementation-level artifacts
such as code. The Model Driven Development promotes the
automatic transformation of abstracted models into specific
implementation technologies, by a series of predefined model
transformations.

In essence, this means that the models created with the
OperettA tool can be used for automated transformation
towards applicable (models of) platforms; e.g, service-based
implementations or multiagent systems. The only required step
for such transformation is the definition of the transformations
based on the OperettA meta-model concepts to the meta-model
of the desired platform.

19

Finally, OperettA is based on the OperA formalism, which
assumes that individual agents are designed independently
from the organization, to model goals and capabilities of a
given entity. Individual agents are the enactors of organiza-
tional role(s), as a means to realize their own goals [3]. As such
it is necessary that OperettA can connect to such MAS frame-
works. As a proof of concept, we have done experiments on the
connection towards frameworks like Brahms and Repast, for
the simulation of organizations in which normative properties
of the organization can be verified for different populations
with emergent behavior. As part of the ALIVE project [12] a
connection was made with AgentScape to generate MAS from
the organizational specification.

V. DESIGN GUIDELINES

In the previous we introduced organizational modeling and
the OperettA Environment to support this. In this section we
present a small overview on how one goes about designing an
organization. After identifying that an organization presents
the solution to the problem:

1) Identify (functional) requirements: First one determines
the global functionalities and objectives of the society.

2) Identify stakeholders: The analysis of the objectives of
the stakeholders identifies the operational roles in the
society. These first two steps set the basis of the social
structure of the OperA model.

3) Set social norms, define normative expectations: The
analysis of the requirements and characteristics of the
domain results in the specification of the normative
characteristics of the society. This results in the norms
in the normative structure.

4) Refine behavior: Using means-end and contribution
analysis, a match can be made between what roles
should provide and what roles can provide. This aspect
contributes to refinement of role objectives and rights.

5) Create interaction scripts: Using the results from steps 3
and 4, one can now specify the patterns of interaction for
the organization, resulting in the interaction structure.

More details about the methodological steps taken to create
organizational models can be found in [7].

VI. CONCLUSIONS

In this paper, we present an organization-oriented model-
ing approach for system development. The OperA modeling
framework can be used for different types of domains from
closed to open environments and takes into consideration
the differences between global and individual concerns. The
OperettA tool supports software and services engineering
based on the OperA modeling framework. It has been used in
the European project ALIVE [12] that combines cutting edge
coordination technology and organization models to provide
flexible, high-level means to model the structure of inter-
actions between services in an environment.

REFERENCES

[1] Huib Aldewereld, Sergio Álvarez-Napagao, Frank Dignum, and Javier
Vázquez-Salceda. Engineering social reality with inheritance relations.
In Proc. of the 10th Workshop Engineering Societies in the Agents’
World (ESAW 2009). 2009.

[2] L. Coutinho, J. Sichman, and O. Boissier. Modelling dimensions for
agent organizations. In V. Dignum, editor, Handbook of Research
on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models. Information Science Reference, 2009.

[3] M. Dastani, V. Dignum, and F. Dignum. Role assignment in open agent
societies. In AAMAS03. ACM Press, July 2003.

[4] V. Dignum. A Model for Organizational Interaction: based on Agents,
founded in Logic. SIKS Dissertation Series 2004-1. Utrecht University,
2004. PhD Thesis.

[5] V. Dignum. The role of organization in agent systems. In V. Dignum,
editor, Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models, pages ??–?? Information Science
Reference, 2009.

[6] V. Dignum and F. Dignum. Designing agent systems: State of the
practice. International Journal on Agent-Oriented Software Engineering,
4(3), 2010.

[7] V. Dignum, F. Dignum, and J.J. Meyer. An agent-mediated approach
to the support of knowledge sharing in organizations. Knowledge
Engineering Review, 19(2):147–174, 2004.

[8] V. Dignum, J. Vazquez-Salceda, and F. Dignum. Omni: Introducing
social structure, norms and ontologies into agent organizations. In
Programming Multi-Agent Systems: Second International Workshop
ProMAS 2004, volume 3346 of LNAI. Springer, 2005.

[9] Virginia Dignum and Frank Dignum. Modeling agent societies: co-
ordination frameworks and institutions. In A. Jorge P. Brazdil, editor,
Progress in Artificial Intelligence: Proc. of EPIA-2001, LNAI 2258,
pages 191–204. Springer, 2001.

[10] M. Esteva, J. Padget, and C. Sierra. Formalizing a language for
institutions and norms. In ATAL-2001, LNAI 2333, pages 348–366.
Springer, 2001.

[11] J. Ferber and O. Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. In ICMAS’98, pages 128–135.
IEEE Computer Society, 1998.

[12] European Commission FP7-215890. ALIVE, 2009. http://www.ist-alive.
eu/.

[13] Davide Grossi, Frank Dignum, Mehdi Dastani, and Lambèr Royakkers.
Foundations of organizational structures in multiagent systems. In
AAMAS ’05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 690–697, New
York, NY, USA, 2005. ACM.

[14] S. Kumar, M. Huber, P. Cohen, and D. McGee. Towards a formalism
for conversation protocols using joint intention theory. Computational
Intelligence Journal, 18(2), 2002.

[15] H.V.D. Parunak and J. Odell. Representing social structures in uml.
In M.Wooldridge, G.Weiss, and P. Ciancarini, editors, Agent-Oriented
Software Engineering II, LNCS 2222. Springer-Verlag, 2002.

[16] L. Penserini, D. Grossi, F. Dignum, V. Dignum, and H. Aldewereld.
Evaluating organizational configurations. In IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology (IAT 2009), 2009.

[17] I. Smith, P. Cohen, J. Bradshaw, M. Greaves, and H. Holmback.
Designing conversation policies using joint intention theory. In Proc.
ICMAS-98, pages 269–276. IEEE Press, 1998.

[18] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Eclipse Series. Addison-Wesley
Professional, 2008.

[19] W3C. Owl-s, 2004. http://www.w3c.org/Submission/OWL-S.
[20] H. Weigand and V. Dignum. I am autonomous, you are autonomous.

In M. Nickles, M. Rovatsos, and G. Weiss, editors, Agents and Com-
putational Autonomy, volume 2969 of LNCS, pages 227–236. Springer,
2004.

[21] F. Zambonelli. Abstractions and infrastructures for the design and
development of mobile agent organizations. LNAI 2222, pages 245–
262. Springer, 2002.

[22] F. Zambonelli, N. Jennings, and M. Wooldridge. Organizational abstrac-
tions for the analysis and design of multi agent systems. LNAI 1957,
pages 235–251. Springer, 2001.

20

A Dialogic Dimension for the MOISE+
Organizational Model

A. Hübner, G.P. Dimuro and A.C.R. Costa
PPGMC, Centro de Ciências Computacionais

Universidade Federal do Rio Grande
96201-900 Rio Grande, RS, Brazil

Email: {ale.hubner, ac.rocha.costa,gracaliz}@gmail.com

V.L.D. Mattos
DEMAT, Instituto de Ciências Exatas

Universidade Federal Rural do Rio de Janeiro
32890-000 Seropédica, RJ, Brazil

Email: viviane.leite.mattos@gmail.com

Abstract—The aim of this work is to propose a fourth
dimension for the MOISE+ multiagent system organizational
model, focused in the communication between roles. For that,
the modelMOISE+ is extended with a dialogic dimension that
defines the protocols used for communication between roles. In
order to interlink this new dimension to the other dimensions
of the MOISE+ model, new relations are added to the deontic
specification, which are responsible for indicating which protocols
should or could be used to achieve the goals that constitute the
roles’ missions. The use of the extended model is illustrated,
with a case study in the modeling of the process of creation
of an episodic graduate course in a particular communitarian
university in Brazil.

I. INTRODUCTION

It is possible to distinguish two structural levels in a
Multiagent System (MAS), namely, the organization and the
population structures. Basically, the population structure is
composed by the agents themselves (and, of course, all the
mechanism related to them, such as the ones for interaction
and communication). The organization structure is related to
the roles that may be played by the MAS population.

The PopOrg model [1], [2], [3], [4], for example, is a MAS
organizational model that clearly separates those two structural
levels.

On the other hand, in the PopOrg model, the notion of
interaction between agents/roles is explained by means of
social exchanges (i.e., exchange of services or objects [5], [6],
[7]) between agents/roles in each structural level.

Since communication is one of the main tools that agents
have to coordinate their actions in the exchanges that they
perform at the population level (cf., e.g., [8]), the specification
of the exchanges (and then, the communication) between roles
may be a tool for the regulation of the exchanges between the
agents that adopt such roles.

So, in the same way that the communication between
agents is crucial to allow/regulate the exchanges that agents
perform on their own, at the level of the MAS population,
also the communication between roles can be a specification
mechanism, at the organization level, tho allow/regulate the
exchanges between agents when they adopt those roles.

This becomes particulary important in some kinds of or-
ganizations where the exchange processes promoted in their

context demand an intensive communication flow between the
organizational roles and/or groups of roles.

An example of such organization is the one of a university,
considering, for example, its management processes, which are
mainly coordinated by the communication between the roles
(e.g, the president, a dean of the school, a head of department,
a course coordinator, a professor, a department secretary),
or between groups of roles (e.g., a department, a faculty,
a scientific board, a school board, a research laboratory, a
research group).

We have studied such management processes in a particular
private communitarian university in Brazil, where it was
observed those intensive communication flows guiding all such
processes.

The MAS organizational model MOISE+ [9], [10], [11],
[12], [13], [14], [15], showed to be a practical organization
model very suitable for our purposes, given in particular the
very good set of tools that support it and help the design of
MAS.

However, theMOISE+ model presents only the following
dimensions: the structural dimension (roles, role relations,
inheritance relation, links, groups, etc.), the funcional dimen-
sion (global plans, missions, etc.), and the deontic dimension,
which relates the other two dimension by stating the permis-
sions and obligations of a role on a mission, thus lacking a
dimension to specify communications between roles, which
was essential in our application. Such lack of an explicit
dialogic dimension in the MOISE+ model, contrasted with
the central position that dialogues play in our theoretical
PopOrg model, motivated the present work.1

Thus, the aim of this work is to propose the introduction
of a dialogic dimension in the MOISE+ model, focused in
the communication between roles at the MAS organization
level, not in the communication between agents at the MAS
population level. As a case study, we took the process of
creation of an episodic graduate course at that particular
private communitarian university.

1The definition of the MOISE+ model was based on the MOISE [16],
[17] model, adding to it many facilities [9], [10], and offering a framework for
the reorganization of multiagent systems [11]. Neither the originalMOISE+
nor in theMOISE+ model, however, gave the status of a full dimension for
the specification of the dialogues between roles.

21

The paper is organized as follows. Section II briefly presents
basic concepts of MAS organization models, and, in particular,
theMOISE+ model, which is the one this paper is concerned
with. Section III presents our proposal for introducing a
dialogic dimension in the MOISE+ model, allowing for the
specification of the communication between roles. Section IV
presents a case study related to the process of creation of an
episodic graduate course at a particular private communitarian
university in Brazil. Section V is the Conclusion.

II. MAS ORGANIZATIONAL MODELS ANDMOISE+

In the literature, it is possible to find many approaches for
MAS organization modelling [18]. Most of them offer a set
of computational tools to support their use in the modeling of
MAS. The development of these tools may consider either an
agent-centered or a system-centered conception [9], [19], [20].
The former takes the agents as the engine for the organization
formation, focusing the organizational agent-level deliberative
mechanisms to interpret and reason about the specification
of the organization. In the latter, the main concern is the
organizational infrastructure, i.e., the organization exists a
priori (defined by the designer or by the agents themselves)
and the agents ought to follow it.

In general, the MAS organization models present a declara-
tive language for the organization modelling and also an orga-
nization architecture (see, e.g., the Islander editor [21] and the
Ameli agent-based platform [22] for electronic institutions).

The MOISE+ model, which is an organization-centered
model, also presents those facilities [20], [23]. In MOISE+,
there is a language for specifying the MAS organization, which
allows us to chose constraints and cooperation patterns to be
imposed on the agents, in order to develop the Organization
Specification (OS) . An Organization Entity (OE) is then cre-
ated as the agents adopt the roles specified in the organization
specification, i.e., a set of agents builds an organization entity
by adopting an appropriate organization specification in order
to achieve its purpose.

The MOISE+ model considers three organizational di-
mensions: the organization structure itself, its functions, and
the deontic relation among them to explain how a MAS
organization collaborates for its purpose:

• Structural Dimension (roles, groups, relations): A role is
conceived as a set of behavioral constraints that an agent
accepts since it joins a group in the organization. For
example, in the case of the organization of a university,
the agent that adopts the role of a professor has some
kind of authority over the one that is playing the role of
a student.

• Functional Dimension (goals, global plans, missions): It
defines a set of global plans for the MAS to achieve its
goals, which are structured in a social schema, as a goal
decomposition tree, where each goal may be decomposed
in sub-goals, and the responsibilities for the sub-goals
are distributed in missions. The mission are attributed to
the roles and constitute the commitments of the agents
that adopt such roles. Once an agent is committed with a

mission, it is responsible to achieve the goals related to it.
The mission may be attached to individual preferences,
which are used in the case of establishing a preference
order among missions.

• Deontic Dimension (obligations, permissions): It specifies
the relations between the structural specification and the
functional specification, establishing which missions each
role is obliged or has the permission to realize.

The first two dimensions can be specified almost indepen-
dently of each other, and, after, they are properly linked by the
deontic dimension, which facilitates also the reorganization of
the system.

A MOISE+ organization specification is formed by a
Structural Specification (SS), a Functional Specification (FS)
and a Deontic Specification (DS). A aMOISE+ organization
specification can be represented as a XML file, using an
specific format, which can be manipulated by the MOISE+
editor.

III. A DIALOGIC DIMENSION FOR THEMOISE+ MODEL

As discussed in the Introduction, the specification of the
interactions/exchanges between roles at the organization level
may be an important tool for the regulation of the interac-
tions/exchanges between agents that adopt those roles at the
population level, and the communication is a fundamental tool
that the roles/agents have in order to perform interactions/ex-
changes.

For example, in the GAIA methodology [24], whose under-
lying organization model allows to deal with adaptive multi-
agent organizations [25], a role is defined by a set of four
attributes: responsibility, permissions, activities and protocols.
The protocols establishes the requirements for the interactions
between roles (for example, to the role of manager may be
associated the Contract Net protocol). Those protocols may
be defined at the analysis phase. This association of protocols
to roles generates an interaction model, which specifies the
links between roles. Electronic institutions [21], [22] and the
OperA model [26] are other organizational models where the
specification of interactions also is a central feature.

On the other hand, the MOISE+ organization model does
not support a clear specification of how the interaction between
roles may be conducted. In this paper, we propose the integra-
tion of a fourth dimension to the MOISE+ model, namely
the dialogic dimension, which allows for the specification
of the communication between roles through protocols that
should/may be used by them.

The idea of the inclusion of a dialogic dimension in the
MOISE+ model implies the addition of new relations in the
deontic dimension, indicating which missions present goals
that need communication between roles, and which protocols
are required/permitted to be used while trying to achieve those
goals.

The new organization configuration that we propose for the
MOISE+ model is shown in Fig. 1.

The protocols defined in the dialogic dimension are abstract,
i.e., they do not specify the details of the communication

22

Fig. 1. The MOISE+ model extended with the Dialogic Dimension

operations to be used. The specification of how those ab-
stract communication operations are to be realized by the
communication primitives effectively available for the agents,
when they adopt the roles involved in those communications,
is defined separately, in a so-called Dialogic Specification
(DLS), which is treated as a new separate part in the PopOrg
specification, complementing the specification of how the
population structure implements the organization structure.

The Deontic Specification of the MOISE+ is extended
with the element deontic-links, which is responsible for
defining which protocol is to be used by each role that has a
goal whose achievement demands an interaction with another
role (see XML Code 1; note that the deontic-relation

element is original to the MOISE+ model).

XML Code 1. Communication in the deontic specification
<d e o n t i c−s p e c i f i c a t i o n>

<d e o n t i c−r e l a t i o n t y p e ="permission" r o l e ="role[x]"
m i s s i o n ="m1" />

<d e o n t i c−r e l a t i o n t y p e ="permission" r o l e ="role[y]"
m i s s i o n ="m2" />

<d e o n t i c−r e l a t i o n t y p e ="obligation" r o l e ="role[z]"
m i s s i o n ="m3" />

<d e o n t i c−l i n k s m i s s i o n ="m1" >
< l i n k t y p e ="obligation" g o a l ="g1" p r o t o c o l ="p1"

/>
< / d e o n t i c−l i n k s>

<d e o n t i c−l i n k s m i s s i o n ="m2" >
< l i n k t y p e ="obligation" g o a l ="g2" p r o t o c o l ="p2"

/>
< l i n k t y p e ="permission" g o a l ="g3" p r o t o c o l ="p3"

/
</ d e o n t i c−l i n k s>

< / d e o n t i c−s p e c i f i c a t i o n>

A set of deontic-links like
<deontic-links mission="m2" >
<link type="obligation" goal="g2" protocol="p2" />
<link type="permission" goal="g3" protocol="p3" />

</deontic-links>

says that whenever a goal has the mission m2, it has the
obligation of using protocol p2 to achieve goal g2 of m2, and
the permission to use protocol p3 to achieve goal g3 of m2.

Although the communication protocols are defined ab-
stractly in the dialogic specification, the parameters and per-

formatives of FIPA ACL [27] are used in order to structure the
message in the communication specification, as can be seen in
the XML Code 2 (a generic specification) and in XML Code 3
(an instantiated specification).

XML Code 2. A generic communication protocol
<d i a l o g i c a l−s p e c i f i c a t i o n>

<p r o t o c o l−d e f i n i t i o n s>

<p r o t o c o l i d ="px" >
<seq>

<msg i d ="1" send ="roleX" r e c e i v e r ="roleY
" >

<c o n t e n t t y p e ="request" l a n g u a g e ="
Prolog" s a y s ="requested(Request)"

/>
<r e t u r n r e p l y−wi th ="X" />

< / msg>
<msg i d ="2" send ="roleY" r e c e i v e r ="roleX

" >
<c o n t e n t t y p e ="inform" l a n g u a g e ="

Prolog" s a y s ="reply([X1 = V1, X2
= V2, ... Xn = Vn])" />

<r e t u r n in−r e p l y−t o ="X" />
< / msg>

< / s eq>
< / p r o t o c o l>

< / p r o t o c o l−d e f i n i t i o n s>
< / d i a l o g i c a l−s p e c i f i c a t i o n>

XML Code 3. An instantiated communication protocol
<d i a l o g i c a l−s p e c i f i c a t i o n>

<p r o t o c o l−d e f i n i t i o n s>

<p r o t o c o l i d ="p1" >
<seq>

<msg i d ="1" send ="professor" r e c e i v e r ="
student" >

<c o n t e n t t y p e ="request" l a n g u a g e ="
Prolog" s a y s ="?- location(you,(
City,Country))" />

<r e t u r n r e p l y−wi th ="address" />
< / msg>
<msg i d ="2" send ="student" r e c e i v e r ="

professor" >
<c o n t e n t t y p e ="inform" l a n g u a g e ="

Prolog" s a y s ="\+ City = pelotas,
Country = brazil" />

<r e t u r n in−r e p l y−t o ="address" />
< / msg>

< / s eq>
< / p r o t o c o l>

< / p r o t o c o l−d e f i n i t i o n s>
< / d i a l o g i c a l−s p e c i f i c a t i o n>

In both codes, it is possible to observe the XML elements and
attributes used in the implementation of a particular example
of a dialogic specification:

• The element <protocol> has the attribute id, which is
responsible for linking the dialogic specification with the
deontic specification;

• The element <msg> may have from 2 to 4 attributes:
send/receiver (indicates who send/receive the mes-
sage), propagate (sends the message for a group), and
to (indicates the final target of the message, when it is
forwarded);

23

Fig. 2. The viewer tool

• The element <content> has 4 attributes: type (defines
an interpretation for the message), from (indicated the
first sender of the message), says (carries the content
of the message), and language (specifies the language,
which, in this case, is Prolog);

• The element <return> may have 1 or 2 attributes:
reply-with (contains the identification label for an
returning answer), and in-reply-to (contains the iden-
tification label of the received message).

Note that, for a particular application, a particular ontology
for role communication would be specified.

In order to help the user, we implemented a viewer tool
(Fig. 2), which joints the dialogic specification with de deontic
specification, allowing to view, in a structured and organized
way, all the protocols that the roles use to execute their duties.

IV. APPLICATION EXAMPLE

For the case study of this work, we selected one of the
management processes that we found in the context of a
particular private communitarian university in Brazil, namely,
the management process of episodic graduate courses (the
course that should occur just once), which can be divided into
4 stages: (i) creation, (ii) promotion and advertisement, (iii)
classes and advising, and (iv) closing.

In the first stage, called the creation phase, which encom-
passes the conception and the formalization of the course, the
role professor is the one who has the idea to propose the
course.

Then, this proponent professor starts to collect related
material, exchanging ideas with its colleagues (also with the
role professor), and also talking with the role dean of

department to which it proposes informally the creation of
the course.

Observe that, at this phase, there is an intensive flow of
communication between the group faculty, i.e., between
the proponent professor and the other professors, and
between the roles professor and dean of department.

The proponent professor also uses a lot of communication
in order to ask for services and instructions, give and receive
information/suggestions, to receive and discuss informal re-
ports, etc., during the creation phase.

After an informal analysis if there is a good probability
to have the course proposal approved in the higher manage-
ment and scientific instances of the university, the proponent
professor develops an schema of the course pedagogical
project.

Then, the dean of department constitutes a group, the
work team, which is composed by roles of professors. This
work team is supposed to have meetings in order to elaborate
the formal course pedagogical project.

After that, the proponent professor requests that the
Control and Planning Consultancy to elaborate the fi-
nancial analysis (costs, incomings) of the proposal. After that,
the proponent professor formalizes its proposal, jointing
the course pedagogical project with the respective financial
analysis.

In the sequence, the department secretary opens
a formal process, which is evaluated in the various
management and scientific instances of the university, such us:
Department Consultant Council, Graduate Board,
Administration Board, and Superior Scientific

Council.
After been approved in all those instances, the process goes

to the second stage, which is the promotion/advertisement of
the course.

If the course attracts a sufficient number of applications that
guarantees that it will be economical viable, then it is finally
approved, and it advances the other stages, namely, the classes
and advising, and finally the closing.

In this paper, we show just the first stage of this process,
namely, the creation process. After the conceptual modeling
phase, where all the structure the university, related to this
application, was depicted, identifying all the roles, groups of
roles, relations, interactions between roles and between roles
and groups, global plans, missions, etc., we developed the
organization specification of a MAS for simulating the creation
process, using the MOISE+ model.

Figures 3, and 4 show a sample of UML sequence diagrams,
illustrating how the role communication protocols of the
dialogic specification are visually designed.

After the visual design phase, the XML representation of
the protocols are written. For example, the sequence diagram
of Fig. 3 generates the protocol shown in the XML Code 4.

24

Fig. 3. Partial diagram of a role communication protocol

XML Code 4. Protocols of the Dialogic Specification
<d i a l o g i c a l−s p e c i f i c a t i o n>

<p r o t o c o l−d e f i n i t i o n s>

<p r o t o c o l i d ="p1" >
<seq>

<msg i d ="1" send ="professor1" r e c e i v e r ="
professor2" group ="faculty">

<c o n t e n t t y p e ="inform" l a n g u a g e ="
Prolog" s a y s ="?- hello" />

< / msg>
<msg i d ="2" send ="professor1" r e c e i v e r ="

professor2" group ="faculty">
<c o n t e n t t y p e ="cfp" l a n g u a g e ="Prolog"

s a y s ="?- join(workTeam(
graduateCourse))" />

< / msg>
< / seq>

< / p r o t o c o l>

< / p r o t o c o l−d e f i n i t i o n s>
< / d i a l o g i c a l−s p e c i f i c a t i o n>

Figure 5 shows the deontic dimension, with the dialogical
elements that were added for the specification of the protocols
to be used in the interactions between roles in the creation
phase of the management process of episodic graduate courses.

V. CONCLUSION

It is possible to find in the literature several organizational
models for the modeling of multiagent systems. This work
was concerned, in particular, withe theMOISE+ model. The
MOISE+ model is an improvement over theMOISE model
that allowed its use in different contexts when modeling MAS
systems. However, some elements were not considered in
MOISE+ model, such us the specification of communication
protocols.

In this paper, we discussed the importance, in some spe-
cific applications, of having tools for the specification of the
interactions/exchanges that use communication between roles
at the MAS organization level, which may help the regulation
of the interactions/exchanges that use communication between
the agents that adopt those roles at the MAS population level.

This work proposed an extension to theMOISE+ organiza-
tional model, which incorporated a dialogic dimension used to
specify the communication between roles, where the protocols
applied in the role communication are defined.

Fig. 4. Partial diagram of a role communication protocol

The dialogic dimension was connected to the deontic di-
mension by the adding new relations that are responsible for
indicating which missions have goals that need role communi-
cation, specifying permission and obligations to use commu-
nication protocols. The dialogic dimension was modeled with
the specification of the protocols using the XML language.

We developed an application related to the creation phase
of the management process of a episodic graduate course
in a particular private communitarian university. This case
study was particulary interesting for the purpose of validating
our proposal, since that this kind of organization and its
management processes presented a large communication flow
between the roles.

ACKNOWLEDGMENT

This work is part of a larger project (RS-SOC: Rede Esta-
dual de Simulação Social), being run under the FAPERGS/C-
NPq/PRONEX context, where the political aspects of di-
alogical features of social organizations are being investi-
gated. The work is supported by FAPERGS/CNPq/PRONEX
(Proc. 10/0049-7) and CNPq (Proc. 483257/09-5, 307185/07-
9, 304580/07-4). We thank Jomi Hübner for helping us with
the MOISE+ tools and also for his valuable suggestions.

REFERENCES

[1] A. C. da Rocha Costa and G. P. Dimuro, “Semantical concepts for a
formal structural dynamics of situated multiagent systems,” in Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems III, ser.
LNAI, J. Sichman, P. Noriega, J. Padget, and S. Ossowski, Eds. Berlin:
Springer, 2008, no. 4870, pp. 139–154.

[2] ——, “A basis for an exchange value-based operational notion of
morality for multiagent systems,” in Progress in Artificial Intelligence,
13th Portuguese Conf. on Artificial Intelligence, EPIA 2007, ser. LNAI,
J. Neves, M. Santos, and J. Machado, Eds. Berlin: Springer, 2007, no.
4874, pp. 580–592.

[3] ——, “A minimal dynamical organization model,” in Handbook of
Research on Multi-Agent Systems: Semantics and Dynamics of Orga-
nizational Models, V. Dignum, Ed. Hershey: IGI Global, 2009, pp.
419–445.

[4] ——, “Introducing social groups and group exchanges in the PopOrg
model,” in Proceedings of AAMAS 2009, vol. 1. Budapest: IFAAMAS,
2009, pp. 1297–1298.

[5] J. Piaget, Sociological Studies. London: Routlege, 1995.
[6] G. Homans, Social Behavior – Its Elementary Forms. New York:

Harcourt, Brace & World, 1961.
[7] P. Blau, Exchange & Power in Social Life. New Brunswick: Trans.

Publish., 2005.

25

Fig. 5. The Extended Deontic Specification

[8] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester:
Wiley, 2002.

[9] J. F. Hübner, J. S. Sichman, and O. Boissier, “A model for the structural,
functional, and deontic specification of organizations in multiagent
systems,” in Advances in Artificial Intelligence, Proceedings of the 16th
Brazilian Symposium on Artificial Intelligence, ser. LNCS, G. Bitten-
court and G. Ramalho, Eds., vol. 2507. Springer, 2002, pp. 118–128.

[10] ——, “MOISE+: towards a structural, functional, and deontic model for
MAS organization,” in Proc. of the First Intl. Joint Conf. on Autonomous
Agents and Multiagent Systems. New York: ACM, 2002, pp. 501–502.

[11] J. F. Hübner, O. Boissier, and J. S. Sichman, “Programming MAS
reorganisation with MOISE+,” in Foundations and Practice of Pro-
gramming Multi-Agent Systems, ser. Dagstuhl Seminars Proc., J. Meyer,
M. Dastani, and R. Bordini, Eds., no. 06261. IFBI, 2006.

[12] J. F. Hübner, J. S. Sichman, and O. Boissier, “Developing organised
multi-agent systems using the MOISE+ model: programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3/4, pp. 370–395, 2007.

[13] J. F. Hübner, R. H. Bordini, and G. Picard, “Jason and MOISE+:
Organisational programming in the agent contest 2008,” in Dagstuhl
Seminar on Programming Multi-Agent Systems, ser. Dagstuhl Seminars
Proc., R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
Eds., no. 08361, 2008.

[14] J. F. Hübner, “Moise+ framework and ora4mas,” in Proceedings of
Lorentz Workshop on Rich Cognitive Models for Policy Design and
Simulation, W. Jager, C. Jonker, and V. Dignum, Eds., Leiden, 2009.

[15] J. F. Hübner, O. Boissier, and J. S. Sichman, “Using jason and MOISE+
to develop a team of cowboys,” in Programming Multi-Agent Systems,
ser. LNAI, J. Meyer, M. Dastani, and R. Bordini, Eds. Berlin: Springer,
2006, no. 5442, pp. 238–242.

[16] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettatinho, “MOISE:
An organizational model for multi-agent systems,” in Proc. of Intl. Joint
Conferences, 7th. Ibero-American Conf. on Artificial Intelligence (IB-
ERAMIA’00) and 15th. Braz. Symp. on Artificial Intelligence (SBIA’00),
ser. LNAI, vol. 1952. Berlin: Springer, 2000, pp. 152–161.

[17] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat, “Moise: An
organizational model for multi-agent systems,” in Proceedings of the
International Joint Conference, 7th Ibero-American Conference on AI,
15th Brazilian Symposium on AI, IBERAMIA/SBIA 2000, ser. LNAI,
M. C. Monard and J. S. Sichman, Eds. Berlin: Springer, 2000, no.
1952, pp. 152–161.

[18] V. Dignum, Ed., Handbook of Research on Multi-Agent Systems: Se-
mantics and Dynamics of Organizational Models. Hershey: IGI Global,
2009.

[19] C. Lemaytre and C. B. Excelente, “Multi-agent organization approach,”
in Proceedings of II Iberoamerican Workshop on DAI and MAS, F. J.
Garijo and C. Lemaytre, Eds., Toledo, 1998.

[20] J. F. Hübner, J. S. Sichman, , and O. Boissier, “Developing organised
multi-agent systems using the moise+ model: Programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3-4, pp. 370–395, 2007.

[21] M. Esteva, D. de la Cruz, and C. Sierra, “ISLANDER: An electronic
institutions editor,” in Proc. First international joint conference on
autonomous agents and multiAgent systems, AAMAS 2002, ser. LNAI,
C. Castelfranchi and W. L. Johnson, Eds. Berlin: Springer, 2002, no.
1191, pp. 1045–1052.

[22] M. Esteva, Rodrı́guez-Aguilar, J. A., B. Rosell, and J. L. Arcos,
“AMELI: An agent-based middleware for electronic institutions,” in
Proc. Third international joint conference on autonomous agents and
multi-agent systems, AAMAS 2004, N. R. Jennings, C. Sierra, L. Sonen-
berg, and M. Tambe, Eds. New York: ACM, 2004, pp. 236–243.

[23] J. F. Hübner, J. S. Sichman, and O. Boissier, “S-MOISE+: A middle-
ware for developing organised multi-agent systems,” in Coordination,
organizations, institutions, and norms in multi-agent systems, ser. LNAI,
O. Boissier, V. Dignum, E. Matson, and J. S. Sichman, Eds. Berlin:
Springer, 2006, no. 3913, pp. 64–78.

[24] M. Wooldridge, N. R. Jennings, and D. Kinny, “The gaia methodology
for agent-oriented analysis and design,” Autonomous Agents and Multi-
Agent Systems, vol. 3, no. 3, pp. 285–312, 2000.

[25] L. Cernuzzi and F. Zambonelli, “Dealing with adaptive multi-agent
organizations in the gaia methodology,” in Proceedings of AOSE 2005,
2005, pp. 217–228.

[26] V. Dignum, “A model for organizational interaction: based on agents,
founded in logic,” Ph.D. dissertation, University of Utrecht, Utrecht,
2003.

[27] Foundation for Intelligent Physical Agents, FIPA 97 Specification Part
2: Agent Communication Language, Oct. 1997, version 2.0. [Online].
Available: http://www.fipa.org/spec/f8a22.zip

26

From Signed Information to Belief
in Multi-Agent Systems

Laurent Perrussel
IRIT – Universit́e de Toulouse

laurent.perrussel@irit.fr

Emiliano Lorini
IRIT – Universit́e de Toulouse

emiliano.lorini@irit.fr

Jean-Marc Th́evenin
IRIT – Universit́e de Toulouse

jean-marc.thevenin@irit.fr

Abstract—The aim of this paper is to propose a logical
framework for reasoning about signed information. That is, as
long as agents receive information in a multi-agent system, they
keep track of the information source. The main advantage is
that by considering a reliability relation over the sources of
information, agents can justify their own current belief state.
Agents believe at first information issued from the most reliable
sources. Keeping track of belief’s origin also enables agents to
improve communication by asking and gaining details about
exchanged information. This is a key issue in trust handling
and improvement: an agent believes some statement because it
may justify the statement’s origin and its reliability.

I. I NTRODUCTION

An agent embedded in a multi-agent system gets informa-
tion from multiple origins; it captures information from its
own sensors or, through some communication channels it may
receive messages issued by other agents. Based on this set
of basic information the agent then defines its beliefs and
performs actions [1]. As long as it gets information, the agent
has to decide what it should believe and also which beliefs are
dropped [2], [3]. In order to decide which beliefs should hold,
the agent needs some criteria. A common criterion consists of
handling a reliability relation on its beliefs w.r.t. their origins
[4], [5]. According to its opinion about the reliability of the
information source, the agent decides to adopt or not the
received piece of information. By keeping track of information
and its origin, agents can justify their beliefs: agenta believes
ϕ because agentb has providedϕ and b is reliable [6]. This
explicit representation helps agents to enrich their dialogs: they
cannot only provide information but they may also mention
the third party at the origin of information. Let us consider
again agenta and information provided byb: a may then
ask b the underlying source ofϕ anda may then ask to this
source. Hence, this issue is a key one for trust characterization:
keeping track of agents involved in information broadcasting
enables agents to evaluate, from their own point of view,
whether they are all reliable, i.e. believable [7].

The aim of this paper is to propose a modal framework
for representing agent’s belief state and its dynamics by
considering signed information, that is information associated
to its source. If many work has been made in order to show
how an agent can merge information issued from multiple
origins [8], [9], very few work has focused on the explicit
representation of the origins of information [10], [6] in the
context of BDI-based systems with communication actions.

But we advocate that this explicit representation is necessary
since it represents the underlying rationale of agents’ beliefs.

The dynamics is usually described in terms of performative
actions based on KQML performatives [11] or speech acts
[12], [13]. Hereafter, we propose to considertell actions as
private announcements from an agent (the sender of the mes-
sage) to another agent (the receiver of the message). Private
announcements enable to stress up how agents “restrict” their
belief state as they receive information. More precisely, they
shrink the space of information with their origins and then
according to that space, they build up their beliefs.

The paper is structured as follows: In section II, we present
the intuitive meaning of signed information and belief state.
Next in section III, we present the technical details of the
modal logic framework. In section IV, we then represent an
intuitive and common policy for relating signed information
and belief which consists in the adoption as belief of all
consistent information. Next, in section V, we extend the
logical system with actions of the form “agenta tells to agent
b that a certain factp is true”. We conclude the paper in
section VI by summing up the contribution and considering
some open issues.

II. SETTING THE FRAMEWORK

Handling the source of information leads to the notion of
signed statement, that is some statement is true according to
some source. From a semantics perspective, we want to be
able to represent, w.r.t. some initial state of affairs, for each
agent, what are the possible states that can be signed by each
source. Agents build their own belief state using information
signed by each source and the reliability of the source.

Example 1 Suppose a car accident involving three cars which
are blue (bc), red (rc) and yellow (yc). Now suppose a police
detective who is interviewing the witnesses of the accident.
Let po be the police detective. The first witnessw1 tells to the
police detective that the blue car is responsible of the accident
while the second one (w2) states that the red car has caused
the collision. Both of them tell to the police detective thatyc is
not responsible of the accident. In that context of information
gathering, the police detective does not need to assume that the
witnesses tell the truth or believe in information they provide.
The police detective just needs to assume thatw1 provides
or signs informationbc ∧ ¬rc ∧ ¬yc and w2 provides or

27

signs information¬bc∧ rc∧¬yc. Next, based on these pieces
of information, the police detective will build his opinion,
i.e. his belief about the accident. The police detective faces
contradicting information about the blue and red cars, but
because the witnesses both agree about the yellow one, the
police detective should believe that the yellow car is not the
responsible of the collision. That is, the detective is willing to
root his belief upon the set of signed statements he handles.

A. Representing signed statements

Signed statements can be represented through Kripke mod-
els using one accessibility relation per source of information.
Let Sign(b, p) be a modal operator stating that statementp is
true according to sourceb. Sign(b, p) is true in statew if p
holds in all states reachable fromw through a relation denoted
Sb describing the possible information states issued fromb.

Example 2 Let us consider the initial example. Informa-
tion which might be signed by the two witnesses arebc
and rc which leads to the signed statementsSign(w1, bc),
Sign(w1, rc), Sign(w1, bc ∧ rc),... With respect to our exam-
ple, hereafter we will focus on the two signed statements
Sign(w1, bc ∧ ¬rc ∧ ¬yc) and Sign(w2,¬bc ∧ rc ∧ ¬yc).

B. Interpreting signed statements

The aim is to represent formulas such asBel(a, Sign(b, ϕ0))
or, in a more general wayBel(a, ϕ0), which respectively stands
for agenta believes that agentb signsϕ0 and agenta believes
ϕ0. As for signatures, we use an accessibility relation denoted
Ba to represent the possible belief states of agenta.

We assume that signed statements represent the rationales
for beliefs. That is, if agenta believesϕ0 it is because some
signed statementSign(b, ϕ0) holds in every possible belief
state of agenta and agenta is willing to commit to this
signed statement. Leta, b and c be three agents andp be
a propositional symbol; Figure 1 illustrates the possible belief
states of agenta w.r.t. some initial statew0 using accessibility
relation Ba (if p holds in a state,p is mentioned between
brackets). Agenta considers two possible belief states,w1 and
w2. In statew1, the two possible states given bySb containp
which entails thatp is signed byb. On the other hand, the two
possible states given bySc containp and¬p: no information
can be signed by agentc. In all states related tow2 with Sb and
Sc, p is true. From this figure we can conclude that in statew0

w0

(p)

(p)

(p)

(p)

w1

w2

w11

w13

w22

w21

Ba

Ba

Sb

Sb, Sc

Sb

Sb, Sc

Sb

Sc

w3

w12

(p)

(p)

...

...

...

...

...

Sc

Fig. 1: Relating belief state and signatures

agenta believes thatp is signed byb that isBel(a, Sign(b, p))
while it does not believe thatp or ¬p is signed byc. Since
p is signed byb and agentc says nothing aboutp, agenta
should believep: Bel(a, p). Hence, it follows that in order to
prevent adoption of inconsistent statements, hereafter we will
assume that signed statements are always consistent (and thus
relationSa is serial).

Notice that the way we consider the link between beliefs
and signed statements differs from the way this link is defined
in [6]. That is, signed states are considered from each belief
state while C. Liau [6] considers informational states and
belief states in an independent way. This is due to the fact
that informational states in [6] reflect communication actions
while our notion of signed statement is more considered as an
epistemic notion.

Example 3 Let us pursue our motivating example. As men-
tioned, we assume that the detective is willing to adopt as be-
lief statements signed by the witnesses:Bel(po, Sign(w1, bc ∧
¬rc∧¬yc)) andBel(po, Sign(w2,¬bc∧rc∧¬yc)). Since both
witnesses agree on¬yc, agentpo also adopts as belief¬yc.
Meanwhile, he cannot set his belief about the two other cars
sincepo faces contradicting signed statements.

C. Preferences over information sources

In order to know how to handle mutually inconsistent
signed statements, agents consider extra information stating
which signed statement they prefer. Agents may determine
themselves their preferences by considering the sources of
information [4], [9], temporal aspects or the topics of the
statements [14].

w0

(p)

(p)

(p)

(p)

w1

w2

w11

w13

w22

w21

Ba

Ba

Sb

Sb

Sb

Sb

Sb

Sc

w3

w12

(p)

(p)

...

...

...

...

...

b < c Sc

b < c

Sc Sc

...
...

w24 w23

Fig. 2: Contradicting signed statements

In this paper, for the sake of conciseness and following nu-
merous contributions such as [5], we propose to consider extra
information about the reliability of sources of information as
illustrated by Figure 2. That is, we assume that the agents
consider information about only one topic. Consequently,
handling competencies or different kinds of reliability (such
as suggested in [15]) is out of the scope of the paper.

That is, if agenta believes thatb is more reliable thanc,
then agenta adopts statementp as a belief even if agentc
has signed¬p. Suppose that reliability is represented with the

28

help of a pre-order relation6 (or <): a 6 b stands fora is at
least as reliable asb. In semi formal terms, we get that:

Bel(a, (Sign(b, p) ∧ Sign(c,¬p) ∧ b < c)) ⇒ Bel(a, p)

It follows that in each state, we do not only consider the value
of propositional symbols but also a pre-order relation which
characterizes a reliability order over information sources. Us-
ing extra-information on reliability and by considering signed
statements rather than statements, the problem of belief change
[2] is almost rephrased in terms close to the ones used in
belief merging [16], [17]. Reliability order over sources of
information enables us to stratify signed information and then
by merging this stratified information in a consistent way the
agents get “justified” beliefs [18].

Example 4 Let us go on with our motivating example. Sup-
pose agentpo considers that the first witness is at least as
reliable as the second one and he is himself willing to adopt
as belief the signed statements issued by the two witnesses,
i.e. we have the following belief:

Bel(po, w1 6 w2 6 po)

Hence, according to the previous semi formal axiom schema
previously given, the police detective should believe that
the blue car (bc) has caused the accident. Notice that the
willingness attitude is translated in terms of preferences:po
has no opinion and considers as more important information
provided byw1 and w2.

D. Representing tell statements

Dynamics is viewed as restriction on agents’ belief states.
We interpret thetell performative as a private announcement
[19] rather than with help of actions and transitions between
states. A private announcement consists of an information
flow from one agent to a second one with a propositional
statement as content. Figure 3 illustrates how agenta’s belief
state changes after agentc tells p. According to this example,
after the performativeTell(c, a, p), agenta has restricted its
possible belief states to the states in whichc signsp. In the
initial situation (the left part of the figure), atw0, agenta
believesSign(b, p), does not believeSign(c, p) and does not
believep (sincep does not hold inw2). After receiving agent
c’s message (right part of the figure), states wherep is not
signed byc are no longer possible states for agenta and
thus, atw0, agenta believesSign(b, p), Sign(c, p) and finally
also believesp. That is, the performativeTell(c, a, p) (agent
c tells to agenta that p is true) is responsible for updating
a’s beliefs in such a way thata believes thatc signs p. In
other words, private announcements stress up the information
gathering aspect: possible worlds accessible through relation
Ba represent the ignorance of agentBa and by shrinking
this set of possible believable worlds, we represent how agent
a gains information. Let us stress that this way of handling
the dynamics entails as a drawback that agent’s belief cannot
always be consistent: updating a model might lead to a model
where seriality cannot be guaranteed.

te l l (c ,a ,p)

w 0

(p)

(p)

(p)

(p)

w 1

w 2

w 1 1

w 1 2

w 2 2

w 2 1

B a

B a

S b

S b S c

S c

S b S c

S b

S c

w 3

w 0

(p)

(p)

(p)

(p)

w 1

w 2

w 1 1

w 1 2

w 2 2

w 2 1

B a

S b

S b S c

S c

S b S c

S c

S b

w 3

Fig. 3: Agentc tells p to agenta

Example 5 In the context of our motivating example, the
dynamics is represented by the sequence of interviews. For
instance, agentpo interviews at firstw1, action represented
by Tell(w1, po, bc ∧ ¬rc ∧ ¬yc) and then interviews the
second witness (Tell(w2, po,¬bc∧rc∧¬yc)). After these two
announcements, the detective believes:Bel(po, Sign(w1, bc ∧
¬rc ∧ ¬yc)) and Bel(po, Sign(¬bc ∧ rc ∧ ¬yc)).

III. F ORMAL FRAMEWORK

The proposed language for reasoning about signatures,
beliefs and preferences is a restricted first order language
which enables quantification over agent ids. In this section,
we focus on these three notions,tell actions will be introduced
later. Quantification allows agents to reason about anonymous
signatures. For the sake of conciseness, we restrict signed
statements to propositional statements. LetL0 be the proposi-
tional language built over a set of propositional symbolsP and
L be the logical language. LanguageL is based on doxastic
logic. Modal operatorBel represents beliefs:Bel(a, ϕ) means
agenta believesL-formulaϕ. Modal operatorSign represents
signed statements:Sign(t, ϕ0) means t (an agent id or a
variable of the agent sort) signs propositional statementϕ0.
In order to represent agent’s opinion about reliability, we
introduce the notationa 6 b which stands for: agenta is
said to be at least as reliable asb.

Definition 1 (Syntax of L) Let P be a finite set of proposi-
tional symbols. LetA be a finite set of agent ids. LetV be a
set of variables s.t.A ∩ V = ∅. Let T = A ∪ V be the set of
agent terms. The set of formulas of the languageL is defined
by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Sign(t, ϕ0) | Bel(a, ϕ) | ∀xϕ | t 6 t′

wherep ∈ P , t ∈ T , ϕ0 ∈ L0, a ∈ A and x ∈ V .

Writing a < b stands fora is strictly more reliable thanb:
a 6 b ∧ ¬(b 6 a). Writing a ∼ b means thata and b are
equally reliable. Operators→ and ∃ are used according to
their usual meaning.

A. Semantics

The semantics ofL-formulas is defined in terms of possi-
ble states and relations between states [20]. Those relations
respectively represent the notion of signatures and beliefs. In

29

each state, propositional symbols are interpreted and total pre-
orders representing agents’ reliability are set.

Definition 2 (Model) Let M be a model defined as a tuple:

〈W,
⋃

i∈A

Si,
⋃

i∈A

Bi, I,�〉

where W is a set of possible states.Si ∈ W × W is an
accessibility relation representing signatures,Bi ∈ W ×W is
an accessibility relation representing beliefs.I is an interpre-
tation function of the propositional symbols w.r.t. each possible
state,I : W × P 7→ {0, 1}. � is a function which represents
total pre-orders; these pre-orders are specific to each state,
that is�: W 7→ 2A×A.

A variable assignment is a functionv which maps every
variablex to an agent id. At-alternativev′ of v is a variable
assignment similar tov for every variable exceptt. For t ∈ T ,
[[t]]v belongs toA and refers to the assignment of agent terms
w.r.t. variable assignmentv, such that:

if t ∈ A then [[t]]v = t if t ∈ V then [[t]]v = v(t)

We define the satisfaction relation|= with respect to some
modelM , statew and variable assignmentv as follows.

Definition 3 (|=) Let M be a model andv be a variable
assignment:v : V → A. M satisfies anL-formula ϕ w.r.t.
a variable assignmentv and a statew, according to the
following rules:

• M, v,w |= t 6 t′ iff ([[t]]v, [[t′]]v) ∈�(w).
• M, v,w |= p iff p ∈ P and I(w, p) = 1.
• M, v,w |= Sign(t, ϕ0) iff M, v,w′ |= ϕ0 for all w′ s.t.

(w,w′) ∈ S[[t]]v

• M, v,w |= Bel(a, ϕ) iff M, v,w′ |= ϕ for all w′ s.t.
(w,w′) ∈ Ba

• M, v,w |= ∀tϕ iff for every t-alternativev′, M, v′, w |=
ϕ.

We write |= ϕ iff for all M , w andv, we haveM, v,w |= ϕ.
The semantics for operators¬, →, ∨, ∧ and ∃ is defined
in the standard way. Let us now detail the constraints that
should operate on the model. We only require that signature
has to be consistent which entails that all relationsSi have
to be serial. Belief operator is aK45 operator and thus all
Bi are transitive and euclidian. Interwoven relations between
signatures and beliefs are detailed in the next section.

1) Constraining the Reliability Relations:We assume that
every agent holds belief about reliability without any un-
certainty. That is, agent’s beliefs about reliability can be
represented as a total pre-order. However, it does not mean
that we consider a fixed notion of reliability: we propose to
handle multiple pre-orders by indexing reliability with worlds.
That is, in each possible world or believable world, an agent
considers how it ranks the agents. In that context, each rank is
considered as a possible rank and thus it is natural that each of
them should be total. However, we enforce a stronger notion

(KS) Sign(a, ϕ0 → ψ0) → (Sign(a, ϕ0) → Sign(a, ψ0))

(DS) Sign(a, ϕ0) → ¬Sign(a,¬ϕ0)

(KB) Bel(a, ϕ → ψ) → (Bel(a, ϕ) → Bel(a, ψ))

(4B) Bel(a, ϕ) → Bel(a, Bel(a, ϕ))

(5B) ¬Bel(a, ϕ) → Bel(a,¬Bel(a, ϕ))

(R6) t 6 t

(Tr6) t 6 t′ ∧ t′ 6 t′′ → t 6 t′′

(T6) t 6 t′ ∨ t′ 6 t

(To6) Bel(a, t 6 t′) ∨ Bel(a, t′ 6 t)

(MP) From ϕ andϕ → ψ infer ψ

(G) From ϕ infer ∀tϕ

(NS) From ϕ0 infer Sign(t, ϕ0)

(NB) From ϕ infer Bel(a, ϕ)

TABLE I: Logic L axioms and inference rules

of totality which states that the aggregation of all believable
ranks over agents (which are total) leads to a total preorder.
This will then help the agent to integrate all signed statements.
In other words, we require that the integration (or merging)
of signed statements should be based on an underlying total
preorder over statements (as it is commonly assumed in the
belief revision and merging areas—see [2], [21], [17]). In
terms of constraints on states and relations between them, it
means that:

1) for all statesw, t �(w) t′ or t′ �(w) t and,
2) supposewBiw

′ and t � (w′) t′, then for all statesw′′

s.t. wBiw
′′, t �(w′′) t′.

The first constraint enforces that pre-orders are total in all
states; the second constraint expresses that totality should hold
in all belief states. Moreover, preorder definition entails that
reflexivity and transitivity hold.

B. Axiomatics

Let us now translate these constraints in terms of proof
theory. Axiomatization of logicL includes all tautologies of
propositional calculus. Table I details the axioms and inference
rules describing the behavior of belief, signed statement and
reliability. Notice axiom schema(To6) which reflects that re-
liability relations have to be believed as total. Let` denotes the
proof relation. We conclude by giving results about soundness
and completeness.

Theorem 1 Logical systemL is sound and complete1.

IV. L INKING SIGNATURES AND BELIEFS

There are multiple ways to switch from information to
beliefs. These different ways may follow principles issued
from the belief merging principle [16], [17], [5] or epistemic
attitudes such as trust [7], [6]. As previously mentioned,
we do not require that an agent has to believe that others

1In this paper all proofs have been skipped; however a longer version of the
paper with all proofs is downloadable at the URL http://www.irit.fr/∼Laurent.
Perrussel/lads2010-long.pdf.

30

believe in information they provide. This is a key issue when
information is propagated from one agent to another. At some
stage, an agent may just broadcast some information without
committing to that information in terms of belief.

A common and rational way to proceed is to consider as
belief all non mutually inconsistent signed statements. All
signed statements are considered in an incremental way, that
is “ from the most reliable to the less reliable statements”.
To describe the signed statements adoption stage, we first
characterize agents which are equally reliable. Agents can be
ranked since we always consider a total preorder; agents which
are equally can be gathered in a same group. Each group can
then be ranked. Let us at first characterize the most reliable
set of agents; this set is denoted asC1:

a ∈ C1 =def ∀t(a 6 t)

The formula characterizing members ofC1 can then be used
for characterizing membership to a setCi such thati > 1.

a ∈ Ci =def (¬(a ∈ Ci−1) ∧ ∀t¬(t ∈ Ci−1)) → (a 6 t)

Hence, all agents belonging to a setCi are equally reliable and
for all a ∈ Ci, b ∈ Cj if i <N j thena 6 b. Next, the following
definition stands for each agenttk belonging to some specific
setCi believes statementϕk

0 :
∧

tk∈Ci

Sign(tk, φk
0) =def

∧

tk∈A

(tk ∈ Ci) → Sign(tk, φk
0)

Using these shortcuts, we can now describe the merging
process. The following axiom states that if a propositional
statementϕ0 is believed by agenta if the conjunction of the
statements signed by the agents belonging to the same setCi

entailsϕ0 is believed by agenta (line 1), if statement¬ϕ0 is
not already believed bya(line 2) and¬ϕ0 cannot be entailed
with the help of statements signed by agents which are at least
as reliable as agents belonging toCi (line 3).

(Bel(a,
∧

tk∈Ci

Sign(tk, ϕk
0)) ∧ Bel(a,

∧
ϕk

0 → ϕ0)∧

¬Bel(a,¬ϕ0)∧

(
∧

0<j<i

¬Bel(a,
∧

tl∈Cj

Sign(tl, ϕl
0) ∧

∧
ϕl

0 → ¬ϕ0)))

→ Bel(a, ϕ0) (IB)

In terms of semantics, it means that, w.r.t. some initial state
w0, all belief states are related to some signed states. Hence, it
requires to consider the state’s interpretation, that is to express
the relation by using worlds, i.e. a state and its associated
interpretation. We represent a world as a set of propositional
symbols, symbols that hold in the associated state. Letw be
a state and[w] the associated world:

[w] = {p|I(w, p) = 1}

In a more general way, ifW is a set of states, then[W] denotes
the set of associated worlds. At first, from the belief states,
we rank agent ids based on reliability relations believed by the

agent. Suppose an agenta and a worldw0; using relationBa,
we extract the total preorder representing reliability relation
believed by agenta at w0. Notice that the constraints shown
section III-A1 ensures that this preorder is total and thus agents
ids could be ranked for building a partition of set of agents.
Let C be a partition ofA such that in every setCi of C, all
agents are equally reliable and for alla ∈ Ci, b ∈ Cj if i <N j
then a ≺ b. Second, from each setCi, we consider common
information, that is statements that are signed by every agents
belonging toCi. Let [Ci]w0 be the set of worlds commonly
signed by all agents belonging toCi and related tow0:

[Ci]
w0 =

⋂

a∈Ci

{[w] | (w0, w) ∈ Sa}

Next all sets of worlds[Ci]w0 are merged in a consistent
way, the resulting set of worlds is denoted asreliable worlds.
By consistent way, we mean an incremental process which
considers as reliable worlds at first the whole set of possible
worlds [W]. Next for each partCi, the set of reliable worlds
is intersected with[Ci]w0 only if it does not lead to an empty
set, i.e. an inconsistent result.

Definition 4 (Reliable worlds) Let M be a model andw0 a
state such thatw0 ∈ W . The set of reliable worldsΩw0 is
defined in an incremental way such that:

• Ω0 = [W]
• Ωi = Ωi−1 ∩ [Ci]w0 if Ωi−1 ∩ [Ci]w0 6= ∅ and i > 0
• Ωi = Ωi−1 if Ωi−1 ∩ [Ci]w0 = ∅ and i > 0

The resulting setΩw0 is equal toΩk such thatk = |C|.

Since the sets of worlds and agents are finite, we do not
have to consider the infinite case. Reliable worlds represent
information that should be actually believed. Let us consider
agenta and an initial worldw0; from w0, we extract the belief
states, and from these belief states, the set of reliable worlds.
Beliefs of agenta are rational if all its believed worlds are
included in its set of reliable worlds:

⋃

(w0,w)∈Ba

[w] ⊆
⋂

(w0,w)∈Ba

Ωw (IB)

The following theorem relates formula (IB) and constraint
(IB). Let `IB denotes proof relation of theL-sytem augmented
with axiom schema (IB) and |=IB be the satisfaction relation
where for all models, constraint (IB) holds.

Theorem 2 `IB ϕ iff |=IB ϕ

V. ACQUIRING INFORMATION

In the previous section, we have detailed a policy for build-
ing belief based on signed information. This policy considers
belief and signed information from a static point of view. Let
us now consider a more dynamic view by introducing actions
of the form “agenta tells to agentb that a certain factϕ0

is true” (alias tell actions). This kind of action ensures that
agentb will believes that agenta signsp, that is, atell action is
responsible for updating an agent’s beliefs about other agents’

31

signatures and, consequently, for the agent’s acquisition of
new information and for updating the agent’s beliefs about
objective facts. We note tell actions byTell(a, b, ϕ0). Let
LT be the extended language which embedstell statements.

Definition 5 (Syntax of LT) The set of formulas of the lan-
guageLT is defined by the following BNF:

ϕ ::=p | ¬ϕ | ϕ ∧ ϕ′ | Sign(t, ϕ0) | Bel(a, ϕ) |

∀xϕ | t 6 t′ | [Tell(a, b, ϕ0)]ϕ

wherep ∈ P , t ∈ T , ϕ0 ∈ L0, a ∈ A and x ∈ V .

In other terms,LT just extendsL with dynamic oper-
ators [Tell(a, b, ϕ0)]. The intuitive meaning of statement
[Tell(a, b, ϕ0)]ϕ is aftera tells ϕ0 to b, ϕ holds.

The truth conditions are those given above for the formulas
p, ¬ϕ, ϕ ∧ ϕ′, Sign(t, ϕ0), Bel(a, ϕ), ∀xϕ, t 6 t′ and
[Tell(a, b, ϕ0)]ϕ. The truth condition for[Tell(a, b, ϕ0)]ϕ is
defined in a way which is closed to the semantics of dynamic
epistemic logic [19]. More precisely, after agenta tells to agent
b information ϕ0, agentb removes from its belief state all
states in which agenta does not signϕ0. Therefore, after
agenta tells to agentb informationϕ0, agentb believes that
agenta signs ϕ0. In our framework, a tell action of agent
a (the sender) towards agentb (the receiver) thatϕ0 is true
is considered as aprivate announcementin the sense of [22],
that is, after agenta tells to agentb informationϕ0, only agent
b’s belief state should change whereas the belief states of the
other agents are not changed. In other words, atell action
Tell(a, b, ϕ0) characterizes aprivate communicationfrom a
sender to a specific receiver of the sender’s message, where
the content of the speaker’s message is nothing else than the
content of the speaker’s signature (i.e.Sign(t, ϕ0)).

Definition 6 (Announcement Semantics)Let M =
〈W,

⋃
i∈A Si,

⋃
i∈A Bi, I,�〉 be a model and letw be

a state inW . We have:

• M, v,w |= [Tell(a, b, ϕ0)]ϕ iff M |〈a,b,ϕ0〉, v, w1 |= ϕ.

M |〈a,b,ϕ0〉 = 〈W ∗,
⋃

i∈A S∗
i ,
⋃

i∈A B∗
i , I∗,�∗〉 is defined as

follows:

• W ∗ = {w1|w ∈ W} ∪ {w2|w ∈ W};
• B∗

b =
{(w1, w

′
1)|(w,w′) ∈ Bb and M, v,w′ |= Sign(a, ϕ0)} ∪

{(w2, w
′
2)|(w,w′) ∈ Bb};

• B∗
i = {(w1, w

′
2)|(w,w′) ∈ Bi}∪

{(w2, w
′
2)|(w,w′) ∈ Bi} for all i ∈ A such thati 6= b;

• S∗
i = {(w1, w

′
2)|(w,w′) ∈ Si}∪

{(w2, w
′
2)|(w,w′) ∈ Si} for all i ∈ A;

• �∗ (w1) =�∗ (w2) =�(w) for all w ∈ W ;
• I∗(w1, p) = I∗(w2, p) = I(w, p) for all w ∈ W .

Basically, the effect ofa’s action of telling tob that ϕ0 is
to shrink the set of belief accessible states forb to the states
in which a signsϕ0, while keeping constant the set of belief
accessible states for all other agents. Note thata’s action of

(TAP) [Tell(a, b, ϕ0)]p ↔ p

(TN) [Tell(a, b, ϕ0)]¬ϕ ↔ ¬[Tell(a, b, ϕ0)]ϕ

(TC) [Tell(a, b, ϕ0)](ϕ ∧ ϕ′) ↔

([Tell(a, b, ϕ0)]ϕ ∧ [Tell(a, b, ϕ0)]ϕ′)

(TB) [Tell(a, b, ϕ0)]Bel(b, ϕ) ↔

Bel(b, (Sign(a, ϕ0) → [Tell(a, b, ϕ0)]ϕ))

(TB 6=) [Tell(a, b, ϕ0)]Bel(i, ϕ) ↔ Bel(i, ϕ) if i 6= b

(TS) [Tell(a, b, ϕ0)]Sign(t, ϕ′
0) ↔ Sign(t, ϕ′

0)

(T≤) [Tell(a, b, ϕ0)](t ≤ t′) ↔ (t ≤ t′)

(T∀) [Tell(a, b, ϕ0)]∀xϕ ↔ ∀x[Tell(a, b, ϕ0)]ϕ

TABLE II: Logic LT axioms and inference rules

telling to b that ϕ0 also keeps constant agents’ signatures and
the reliability order over agents.

Theorem 3 If M is a L-model thenM |〈a,b,ϕ0〉 is also aL-
model.

Theorem 4 If M is a L-model in which constraintIB holds
thenM |〈a,b,ϕ0〉 is also aL-model in which constraintIB holds.

Let us now focus on the axiomatics of the logicLT . Table II
details the reduction axioms describing the behavior of the
operator[Tell(a, b, ϕ0)]. (TAP) denotes the atomic perma-
nence,(TN) denotes negation handling, and(TC) denotes
conjunction handling.(TB) describes the interplay between
a tell action and the beliefs of the message receiver.(TB6=)
describes the interplay between atell action and the beliefs of
all agents different from the message receiver. In particular,
(TB 6=) highlights the permanence of the beliefs of all agents
different from the message receiver.(TS) describes signature
permanence,(T≤) describes preferences permanence, and
(T∀) describes the interplay betweentell action and quantifi-
cation over variable assignments.

Theorem 5 The schemata in table II are valid.

We then state the theorem about completeness of the logicLT .

Theorem 6 The logicLT is completely axiomatized by prin-
ciples of the logicL together with the schemata in Table II
and the rule of replacement of proved equivalence.

We write `T to denote the proof relation for the logicLT

determined by the principles of the logicL, the schemata in
table II and the rule of replacement of proved equivalence.

For instance, the following theorem of the logicLT captures
the essential aspect of thetell action. It says that, after agent
a tells to agentb informationϕ0, agentb believes that agent
a signsϕ0:

`T [Tell(a, b, ϕ0)]Bel(b, Sign(a, ϕ0))

Once agentb starts to believe that agenta signsϕ0 (as an effect
of a’s act of telling tob that ϕ0), agentb might also start to

32

believe thatϕ0. As we have shown above, this depends on the
reliability of agenta according to agentb and on principles
linking signatures with beliefs such as principle (IB).

Example 6 Let us go back to our initial example and let us
represent in the system̀T , how agentpo concludes that the
blue car has caused the collision. At first, assume that(IB).
Second, assume the following preferences:Bel(po, w1 6 w2).
Then it follows that after the two announcements (we focus on
the blue car), preferences are unchanged:

`T [Tell(w1, po, bc)][Tell(w2, po,¬bc)]Bel(po, w1 6 w2)

And the detective believes the received information

`T [Tell(w1, po, bc)][Tell(w2, po, bc)]

Bel(po, Sign(w1, bc) ∧ Sign(w2,¬bc))

Finally, axiom(IB) entails that

`T [Tell(w1, po,¬bc∧rc)][Tell(w1, po, bc∧¬rc)]Bel(po, bc)

VI. CONCLUSION

In this paper we have shown how information and its
source can be processed by an agent so that at first, it just
acquires information from sensors or other agents and second,
it builds its belief state by considering signed information. By
splitting information and belief, an agent is able to handle
clear rationales to construct its belief state both from a
static and dynamic perspectives. From a static perspective we
have applied our formal framework to characterize a possible
attitude for agents in the process of building their belief
state from the basic signed information they hold. From this
perspective this work is close to what has been done in belief
merging [16], [17], [5]. The key difference with existing work
in the belief merging area is the introduction of merging in
a modal based framework at first (this is also a common
characteristic with [5]); second a clear distinction between
belief and signed statement and third a dynamic view on
belief construction. These last two characteristics differ in
two ways from existing work [16], [17], [5]: (i) it is usually
assumed that belief and information are almost similar; we
have shown that we do not have to assume this hypothesis;
(ii) beliefs are almost not viewed as a primitive concepts but
rather as the result of some information processing which gives
a flexible framework (e.g. axiomIB). Our work is also related
to the work of [23] in which agents’ mental attitudes and
agent’s ostensible (expressed) attitudes are distinguished and a
formalism capturing this distinction is proposed. In particular,
our notion of signed information is close to the notion of
ostensible belief of Nickles et al. However, Nickles et al.
do not consider reliability of information sources. Moreover,
their approach does not deal with dynamics of information by
means of communicative actions. The latter is a central aspect
of our proposal (see Section V).

Concerning the dynamic perspective we have shown how
the basic signed information held by an agent may change as
it receives tell statements from another agent processed in a

similar way to private announcements in the sense of dynamic
epistemic logic (DEL) [19], [22].

Our short term goal is to consider more sophisticated ways
to set the reliability relations. That is, our aim is to consider
agent skills [15] so that agent can consider multiple reliability
relations at the same time. At this time, even if agent can
consider multiple alternative reliability relations, they cannot
mixed them. Our goal is to avoid this limit.

REFERENCES

[1] A. Rao and M. Georgeff, “Modeling rational agents within a bdi-
architecture,” inProc. of KR’91, 1991, pp. 473–484.

[2] P. Gärdenfors,Knowledge in flux: Modeling the Dynamics of Epistemic
States. MIT Press, 1988.

[3] A. Herzig and D. Longin, “Belief dynamics in cooperative dialogues,”
J. of Semantics, vol. 17, no. 2, 2000, vol. published in 2001.

[4] A. Dragoni and P. Giorgini, “Revising beliefs received from multiple
sources,” inFrontiers of Belief Revision, Applied Logic. Kluwer, 1999.

[5] L. Cholvy, “A modal logic for reasoning with contradictory beliefs which
takes into account the number and the reliability of the sources,” inProc
of ECSQARU’05, ser. LNCS, vol. 3571. Springer, 2005, pp. 390–401.

[6] C. Liau, “Belief, information acquisition, and trust in multi-agent
systems–a modal logic formulation,”Artificial Intelligence, vol. 149,
no. 1, pp. 31–60, 2003.

[7] E. Lorini and R. Demolombe, “From Binary Trust to Graded Trust in
Information Sources: A Logical Perspective,” inTrust in Agent Societies,
ser. LNAI. Springer-Verlag, 2008, vol. 5396, pp. 205–225.

[8] W. van der Hoek and M. Wooldridge, “Towards a logic of rational
agency,”Journal of the IGPL, vol. 11, no. 2, pp. 133–157, 2003.

[9] L. Perrussel and J. Thévenin, “(Dis)Belief Change based on Messages
Processing,” inProc. of CLIMA’IV, 2004.

[10] ——, “A logical approach for describing (dis)belief change and message
processing,” inProc. of AAMAS’04. IEEE C.S., 2004, pp. 614–621.

[11] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication
language,” inSoftware Agents, J. Bradshaw, Ed. MIT Press, 1997.

[12] P. Cohen and H. Levesque, “Rational Interaction as the Basis for
Communication,” inIntentions in Communication, P. Cohen, J. Morgan,
and M. Pollack, Eds. MIT Press, 1990, pp. 221–256.

[13] ——, “Communicative actions for artificial agents,” inProceedings of
the First International Conference on Multi-Agent Systems (ICMAS’95),
V. Lesser and L. Gasser, Eds. San Francisco, CA, USA: The MIT
Press, 1995, pp. 65–72.

[14] L. F. del Cerro, A. Herzig, D. Longin, and O. Rifi, “Belief recon-
struction in cooperative dialogues,” inProc. of AIMSA’98, ser. LNCS,
F. Giunchiglia, Ed., vol. 1480. Springer, 1998, pp. 254–266.

[15] L. Cholvy, “Automated reasoning with merged contradictory information
whose reliability depends on topics,” inProc. of ECSQARU’95, ser.
LNCS, C. Froidevaux and J. Kohlas, Eds., vol. 946, 1995, pp. 125–132.

[16] P. Liberatore and M. Schaerf, “Arbitration (or how to merge knowl-
edge bases),”IEEE Transactions on Knowledge and Data Engineering,
vol. 10, no. 1, pp. 76–90, 1998.

[17] S. Konieczny and R. Ṕerez, “Propositional belief base merging or how
to merge beliefs/goals coming from several sources and some links with
social choice theory,”European Journal of Operational Research, vol.
160, no. 3, pp. 785–802, 2005.

[18] S. Benferhat and L. Garcia, “Handling locally stratified inconsistent
knowledge bases,”Studia Logica, vol. 70, pp. 77–104, 2002.

[19] H. van Ditmarsch, W. van der Hoek, and B. Kooi,Dynamic Epistemic
Logic, ser. Synthese Library. Springer, 2007, vol. 337.

[20] R. Fagin and Y. M. J. Halpern,Reasoning About Knowledge. MIT
Press, 1995.

[21] H. Katsuno and A. Mendelzon, “Propositional knowledge base revision
and minimal change,”Artificial Intelligence, vol. 52, no. 3, pp. 263–294,
1991.

[22] J. Gerbrandy and W. Groeneveld, “Reasoning about information
change,”J. of Logic, Language and Information, vol. 6, no. 2, 1997.

[23] M. Nickles, F. Fischer, and G. Weiss, “Communication attitudes: A
formal approach to ostensible intentions, and individual and group
opinions,” in Proc. of LCMAS’05, ser. Electronic Notes in Computer
Science, vol. 157(4). Elsevier, 2005, pp. 95–115.

33

Towards Efficient Multi-Agent Abduction Protocols
Gauvain Bourgne

National Institute of Informatics
Tokyo, Japan

Email: bourgne@nii.ac.jp

Katsumi Inoue
National Institute of Informatics

Tokyo, Japan
Email: ki@nii.ac.jp

Nicolas Maudet
LAMSADE,

Paris Dauphine University, France
Email: nicolas.maudet@lamsade.dauphine.fr

Abstract—What happens when distributed sources of informa-
tion (agents) hold and acquire information locally, and have to
communicate with neighbouring agents in order to refine their
hypothesis regarding the actual global state of this environment?
This question occurs when it is not be possible (e. g. for practical
or privacy concerns) to collect observations and knowledge,
and centrally compute the resulting theory. In this paper, we
assume that agents are equipped with full clausal theories
and individually face abductive tasks, in a globally consistent
environment. We adopt a learner/critic approach. We present
the Multi-agent Abductive Reasoning System (MARS), a protocol
guaranteeing convergence to a situation “sufficiently” satisfying
as far as consistency of the system is concerned. Abduction in
a full clausal theory has however already a high computational
cost in centralized settings, which can become much worse with
arbitrary distributions. We thus discuss ways to use knowledge
about each agent’s theory language to improve efficiency. We
then present some first experimental results to assess the impact
of those refinements.

I. I NTRODUCTION

In multi-agent systems, the inherent distribution of au-
tonomous entities, perceiving and acting locally, is the source
of many challenging questions. To overcome the limitation
of their own knowledge, usually local and incomplete, agents
are driven to form some hypotheses and share information
with other agents. Especially, abductive reasoning is a form of
hypothetical reasoning deriving the possible causes of an ob-
servation. It can be used to complete an agent’s understanding
of its environment by explaining its observations, or, morepro-
actively, for planning, as one can try to find the possible actions
that might cause the completion of a goal. However reasoning
in a sound manner with distributed knowledge rises interesting
problems, as one cannot ensure locally the consistency of an
information. Moreover, the system often comes with severe
communication restrictions, due to physical (e. g. the limited
scope of a communication device) or reasoning (e. g. the mere
impossibility to consider all the potential communications)
limitations of agents populating it. For such situations, we
presented in [1] a sound mechanism that is guaranteed to find
an abductive hypotheses with respect to distributed full clausal
theories whenever one exists. This Multi-agent Abductive
Reasoning System, MARS, is based on a consequence finding
tools named SOLAR [2], that serves as a main reasoning
engine. We are concerned in this paper with the efficiency
of this mechanism, and thus want to evaluate and improve its
average computational and communicational cost.

Distributed abduction has been considered in recent years
in the ALIAS system [3]. They distribute the abductive pro-
gramming algorithm of [4], using abductive logic program
to represent each agent’s theory. More recently, DARE [5]
addressed a similar problem, but consider possible dynamicity
of the system by allowing agents to enter or exit some
proof cluster. In none of these works however is the issue of
communication constraints explicitely raised. Another related
work is the peer-to-peer consequence finding algorithm DeCA
[6]. Based on a different method (splitting clauses), it is to
our knowledge the only other work in this domain taking
into account restrictions of communication between peers.It
is however restricted to propositional theories. The work on
partition-based logical reasoning presented [7] is of particular
interest for our present study as it investigates efficient theorem
proving in partitioned theories. It relies on communication
languages describing the common symbol in the individual
languages of pairs of agents. However, this approach and the
previous one explore all the consequences of the distributed
theories, whereas when we are only concerned with somenew
consequences of the theories with respect to some knowledge
(namely the negated observations when computing a hypoth-
esis through inverse entailment, or the hypothesis itself when
ensuring its consistency). As a result, while inspirational, they
cannot be directly applied to our approach.

The rest of this paper is as follows. Section II gives the
necessary background on abduction and consequence finding.
Then, Section III describe formally a multi-agent abduction
problem, and present the MARS protocol, giving details about
the communications exchanged over its execution. Efficiency
is then discussed, and we describe two improvement on the
previous protocol. These variants are then experimentally
tested in Section IV, and we conclude in Section V.

II. A BDUCTIVE REASONING

A. Preliminaries

First, we review some notions and terminology to rep-
resent our problem in a logical setting. Aliteral is an
atom or the negation of an atom. Aclause is a disjunction
of literals, and is often denoted by the set of literals. A
clause{A1, . . . , Am,¬B1, . . . ,¬Bn}, whereAi and¬Bj are
respectively positive and negative atoms is also written as
A1 ∨ . . . ∨ Am ← B1 ∧ . . . ∧ Bn. Any variable in a clause
is assumed to be universally quantified at the front. Aclausal
theoryis a finite set of clauses which can be identified with the

34

conjunction of the clauses. LetS and T be clausal theories.
S logically impliesT , denoted asS |= T , if and only if for
every interpretationI such thatS is true underI, T is also
true underI. |= is called theentailment relation. For a clausal
theoryT , a consequenceof T is a clause entailed byT . We
denote byTh(T) the set of all consequences ofT . Let C and
D be two clauses.C subsumesD, denotedC � D, if there
is a substitutionθ such thatCθ ⊆ D. C properly subsumes
D if C � D but D 6� C. For a clausal theoryT , µT denotes
the set of clauses inT not properly subsumed by any clause
in T .

We can now introduce the notion ofcharacteristic clauses,
which represents “interesting” consequences of a given prob-
lem [8]. Each characteristic clause is constructed over a sub-
vocabulary of the representation language called aproduction
field, and represented as〈L〉, where L is a set of literal
closed under instantiation. A clauseC belongsto P = 〈L〉
if every literal in C belongs toL. For a clausal theoryT ,
the set of consequences ofT belonging toP is denoted
ThP(T). Then, the characteristic clauses ofT wrt to P are
defined asCarc(T ,P) = µThP(T), whereµ is subsumption
minimality1. When a set of new clausesS is added to a
clausal theory, some consequences are newly derived with this
additional information. The set of such clauses that belongto
the production field are callednew characteristic clausesof
S wrt T and P ; they are defined asNewcarc(T , S,P) =
Carc(T ∪ S,P) \ Carc(T ,P).

B. Abductive hypothesis

The logical framework of hypothesis generation in abduc-
tion for the centralized case can be expressed as follows. Let
T be a clausal theory, which represents thebackground theory,
andO be a set of literals, which representsobservations. Also
let A be a set of literals representing the set ofabducibles,
which are candidate assumptions to be added toT for explain-
ing O. GivenT , O andA, the abduction problem is to find a
hypothesisH such that:
(i) T ∪H |= O (accountability),
(ii) T ∪H 6|= ⊥ (consistency), and
(iii) H is a set of instances of literals fromA (bias).
In this case,H is also called anexplanationof O (with respects
to T andA). A hypothesis isminimal if no proposer subset
of H satisfies the above three conditions (which is equivalent
to subsumption minimality for ground clauses). A hypothesis
is ground if it is a set of ground literals (literals containing no
variable). This restriction is often employed in applications
whose observations are also given as ground literals. In
the following, we shall indeed assume that observations are
grounded, and that we are only searching for minimal ground
hypotheses.

C. Computation through hypothesis finding

Given the observationsO, each hypothesisH of O can
be computed by the principle ofinverse intailment[8], [9],

1meaning thatµX represents the clauses ofX that are not properly
subsumed by any other clause ofX.

which converts the accountability condition (i) toT ∪{¬O} |=
¬H, where¬O =

∨
L∈O ¬L and ¬H =

∨
L∈H ¬L. Note

that both¬O and¬H are clauses sinceO andH are sets of
literals. Similarly, consistency condition (ii) is equivalent to
T 6|= ¬H . Hence, for any hypothesisH , its negated form¬H
is deductively obtained as a “new” theorem ofT ∪{¬O} that
is not an “old” theorem ofT alone. Moreover, to respect the
bias condition (iii), every literal of¬H has to be an instance of
a literal in Ā = {¬L|L ∈ A}. Then the negation of minimal
hypotheses are the new characteristic clauses ofO with respect
to T andĀ, that is,Newcarc(T , {¬O}, Ā).

SOLAR [2] is a sophisticated deductive reasoning system
based on SOL-resolution [8], which is sound and complete for
finding minimal consequences belonging to a given language
bias (aproduction field). Consequence-finding by SOLAR is
performed byskippingliterals belonging to a production field
P instead of resolving them. Those skipped literals are then
collected at the end of a proof, which constitute a clause as a
logical consequence of the axiom set. Using SOLAR, we can
implement an abductive system that iscompletefor finding
minimal explanations due to the completeness of consequence-
finding. SOLAR is designed forfull clausal theoriescontain-
ing non-Horn clauses, and is based on aconnection tableau
format [10]. In this format, many redundant deductions are
avoided using various state-of-the-art pruning techniques [2],
thereby hypothesis-finding is efficiently realized.

Once possible hypotheses have been computed, a ranking
process can be applied to select apreferred hypothesis(e.g.
hypothesis ranking such as in [11]). We will not dwell on this
part here, and instead assumed that apreference relation≥p

over the hypothesis is given as a total order between sets of
grounded literals.

III. D ISTRIBUTED ABDUCTION

A. Problem setting

We propose here a new formalization of our problem as
a multi-agent abductive system, which is defined as a tuple
〈S, {Γt},A,≥p〉, where:

• S = {a0, . . . , an−1} is a set of agents. Each agentai has
its own individual theoryTi and its ownobservationsOi.
It will also form its own preferred hypothesisHi, though
it can also adopt it from other agents. In fact, in the end
of the process, all agents will share the same hypothesis.

• Γt = 〈S, Et〉 is the communicational constraint graph
at time t, an undirected unlabeled graph whose nodes
are the agents inS and whose edgesEt represent the
communicational links between the agent. An agentai

can only communicate with another agentaj at timet if
(ai, aj) ∈ Et.

• A is the common set ofabduciblesthat represents the
langage bias of the abductive process.

• ≥p is thecommon preference relation, a total order over
hypotheses.

Theories and observations are considered to be certain
knowledge. As such, they are assumed to be consistent,

35

meaning that
⋃

i<n Ti∪
⋃

i<n Oi 6|= ⊥. To ensure termination,
it will also be assumed thatCarc(

⋃
i<n Ti, 〈L〉) is finite, and

that both hypotheses and observations are ground (i.e. contain
no variable). Moreover, the system will be assumed to be
temporally connected, meaning that at any timet, the graph
Γt+ = 〈S,

⋃
t′≥t Et′〉 is a connected graph.

Our aim is then to ensure the formation of an abductive
explanation of

⋃
i<n Oi with respects to

⋃
i<n Ti andA. Given

a group of agentsG = {ai, i ∈ J} ⊂ S, we shall say that a
hypothesisH is group-consistentwith G iff it is consistent
with the union of all the individual theory of the agents of the
group, that is, iff

⋃
i∈J Ti∪H 6|= ⊥. Likewise, we shall say that

H ensuresgroup-accountabilityfor G iff it can explains all
observations of the agents of the group when it is associated
with the union of their theories, that is iff

⋃
i∈J Ti ∪ H |=⋃

i∈J Oi. If G = S, we shall say that the hypothesis ismas-
consistentor that it ensuresmas-accountability. Finally we
shall say that a set of literals isacceptablefor a groupG iff it
is a set of grounded literals ofA that is group-consistent with
G and ensures group-accountability forG. The objective of a
multi-agent abductive system is thus to find a hypothesis that
is acceptablefor the whole system.

While consistency or accountability of a hypothesis with
respect to both(Ti, Oi) and (Tj , Oj) is not equivalent to
consistency or accountability wrt(Ti ∪ Tj , Oi ∪ Oj), we still
can ensure some relation between them in classical logic.
Specifically, group-inconsistency ofH with G implies group-
inconsistency ofH with any superset ofG, which ensures that
hypothesis inconsistent with a sub-group of agents (possibly
a single agent) can be ruled out as a potential solution. More-
over, group-accountability ofH for both G and G′ implies
group-accountability ofH for G ∪ G′ (but not reciprocally),
which ensures that accountability can be checked locally.

In order for a learner agent to propose a hypothesis to a
critic, it is necessary that his agent can produce such a hypoth-
esis. However, given only a few clauses of the whole clausal
theory, it might not be able to find an explanation for the
observations using only abducibles. Therefore, we shall allow
an agent to buildpartial hypothesis, which contains some
non-abducible literals. Those literals might be the unexplained
observations, or preferrably some other literals of the language
that would explain it. While interacting with other agents,they
will share knowledge to expand these hypotheses in order to
progressively build a fully abducible one. Note that of course, a
hypothesis respecting the bias condition will always be favored
over one who does not.

We shall now present MARS, a mechanism for solving
multi-agent abductive problems based on SOLAR.

B. Bilateral interaction

To deal with distributed hypothesis formation in multi-
agent systems, we take a learner-critic approach, in which
learner agents aim at producing a globally adequate hypothesis
through internal computations and local interactions withother
agents acting as critics. In our abductive setting, however,
critic agent cannot ensure the consistency of the hypothesis

by itself, and needs to interact with the learner in order to
find incoherence (computing the context of a hypothesis) and
produce complete hypotheses (exchanging useful information
by justifyin partial hypotheses). The underlying mechanism
was presented and proved correct in [1]. Here, we shall
introduce the actual protocol based on that procedure, reca-
pitulating its main steps while giving an exact account of the
communications involved.

1L

2C

3L 4C

5L

6L

7C 8L

9C 10L

12C

13C→L14C→L

11L

Hypothesis selection

propose

noHyp

propose

repropose

Consistency check

checkCtx checkCtx

incons

incons

ackinc

withdraw

okCtx

okCtx

ackCtx

Accountability check

uncovered

argue

withdraw

Acceptability check

deny

hasBetterHyp

ack

accept

ack

Fig. 1. Multi-Agent Learner-Critic Abductive Protocol.

Fig. 1 illustrate this protocol. Nodes indicate states of the
agents (steps of the mechanism), with superscriptL or C
indicating whether it concerns theLearneragent or theCritic
agent. Note that states 13 and 14 indicate a switching of the
roles, as the critic becomes the learner. Labeled arcs indicate
that a given message can be sent by an agent in a given
state, making the other agent go to the target state upon
reception. Dashed arcs indicate an internal change of state
without communication. This mechanism is divided in four
main steps that we shall now detail.

1) Hypothesis selection:An interaction is initiated by a
learner agenta0, in state1L, proposing its hypothesis and
its validity context to a critic agenta1 (propose(H0)). If
learner’s information has changed since it last computed its
possible hypotheses, it will recompute them through inverse
entailment, usingĀ as a production field. In case it cannot find
a hypothesis this way, it will compute apartial hypothesis
by using anextended set of abducibles(possibly the whole
language). If the proposed hypothesish0 is a new one, the first
contextCtx0 will be computed as the new consequences of

36

h0∪T0 wrt h0, that isNewcarc(T0, h0,PL) wherePL = 〈L〉.
Otherwise, the previously computed context will be used as
initial contextCtx0. Then, when receiving such proposal,a1

will start its critic, which consists of three steps: consistency
check, accountability check and admissibility check. As the in-
teraction continue, new hypotheses might have to be proposed.
If the current learner cannot propose a hypothesis (which can
only happens if it has blocked all its possible hypotheses
during preivous admissibility check), it will sendnoHyp to
the other agent to switch the roles (state14). If this one has
also exhausted all its hypotheses, then it will unblock all its
hypotheses and propose again the best one (repropose). Note
that the new critic agent will also unblock all its hypotheses
when receiving such a message.

2) Consistency check:When receiving a proposed hypoth-
esis and context, the first step of the critique is to check the
group-consistency of the hypothesis with both agents involved.
A context is progressively built for a given hypothesisH
to compute the new consequences ofH ∪ T0 ∪ T1 wrt to
T0 ∪T1. If the hypothesis is incoherent, then it will have⊥ as
a consequence. The occurence of a contradiction between the
context and the agents’ theories will thus enable detectionof
incoherent hypotheses. This relies on the fact that the global
theory itself is assumed to be consistent, so any inconsistency
can only arise from the hypotheses. Indeed, ifT is consistent
andT ∪H is inconsistent, thenNewcarc(T , U,PL) = {⊥}.
The process is as follow :

1. First, remember that during the hypothesis selection step,
learner agenta0 retrieve contextCtx0 of its hypothesis. If no
context have been memorized from previous iteraction, thena
new one is computed asNewcarc(T0, H0,PL) (note that we
should thus haveH0 ∈ Ctx0).

2. When receivingH0 andCtx0 (state2C), a1 first check if
it already has some contextCtx′ for this given hypothesis. If
it is the case, then it replacesCtx0 by Ctx′0 = Ctx0 ∪Ctx′.
ContextCtx1 is then computed asNewcarc(T1, Ctx′0,PL),
and sent back toa0 with messageCheckCtx(Ctx1)(unless a
contradiction is found).

3. The process continues. At each stepCtxi is
computed by agent aα as the new consequences
Newcarc(Tα, Ctxi−1,PL), where α = 0 if i is odd
(state3L), andα = 1 otherwise (state2C), and sent with a
checkCtx message.

4. This computation stops when either a contradiction is
found or Ctxi is included in eitherCtxi−1 or Ctxi−2, in
which case all consequence have been computed.
• If an inconsistency is discovered, the partp0 of the

hypothesis responsible for it is sent to the other agents
with messageincons(p0). leading eventually to state5L.
Both agents rule outp0 (and any hypothesis containing
it) by adding its negation to their theory. The learner
agent then move on to its next hypothesis and propose it,
trigerring a new critic phase (states12C and1L).

• Otherwise, the end of the computation is acknowledged
by sending okCtx. Both agents memorize the final
context Ctxf = Ctxi ∩ Ctxi−1 (where i is the final

step) of this hypothesis. Any element in respectively
Ctxi \Ctxi−1 andCtxi−2 \ Ctxi−1 are added toT1−α

andTα where againα = 0 is i is odd and1 otherwise.
Indeed an element will only be removed from the context
if it is a direct consequence of one of the agent’s theory.
The critic phase move to the next step (state7C)..

3) Accountability check:In this step, the critic agent checks
if all its observations are explained byH0 ∪ T1. If an unex-
plained observationo is found, the messageuncovered(o) is
sent to the learner agent, now in state8L. We then have two
possibilities.

• If o is not explained byH0 ∪ T0, it is a true counter-
example. The learner agent then computes a new hypoth-
esis that will also covero, and propose it, triggering a
new critic phase (states12C and1L).

• If o is already explained byH0∪T0, then the learner agent
will notify the critic of this fact with argue(p0), where
p0 is the part of the hypothesis that is used in explaining
o with T0. The critic agent will add the clause{o∨¬p0}
in its theory2. This new information will ensure that the
critic agent can find the hypothesis on its own in further
steps, or build up upon it. It will then proceed to the next
unexplained observation.

If there is no unexplained observation, the critic proceeds
to the next step (state9C).

4) Acceptability check:Any hypothesis that reaches this
step is consistent and accounts for the observations, but it
might include some non-abducible literals, or unnecessary
parts. This step ensures that alternative hypotheses are ex-
plored if needed.

1. If the critic has a hypothesisHc that is prefered toH0

(according to≥p), it will reverse roles (hasBetterHyp) and
submit it. This will finally either result in the acceptationof
a better hypothesis, or cause the former critic agent to learn
why its hypothesis cannot be used.

2. Otherwise, if the hypothesis contains non-abducibles
(partial hypothesis), the critic agent will temporarily block it,
and ask the other agent to do the same (deny). I will then
also switch roles (state13C→L). This ensures that all partial
hypotheses that could provoke information exchange leading
to building an abducible hypothesis are explored if needed.

3. If the hypothesis is acceptable, or if a partial hypothesis
has been reproposed (meaning the exploration is complete),
then the critic send anaccept message. The final outcome of
the interaction is thus chosen. Hypotheses that were temporar-
ily blocked are unblocked, and the best hypothesis is chosen
as the final hypothesis. It is adopted and memorized by both
agents, ending the interaction.

C. Group of agents

Each interaction allows the participants to refine their hy-
potheses and augment their knowledge concerning their con-
sequences. The protocol described before is enough to allow
two agents to form a hypothesis that is group-consistent and

2Note that sincep is a conjonction of literals,¬p0 is indeed a clause.

37

ensures group-accountability for the pair of agents. When more
agents are involved, it is possible to chain such interactions
to converge towards a consistent state of the system. To take
into account possibly variable communication constraintsin
the system, we propose a rumor-like approach, ensuring the
local behaviour and interactions of the agents make the system
converges to a state in which all agents have a mas-consistent
hypothesis ensuring mas-accountability.

An agent is motivated by the will to ensure it has an
explanation with respect to its neighours. As such, it will
attempt to have local interactions with them whenever needed
to ensure that, memorizing the result of their last interaction
with each of their neighbours. In practice, an agentai will
engage in a local interaction with a neighbouraj whenever its
hypothesis and context(hi, Ctxi) differ from those obtained
during its last interaction withaj.

In [1], this process was proved to be sound, and to guarantee
that a solution is found if there is one.

D. Improving efficiency

The main computational cost of our mechanism lies in
the multiple calls to a consequence-finding tools, which is
used in the various steps to conduct the logical reasoning,
especially for computing possible hypotheses through inverse
entailment, computing the context of these hypotheses, and
checking their accountability. To improve efficiency, it isthus
crucial to reduce as much as possible the computational cost
of each of these calls, as well as to reduce their number.

The tools we are using in our implementation, SOLAR,
is based on tableaux methods. We assess the computational
cost of a call by counting the number of inferences per-
formed during it. Without entering in the details of the
procedure, we will discuss here the factors that influence the
cost of the computation ofNewcarc(F, T ,PL). The number
of inferences is directly related to the number of clauses
used in the procedure. Used claused are clauses which can
resolved with one of the top clauses (elements ofF), or
with a consequence of them. Thus, reducing the number of
clauses inT and more importantly inF can both help to
reduce the computations steps. Note thatCarc(T ,PL) is in
practice computed asNewcarc(T , ∅,PL), so computing new
consequences rather than all consequences is already a good
step to ensure better efficiency. Reducing the number of literals
of the top clauses also helps as it limits the number of clauses
they can be resolved with. Then, another factor that can affect
the computations is the size of the production field. A small
production field limits the number of options to be explored
and as a results, the number of inferences to be done.

With respects to our mechanism, these considerations means
that we should keep each agent’s individual theory as small
as possible, which is ensured by adding single clauses with
just the necessary parts of the hypothesis to memorize incon-
sistencies (when sending or receivingincons.(p0) or account-
ability arguments (when sendingargue(o∨¬p0) in state8L).
Moreover, during consistency check, we should minimize the
computations for the context. We shall see in next subsection

how to reduce size of top clauses during this step by doing
incremental computations. Then, we should also find ways to
minimize the number of consequences computed during this
consistency step by focusing on consequences that could lead
to a contradiction, and even more importantly, to limit the
number of partial hypotheses computed by focusing on those
partial hypotheses that could trigger information exchanges
leading to the formation of an acceptable hypothesis (as it
would also reduce the number of applications of SOLAR).

E. Incremental consistency check

During consistency check, context is progressively com-
puted until it does not evolve anymore, but sending the
whole context at each step of the computation and using
it as top clause for computing the next step. To avoid re-
dundant communications and computations, we propose to
communicate only the new consequences of the context,
pruning consequence discovered in previous step. It does not
change the computation and sending ofCtx0 and Ctx1, but
after computingCtx1, the learner agent will only send back
ctxStep1 = Ctx1 \Ctx0 (note that we use the originalCtx0

here, and notCtx′0).
Then, when receivingcheckContext(ctxStepi), agentaα

first computesNCi+1 = NewCarc(ctxStepi, Tα ∪ Ctxi−1).
It can then use it to compute the current contextCtxi+1 =
Ctxi−1∪NCi+1, and send the updatectxStepi+1 = NCi+1\
ctxStepi. If there is a clausec than is in ctxStepi that is
not subsumed by any clause ofNCi+1, it means that it is a
consequence ofTα. It should then be sent to the other agent
(with messageinform(c)) to ensure that both agents will have
the same final context. This replaces the theory adjustment
with Ctxi \ Ctxi−1 and Ctxi−2 \ Ctxi−1 that were made
before. Note that the termination condition becomes much
simpler, as the context can be confirmed as soon asctxStepi

is empty.

F. Language focus

1) Languages:Given a clausal theory T, we denote by
L(T) the set of non-logical symbols that occur inT , and
by L(T) the language formed upon them. Each agent has
its own theoryTi, from which we can define itsindividual
languageL(Ti). We can then compute for each pair of agent
ai, aj (i 6= j), in the manner of [7], thecommunications
languageLi,j = L(Ti) ∩ L(Tj). It can be used to direct the
focus of bilateral communications. If it is empty,ai and aj

do not need to communicate together. However, it may be
the case thatai andaj are never connected whileLi,j is not
empty. For the sake of simplicity we will assume that the
communicational links are static3. We shall then adapt the
communications languages by choosing a minimal path for
all such pair of unconnected agents (ai,aj), and add theLi,j

to the communication language of each pair of agent in this
path. In the following, when referring to the communication

3otherwise, since the system is assumed to be temporally connected, it is
possible to find a connected subgraph that is included inΓt+ for all t and
use it as a guaranteed basis.

38

languageLi,j , we will assume that this modification has been
done. Then therestricted individual languageof an agent
ai is defined asLi =

⋃
j∈Ni

Li,j , where Ni is the set of
the indexes of the neighbours ofai. At last, the common
languageis the languageC =

⋃
i<n Li, that is the union of

all restricted individual languages (which is also .the union of
all the communication languages).

2) Context narrowing:When computing context, we want
to ensure that any new consequence of the hypothesis that can
be derived from the union of the agent’s theories is indeed
found. It meansa0 need to send any consequence ofH wrt T0
that could resolved with a clause ofT1. In pratice,a0 compute
its context using itsrestricted individual languageas a produc-
tion field, and then retain inCtx0 only the one that contains at
least a literal of the concerned communication language (here
L0,1). Upon receiving it,a1 will then temporarily addL(Ctx0)
to L0,1, and if it already has a contextCtx′, a1 will use the
same pruning before adding it to getCtx′0 and computeCtx1

(with his restricted individual language as a production field).
The pruning (with updated language) is applied toCtx1 (or
ctxStep1) before sending it, and the process continue. Each
time, contexts are pruned to exclude any clauses that do not
have literals in the current communication language before
being sent to the other agent. Note that since we compute only
new consequences, we cannot directly use the communication
language as a production field,as shown by the following
example:

Example 1:Let’s takeT0 = {¬h∨a∨b,¬h∨o}, T1 = {¬a}
andT2 = {¬b}, all agents being connected. We haveL0,1 =
L({a}), andL0,2 = L({b}), soL0 = L({a, b}). We assume
a0 has observationo and wants to check hypothesish with a1.
If Ctx0 was computed withL0,1, it would be empty, and no
contradiction would be found whena0 checks later witha2.
However, usingL0 as a production field, we get consequence
a ∨ b that contains literala ∈ L0,1. It is thus sent toa1 that
will give in return b. When proposing this context toa2 later
on, a0 will thus be able to derive a contradiction.

3) Choice of partial hypotheses:For computing partial
hypotheses, and deciding whether to propose a given one to
a neighbour or not, the same principles can be used. When
no admissible hypothesis can be found, inverse entailment is
performed again with an extended set of abducibles. To ensure
that at least one solution can be found, the manifestations are
added to the abducibles, enabling trivial explanations forsome
part of the hypothesis. Then, the idea is to use literals thatcan
act as links between the theories. In practice, it means thatwe
should include in the extended abducibles the literals in the
restricted individual language of the agent. This should also
be augmented with literals obtained through the arguments of
other agents (when receivingargue(o∨ p0) in state7C). This
allow us to compute all potentially useful partial hypothesis.
For a given exchange, however, it is sufficient to propose
those partial hypotheses that contains at least one literalof
the communication language of the interacting agents.

IV. EXPERIMENTS

We describe here preliminary experimental results on a
small set of problems4, testing our two improvements of the
MARS protocol (namely, incremental context computation and
restriction of the languages). Though it might be useful to
assert the validity of our conclusions on a broader number of
problems, we believe that the small problems used for eval-
uation highlight the main difficulties that can be encountered
in a distributed abduction system.

The first problem,pb-1, is taken from [1], where it was
used as a running example. It contains 10 clauses, distributed
among 2 or 3 agents. With 3 agents, we tested two commu-
nicational constraint topologies: a line (a0 ↔ a1 ↔ a2) and a
completely connected system. This problem was designed to
illustrated the MARS protocol, and thus make it go throught
all the possible states during its enfolding. The second prob-
lem, pb-fvar, is a toy problem with two observations that
contains some clauses with unlinked variables. We pruned
out hypotheses that contains variables in the resolution to
respect our language bias. It is distributed among 3 agents,
and here again, we tested it with line and completely con-
nected graph topologies. The third problem,chain_n is a
propositional problem designed to show a kind of worst case
for distribution. It consists of three chains of implications
linking respectivelyh1 to o1 (throughkn−2, . . . , k0), h1 to o2

(throughmn−2, . . . , m0) andh2 to o1 (throughln−2, . . . , l0).
Moreover, one agent (agentan/2) has a constraint¬o1 ∨¬o2,
which makesh1 inconsistent. The aim is then to explaino1

with abducibles{h1, h2}. Each agent knows 3 rules, one from
each chains, and agenta0 initially has observationo1. This
chain was tested withn = 8, with either a line topology
(from a0 to a7) or a circuit topology (as the line, with an
additional link betweena0 and a7). To check the influence
of the number of agent, we also used a version of this
problem with 4 agents,chain_8.4, in which a0, a1, a2,
a3 are merged with respectivelya4, a5, a6 and a7, and a
version with 2 agents,chain_8.2, in which a0 are merged
with respectviley even and odd indexed agents. At last, we
used a more practical problem,schedulevar, which is an
adaption from a scheduling problem presented in [5], with
8 agents.scheduledir is a direct translation of the same
problem from its original formalization as an abductive logic
program (negation by default is dealt with by using additional
abducibles).

Tables I gives the results for the four variants of our
mechanism. Computational cost is given by the total number
of operations performed by the consequence finding tool over
the course of the protocol, whereas communicational cost
is expressed as the total number of bits exchanged by the
agents during the process. From these results, it is obviousthat
using individual communication languages does indeed greatly
reduce both costs. It is especially true for the most complex
problems, and the gain ratio is more important when there

4Complete description of all these problems can be found at
http://rjcia09.fr/MARS.

39

TABLE I
EXPERIMENTAL RESULTS

Language focus no no yes yes
Incremental ctx comp. no yes no yes
Computational cost
Pb-1 2 ag. 711 666 711 666
Pb-1 (line) 3 ag. 1 602 1 454 1 548 1 390
Pb-1 (clique) 3 ag. 2 216 2 003 1 713 1 673
Pb-fvar (line) 3 ag. 11 890 11 818 8 019 7 959
Pb-fvar (clique) 3 ag. 13 680 14 126 6 457 6 415
Chain 8.2 2 ag. 31 171 21 330 12 438 8 675
Chain 8.4 (line) 4 ag. 57 406 45 803 29 844 24 285
Chain 8.4 (circ.) 4 ag. 81 998 70 168 23 999 21 075
Chain 8 (line) 8 ag. 133 696 103 219 22 450 18 600
Chain 8 (circ.) 8 ag. 92 986 75 146 9 015 8 639
Schedulevar 8 ag. 53 607 50 571 39 391 39 725
Scheduledir 8 ag. 381 992 372 998 95 909 94 963
Communicational cost
Pb-1 2 ag. 617 552 617 552
Pb-1 (line) 3 ag. 1 832 1 700 1 624 1 511
Pb-1 (clique) 3 ag. 2 540 2 373 2 115 2 064
Pb-fvar (line) 3 ag. 3 177 3 080 2 659 2 622
Pb-fvar (clique) 3 ag. 3 568 3 494 2 139 2 106
Chain 8.2 2 ag. 12 230 8 924 5 746 4 238
Chain 8.4 (line) 4 ag. 25 606 14 312 22 278 12 620
Chain 8.4 (circ.) 4 ag. 35 072 12 576 35 531 11 883
Chain 8 (line) 8 ag. 65 582 57 305 14 625 13 383
Chain 8 (circ.) 8 ag. 50 749 47 317 6 509 6 627
Schedulevar 8 ag. 28 774 27 171 20 448 20 752
Scheduledir 8 ag. 219 335 209 398 77 638 76 238

are a greater number of communicational links. Incremental
computation of context is however less convincing, as it
only helps when there are several context computations step,
which is not such a common occurence, unless theories are
really mixed (it is the case forpb-1 and all chain_8
problems, which do benefit from this improvement). In the
end, this improvement is useful, but only marginally so in
most situations. While more experiment would be required to
say anything more definite, the present results give us some
hint about the influence of topology and “encoding”. Having
a topology with cycle can lead to redundant computations, but
can also provide easier exchange of information by avoiding
the extra cost of bringing back a crucial fact or rule (as
demonstrated by the addition of the linka0-a7 in chain_8).
Overall, using individual communication language allows us
to reduce the cost of redundant computations, so that we can
take more benefit from situations where additional links are
helpful. Moreover, reducing the number of agents can be either
detrimental (inchain_8) or benificial (in pb-1): the size
of the communication languages seem to be a more relevant
factor. At last, the huge difference betweenschedulevar

andscheduledir seems to indicate that our protocol is much
more efficient for finding whether an abducible hypothesis is
consistent than it is for finding an abducible hypothesis by
exploring all partial hypotheses. When formalizing a given
problem, it is thus more efficient to ensure one agent can
easily generate candidate hypotheses, and express rules that
constrain it.

V. CONCLUSION

We presented in this paper a formalization of a multi-
agent abduction problem, and proposed a sound mechanism
for computing an abductive explanation that is guaranteed to

find a solution whenever one exists. We then discussed way to
improve the average efficiency of this protocol, called Multi
agent Abductive Reasoning System (MARS). Two improve-
ments were proposed. The first one reduce the costs of building
a complex context by doing the computation incrementally.
It only helps when several steps are needed and was there-
fore shown to have only a limited impact on efficiency by
experimenal results. The main improvement consist of using
informations about the individual language of each agent to
focus the exchanges on what can really advance the search for
a hypothesis (or the inconsistence of a candidate hypothesis).
Contrarily to [7], we do not need the communication graph
to be made cycle-free. While our approach use a similar idea
of using communication language, we are only interested in
the new consequences of some formulas, and thus want to
avoid computing all consequences of a theory. As a result,
we showed that we needed to allow the exchanges of clauses
that belongs only partially to the communication language.
Nonetheless, it is still an important efficiency improvement
compared to the more naive approach of using only the com-
mon language for all exchanges. Experimental results showed
that it substantially reduces the number of computations as
well as the size of the communications. More improvement
should however be brought to the search of hypotheses that can
only be produced by using the theories of several agents. The
learner-critic assumption that hypothesis are produced locally
might be unadapted in such situations. It might thus be better
to design a collaborative hypothesis formation, though another
lead could be to refine the current information exchange to
ensure a better treatment of “sub-goals”.

REFERENCES

[1] G. Bourgne, K. Inoue, and N. Maudet, “Abduction of distributed theories
through local interactions,” inProc. of the 19th European Conference
on Artificial Intelligence (ECAI 2010), August 2010.

[2] H. Nabeshima, K. Iwanuma, and K. Inoue, “Solar: A consequence
finding system for advanced reasoning,” inAutom. Reas. with Analytic
Tableaux and Rel. Meth.Springer, 2003, pp. 257–263.

[3] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni, “Coop-
eration and competition in ALIAS: a logic framework for agents that
negotiate,”Annals of Math. and AI, vol. 37, no. 1–2, pp. 65–91, 2003.

[4] A. C. Kakas and P. Mancarella, “Database updates throughabduction,”
in Proc. of VLDB ’90. Morgan Kaufmann Pub., 1990, pp. 650–661.

[5] J. Ma, A. Russo, K. Broda, and K. Clark, “DARE: a system for
distributed abductive reasoning,”JAAMAS, vol. 16-3, pp. 271–297, 2008.

[6] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon,
“Distributed reasoning in a peer-to-peer setting: Application to the
semantic web,”J. Artif. Intell. Res. (JAIR), vol. 25, pp. 269–314, 2006.

[7] E. Amir and S. A. McIlraith, “Partition-based logical reasoning for first-
order and propositional theories,”AI, vol. 162, no. 1-2, pp. 49–88, 2005.

[8] K. Inoue, “Linear resolution for consequence finding,”Artif. Intell.,
vol. 56, no. 2-3, pp. 301–353, 1992.

[9] S. Muggleton, “Inverse entailment and progol,”New Generation Com-
put., vol. 13, no. 3&4, pp. 245–286, 1995.

[10] R. Letz, K. Mayr, and C. Goller, “Controlled integration of the cut rule
into connection tableau calculi,”JAR, vol. 13, pp. 297–338, 1994.

[11] K. Inoue, T. Sato, M. Ishihata, Y. Kameya, and H. Nabeshima, “Eval-
uating abductive hypotheses using an em algorithm on bdds,”in Proc.
of IJCAI’09, 2009, pp. 810–815.

40

Validation of Agile Workflows using Simulation
Kai Jander Lars Braubach Alexander Pokahr Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{jander | braubach | pokahr | lamersd}@informatik.uni-hamburg.de

Abstract—Increasing automation of business processes and
industrial demand for complex workflow features have led to the
development of more flexible and agile workflow concepts. One of
those concepts is the use of goal-oriented workflows, which rely on
ideas derived from agent technology like describing the workflows
based on a goal hierarchy. While this reduces the gap between
business view and IT view and allows for easy implementation of
contengencies, the concepts have greater conceptual abstraction
obscuring the control flow and reducing the ability of workflow
engineers to identify specification flaws in the workflow. This
paper shows an approach to address this problem by presenting
a system for testing and validating workflows within a specified
parameter space. The system allows the definition of test cases
(scenarios), each of which contains parameter states applied
during workflow execution. The workflow engineer can define
a set of scenarios for a workflow testing specific situation that
are likely to occur during operation or are otherwise interesting
corner cases, allowing automated tests and correction of faults
before deployment of the workflow in production environments.

I. INTRODUCTION

Business process management (BPM) is considered a very
promising strategy that helps in aligning companies towards
effective and efficient business operation [1]. This is mainly
achieved by completely thinking in terms of processes, which
means that even the structure of organizations has to follow the
processes and cannot be kept in a functional orientation. The
vision of BPM assumes that processes can at least partially be
automated, monitored according to key performance indicators
(KPI) and continually improved or even renewed according to
the measurement and defined KPI targets. It becomes clear
that this vision heavily depends on adequate IT means sup-
porting these tasks, which e.g. manifests in the development
of workflow notations and management solutions.

One fundamental problem with existing solutions that has
been experienced in practice is that modelling notations like
event process chains (EPCs) or the business process modelling
notation (BPMN) are activity oriented and thus focus heavily
on the ordering and conditions of activity execution. This leads
to a particular neglect of the underlying process motivations,
which are only implicitly existing during workflow elicita-
tion. Without this so called workflow context perspective [2]
it becomes e.g. difficult to optimize the processes because
it cannot be easily afforded why specific activities in the
workflow exist and if they e.g. could be completely cut out.
These observations led to the development of more abstract,
flexible and agile workflow concepts. While these concepts
contribute to closing the gap between business view and IT
view, the greater conceptual abstraction also partially hides the
complexities of all possibilities of the exact runtime control

flow and reduces the ability of workflow engineers to easily
identify specification flaws in the workflow.

In order to equip a workflow modeller with a toolset to
better understand the possible runtime behaviour of more
abstract workflows, simulation and validation gain importance.
In this paper a new concept and implementation for a simu-
lation based validation approach of workflows is presented.
It allows to specifiy execution scenarios and automatically
evaluate them with respect to expected process outcomes.
The approach does not depend on the concrete workflow
notation in which processes are described but only assumes
that specific workflow management facilities are available.
Thus, the approach is viable for validating traditional e.g.
BPMN based workflows as well.

The rest of the paper is structured as follows. In Section
II related work with respect to verification and validation
approaches of workflows is discussed. Thereafter, in Section
III the concept of the new simulation based validation ap-
proach is presented. Its implementation and usage is explained
in Section IV and the usefulness of the approach is further
illustrated by an example application taken from our industry
cooperation partner Daimler AG. The paper concludes with a
summary and a short outlook on possible future enhancements.

II. RELATED WORK

Literature and practical application contains a large variety
of validation and verification approaches for workflows. They
can roughly be divided into two categories. The first category
consists of formal static analysis of the workflow model to
identify conceptual or implementation flaws. The second cate-
gory comprises of validation using simulation-based execution
of the workflows.

Formal verification approaches of workflows apply a num-
ber of techniques, such as propositional logic [3], model
verification [4] and graph reduction [5]. The approaches are
usually either based on a formally well-defined representation
like petri nets [6] or attempt to translate workflows imple-
mented in different representation like EPCs or BPMN into a
more approachable form from a formal perspective [7]. While
formal verification has the distinct advantage of guaranteeing
correctness within the given constraints of the verification
approach, translation of workflow models weakens this guar-
antee unless the translation itself is formally proven correct.
Verification also requires a well-defined language with well-
known properties, however, some languages used in practices
lack these criteria. For example, many parts of BPMN in
its current form are left ambiguous and underspecified. The

41

reason for this usually is not negligence but an attempt to
bridge the gap between the technical side and the business side
of workflows. Parts of the specification are deliberately left
fuzzy with ambiguous semantics which enables the use of the
specification in informal and non-technical settings. However,
some of the issues of ambiguity are currently addressed in the
upcoming version 2.0 of the BPMN specification.

Furthermore, verification approaches are often quite limited
on what they can guarantee. For example, while there are
excellent approaches to guarantee correctness of the workflow
diagram like ensuring that branches in the workflow are ter-
minated with a correct join element, they are generally unable
to verify non-trivial semantics like task instructions written in
a programming language or complex runtime behavior.

This problem can be approached by the validation tech-
niques in the second category. Instead of statically analyzing
the workflow models, the workflow is executed in a simulated
environment which attempts to imitate the environment in
which the workflow is planned to be deployed. Examples of
this approach include a variety of tools like LSIM [8], iGrafx
Process [9], the Corporate Modeler Suite [10] and the ARIS
Toolset [11]. The tools generally target specific workflow
notations such as BPMN to combine static analysis described
above with simulation. Furthermore, the focus of the tools
tend to be performance measurement and optimization. For
example, the ARIS Toolset offers a large number of features
used to measure operating and performance figures of the
workflow during simulation.

In contrast, the focus of our approach has primarily been
the validation of the workflow using predefined test cases
centering around expected real world scenarios. The disad-
vantage of this approach compared to verification is that the
correctness can only be ensured within the given conditions
of the test. Since the number of configurations in any non-
trivial workflow is very large, exhaustive search becomes
infeasible. This means the approach can only validate the
workflow to a certain degree and may not detect all errors
present. The advantage of the approach is that the com-
plexity of the workflow language is irrelevant to the test
as long as there is a workflow engine capable of executing
the workflow. Furthermore, the current approach uses few
assumptions about the workflow itself allowing the system
to be useful for different kinds of workflow notations. While
the focus has been on validation of workflows, the approach
can be extended to include simulation of the environment
in which the workflow is running but which is, by itself,
not part of the workflow. This includes logistic operations,
production machinery, behavior of workflow participants and
market influences. This allows additional applications beyond
workflow validation like workflow optimization similar to the
tools mentioned above.

In the following we will present this simulation-based test-
ing approach which uses simulation of workflow participants
to validate the correctness of workflows. The focus will be on
goal-oriented and agile workflows, however, as mentioned, the
approach itself can at least partially be applied to any workflow
which relies on interaction with participants.

III. VALIDATION APPROACH

Due to its application in industry and business automation
and intense research interest, a great variety of workflow
approaches and notations are available. While our validation
approach is designed to be generic, two kinds of notations
in particular were the focus of the project. The first is the
well-known Business Process Modeling Notation (BPMN, see
[12]), which has been extended with task and edge annotations,
allowing it to be directly executed by an interpreter. In
addition, an additional notation called Goal-oriented Process
Modeling Notation (GPMN, see [13]) has been developed,
which allows the description of goal-oriented workflows using
goal hierarchies. Workflows implemented using GPMN are
converted into BDI agents at runtime. BDI agents are based
on the Belief-Desire-Intention model where beliefs represents
the agent’s current knowledge about the world, goals represent
its abstract desires of what should be accomplished and plans
represent concrete intents of the agent with explicit actions the
agent follows (see [14]). The goals used in GPMN workflows
are directly converted to goals of the resulting agents while
the plans that are on the leaf nodes of the goal hierarchy
are represented by small workflow fragments implementing
the concrete steps in BPMN. During execution, the GPMN-
derived BDI agent employs a BPMN interpreter to execute the
fragments as plans of the agent.

In addition, GPMN workflows contain a context which
represents the current workflow state. This context is used as
the belief base of the converted BDI agent at runtime. This
context may be changed during execution of the workflow,
either directly by the workflow itself or by effects outside
the workflow. Changes in the context can directly affect the
workflow and thus the agent behavior by influencing adoption,
persuit and rejection of goals.

A. Requirements for Automated Testing

Both GPMN and BPMN offer language features which
allow the workflow engineer to implement different execution
paths or branches. In the case of BPMN workflows, this is
accomplished using the gateway element, which can split the
control flow into either multiple paths executed concurrently
or diverts the flow towards one of multiple possible control
flow edges. The implementation of execution paths in GPMN
workflows is more subtle and indirect. Depending on the
state of the workflow context, different goals may become
active resulting in the execution of different BPMN plans. This
control flow subtlety of implicit control flow paths in GPMN
workflows increases the difficulties of a workflow engineer to
accurately predict possible runtime execution paths and is the
primary motivation for our validation approach.

The core idea of our approach towards validating such
workflows is the use of automated tests. The goal of the
approach is to provide the workflow engineer with tools to
specify realistic business cases which are likely to occur in
the real world which are then applied to a workflow instance.
As a result, the test coverage of the approach is limited to
those cases, however, it is aimed at the most likely situations,
providing assurance of validity in the cases most likely to

42

Figure 1. Structure of the proposed test system

occur after deployment. Since only the most trivial workflows
can be automatically executed merely using a workflow engine
and since most workflows require interaction with workflow
participants or automated systems while running, additional
system components are necessary beyond the workflow engine
itself. Moreover, while most workflows specify a range of
possible responses by workflow participants, they generally do
not specify which responses will influence workflow behavior,
thus necessitating the specification of additional information
by the workflow engineer before the test.

Consequently from a simulation perspective, a workflow
engine executing a workflow is not a viable simulation model
for validation workflows since it lacks sufficient detail even
for simple automated execution, much less being a realistic
representation of a production environment using workflows.
Therefore it is necessary to add additional components to the
system which are equivalent or at least sufficiently similar to
their production counterparts to represent an adequate model
of a workflow in production use (see Figure 1).

B. Workflow Management System

One component which is routinely part of workflow systems
in businesses is a workflow management system (WfMS). The
task of a WfMS among other things is to facilitate interaction
between workflows and workflow participants. This is gener-
ally done by providing work items, which are packages gener-
ated by the WfMS on behalf of the workflow containing all the
information needed by the workflow participant to accomplish
their part of the workflow. The WfMS then distributes the
work items among the workflow participants using a variety
of approaches such as roles. As a result, the simulation model
of a realistic test system needs to include a WfMS which
accurately represents a WfMS used in production.

Work items generated by the WfMS not only include
information for the workflow participant but often ask the
participant to gather and provide external information like
customer data or processed documents for the workflow.
This is defined in the workflow with the specification of
typed parameters in tasks which generate work items. This
information often influence further behavior of the workflow
at critical junctions like BPMN gateways or goal deliberation.
Since real workflow participants are not available during test
runs, it is necessary to simulate their actions, including the
supply of external information.

Work items are generally retrieved and processed by the
workflow participant using a workflow application client inter-
acting with the WfMS. The work items are retrieved, processed
by the workflow participant and finally comitted back to the

workflow management system, thus allowing the workflow
to continue executing. In order to simulate this behavior, the
workflow client application used by the workflow participant
needs to be replaced with an automated workflow client
application which simulates its behavior and the behavior of
the workflow participant.

C. Client Application

The simulated workflow application client is required to
provide the information which is normally provided by the
workflow participant. As a first step, the client identifies the
workflow tasks which generate work items and require the
workflow participant to provide information in the form of
work item parameters by examining the workflow model and
the models of possible subprocess, such as BPMN workflow
fragments in case of GPMN workflows. Parameters are typed
and thus already have a limited parameter space. However,
this parameter space in cases such as string types is extremely
large, precluding an exhaustive test of the full parameter
space. Since a complete verification of the process using this
approach would also require to test the cartesian product of the
parameter space of all parameters provided by the workflow
participant, the complexity of such a verification exceeds the
limits for a practical test and cannot be considered a useful
approach.

As a result, it is necessary to restrict the scope of the test
to only include the part of the parameter space which includes
the most promising cases, such as corner cases of branching
decisions and validating the workflow only for those cases.
Since the test cases cannot be identified automatically, the
workflow engineer has to define the parameter space that needs
to be tested. This is accomplished by the system by allowing
the workflow engineer to define test scenarios. Scenarios
represent a subset of the full parameter space of the workflow
participant interaction with the workflow. For each parameter
in the process the workflow engineer can define a set of
parameter values which are used to process work items while
the workflow is executing. If the workflow engineer defines
multiple values for each parameter within the same scenario,
the cartesian product of those values is tested at runtime.

The workflow engineer can define multiple scenarios for
each workflow. When the test is started, the first scenario is
selected and the workflow is started repeatedly, once for every
element of the cartesian product of the parameter values in
that scenario. Once the scenario finishes, the next scenario
is selected until all scenarios have been tested. An event
log is kept during each execution, recording notable events
occuring at runtime for later analysis. The workflow engineer

43

can use this log to identify errors in the workflow and correct
them before the workflow is used in a production system. In
addition, a test report is generated and can be reviewed.

Errors in the workflow can be unrecoverable states of the
workflow like a raised exception during execution or unin-
tended behavior of the workflow such as performing a faulty
execution order of tasks. In additions, it is also considered
to be an error if the workflow returns the wrong results or
reaches the wrong internal state. Since the workflow engineer
has to be informed about such errors occuring, monitoring of
the workflow is required. On raised exceptions, executed steps
of the workflow and state changes the workflow engine can
generate a workflow event which is passed through the WfMS
to the client application for review by the workflow engineer.
It would also be desirable to allow the workflow engineer to
define a validation function which receives the information
provided to the workflow and the final state and result of the
workflow.

The following section will elaborate on the individual parts
of the testing system. It will include an overview of the
workflow management system and provide details about the
simulated workflow client application and how the workflow
engineer can define the parameter space subset for each
scenario.

IV. SIMULATION SYSTEM COMPONENTS

As mentioned in the previous section, the testing system
requires a minimum of three components. In order to execute
the workflows themselves, a workflow engine is needed, a
workflow management system is needed for work item man-
agement and user interaction and there needs to be a special
workflow client which simulates user behavior.

Since GPMN workflows are translated into BDI agents with
BPMN plans and thus require a workflow engine which can
execute both, the Jadex Active Components Platform [15] has
been chosen as the execution environment for the workflows.
The platform is not only capable of executing GPMN-derived
BDI agents but also includes a BPMN interpreter which
allows the execution of BPMN processes alongside agents.
While the platform is able to execute standalone BPMN
processes as active components, BPMN workflow fragments
which represent GPMN plans are executed with a special
BPMN plan interpreter, which allows the BPMN workflow
fragments to access the GPMN context in the form of the
agent belief base.

A. Workflow Management System Architecture
The second required component is the workflow manage-

ment system. This system component is implement largely
based on the reference model of the Workflow Management
Coalition [16]. It uses the Jadex platform with Jadex platform
services implementing the services required for the system
which will be explained in further detail. In addition, the sys-
tem includes three interface agents which realize a message-
based interface with workflow application clients.

The services of the WfMS are divided into internal and
external services, the former implementing the actual function-
ality of the WfMS while the latter, represented by the agents,

Figure 2. The workflow tree model used on the client side of the testing
system

act as an interface which can be used by workflow client
applications to connect with the WfMS. The Jadex platform
itself represents the workflow engine and enactment service of
the WfMS by providing the necessary support for instantiation
of workflow models.

Workflow models are managed by the WfMS using a
process model repository service. This service supports the
addition and removal of process models by employing the
Jadex library service which allows Jadex to dynamically
load new models, resources and executable code by linking
directories or jar-archives. In addition, it offers access to
workflow models for workflow client software, which is a
necessity for the testing system since the simulated workflow
client application requires the workflow model in order to
identify tasks in the workflow which require interaction with
a workflow participant.

The Authentication, Access Control and Accounting (AAA)
Service of the WfMS provides additional workflow services
like access control and role management. Each task generating
work items can assign a role to the work item, restricting this
work item to participants who represent that role. Work items
without a role become available to any participant connected
to the system.

The external services of the WfMS consist of three parts.
The first service is the workflow client interface, which
manages the work item queue and distributes work items to
connected clients. The second service is the process definition
interface, which provides access to the model repository to
allow the user to add and remove workflow models. Finally,
the administration and monitoring service offers access to
administrative and monitoring functions. The monitoring func-
tions are especially critical for the testing system since they
provide feedback regarding events happening during workflow
execution.

This system provides a similar functionality to a workflow
system in production use. In addition to this basic system,
a workflow application client which simulates the behavior of
workflow participants is needed to create an automated testing
system which can execute tests of workflows without user
intervention. This client is implemented as a BDI agent which
connects to the three external service agents to the WfMS.
The agent provides a user interface to the workflow engineer,
which allows them to open the desired workflow model which

44

Figure 3. Procedure for testing workflows

is retrieved from the WfMS.

B. Client-side Workflow Model

Since it is desirable for the workflow engineer to gain an
overview of the parts of the workflow which are relevant to
interaction with workflow participants, the client agent uses
the workflow model to generate a tree representation of the
workflow model which can be seen in Figure 2. The tree
consists of a workflow node as the root node, which represents
the workflow originally opened by the workflow engineer.
If a workflow contains sub-workflows like BPMN plans, the
children of its workflow node can include further workflow
nodes representing those sub-workflows. The sub-workflow
graph of a workflow can contain cycles, for example, when a
sub-workflow uses its parent as a sub-workflow. This would
suggest a graph representation to be the natural form for
representing the workflow structure. However, cycles in the
workflow graph are rare in practice and a workflow engineer
would expect a tree form rather than a graph. Therefore the
tree representation is more desireable, nevertheless the special
case of a cyclic workflow structure should be supported. This
problem is solved with the use of link nodes. If a particular
sub-workflow is found again after having been found before,
it is represented as a link node in the tree. This link node is
a simple reference to the first occurance of the sub-workflow
in the structure and no further expansion of the tree is done
beyond this reference to avoid endless expansion.

If a workflow node is a BPMN workflow or workflow
fragment its child nodes can, in addition to sub-workflow
nodes, contain task nodes which represent tasks containing
interaction with workflow participants. Lastly, the children
of task nodes are parameter nodes, which represent typed
parameters which would ordinarily be provided by a workflow
participant.

C. Scenarios

The tree structure of a modelled workflow is presented to
the workflow engineer in graphical form in the user interface.
This allows them to define scenarios. Scenarios consist of sets
of input values for each parameter of the workflow, definition
of data collected from the workflow during the simulation and
a validation function which is used to evaluate the success of
the test and generate a report for the workflow engineer. Figure
3 demonstrates the use of scenarios in the full test procedure.

For each of the input parameters, the workflow engineer can
add multiple values depending on the type of the parameter.
The cartesian product of the input values in the scenario is used
to create tests for the workflow which means that a minimum
of a single value for each parameter is required for the scenario
to generate at least a single viable test.

The workflow engineer can also select what is monitored
during execution. This can include output values of the work-
flow, its final internal state, exceptions and the BPMN task
elements executed. These values are passed to the validation
function after execution to determine whether the test was a
success and to generate a useful report. The validation function
is also defined by the workflow engineer and included in the
scenario. The validation function is defined in advance and is
specified either by a Java class implementing the validation
functionality or alternatively through the use of a number of
configurable basic tests like comparison of result values with
expected results.

Multiple scenarios can be defined for each workflow which
can be automatically executed in succession. The total number
of required test runs of the workflow are reported to the
workflow engineer while assembling the scenarios. Since the
cartesian product of multiple parameter values in a scenario
quickly increases the complexity of the whole test, the work-
flow engineer has to carefully chose the tests and carefully
balance between adding additional scenarios for the test run
or adding additional parameter values to a single scenario.

The results of a test run can be reviewed in the report
generated by the validation functions of the scenarios and is
displayed to the workflow engineer in the client application.
In addition, several tools provided by the Jadex platform can
be used during the simulation as well. This includes and
introspector tool for investigated the state of the workflow
and a message center tool for monitoring messages between
workflows and their support systems like the WfMS and the
client application.

The next section will present an example use case for an
industrial workflow used for change management as envi-
sioned by Daimler AG and will demonstrate how the test
system can be used to find implementation errors in advance
of deployment.

V. EXAMPLE USE CASE

This section will present how the system can be used to
validate a workflow. The workflow was developed by Daimler

45

Figure 4. The goal hierarchy of the Active Change Management workflow

Group Research and represents an industrial workflow used
for change management (see [17]). Change management work-
flow coordinate the process of developing and implementing
changes for an existing product and ensures that production
line changes and adaptions of the physical geometry of the
product are performed in order to allow a smooth introduction
of the changed product.

Since the workflow is very large and complex, this section
will focus on a smaller subset of this workflow (cf. Figure 4).
This subset involves the gathering of information about the
planned change to the product, designating key personnel and
assigning required resources. The final result of this part of the
process is a description of the change request and requirements
which will be used in the later part of the workflow to perform
the change.

The process fragment contains a single goal for defining
the change request. This goal is decomposed into subgoals,
some of which contain context conditions which suspend their
execution until the context has the required state for the goal to
be adopted. Goals without further subgoals are associated with
plans which are implmented by BPMN workflow fragments.

After implementation, one of the BPMN workflow frag-
ments contained an error. The BPMN fragment containing the
error was the fragment determining the parts affected by the
change in the product. During the execution of the fragment,
the leading developer responsible for the change request is
required to enter the parts of the product which are affected
by the change. The developer has the choice to do this using
three different ways of providing this list of parts. The first
way is to provide a list of serial numbers of the affected parts.
The second way is to provide a drawing which is processed for

part information and finally, the developer can give a structured
description of the components affected by the change.

The first task lets the developer choose between those three
ways of providing the part list (cf. Figure 5). The first task
in this fragment generates a work item containing a list of
three strings which represent the choices of the developer. The
developer can select one of the strings and commits the work
item. The string is then passed to the gateway, and compared
to strings provided by the edges behind the gateway branch. If
the string matches, the process continues executing using that
path and provides the developer with a new work item which
contains the information for the chosen method of entry.

The implementation error in this part of the process was that
one of the strings provided by the edges did not match with the
corresponding string generated by the entry type selection task.
Since none of the edges on the gateway branch are marked as
default edge which would be taken if no other edge matches,
the workflow will terminate with an exception if the developer
selects the faulty choice.

This error was found using the test system. A scenario had
been created test each of the branches leaving the gateway in
this workflow fragment. For every parameter in the workflow
except the entry method choice of the developer a single
value was added to the scenario. All three possible strings
were then added to the parameter concerning the entry choice
resulting in a scenario which specifically target this branch
in the workflow (cf. Figure 6). In addition, example entries
for the part specification had been added in order to verify
the correct function of the workflow in identifying the parts
affected by the change, test corner case entry such as empty
strings for parts and test another branch in the workflow where

46

Figure 5. The leading developer of the change has three ways of providing
a list of affected parts

the developer has to confirm the list of parts or otherwise cause
a restart of the workflow fragment. The test complexity of the
scenario required 972 test runs which were executed on an
Intel i5 CPU clocked at 2.67GHz in less than a minute.

Some test runs resulted in an exception and the termination
of the workflow. This event was logged during the simulation,
including the parameter configuration used which caused the
error. This result allowed the workflow engineer to find the
fault in the workflow and correct the problem.

VI. SUMMARY AND FUTURE ENHANCEMENTS

This paper has presented a simulation-based validation
approach for workflows. The approach allows specifying exe-
cution scenarios in form of test cases, which include ranges of
input values to be tested and defined output states to be reached
for a successful execution. The approach is especially well-
suited for agile process descriptions with abstract specification
means, such that possible process execution paths cannot
easily be predicted. Nevertheless, the approach also works well
with traditional process specification languages like BPMN.
The implementation of the validation approach is based on
the process execution facilities of the Jadex active component
platform and provides additional tools for the specification,
execution and validation of scenarios. The applicability of
the approach has been exemplified by a case study from
our project partner Daimler AG. It has been shown how the
validation approach allows testing a modeled process to find
and resolve existing problems in the process description.

Two interesting areas for future work are envisaged. First,
the approach can be extended towards being used not only
for process validation, but also for process analysis and
optimization. Extending the simulation engine with elaborated
analysis tools would allow measuring the quality of processes
and benchmarking alternative processes against each other.
Second, instead of using pre-specified test cases as scenarios,
complex simulation models could be used to dynamically
produce realistic test data. E.g. for logistics management
processes, a simulation model of a supply chain could be
connected to the process engine and provide input data for
the workflow application to be tested.

Acknowledgement: We would like to thank the DFG for
supporting the technology transfer project Go4Flex.

Figure 6. The scenario for testing the entry choice branch contains all three
possible parameter values used

REFERENCES

[1] W. S. H. J. Schmelzer, Geschäftsprozessmanagement in der Praxis.
Hanser Fachbuchverlag, 2008.

[2] B. List and B. Korherr, “An evaluation of conceptual business process
modelling languages,” in SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing. New York, NY, USA: ACM, 2006,
pp. 1532–1539.

[3] H. H. Bi and J. L. Zhao, “Applying propositional logic to workflow
verification,” Information & Software Technology, vol. 5, pp. 293–318,
July 2004.

[4] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification
of web service compositions,” in 18th IEEE international conference on
automated software engineering, Montreal, Canada, 2003, 2003.

[5] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Information Systems, vol. 25, no. 2, pp. 117 –
134, 2000, the 11th International Conference on Advanced Information
System Engineering.

[6] W. M. P. v. d. Aalst, “Workflow Verification: Finding control-flow errors
using petri-net-based techniques,” in Business Process Management,
Models, Techniques, and Empirical Studies. London, UK: Springer-
Verlag, 2000, pp. 161–183.

[7] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in BPMN,” Information & Software Technology,
vol. 50, no. 12, pp. 1281–1294, 2008.

[8] L. J. Enstone and M. F. Clark, “BPMN and
Simulation,” Lanner Group Limited, 2006. [Online]. Available:
http://www.dynamic.co.kr/Witness_Training_Center/Articles/Bpmn%20-
%20simulation.pdf

[9] “iGrafx Process,” Corel Inc., 2009. [Online]. Available:
http://www.igrafx.de/products/process/index.html

[10] “Corporate Modeler Suite,” Casewise Ltd, 2009. [Online]. Available:
http://www.casewise.com/Products/CorporateModelerSuite/

[11] A.-W. Scheer and M. Nüttgens, “ARIS architecture and reference models
for business process management,” in Business Process Management,
W. van der Aalst, J. Desel, and A. Oberweis, Eds. Springer, 2000, pp.
376–389.

[12] Business Process Modeling Notation (BPMN) Specification,
Version 1.1 ed., Object Management Group (OMG), Feb.
2008. [Online]. Available: http://www.bpmn.org/Documents/BPMN_1-
1_Specification.pdf

[13] L. Braubach, A. Pokahr, K. Jander, and W. Lamersdorf, “Go4flex: Goal-
oriented process modelling,” in In Proceedings of the 4th International
Symposium on Intelligent Distributed Computing (IDC 2009). Springer,
2010.

[14] M. Bratman, Intention, Plans, and Practical Reason. Harvard Univer-
sity Press, 1987.

[15] A. Pokahr, L. Braubach, and K. Jander, “Unifying agent and component
concepts - Jadex Active Components,” in Proceedings of the 8th German
conference on Multi-Agent System TEchnologieS (MATES-2005), J. Dix
and C. Witteveen, Eds. Springer, 2010.

[16] Workflow Reference Model, Workflow Management Coalition (WfMC),
Jan. 1995. [Online]. Available: http://www.wfmc.org/reference-
model.html

[17] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa, “BDI-agents for
agile goal-oriented business processes,” in AAMAS ’08: Proceedings of
the 7th international joint conference on Autonomous agents and multi-
agent systems. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 37–44.

47

JaCa-Android: An Agent-based Platform for
Building Smart Mobile Applications

Andrea Santi
University of Bologna

Cesena, Italy
Email: a.santi@unibo.it

Marco Guidi
University of Bologna

Cesena, Italy
Email: marco.guidi7@studio.unibo.it

Alessandro Ricci
DEIS, University of Bologna

Cesena, Italy
Email: a.ricci@unibo.it

Abstract—Agent-Oriented Programming (AOP) provides an
effective level of abstraction for tackling the programming
of mainstream software applications, in particular those that
involve complexities related to concurrency, asynchronous events
management and context-sensitive behaviour. In this paper we
support this claim in practice by discussing the application of
AOP technologies – Jason and CArtAgO in particular – for the
development of smart mobile applications based on the Google
Android platform.

I. INTRODUCTION

The value of Agent-Oriented Programming (AOP) [20] – in-
cluding Multi-Agent Programming (MAP) – is often remarked
and evaluated in the context of Artificial Intelligence (AI)
and Distributed AI problems. This is evident, for instance,
by considering existing agent programming languages (see
[4], [6] for comprehensive surveys) – whose features are
typically demonstrated by considering toy problems such as
block worlds and alike.

Besides this view, we argue that the level of abstraction in-
troduced by AOP is effective for organizing and programming
software applications in general, starting from those programs
that involve aspects related to reactivity, asynchronous inter-
actions, concurrency, up to those involving different degrees
of autonomy and intelligence. Following this view, one of
our current research lines investigates the adoption and the
evaluation of existing agent-based programming languages and
technologies for the development of applications in some of
the most modern and relevant application domains. In this
context, a relevant one is represented by next generation
mobile applications. Applications of this kind are getting a
strong momentum given the diffusion of mobile devices which
are more and more powerful, in terms of computing power,
memory, connectivity, sensors and so on. Main examples are
smart-phones such as the iPhone and Android-based devices.
On the one side, smart mobile applications share more and
more features with desktop applications, and eventually ex-
tending such features with capabilities related to context-
awareness, reactivity, usability, and so on, all aspects that are
important in the context of Internet of Things and Ubiquitous
Computing scenarios. All this increases – on the other side
– the complexity required for their design and programming,
introducing aspects that – we argue – are not suitably tackled

by mainstream programming languages such as the object-
oriented ones.

So, in this paper we discuss the application of an agent-
oriented programming platform called JaCa for the develop-
ment of smart mobile applications. Actually JaCa is not a
new platform, but simply the integration of two existing agent
programming technologies: Jason [5] agent programming
language and platform, and CArtAgO [17] framework, for
programming and running the environments where agents
work. JaCa is meant to be a general-purpose programming
platform, so useful for developing software applications in
general. In order to apply JaCa to mobile computing, we
developed a porting of the platform on top of Google Android,
which we refer as JaCa-Android. Google Android is an open-
source software stack for mobile devices provided by Google
that includes an operating system (Linux-based), middleware,
SDK and key applications.

Other works in literature discuss the use of agent-based
technology on mobile devices—examples include AgentFac-
tory [13], 3APL [10], JADE [3]. Differently from these works,
here we do not consider the issue of porting agent technologies
on limited capability devices, but we focus on the advantages
brought by the adoption of agent-oriented programming level
of abstraction for the development of complex mobile appli-
cations.

The remainder of the paper is organised as follows: in
Section II we provide a brief overview of the JaCa platform
– which we consider part of the background of this paper;
then, in Section III we introduce and discuss the application
of JaCa for the development of smart mobile applications on
top of Android, and in Section IV we describe two practical
application samples useful to evaluate the approach. Finally,
in Section V we briefly discuss some open issues related
to JaCa-Android and, more generally, to the use of current
agent-oriented programming technologies for developing ap-
plications and related future works.

II. AGENT-ORIENTED PROGRAMMING FOR MAINSTREAM
APPLICATION DEVELOPMENT – THE JACA APPROACH

An application in JaCa is designed and programmed as
a set of agents which work and cooperate inside a com-
mon environment. Programming the application means then
programming the agents on the one side, encapsulating the

48

logic of control of the tasks that must be executed, and the
environment on the other side, as a first-class abstraction
providing the actions and functionalities exploited by the
agents to do their tasks. It is worth remarking that this is an
endogenous notion of environment, i.e. the environment here
is part of the software system to be developed [18].

More specifically, in JaCa Jason [5] is adopted as pro-
gramming language to implement and execute the agents and
CArtAgO [17] as the framework to program and execute the
environments.

Being a concrete implementation of an extended version
of AgentSpeak(L) [15], Jason adopts a BDI (Belief-Desire-
Intention)-based computational model and architecture to de-
fine the structure and behaviour of individual agents. In that,
agents are implemented as reactive planning systems: they run
continuously, reacting to events (e.g., perceived changes in the
environment) by executing plans given by the programmer.
Plans are courses of actions that agents commit to execute
so as to achieve their goals. The pro-active behaviour of
agents is possible through the notion of goals (desired states
of the world) that are also part of the language in which plans
are written. Besides interacting with the environment, Jason
agents can communicate by means of speech acts.

On the environment side, CArtAgO – following the A&A
meta-model [14], [19] – adopts the notion of artifact as first-
class abstraction to define the structure and behaviour of
environments and the notion of workspace as a logical con-
tainer of agents and artifacts. Artifacts explicitly represent the
environment resources and tools that agents may dynamically
instantiate, share and use, encapsulating functionalities de-
signed by the environment programmer. In order to be used by
the agents, each artifact provides a usage interface composed
by a set of operations and observable properties. Operations
correspond to the actions that the artifact makes it available
to agents to interact with such a piece of the environment;
observable properties define the observable state of the artifact,
which is represented by a set of information items whose value
(and value change) can be perceived by agents as percepts.
Besides observable properties, the execution of operations
can generate signals perceivable by agents as percepts, too.
As a principle of composability, artifacts can be assembled
together by a link mechanism, which allows for an artifact to
execute operations over another artifact. CArtAgO provides a
Java-based API to program the types of artifacts that can be
instantiated and used by agents at runtime, and then an object-
oriented data-model for defining the data structures used in
actions, observable properties and events.

The notion of workspace is used to define the topology
of complex environments, that can be organised as multiple
sub-environments, possibly distributed over the network. By
default, each workspace contains a predefined set of artifacts
created at boot time, providing basic actions to manage the
overall set of artifacts (for instance, to create, lookup, link to-
gether artifacts), to join multiple workspaces, to print messages
on the console, and so on.

JaCa integrates Jason and CArtAgO so as to make the

use of artifact-based environments by Jason agents seamless.
To this purpose, first, the overall set of external actions that a
Jason agent can perform is determined by the overall set of
artifacts that are actually available in the workspaces where
the agent is working. So, the action repertoire is dynamic and
can be changed by agents themselves by creating, disposing
artifacts. Then, the overall set of percepts that a Jason
agent can observe is given by the observable properties and
observable events of the artifacts available in the workspace
at runtime. Actually an agent can explicitly select which
artifacts to observe, by means of a specific action called
focus. By observing an artifact, artifacts’ observable properties
are directly mapped into beliefs in the belief-base, updated
automatically each time the observable properties change their
value. So a Jason agent can specify plans reacting to changes
to beliefs that concern observable properties or can select plans
according to the value of beliefs which refer to observable
properties. Artifacts’ signals instead are not mapped into the
belief-base, but processed as non persistent percepts possibly
triggering plans—like in the case of message receipt events.
Finally, the Jason data-model – essentially based on Prolog
terms – is extended to manage also (Java) objects, so as
to work with data exchanged by performing actions and
processing percepts.

A full description of Jason language/platform and
CArtAgO framework – and their integration – is out of the
scope of this paper: the interested reader can find details in
literature [17], [16] and on Jason and CArtAgO open-source
web sites12.

III. PROGRAMMING SMART MOBILE APPLICATIONS WITH
JACA

In this section we describe how JaCa’s features can be
effectively exploited to program smart mobile applications,
providing benefits over existing non-agent approaches. First,
we briefly sketch some of the complexities related to the
design and programming of such a kind of applications; then,
we describe how these are addressed in JaCa-Android—
which is the porting of JaCa on Android, extended with a
predefined set of artifacts specifically designed for exploiting
Android functionalities.

A. Programming Mobile Applications: Complexities

Mobile systems and mobile applications have gained a lot
of importance and magnitude both in research and industry
over the last years. This is mainly due to the introduction
of mobile devices such as the iPhone3 and the most modern
Android4-based devices that changed radically the concept
of smart-phone thanks to: (i) hardware specifications that
allow to compare these devices to miniaturised computers,
situated – thanks to the use of practically every kind of known
connectivity (GPS, WiFi, bluetooth, etc.) – in a computational

1http://jason.sourceforge.net
2http://cartago.sourceforge.net
3http://www.apple.com/it/iphone/
4http://www.android.com/

49

network which is becoming more and more similar to the
vision presented by both the Internet of Things and ubiquitous
computing, and (ii) the evolution of both the smart-phone O.S.
(Apple iOS, Android, Meego5) and their related SDK.

These innovations produce a twofold effect: on the one
side, they open new perspectives, opportunities and application
scenarios for these new mobile devices; on the other side,
they introduce new challenges related to the development
of the mobile applications, that are continuously increasing
their complexity [1], [11]. These applications – due to the
introduction of new usage scenarios – must be able to address
issues such as concurrency, asynchronous interactions with dif-
ferent kinds of services (Web sites/Services, social-networks,
messaging/mail clients, etc.) and must also expose a user-
centric behaviour governed by specific context information
(geographical position of the device, presence/absence of
different kinds of connectivity, events notification such as the
reception of an e-mail, etc.).

To cope with these new requirements, Google has developed
the Android SDK6, which is an object-oriented Java-based
framework meant to provide a set of useful abstractions for en-
gineering mobile applications on top of Android-enable mobile
devices. Among the main coarse-grain components introduced
by the framework to ease the application development we
mention here:

• Activities: an activity provides a GUI for one focused
endeavor the user can undertake. For example, an activity
might present a list of menu items users can choose, list
of contacts to send messages to, etc.

• Services: a service does not have a GUI and runs in the
background for an indefinite period of time. For example,
a service might play background music as the user attends
to other matters.

• Broadcast Receiver: a broadcast receiver is a component
that does nothing but receive and react to broadcast
announcements. Many broadcasts originate in system
code - for example, announcements that the timezone has
changed, that the battery is low, etc.

• Content providers: a content provider makes a specific set
of the application’s data available to other applications.
The data can be stored in the file system, in an SQLite
database, etc.

In Android, interactions among components are managed
using a messaging facility based on the concepts of Intent
and IntentFilter. An application can request the execution of
a particular operation – that could be offered by another
application or component – simply providing to the O.S. an
Intent properly characterised with the information related to
that operation. So, for example, if an application needs to
display a particular Web page, it expresses this need creating
a proper Intent instance, and then sending this instance to the
Android operating system. The O.S. will handle this request
locating a proper component – e.g. a browser – able to manage

5http://meego.com
6http://developer.android.com/sdk/index.html

that particular Intent. The set of Intents manageable by a
component are defined by specifying, for that component, a
proper set of IntentFilters.

Generally speaking, these components and the Intent-based
interaction model are useful – indeed – to organise and
structure applications; however – being the framework fully
based on an object-oriented virtual machine and language such
as Java – they do not shield programmers from using callbacks,
threads, and low-level synchronisation mechanisms as soon as
applications with complex reactive behaviour are considered.
For instance, in classic Android applications asynchronous
interactions with external resources are still managed using
polling loops or some sort of mailbox; context-dependent
behaviour must be realised staining the source code with
a multitude of if statements; concurrency issues must be
addressed using Java low-level synchronisation mechanisms.
So, more generally, we run into the problems that typically
arise in mainstream programming languages when integrating
one or multiple threads of control with the management of
asynchronous events, typically done by callbacks.

In the next section we discuss how agent-oriented program-
ming and, in particular, the JaCa programming model, are
effective to tackle these issues at a higher-level of abstraction,
making it possible to create more clear, terse and extensible
programs.

B. An Agent-oriented Approach based on JaCa

By adopting the JaCa programming model, a mobile An-
droid application can be realised as a workspace in which
Jason agents are used to encapsulate the logic and the control
of tasks involved by the mobile application, and artifacts are
used as tools for agents to seamlessly exploit available Android
device/platform components and services.

From a conceptual viewpoint, this approach makes it pos-
sible to keep the same level of abstraction – based on agent-
oriented concepts – both when designing the application and
when concretely implementing it using Jason and CArtAgO.
In this way we are able to provide developers a uniform
guideline – without conceptual gaps between the abstractions
used in the analysis and implementation phases – that drives
the whole engineering process of a mobile application.

From a programming point of view, the agent paradigm
makes it possible to tackle quite straightforwardly some of
the main challenges mentioned in previous sections, in partic-
ular: (i) task and activity oriented behaviours can be directly
mapped onto agents, possibly choosing different kinds of
concurrent architectures according to the needs—either using
multiple agents to concurrently execute tasks, or using a single
agent to manage the interleaved execution of multiple tasks;
(ii) agents’ capability of adapting the behaviour on the basis of
the current context information can be effectively exploited to
realise context-sensitive and context-dependent applications;
(iii) asynchronous interactions can be managed by properly
specifying the agents’ reactive behaviour in relation to the
reception of particular percepts (e.g. the reception of a new
e-mail).

50

JaCa
(Jason+CArtAgO)

Android Framework
(Dalvik Virtual Machine + Libraries)

Linux kernel

JaCa Android artifacts

JaCa-services
shared workspace

JaCa-Android app

SMSManager

Calendar
GPSArtifact

ActivityGUI
MyArtifact

Fig. 1. Abstract representation of the JaCa-Android platform – with in
evidence the different agent technologies on which the platform is based –
and of generic applications running on top of it.

To see this in practice, we developed a porting of JaCa
on top of Android – referred as JaCa-Android – available as
open-source project7. Fig. 1 shows an abstract representation
of the levels characterising the JaCa-Android platform and
of a generic applications running on top of it.

The platform includes a set of predefined types of artifacts
(BroadcastReceiverArtifact, ActivityArtifact,
ContentProviderArtifact, ServiceArtifact)
specifically designed to build compliant Android components.
So, standard Android components become fully-fledged
artifacts that agents and agent developers can exploit without
worrying and knowing about infrastructural issues related to
the Android SDK. This makes it possible for developers to
conceive and realise mobile applications that are seamlessly
integrated with the Android SDK, possibly interacting/re-
using every component and application developed using the
standard SDK. This integration is fundamental in order to
guarantee to developers the re-use of existing legacy – i.e.
the standard Android components and applications – and for
avoiding the development of the entire set of functionalities
required by an application from scratch.

Besides, the platform also provides a set of artifacts that
encapsulate some of the most common functionalities used
in the context of smart mobile applications. In detail these
artifacts are:

• SMSManager/MailManager, managing sms/mail-
related functionalities (send and receive sms/mail,
retrieve stored sms/mail, etc.).

• GPSManager, managing gps-related functionalities (e.g.
geolocalisation of the device).

• CallManager, providing functionalities for handling –
answer/reject – phone calls.

• ConnectivityManager, managing the access to the
different kinds of connectivity supported by the mobile
device.

7http://jaca-android.sourceforge.net

• CalendarArtifact, providing functionalities for man-
aging the built-in Google calendar.

These artifacts, being general purpose, are situated in a
workspace called jaca-services (see Fig. 1) which is shared
by all the JaCa-Android applications—being stored and
executed into a proper Android service installed with the
JaCa-Android platform. More generally, any JaCa-Android
workspace can be shared among different applications—
promoting, then, the modularisation and the reuse of the
functionalities provided by JaCa-Android applications.

In next section we discuss more in detail the benefits of
the JaCa programming model for implementing smart mobile
applications by considering two application samples that have
been developed on top of JaCa-Android.

IV. EVALUATION THROUGH PRACTICAL EXAMPLES

The first example aims at showing how the approach al-
lows for easily realising context-sensitive mobile applications.
For this purpose, we consider a JaCa-Android application
inspired to Locale8, one of the most famous Android ap-
plications and also one of the winners of the first Android
Developer Contest9. This application (JaCa-Locale) can be
considered as a sort of intelligent smart-phone manager re-
alised using a simple Jason agent. The agent during its
execution uses some of the built-in JaCa-Android artifacts
described in Section III and two application-specific artifacts:
a PhoneSettingsManager artifact used for managing the
device ringtone/vibration and the ContactManager used for
managing the list of contacts stored into the smart-phone
(this list is an observable property of the artifact, so directly
mapped into agents beliefs). The agent manages the smart-
phone behaviour discriminating the execution of its plans on
the basis of a comparison among its actual context information
and a set of user preferences that are specified into the agent’s
plans contexts. TABLE I reports a snipped of the Jason
agent used in JaCa-Locale, in particular the plans shown in
TABLE I are the ones responsible of the context-dependent
management of the incoming phone calls.

The behaviour of the agent, once completed the initialisation
phase (lines 00-07), is governed by a set of reactive plans. The
first two plans (lines 9-15) are used for regulating the ringtone
level and the vibration for the incoming calls on the basis of
the notifications provided by the CalandarArtifact about
the start or the end of an event stored into the user calendar.
Instead, the behaviour related to the handling of the incoming
calls is managed by the two reactive plans incoming_call

(lines 17-28). The first one (lines 17-19) is applicable when
a new incoming call arrives and the phone owner is not
busy, or when the incoming call is considered critical. In
this case the agent normally handles the incoming call – the
ringtone/vibration settings have already been regulated by the
plans at lines 9-15 – using the handle_call operation pro-
vided by the CallManager artifact. The second plan instead

8http://www.twofortyfouram.com/
9http://code.google.com/intl/it-IT/android/adc/

51

00 !init.
01
02 +!init
03 <- focus("SMSManager"); focus("MailManager");
04 focus("CallManager"); focus("ContactManager");
05 focus("CalendarArtifact");
06 focus("PhoneSettingsManager");
07 focus("ConnectivityManager").
08
09 +cal_event_start(EventInfo) : true
10 <- set_ringtone_volume(0);
11 set_vibration(on).
12
13 +cal_event_end(EventInfo) : true
14 <- set_ringtone_volume(100);
15 set_vibration(off).
16
17 +incoming_call(Contact, TimeStamp)
18 : not busy(TimeStamp) | is_call_critical(Contact)
19 <- handle_call.
20
21 +incoming_call(Contact, TimeStamp)
22 : busy(TimeStamp) & not is_call_critical(Contact)
23 <- get_event_description(TimeStamp,EventDescription);
24 drop_call;
25 .concat("Sorry, I’m busy due
26 to", EventDescription, "I will call you back
27 as soon as possible.", OutStr);
28 !handle_auto_reply(OutStr).
29
30 +!handle_auto_reply(Reason) : wifi_status(on)
31 <- send_mail("Auto-reply", Reason).
32
33 +!handle_auto_reply(Reason): wifi_status(off)
34 <- send_sms(Reason).

TABLE I
SOURCE CODE SNIPPET OF THE JACA-LOCALE Jason AGENT

(lines 21-28) is applicable when the user is busy and the call
does not come from a relevant contact. In this case the phone
call is automatically rejected using the drop_call operation
of the CallManager artifact (line 24), and an auto-reply mes-
sage containing the motivation of the user unavailability is sent
back to the contact that performed the call. This notification is
sent – using one of the handle_auto_reply plans (lines 30-
34) – via sms or via mail (using respectively the SMSManager
or the MailManager) depending on the current availability
of the WiFi connection on the mobile device (availability
checked using the wifi_status observable property of the
ConnectivityManager). It is worth remarking that busy

and is_call_critical refer to rules – not reported in the
source code – used for checking respectively: (i) if the phone
owner is busy – by checking the belief related to one of the
CalendarArtifact observable properties (current_app) –
or (ii) if the call is critical – by checking if the call comes from
one of the contact in the ContactManager list considered
critical: e.g. the user boss/wife.

Generalising the example, context-sensitive applications can
be designed and programmed in terms of one or more agents
with proper plans that are executed only when the specific
context conditions hold.

The example is useful also for highlighting the benefits
introduced by artifact-based endogenous environments: (i) it
makes it possible to represent and exploit platform/device
functionalities at an agent level of abstractions – so in terms
of actions and perceptions, modularised into artifacts; (ii) it
provides a strong separation of concerns, in that developers

Fig. 2. Screenshot of the SmartNavigator application that integrate in its
GUI some of the Google Maps components for showing: (i) the user current
position, (ii) the road directions, and (iii) the route to the designed destination.

can fully separate the code that defines the control logic of
the application (into agents) from the reusable functionalities
(embedded into artifacts) that are need by the application,
making agents’ source code more dry.

The second application sample – called SmartNavigator

(see Fig. 2 for a screenshot) – aims at showing the effective-
ness of the approach in managing asynchronous interactions
with external resources, such as – for example – Web Services.
This application is a sort of smart navigator able to assist
the user during his trips in an intelligent way, taking into the
account the current traffic conditions.

The application is realised using a single Jason agent
and four different artifacts: (i) the GPSManager used for the
smart-phone geolocalisation, (ii) the GoogleMapsArtifact,
an artifact specifically developed for this application, used for
encapsulating the functionalities provided by Google Maps
(e.g. calculate a route, show points of interest on a map,
etc.), (iii) the SmartNavigatorGUI, an artifact developed on
the basis of the ActivityArtifact and some other Google
Maps components, used for realizing the GUI of the appli-
cation and (iv) an artifact, TrafficConditionsNotifier,
used for managing the interactions with a Web site10 that

10http://www.stradeanas.it/traffico/

52

provides real-time traffic information.
TABLE II shows a snippet of the agent source code.

The agent main goal assist_user_trips is managed by
a set of reactive plans that are structured in a hierarchy
of sub-goals – handled by a set of proper sub-plans. The
agent has a set of initial beliefs (lines 00-01) and an initial
plan (lines 5-9) that manages the initialisation of the arti-
facts that will be used by the agent during its execution.
The first plan, reported at lines 11-12, is executed after
the reception of an event related to the modification of
the SmartNavigatorGUI route observable property – a
property that contains both the starting and arriving locations
provided in input by the user. The handling of this event is
managed by the handle_navigation plan that: (i) retrieves
(line 15) and updates the appropriate agent beliefs (line 16
and 19), (ii) computes the route using an operation provided
by the GoogleMapsArtifact (calculate_route lines 17-
18), (iii) makes the subscription – for the route of interest
– to the Web site that provides the traffic information using
the TrafficConditionsNotifier (lines 20-21), and finally
(iv) updates the map showed by the application (using the
SmartNavigatorGUI operations set_current_position

and update_map, lines 22-23) with both the current position
of the mobile device (provided by the observable property
current_position of the GPSManager) and the new route.

In the case that no meaningful changes occur in the traf-
fic conditions and the user strictly follows the indications
provided by the SmartNavigator, the map displayed in
the application GUI will be updated, until arriving to the
designed destination, simply moving the current position of
the mobile device using the plan reported at lines 34-38.
This plan, activated by a change of the observable property
current_position, simply considers (using the sub-plan
check_position_consistency instantiated at line 36, not
reported for simplicity) if the new device position is consistent
with the current route (retrieved from the agent beliefs at
line 35) before updating the map with the new geolocation
information (line 37-38). In the case in which the new position
is not consistent – i.e. the user chose the wrong direction – the
sub-plan check_position_consistency fails. This fail is
handled by a proper Jason failure handling plan (lines 40-42)
that simply re-instantiate the handle_navigation plan for
computing a new route able to bring the user to the desired
destination from his current position (that was not considered
in the previous route).

Finally, the new_traffic_info plan (lines 25-32) is worth
of particular attention. This is the reactive plan that manages
the reception of the updates related to the traffic conditions.
If the new information are considered relevant with respect
to the user preferences (sub-plan check_info_relevance

instantiated at line 28 and not shown) then, on the basis of
this information, the current route (sub-plan update_route

instantiated at lines 29-30), the Web site subscription (sub-plan
update_subscription instantiated at line 31), and finally
the map displayed on the GUI (line 32) are updated.

So, this example shows how it is possible to integrate the

00 preferences([...]).
01 relevance_range(10).
02
03 !assist_user_trips.
04
05 +!assist_user_trips
06 <- focus("GPSManager");
07 focus("GoogleMapsArtifact");
08 focus("SmartNavigatorGUI");
09 focus("TrafficConditionsNotifier").
10
11 +route(StartLocation, EndLocation)
12 <- !handle_navigation(StartLocation, EndLocation).
13
14 +!handle_navigation(StartLocation, EndLocation)
15 <- ?relevance_range(Range); ?current_position(Pos);
16 -+leaving(StartLocation);-+arriving(EndLocation);
17 calculate_route(StartLocation,
18 EndLocation, OutputRoute);
19 -+route(OutputRoute);
20 subscribe_for_traffic_condition(OutputRoute,
21 Range);
22 set_current_position(Pos);
23 update_map.
24
25 +new_traffic_info(TrafficInfo)
26 <- ?preferences(Preferences);
27 ?leaving(StartLocation); ?arriving(EndLocation);
28 !check_info_relevance(TraffincInfo,Preferences);
29 !update_route(StartLocation, EndLocation,
30 TrafficInfo, NewRoute);
31 !update_subscription(NewRoute);
32 update_map.
33
34 +current_position(Pos)
35 <- ?route(Route);
36 !check_position_consistency(Pos, Route);
37 set_current_position(Pos);
38 update_map.
39
40 -!check_position_consistency(Pos, Route)
41 : arriving(EndLocation)
42 <- !handle_navigation(Pos, EndLocation).

TABLE II
SOURCE CODE SNIPPET OF THE SMARTNAVIGATOR JASON AGENT

reactive behaviour of a JaCa-Android application – in this
example the asynchronous reception of information from a
certain source – with its pro-active behaviour — assisting the
user during his trips. This integration allows to easily modify
and adapt the pro-active behaviour of an application after the
reception of new events that can be handled by proper reactive
plans: in this example, the reception of the traffic updates can
lead the SmartNavigator to consider a new route for the
trip on the basis of the new information.

V. OPEN ISSUES AND FUTURE WORK

Besides the advantages described in previous section, the
application of current agent programming technologies to the
development of concrete software systems such as mobile
applications have been useful to focus some main weaknesses
that these technologies currently have to this end. Here we
have identified three general issues that will be subject of
future work:

(i) Devising of a notion of type for agents and artifacts
— current agent programming languages and technologies
lack of a notion of type as the one found in mainstream
programming languages and this makes the development of
large system hard and error-prone. This would make it possible
to detect many errors at compile time, allowing for strongly
reducing the development time and enhancing the safety of

53

the developed system. In JaCa we have a notion of type just
for artifacts: however it is based on the lower OO layer and
so not expressive enough to characterise at a proper level of
abstraction the features of environment programming.

(ii) Improving modularity in agent definition — this is a
main issue already recognised in the literature [7], [8], [9],
where constructs such as capabilities have been proposed
to this end. Jason still lacks of a construct to properly
modularise and structure the set of plans defining an agent’s
behaviour —a recent proposal is described here [12].

(iii) Improving the integration with the OO layer — To
represent data structures, Jason – as well as the majority of
agent programming languages – adopts Prolog terms, which
are very effective to support mechanisms such as unification,
but quite weak – from an abstraction and expressiveness
point of view – to deal with complex data structures. Main
agent frameworks (not languages) in Agent-Oriented Software
Engineering contexts – such as Jade [2] or JACK11 – adopt
object-oriented data models, typically exploiting the one of
existing OO languages (such as Java). By integrating Jason
with CArtAgO, we introduced a first support to work with an
object-oriented data model, in particular to access and create
objects that are exchanged as parameters in actions/percepts.
However, it is just a first integration level and some important
aspects – such as the use of unification with object-oriented
data structures – are still not tackled.

Finally, concerning the specific mobile application context,
JaCa-Android is just a prototype and indeed needs further
development for stressing more in depth the benefits provided
by agent-oriented programming compared to mainstream non-
agent platforms. Therefore, in future works we aim at improv-
ing JaCa-Android in order to tackle some other important fea-
tures of modern mobile applications such as the smart use of
the battery and the efficient management of the computational
workload of the device.

VI. CONCLUSION

To conclude, we believe that agent-oriented programming –
including multi-agent programming – would provide a suitable
level of abstraction for tackling the development of com-
plex software applications, extending traditional programming
paradigms such as the Object-Oriented to deal with aspects
such as concurrency, reactiveness, asynchronous interaction
managements, dynamism and so on. In this paper, in particular,
we showed the advantages of applying such an approach to
the development of smart mobile applications on the Google
Android platform, exploiting the JaCa integrated platform.
However, we argue that in order to stress and investigate
the full value of the agent-oriented approach to this end,
further work is need to extend current agent languages and
technologies – or to devise new ones – tackling main aspects
that have not been considered so far, being not related to AI
but to the principles of software development. This is the core
of our current and future work.

11http://www.agent-software.com

REFERENCES

[1] A. Battestini, C. Del Rosso, A. Flanagan, and M. Miettinen. Creating
next generation applications and services for mobile devices: Challenges
and opportunities. In EEE 18th Int. Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2007, pages 1 –4, 3-7 2007.

[2] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[3] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and M. Schlichte.
Porting distributed agent-middleware to small mobile devices. In
AAMAS Workshop on Ubiquitous Agents on Embedded, Wearable and
Mobile Devices.

[4] R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications (vol. 1).
Springer, 2005.

[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[6] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.
Multi-Agent Programming: Languages, Platforms and Applications (vol.
2). Springer Berlin / Heidelberg, 2009.

[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability
concept for flexible BDI agent modularization. In Programming Multi-
Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.

[8] M. Dastani, C. Mol, and B. Steunebrink. Modularity in agent program-
ming languages: An illustration in extended 2APL. In Proceedings of
the 11th Pacific Rim Int. Conference on Multi-Agent Systems (PRIMA
2008), volume 5357 of LNCS, pages 139–152. Springer, 2008.

[9] K. Hindriks. Modules as policy-based intentions: Modular agent
programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[10] F. Koch, J.-J. C. Meyer, F. Dignum, and I. Rahwan. Programming
deliberative agents for mobile services: The 3apl-m platform. In
PROMAS, pages 222–235, 2005.

[11] B. König-Ries. Challenges in mobile application development. it -
Information Technology, 51(2):69–71, 2009.

[12] N. Madden and B. Logan. Modularity and compositionality in Jason.
In Proceedings of Int. Workshop Programming Multi-Agent Systems
(ProMAS 2009). 2009.

[13] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady. Agent
factory micro edition: A framework for ambient applications. In Int.
Conference on Computational Science (3), pages 727–734, 2006.

[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[15] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable
language. In MAAMAW ’96: Proceedings of the 7th European workshop
on Modelling autonomous agents in a multi-agent world : agents
breaking away, pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag
New York, Inc.

[16] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference
on Agents and Multi Agents Systems (AAMAS08), 2008.

[17] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-
gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[18] A. Ricci, A. Santi, and M. Piunti. Action and perception in multi-agent
programming languages: From exogenous to endogenous environments.
In Proceedings of the Int. Workshop on Programming Multi-Agent
Systems (ProMAS’10), Toronto, Canada, 2010.

[19] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer Berlin / Heidelberg, 2007.

[20] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

54

Exploiting Agent-Oriented Programming for
Building Advanced Web 2.0 Applications

Mattia Minotti
University of Bologna

Cesena, Italy
Email: mattia.minotti@studio.unibo.it

Andrea Santi
DEIS, University of Bologna

Cesena, Italy
Email: a.santi@unibo.it

Alessandro Ricci
DEIS, University of Bologna

Cesena, Italy
Email: a.ricci@unibo.it

Abstract—We believe that agent-oriented programming lan-
guages and multi-agent programming technologies provide an
effective level of abstraction for tackling the design and pro-
gramming of mainstream software applications, besides being
techniques effective for dealing with (Distributed) Artificial
Intelligence problems. In this paper we support this claim in
practice by discussing the use of a platform integrating two main
agent programming technologies – Jason agent programming
language and CArtAgO environment programming framework
– to the development of Web 2.0 applications. Following the
cloud computing perspective, these kinds of applications will
more and more replace desktop applications, exploiting the Web
infrastructure as a common distributed operating system, raising
however challenges that are not effectively tackled – we argue
– by mainstream programming paradigms, such as the object-
oriented one.

I. INTRODUCTION

The value of Agent-Oriented Programming (AOP) [21] – in-
cluding Multi-Agent Programming (MAP) – is often remarked
and evaluated in the context of Artificial Intelligence (AI)
and Distributed AI problems. This is evident, for instance, by
considering existing agent programming languages (see [6],
[7] for comprehensive surveys) – whose features are typically
demonstrated by considering AI toy problems such as block
worlds and alike. Besides this view, we argue that the level
of abstraction introduced by AOP is effective for organizing
and programming software applications in general, starting
from those programs that involve aspects related to reactivity,
asynchronous interactions, concurrency, up to those involving
different degrees of autonomy and intelligence. In that context,
an important example is given by Web 2.0 applications,
which share more and more features with desktop applications,
combining their better user experience with all the benefits
provided by the Web, such as distribution, openness and
accessibility. Applications of this kind are at the core of the
cloud computing vision.

In this paper we show this idea in practice by describing
a platform for developing Web 2.0 applications using agent
programming technologies, in particular Jason for program-
ming agents and CArtAgO for programming the environments
where agents work. We refer to the integrated use of Jason
and CArtAgO as JaCa and its application for building Web
2.0 application as JaCa-Web. Besides describing the plat-
form, our aim here is to discuss the key points that make

JaCa and – more generally – agent-oriented programming a
suitable paradigm for tackling main complexities of software
applications, advanced Web applications in this case, that
– we argue – are not properly addressed by mainstream
programming languages, such as object-oriented ones. In that,
this work extends a previous one [12] where we adopted a
Java-based framework called simpA [20] to this end, replaced
in this paper Jason so as to exploit the features provided by
the Belief-Desire-Intention (BDI) architecture.

The remainder of the paper is organised as follows. First, we
provide a brief overview of JaCa (Section II) programming
model and platform. Then, we discuss the use of JaCa for
developing Web 2.0 applications (Section III), remarking the
advantages compared to existing state-of-the art approaches.
To evaluate the approach, we describe the design and imple-
mentation of a case study (Section IV), and we conclude the
paper by discussing related and future work (Section V).

II. AGENT-ORIENTED PROGRAMMING FOR MAINSTREAM
APPLICATION DEVELOPMENT – THE JaCa APPROACH

An application in JaCa is designed and programmed as
a set of agents which work and cooperate inside a com-
mon environment. Programming the application means then
programming the agents on the one side, encapsulating the
logic of control of the tasks that must be executed, and
the environment on the other side, as first-class abstraction
providing the actions and functionalities exploited by the
agents to do their tasks. More specifically, in JaCa Jason [5]
is adopted as programming language to implement and execute
the agents and CArtAgO [18] as the framework to program
and execute the computational environments where agents are
situated.

Being a concrete implementation of an extended version
of AgentSpeak(L) [16], Jason adopts a BDI (Belief-Desire-
Intention)-based computational model and architecture to de-
fine the structure and behaviour of individual agents. In that,
agents are implemented as reactive planning systems: they run
continuously, reacting to events (e.g., perceived changes in the
environment) by executing plans given by the programmer.
Plans are courses of actions that agents commit to execute
so as to achieve their goals. The pro-active behaviour of
agents is possible through the notion of goals (desired states
of the world) that are also part of the language in which plans

55

are written. Besides interacting with the environment, Jason
agents can communicate by means of speech acts.

On the environment side, CArtAgO – following the A&A
meta-model [13], [19] – adopts the notion of artifact as first-
class abstraction to define the structure and behaviour of such
computational environments and the notion of workspace as a
logical container of agents and artifacts. Artifacts explicitly
represent the resources and tools that agents may dynami-
cally instantiate, share and use, encapsulating functionalities
designed by the environment programmer. In order to be used
by the agents, each artifact provides of a usage interface
composed by a set of operations and observable properties.
Operations correspond to the actions that the artifact makes
it available to agents to interact with such a piece of the
environment; observable properties define the observable state
of the artifact, which is represented by a set of information
items whose value (and value change) can be perceived by
agents as percepts. Besides observable properties, the execu-
tion of operations can generate signals perceivable by agents as
percepts, too. As a principle of composability, artifacts can be
assembled together by a link mechanism, which allows for an
artifact to execute operations over another artifact. CArtAgO
provides a Java-based API to program the types of artifacts that
can be instantiated and used by agents at runtime, and then
an object-oriented data-model for defining the data structures
in actions, observable properties and events.

Finally, the notion of workspace is used to define the
topology of complex environments, that can be organised
as multiple sub-environments, possibly distributed over the
network. By default, each workspace contains a predefined
set of artifact created at boot time, providing basic actions to
manage the set of artifacts in the workspace – for instance,
to create, lookup, link together artifacts – to join multiple
workspaces, to print message on the console, and so on.

JaCa integrates Jason and CArtAgO so as to make the
use of artifact-based environments by Jason agents seamless.
To this purpose, first, the overall set of external actions that a
Jason agent can perform is determined by the overall set of
artifacts that are actually available in the workspaces where
the agent is working. So, the action repertoire is dynamic and
can be changed by agents themselves by creating, disposing
artifacts. Then, the overall set of percepts that a Jason
agent can observe is given by the observable properties and
observable events of the artifacts available in the workspace at
runtime. Actually an agent can explicitly select which artifacts
to observe, by means of a specific action called focus. By ob-
serving an artifact, artifacts’ observable properties are directly
mapped into beliefs in the belief-base, updated automatically
each time the observable property changes its value. So a
Jason agent can specify plans reacting to changes to beliefs
that concern observable properties or can select plan according
to the value of beliefs which refer to observable properties.
Artifacts’ signals instead are not mapped into the belief base,
but processed as non persistent percepts possibly triggering
plans—like in the case of message receipt events. Finally, the
Jason data-model – essentially based on Prolog terms – is

extended to manage also (Java) objects, so as to work with data
exchanged by performing actions and processing percepts.

A full description of Jason language/platform and
CArtAgO framework – and their integration – is out of the
scope of this paper: the interested reader can find details in
literature [18], [17] and on Jason and CArtAgO open-source
web sites12.

III. PROGRAMMING WEB 2.0 APPLICATIONS WITH JaCa

In this section, we describe how the features of JaCa can be
exploited to program complex Web 2.0 applications, providing
benefits over existing approaches. First, we sketch the main
complexities related to the design and programming of modern
and future web applications; then we describe how these are
addressed by JaCa-Web, which is a framework on top of
JaCa to develop such a kind of applications.

A. Programming Future Web Applications: Complexities

Due to network speed problems overcoming and machine
computational power increasing, the client-side of so-called
rich web applications is constantly evolving in terms of com-
plexity. Web 2.0 applications share more and more features
with desktop applications in order to combine their better
user experience with all Web benefits, such as distribution,
openness and accessibility. One of the most important features
of Web 2.0 is a new interaction model between the client
user interface of a Web browser and the server-side of the
application. Such rich Web applications allow the client to
send multiple concurrent requests in an asynchronous way,
avoiding complete page reload and keeping the user interface
live and responding. Periodic activities within the client-side
of the applications can be performed in the same fashion, with
clear advantages in terms of perceived performance, efficiency
and interactivity.

So the more complex web apps are considered, the more
the application logic put on the client side becomes richer,
eventually including asynchronous interactions – with the user,
with remote services – and possibly also concurrency – due to
the concurrent interaction with multiple remote services. This
situation is exemplified by cloud computing applications, such
as Google doc3.

The direction of decentralizing responsibilities to the client
is evident also by considering the new HTML standard 5.0,
which enriches the set of API and features that can be used
by the web application on the client side4. Among the others,
some can have a strong impact on the way an application
is designed: it is the case of the Web Worker mechanism5,
which makes it possible to spawn background workers running
scripts in parallel to their main page, allowing for thread-like
operation with message-passing as coordination mechanism.

1http://jason.sourceforge.net
2http://cartago.sourceforge.net
3http://docs.google.com
4http://dev.w3.org/html5/spec/
5http://www.whatwg.org/specs/web-workers/current-work/

56

nextNum

8

checkPrime

100maxnum
4nprimes

incPrimes

current
myPage

PrimeSearcher

PrimeSearcher

primeService1

primeService2

checkPrime

User

HTTP

RemotePrimeServicenumGen

Jason CArtAgO

Java Virtual Machine

Browser

Web tech
(JavaScript,

LiveConnect, ...)

JaCa-Web Artifacts

prime-app-workspace

checkPrime

Fig. 1. An abstract overview of a JaCa-Web application, referring in particular to the toy example described in the paper. In evidence: (Top) the workspace
with the agents (circles) and artifacts (rounded square); among the artifacts, myPage and primeService1 enable and rule the interaction with the external
environment sources, namely the human user and the remote HTTP service; (Bottom) the layers composing the JaCa-Web platform, which includes – on
top of the Java Virtual Machine and browser/web infrastructure – Jason and CArtAgO sub-system and then a pre-defined library of artifacts (JaCa-Web
artifacts) specifically designed for the Web context.

Another one is cross-document messaging6, which defines
mechanisms for communicating between browsing contexts in
HTML documents.

Besides devising enabling mechanisms, a main issue is then
how to design and program applications of this kind [11].

A basic and standard way to realise the client side of web
app is to embed in the page scripts written in some scripting
language – such as JavaScript. Originally such scripts were
meant just to perform check on the inputs and to create
visual effects. The problem is that scripting languages – like
JavaScript – have not been designed for programming in the
large, so using them to organize, design, implements complex
programs is hard and error-prone.

To address the problems related to scripting languages,
higher-level approaches have been proposed, based on frame-
works that exploit mainstream object-oriented programming
languages. A main example is Google Web Toolkit (GWT)7,
which allows for developing client-side apps with Java. This
choice makes it possible to reuse and exploit all the strength
of mainstream programming-in-the-large languages that are
typically not provided by scripting languages—an example
is strong typing. However it does not provide significant
improvement for those aspects that are still an issue for OO
programming languages, such as concurrency, asynchronous
events and interactions, and so on.

We argue then that these aspects can be effectively cap-
tured by adopting an agent-oriented level of abstraction and
programmed by exploiting agent-oriented technologies such as
JaCa: in next section we discuss this point in detail.

6http://dev.w3.org/html5/postmsg/
7http://code.google.com/webtoolkit/

B. An Agent-Oriented Programming Approach based on JaCa

By exploiting JaCa, we directly program the Web 2.0
application as a normal JaCa agent program, composed by
a workspace with one or multiple agents working within an
artifact-based environment including a set of pre-defined type
of artifacts specifically designed for the Web context domain
(see Fig. 1). Generally speaking, agents are used to encapsulate
the logic of control and execution of the tasks that characterise
the Web 2.0 app, while artifacts are used to implement the
environment needed for executing the tasks, including those
coordination artifacts that can ease the coordination of the
agents’ work. As soon as the page is downloaded by the
browser, the application is launched – creating the workspace,
the initial set of agents and artifacts.

Among the pre-defined types of artifact available in the
workspace, two main ones are the Page artifact and the
HTTPService artifact. Page provides a twofold functionality to
agents: (i) to access and change the web page, internally ex-
ploiting specific low-level technology to work with the DOM
(Document Object Model) object, allowing for dynamically
updating its content, structure, and visualisation style; (ii) to
make events related to user’s actions on the page observable to
agents as percepts. An application may either exploit directly
Page or define its own extension with specific operations and
observable properties linked to the specific content of the
page. HTTPService provides basic functionalities to interact
with a remote HTTP service, exploiting and hiding the use of
sockets and low-level mechanisms. Analogously to Page, this
kind of artifact can be used as it is – providing actions to do
HTTP requests – or can be extended providing an higher-level
application specific usage interface hiding the HTTP level.

To exemplify the description of these elements and of JaCa-

57

Web programming in the overall, in the following we consider
a toy example of Web 2.0 app, in which two agents are used
to search for prime numbers up to a maximum value which
can specified and dynamically changed by the user through the
web page. As soon as an agent finds a new prime number, a
field on the the web page reporting the total number of values
is updated.

The environment (shown in Fig. 1) includes – besides
the artifact representing the page, called here myPage – an
artifact called numGen, functioning as a number generator,
shared and used by agents to get the numbers to verify,
and two artifacts, primeService1 and primeService2,
providing the (same) functionality that is verifying if a number
is prime.
myPage is an instance of MyPage extending the basic Page

artifact so as to be application specific, by: (i) defining an
observable property maxnum whose value is directly linked to
the related input field on the web page; (ii) generating start
and stop signals as soon as the page button controls start
and stop are pressed; (ii) defining an operation incPrimes
that updates the output field of the page reporting the actual
number of prime numbers found.
numGen is an instance of the NumGen artifact (see Fig. 3),

which provides an action getNextNum to generate a new
number – retrieved as output (i.e. action feedback) parameter.

The two prime number service artifacts provide the
same usage interface, composed by a checkPrime(num:
integer) action, which generates an observable event
is_prime(num: integer) if the number is found
to be prime. One artifact does the computation locally
(LocalPrimeService); the other one, instead – which is
an instance of RemotePrimeService, extending the pre-
defined HTTPService artifact – provides the functionality by
interacting with a remote HTTP service.

Fig. 2 shows the source code of one of the two agents.
After having set up the tools needed to work, the agent waits
to perceive a start event generated by the page. Then, it
starts working, repeatedly getting a new number to check –
by executing a getNextNum – until the maximum number is
achieved. The agent knows such a maximum value by means
of the maxnum page observable property—which is mapped
onto the related agent belief. The agent checks the number
by performing the action checkPrime and then reacting
to is_prime(Num: integer) event, updating the page
by performing incPrimes. If a stop event is perceived –
which means that the user pressed the stop button on the Web
page – the agent promptly reacts and stops working, dropping
its main intention.

A final note about implementation: Java applet technology
is used to run the full application stack (including Jason
and CArtAgO) in the browser, using signed applets so to
avoid limitations imposed by the sandbox model. LiveConnect
technology8 is exploited to enable a bi-direction interaction
between the applet and the web page resources (DOM, scripts).

8https://jdk6.dev.java.net/plugin2/liveconnect/

00 !setup.
01
02 +!setup
03 <- focusByName("MyPage");
04 makeArtifact("primeService1",

"RemotePrimeService");
05 makeArtifact("numGen","NumGen").
06
07 +start
08 <- focusByName("primeService1");
09 focusByName("numGen");
10 !!checkPrimes.
11
12 +!checkPrimes
13 <- nextNum(Num);
14 !checkNum(Num).
15
16 +!checkNum(Num): maxnum(Max) & Num <= Max
18 <- checkPrime(Num);
18 !checkPrimes.
19
20 +!checkNum(Num) <- maxnum(Max) & Num > Max.
21
22 +is_prime(Num) <- incPrimes.
23
24 +stop <- .drop_intention(checkPrimes).

Fig. 2. Jason source code of a prime searcher agent.

public class MyPage extends PageArtifact {
protected void setup() {
defineObsProperty("maxnum",getMaxValue());
//Operation for event propagation
linkEventToOp("start","click","startClicked");
linkEventToOp("stop","click","stopClicked");
linkEventToOp("maxnum","change","maxnumChange");

}
@OPERATION void incPrimes(){
Elem el = getElementById("primes_found");
el.setValue(el.intValue()+1);

}
@INTERNAL_OPERATION private void startClicked(){
signal("start");

}
@INTERNAL_OPERATION private void stopClicked(){
signal("stop");

}
@INTERNAL_OPERATION private void maxnumChange(){
updateObsProperty("maxnum",getMaxValue());

}
private int getMaxValue(){
return getElementById("maxnum").intValue();

}
}

public class RemotePrimeService extends HTTPService {

@OPERATION void checkPrime(double n){
HTTPResponse res =

doHTTPRequest(serverAddr,"isPrime",n);
if (res.getElem("is_prime").equals("true")){

signal("is_prime",n);
}

}
}

public class NumGen extends Artifact {
void init(){ defineObsProperty("current",0); }

@OPERATION void nextNum(OpFeedbackParam<Integer> res){
int v = getObsProperty("current").intValue();
updateObsProperty("current",++v);
res.set(v);

}
}

Fig. 3. Artifacts’ definition in CArtAgO: MyPage and
RemotePrimeService extending respectively PageArtifact
and HTTPService artifact types which are available by default in
JaCa-Web workspaces, and NumGen to coordinate number generation and
sharing.

58

C. Key points

We have identified three key points that, in our opinion,
represent main benefits of adopting agent-oriented program-
ming and, in particular, the JaCa-Web programming model,
for developing applications of this kind.

First, agents are first-class abstractions for mapping possibly
concurrent tasks identified at the design level, so reducing
the gap from design to implementation. The approach allows
for choosing the more appropriate concurrent architecture,
allocating more tasks to the same kind of agent or defining
multiple kind of agents working concurrently. This allows
for easily programming Web 2.0 concurrent applications, that
are able to exploit parallel hardware on the client side (such
as multi-core architectures). In the example, two agents are
used to fairly divide the overall job and work concurrently,
exploiting the number generator artifact as a coordination tool
to share the sequence of numbers. Actually, changing the
solution by using a single agent or more than two agents would
not require any substantial change in the code.

A second key point provided by the agent control architec-
ture is the capability of defining task-oriented computational
behaviours that straightforwardly integrate the management of
asynchronous events generated by the environment – such as
the input of the user or the responses retrieved from remote
services – and the management of workflows of possibly
articulated activities, which can be organized and structured
in plans and sub-plans. This makes it possible to avoid the
typical problems produced by the use of callbacks – that can
be referred as asynchronous spaghetti code – to manage events
within programs that need – at the same time – to have one
or multiple threads of control.

In the prime searcher agent shown in the example, for
instance, on the one hand we use a plan handling the
checkPrimes goal to pro-actively search for prime num-
bers. The plan is structured then into a subgoal checkNum to
process the number retrieved by interacting with the number
generator. Then, the plan executed to handle this subgoal
depends on the dynamic condition of the system: if the number
to process is greater than the current value of the maxnum
page observable property (i.e. of its related agent belief), then
no checks are done and the goal is achieved; otherwise, the
number is checked by exploiting a prime service available
in the environment and the a new checkPrimes goal is
issued to go on exploring the rest of the numbers. The user
can dynamically change the value of the maximum number to
explore, and this is promptly perceived by the agents which
can change then their course of actions accordingly. On the
other hand, reactive plans are used to process asynchronous
events from the environment, in particular to process incoming
results from prime services (line 22) and user input to stop the
research (line 24).

Finally, the third aspect concerns the strong separation of
concerns which is obtained by exploiting the environment as
first class abstraction. Jason agents, on the one side, encap-
sulates solely the logic and control of tasks execution; on the

other side, basic low-level mechanisms to interact and exploit
the Web infrastructure are wrapped inside artifacts, whose
functionalities are seamlessly exploited by agents in terms of
actions (operations) and percepts (observable properties and
events). Also, application specific artifacts – such as NumGen
– can be designed to both encapsulate shared data structures
useful for agents’ work and regulate their access by agents,
functioning as a coordination mechanism.

IV. A CASE STUDY

To stress the features of agent-oriented programming and
test-drive the capabilities of the JaCa-Web framework, we
developed a real-world Web application – with features that
go beyond the ones that are typically found in current Web
2.0 app. The application is about searching products and
comparing prices from multiple services, a “classic” problem
ton the Web.

We imagine the existence of N services that offer product
lists with features and prices, codified in some standard
machine-readable format. The client-side in the Web applica-
tion needs to search all services for a product that satisfies a set
of user-defined parameters and has a price inferior to a certain
user-defined threshold. The client also needs to periodically
monitor services so as to search for new offerings of the
same product. A new offering satisfying the constraints should
be visualised only when its price is more convenient than
the currently best price. The client may finish its search and
monitoring activities when some user-defined conditions are
met—a certain amount of time is elapsed, a product with
a price less than a specified threshold is find, or the user
interrupts the search with a click on a proper button in the
page displayed by the browser. Finally, if such an interruption
took place, by pressing another button it must be possible to
let the search continue from the point where it was blocked.

Typically applications of this kind are realised by im-
plementing all the features on the server side, without –
however – any support for long-term searching and monitoring
capabilities. In the following, we describe a solution based on
JaCa-Web, in which responsibilities related to the long-term
search and comparison are decentralised into the client side of
the application, improving then the scalability and quality of
service for the users.

A. Application Design

The solution includes two kinds of agents (see Fig. 4): a
UserAssistant agent – which is responsible of setting up the
application environment and manage interaction with the user
– and multiple ProductFinder agents, which are responsible to
periodically interact with remote product services to find the
products satisfying the user-defined parameters. To aggregate
data retrieved from services and coordinate the activities of
the UserAssistant and ProductFinder we introduce a Product-
Directory artifact, while a MyPage page artifact and multiple
instances of ProductService artifacts are used respectively by
the UserAssistant and ProductFinder to interact with the user
and with remote product services.

59

Fig. 4. The architecture of the client-side Web application sample in terms of agent, artifacts, and their interactions. UA is the UserAgent, PFs are the
ProductFinder agents, PD is the ProductDirectory artifact and finally Services are the ProductService artifacts

More in detail, the UserAssistant agent is the first agent
booted on the client side, and it setups the application environ-
ment by creating the ProductDirectory artifact and spawning
a number of ProductFinder agents, one for each service to
monitor. Then, by observing the MyPage artifact, the agent
monitors user’s actions and inputs. In particular, the web
page provides controls to start, stop the searching process and
to specify and change dynamically the keywords related to
the product to search, along with the conditions to possibly
terminate the process. Page events are mapped onto start
and stop observable events generated by MyPage, while
specific observable properties – keywords and termination
conditions – are used to make it observable the input infor-
mation specified by the user.

The UserAssistant reacts to these observable events and
to changes to observable properties, and interacts with Pro-
ductFinder agents to coordinate the searching process. The
interaction is mediated by the ProductDirectory artifact,
which is used and observed by both the UserAssistant
and ProductFinders. In particular, this artifact provides a
usage interface with operations to: (i) dynamically update
the state and modality of the searching process – in par-
ticular startSearch and stopSearch to change the
value of a searchState observable property – useful
to coordinate agents’ work – and changeBasePrice,
changeKeywords to change the value of the base price
and the keywords describing the product, which are stored in a
keyword observable property; (ii) aggregate product informa-
tion found by ProductFinders – in particular addProducts,
removeProducts, clearAllProducts to respectively
add and remove a product, and remove all products found so
far. Besides searchState and keywords, the artifact has
further observable properties, bestProduct, to store and
make it observable the best product found so far.

Finally, each ProductFinders periodically interact with a

// ProductFinder agent

...

+searchState("start")
<- focus("service1");

!!search.

+!search: keywords(Keywords)
<- requestProducts(Keywords,ProductList);

!processProducts(ProductList,
ProductsToAdd,
ProductsToRemove);

addProducts(ProductsToAdd);
removeProducts(ProductsToRemove);
.wait({+keywords(_)},5000,_);
!search.

+searchState("stop")
<-.drop_intention(search).

Fig. 5. A snippet of ProductFinder agent’s plans.

remote product service by means of a private ProductService
artifact, which extends a HTTPService artifact providing an
operation (requestProducts) to directly perform high-
level product-oriented requests, hiding the HTTP level.

B. Implementation

The source code of the application can be consulted on
the JaCa-Web web site9, where the interested reader can
find also the address of a running instance that can be used
for tests. Here we just report a snippet of the ProductFinder
agents’ source code (Fig. 5), with in evidence (i) the plans
used by the agent to react to changes to the search state
property perceived from the ProductDirectory artifact - adding
and removing a new search goal, and (ii) the plan used
to achieve that goal, first getting the product list by means
of the requestProducts operation and then updating the

9http://jacaweb.sourceforge.net

60

ProductDirectory accordingly by adding new products and
removing products no more available. It is worth noting the
use of the keywords belief – related to the keywords
observable property of the ProductDirectory artifact – in the
context condition of the plan to automatically retrieve and
exploit updated information about the product to search.

V. RELATED WORKS AND CONCLUSION

To conclude, we believe that agent-oriented programming –
including multi-agent programming – would provide a suitable
level of abstraction for tackling the development of com-
plex software applications, extending traditional programming
paradigms such as the Object-Oriented to deal with aspects
such as concurrency, reactiveness, asynchronous interaction
managements, dynamism and so on. In this paper, in particular,
we discussed the advantages of applying such an approach to
the development of Web 2.0 advanced applications, exploiting
the JaCa integrated platform.

Concerning the specific application domain, several frame-
works and bridges have been developed to exploit agent tech-
nologies for the development of Web applications. Main exam-
ples are the Jadex Webbridge [14], JACK WebBot [2] and the
JADE Gateway Agent [1]. The Webbridge Framework enables
a seamless integration of the Jadex BDI agent framework [15]
with JSP technology, combining the strength of agent-based
computing with Web interactions. In particular, the framework
extends the the Model 2 architecture – which brings the
Model-View-Controller (MVC) pattern in the context of Web
application development – to include also agents, replacing
the controller with a bridge to an agent application, where
agents react to user requests. JACK WebBot is a framework
on top of the JACK BDI agent platform which supports the
mapping of HTTP requests to JACK event handlers, and the
generation of responses in the form of HTML pages. Using
WebBot, you can implement a web application which makes
use of JACK agents to dynamically generate web pages in
response to user input. Finally, the JADE Gateway Agent is
a simple interface to connect any Java non-agent application
– including Web Applications based on Servlets and JSP – to
an agent application running on the JADE platform [3].

All these approaches explore the use of agent technologies
on the server side of Web Applications, while in our work
we focus on the client side, which is what characterises Web
2.0 applications. So – roughly speaking – our agents are
running not on a Web server, but inside the Web browser,
so in a fully decentralized fashion. Indeed, these two views
can be combined together so as to frame an agent-based way
to conceive next generation Web applications, with agents
running on both the client and server side.

Finally, the use of agents to represent concurrent and
interoperable computational entities already sets the stage for
a possible evolution of Web 2.0 applications into Semantic
Web applications [4]. From the very beginning [9], research
activity on the Semantic Web has always dealt with intelligent
agents capable of reasoning on machine-readable descriptions
of Web resources, adapting their plans to the open Internet

environment in order to reach a user-defined goal, and nego-
tiating, collaborating, and interacting with each other during
their activities. So, a main future work accounts for extending
the JaCa-Web platform with Semantic Web technologies: to
this purpose, existing works such as JASDL [10] and the NUIN
project [8] will be main references.

REFERENCES

[1] JADE gateway agent (JADE 4.0 api) – http://jade.tilab.com/doc/api/jade/
wrapper/gateway/jadegateway.html.

[2] Agent Oriented Software Pty. JACK intelligent agents webbot man-
ual – http://www.aosgrp.com/documentation/jack/webbot manual web/
index.html#thejackwebbotarchitecture.

[3] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 2001.

[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[6] R. e. a. Bordini, editor. Multi-Agent Programming: Languages, Plat-
forms and Applications (vol. 1). Springer, 2005.

[7] R. e. a. Bordini, editor. Multi-Agent Programming: Languages, Plat-
forms and Applications (vol. 2). Springer Berlin / Heidelberg, 2009.

[8] I. Dickinson. BDI Agents and the Semantic Web: Developing User-
Facing Autonomous Applications. PhD thesis, University of Liverpool,
September 2006.

[9] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems,
16(2):30–37, 2001.

[10] T. Klapiscak and R. H. Bordini. JASDL: A practical programming ap-
proach combining agent and semantic web technologies. In Declarative
Agent Languages and Technologies VI, volume 5397/2009 of LNCS,
pages 91–110, Berlin, Heidelberg, 2009. Springer-Verlag.

[11] T. Mikkonen and A. Taivalsaari. Web applications: spaghetti code for
the 21st century. Technical report, Mountain View, CA, USA, 2007.

[12] M. Minotti, G. Piancastelli, and A. Ricci. An agent-based program-
ming model for developing client-side concurrent web 2.0 applications.
In J. Filipe and J. Cordeiro, editors, Web Information Systems and
Technologies, volume 45 of Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2010.

[13] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[14] A. Pokahr and L. Braubach. The webbridge framework for building
web-based agent applications. pages 173–190, 2008.

[15] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. In R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni,
editors, Multi-Agent Programming. Kluwer, 2005.

[16] A. S. Rao. Agentspeak(l): BDI agents speak out in a logical computable
language. In MAAMAW ’96: Proceedings of the 7th European workshop
on Modelling autonomous agents in a multi-agent world, pages 42–55.
Springer-Verlag New York, Inc., 1996.

[17] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference
on Agents and Multi Agents Systems (AAMAS08), 2008.

[18] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-
gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[19] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer Berlin / Heidelberg, 2007.

[20] A. Ricci, M. Virolil, and G. Piancastelli. simpA: A simple agent-oriented
Java extension for developing concurrent applications. In M. Dastani,
A. E. F. Seghrouchni, J. Leite, and P. Torroni, editors, Languages,
Methodologies and Development Tools for Multi-Agent Systems, volume
5118 of LNAI, pages 176–191, Durham, UK, 2007. Springer-Verlag.

[21] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

61

Abstract— Although some of the most important works on

multi-agent systems focused on interoperating multi-agent
systems with legacy applications, the main results consisted in the
definition of two agent communication languages, i.e., KQML
and FIPA ACL, and a set of specifications, i.e., the FIPA
specifications, for the realization of interoperable multi-agent
systems. Nowadays, web services are the primary mean to
provide interoperability with legacy applications and the large
part of multi-agent applications have been realized without any
strong requirement for the interoperability with other multi-
agent applications. This paper presents the HDS software
framework, which provides a software infrastructure to realize
multi-agent applications that either take advantage of the
specifications for agent-to-agent interoperability or are
implemented for optimizing their performance, reducing their
development cost and/or simplifying their interaction with some
specific legacy applications. Typed messages and message filters
are the elements that mainly characterize such a software
framework. Besides describing the main features of such a
software framework, this paper introduces two different
application scenarios designed to exploit HDS features: i) a
prototype framework for distributed constraint satisfaction
algorithms and ii) a distributed social network system.

Index Terms—software framework, multi-agent systems, typed
messages, composition filters, Java.

I. INTRODUCTION
OME of the most important works on multi-agent systems
considered them the solution to provide and maintain the

interoperability among legacy applications [1][2][3]. This
expectation motivated researchers to work on the problem of
proving interoperability both between agents and legacy
applications and among agents that are realized by different
people and with different software tools. The main results of
such works were not related to the interoperability between
agents and legacy applications, but consisted in the definition
of two agent communication languages, i.e., KQML and FIPA
ACL, [4][5][6] and a set of specifications, i.e., the FIPA

Manuscript received June 7, 2010
Federico Bergenti is with the Dipartimento di Matematica, Università degli

Studi di Parma, Viale G.P. Usberti, 53/A, 43124 Parma, Italy (e-mail:
federico.bergenti@unipr.it).

Enrico Franchi is with the Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124
Parma, Italy (e-mail: efranchi@ce.unipr.it).

Agostino Poggi is with the Dipartimento di Ingegneria dell’Informazione,
Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124
Parma, Italy (e-mail: poggi@ce.unipr.it).

specifications [7], for the realization of interoperable multi-
agent systems. Nowadays, the solution for providing the
interoperability among legacy applications has been identified
in the Web services technologies and the large part of multi-
agent applications have been realized without any strong
requirement for the interoperability with other multi-agent
applications.

In this paper, we present a software framework, called HDS
whose goal is to simplify the realization of multi-agent system
by taking advantage of typed messages and message filters
and avoiding to be constrained by the use of a specific ACL
and by the rules of any specification for the realization of
multi-agent systems.

We are not concerned with non-agent based software
frameworks; among the agent based software frameworks
(Jade, AgentFactory [8]) the dominant approach is using FIPA
ACL, whose focus is on interoperability. However, in FIPA
based frameworks the communication time is almost always
dominated by the parsing and construction times of FIPA
messages [9][10]. On the other hand, HDS approach permits
to shift the focus on performance, without hindering
interoperability by design.

Section II gives a short introduction to HDS framework
architecture; Section III presents the three models that concur
to the definition of the architecture of a HDS application,
while Section IV presents some details on the implementation
of HDS. Section V and VI discuss two experimentations
where HDS has been used to study distributed constraint
solving algorithms and to design distributed social network
systems. Eventually, section VII concludes the paper
sketching some future research directions.

II. SOFTWARE FRAMEWORK OVERVIEW
HDS (Heterogeneous Distributed System) is a software

framework that has the goal of simplifying the realization of
distributed applications by merging the client-server and the
peer-to-peer paradigms and by implementing all the
interactions among all the processes of a system through the
exchange of messages.

This software framework allows the realization of systems
based on two types of processes: actors and servers. Actors
have their own thread of execution and perform tasks by
interacting, if necessary, with other processes through
synchronous and asynchronous messages. Servers perform
tasks on request of other processes by composing, if
necessary, the services offered by other processes through

Using HDS for Realizing Multi-Agent
Applications

Federico Bergenti, Enrico Franchi, Agostino Poggi

S

62

synchronous messages. Moreover, while both servers and
actors may directly take advantage of the services provided by
other kinds of application, only the servers can provide
services to external applications by simply providing one or
more public interfaces.

Actors and servers can be distributed on a (heterogeneous)
network of computational nodes (thereafter called runtime
nodes) for the realization of different kinds of application. In
particular, actors and servers are grouped into some runtime
nodes that realize a platform. An application can be obtained
by combining some preexistent applications by realizing a
federation.

III. APPLICATION ARCHITECTURE MODEL
The software architecture of a HDS application can be

described through the three different models:
• the concurrency model, which describes how the processes

of a runtime node can interact and share resources.
• the runtime model, which describes the services available

for managing the processes of an application.
• the distribution model, which describes how the processes

of different runtime nodes can communicate.

A. The concurrency model
The concurrency model is based on seven main elements:

process, description, description selector, mailer, message,
content and message filter.

A process is a computational unit able to perform one or
more tasks taking, if necessary, advantage of the tasks
provided by other processes. To facilitate the cooperation
among processes, a process can advertize itself making
available to the other processes its description. The process
identifier and the process type represent the default
information contained in a description; however, a process
may introduce some additional information in its description.

A process can be either an actor or a server. An actor is an
active process that can have an active behavior and so can start
the execution of some tasks without the request of other
processes. A server is a passive process that is only able to
perform tasks in response of the request of other processes.

A process can interact with the other processes through the
exchange of messages based on one of the following three
types of communication:

• synchronous communication, the process sends a message
to another process and waits for its answer;

• asynchronous communication, the process sends a message
to another process, performs some actions and then waits
for its answer;

• one-way communication, the process sends a message to
another process, but it does not wait for an answer.

In particular, while an actor can start all the three previous
types of communication with all the other processes, a server
can only respond to the requests of the other processes it
serves them, composing the services provided by other
processes through synchronous communications. Moreover, a
server can respond to a request through more than one answer

(e.g., when it acts as a broker in a publisher subscriber system)
and can forward a request to another server for its execution.

A process has also the ability of discovering the other
processes of the application. In fact, it can both get the
identifiers of the other mailers of the systems and check if an
identifier is bound to another mailer of the system taking
advantage of the registry service provided by HDS
middleware. Moreover, a process can take advantage of some
special objects, called description selectors, for requiring the
listing of specific subsets of mailer identifiers. In fact, a
description selector allows the definition of some constraints
on the information maintained by the process descriptions
(e.g., the process must be of a specific type, the process
identifier must have a specific prefix and the process must be
located in a specific runtime node) and the registry service is
able to apply their constraints on the information of the
registered descriptions for building the required subsets of
identifiers.

A process does not exchange directly messages with the
other processes, but delegates this duty to a mailer. In fact, a
mailer provides a complete management of the messages of a
process: it receives messages from the mailers of the other
processes, maintains them up to the process requests theirs
processing and, finally, sends messages to the mailers of the
other processes.

In a way similar to a process, a mailer can be either an actor
mailer or a server mailer. Of course, it depends on the fact
that, as described above, an actor and a server can assume a
different set of roles in message exchanging.

A message contains the typical information used for
exchanging data on the net, i.e., some fields representing the
header information, and a special object, called content, that
contains the data to be exchanged. In particular, the content
object is used for defining the semantics of messages (e.g., if
the content is an instance of the Ping class, then the message
represents a ping request and if the content is an instance of
the Result class, then the message contains the result of a
previous request).

Normally, a mailer can communicate with all the other
mailers and the sending of messages does not involve any
operation that is not related to deliver messages to the
destination; however, the presence of message filters can
modify the normal delivery of messages.

A message filter is a composition filter [11] whose primary
scope is to define the constraints on the reception/sending of
messages; however, it can also be used for manipulating
messages (e.g., their encryption and decryption) and for the
implementation of replication and logging services.

Each mailer has two lists of message filters: the ones in the
first list (input message filters) are applied to the input
messages and the others (output message filters) are applied to
the output messages (Fig 1 shows the flow of the messages
from the input message filters to the output message filters).
When a new message arrives or is be sent, the message filters
of the appropriate list are applied in sequence until a message
filter fails; therefore, such a message is stored in the input
queue or is sent only if all the message filters have success.

63

Figure 1. Flow of the messages from the input to the output message filters.

Message filters are not only used for customizing the
reception and sending of messages, but are also used by the
processes for asking their mailer for the input messages they
need for completing their current task. In fact, as described
above, a message filter allows to define the constraints that are
necessary to identify a specific message and a mailer is able to
use it for selecting the first message in the input queue that
satisfies its constraints (e.g., the reply to a message sent by the
process, a message sent by a specific process and a message
with a specific kind of content).

B. The runtime model
The runtime model defines the basic services provided by

the middleware to the processes of an application. This model
is based on four main elements: registry, processer, filterer and
porter.

A registry is a runtime service that allows the discovery of
the processes of the application. In fact, a registry provides the
binding and unbinding of the processes with their identifiers,
the listing of the identifiers of the processes and the retrieval
of a special object, called reference, on the basis of the process
identifier.

A reference is a proxy of the process that makes transparent
the communication respect to the location of the process.
Therefore, when a process wants to send a message to another
process, it must obtain the reference to the other process and
then use it for sending the message.

A processer is a runtime service that has the duty of creating
new processes in the local runtime node. Of course, an
important side effect of the creation of a process is the creation
of the related mailer. The creation is performed on the basis of
the qualified name of the class implementing the process, a list
initialization parameters.

The processes cannot directly modify the lists of message
filters, but they can take advantage of a filterer to do it. A
filterer is a runtime service that allows the creation and
modification of the lists of message filters associated with the
processes of the local runtime node. Therefore, a process can
use such a service for managing the lists of its message filters,
but also for modifying the lists of message filters associated
with the other processes of the local runtime node.

Finally, a porter is a runtime service that has the duty of
creating some special objects, called ports, that allows an
external application to use the services implemented by a

server of the local runtime node. In particular, a port is a
wrapper that encapsulates a server for limiting the access to
the functionalities of the process by masquerading the use of
some its services and by adding some constraints on the use of
some other its services.

C. The distribution model
The distribution model has the goal of defining the software

infrastructure that allows the communication of a runtime
node with the other nodes of an application possibly through
different types of communication supports, guaranteeing a
transparent communication among their processes. This model
is based on three kinds of element: distributor, connector and
connection.

Figure 2. An HDS application based on three runtime nodes connected
through RMI and JMS technologies.

A distributor has the duty of managing the connections with

the other runtime nodes of the application. This distributor
manages connections that can be realized with different kinds
of communication technology through the use of different
connectors (see Figure 2). Moreover, a pair of runtime nodes
can be connected through different connections.

A connector is a connections handler that manages the
connections of a runtime node with a specific communication
technology allowing the exchange of messages between the
processes of the accessible runtime nodes that support such a
communication technology.

A connection is a mono-directional communication channel
that provides the communication between the processes of two
runtime nodes through the use of remote references. In
particular, a connection provides a remote lookup service
offering the listing of the remote processes and the access to
their remote references.

IV. SOFTWARE FRAMEWORK IMPLEMENTATION
The HDS software framework has been realized taking

advantage of the Java programming language. The application
architecture model has been defined through the use of Java
interfaces and its implementation has been divided in two
modules.

The first module contains the software components that
define the software infrastructure and that are not directly used
by the developer, that is, all the software components
necessary for managing the lifecycle of processes, the local
and remote delivery of messages and their filtering. In
particular, the remote delivery of messages has been provided

mailer

 process
input filters output filters

RMI connectors

connections

JMS connectors

distributor

64

through both Java RMI [12] and JMS [13] communication
technologies.

The second module contains both the software components
that application developers extend, implement or, at least, use
in their code, and the software components that help them in
the deployment and execution of the realized applications. The
identification of such software components can be easily done
by analyzing what application developers need to realize: i)
the actor and server classes used for the implementation of the
processes involved in the application, ii) the description of
selector classes used for the discovery of the processes
involved in common tasks, iii) the message filter classes used
for customizing the communication among the processes, iv)
the typed messages used in the interaction among the
processes, and v) the artifacts (i.e., Java classes and/or
configuration files) for the deployment of the runtime nodes
and of the communication channels among runtime nodes, and
for the startup of the initial sets of processes and message
filters.

The above items imply that such a module needs to contain;
i) some software components for simplifying the realization of
actors, servers, description selectors and message filters
(realized through four abstract classes called AbstractActor,
AbstractServer, AbstractSelector and AbstractFilter), ii) a set
of abstract and concrete typed messages useful for realizing
the typical communication protocols used in distributed
applications, and iii) a software tool that allows the
deployment of a HDS software application through the use of
a set of configuration files (realized through a concrete class
called Launcher).

In regard to type messages and the related communication
protocols, the software framework provides the basis
interfaces and classes for realizing application dependent
client-server protocols and the basic interfaces and classes for
supporting the interaction among processes through the use of
communication language derived by the agent communication
language (ACL) defined in the FIPA specifications [7].

In particular, besides realizing an implementation of the
FIPA ACL, that completely satisfies the FIPA specifications
and uses the SL language for the content, we used some of the
FIPA ACL performatives as top layer interfaces for the
definition of typed message classes that combines the
semantics of the performative with the semantics of the ACL
content in a particular ontology (e.g., the typed message, Sell,
is sent to another process for requiring it to sell something to
the requester; of course, typed messages are usually
specialized for an application domain and it can be easily done
grouping the typed messages related to a domain ontology in
a Java package. In a similar way, we provided an abstract
implementation of some interaction protocols (i.e. the English
and Dutch auction protocols, the Contracted Net and the
iterated Contract Net protocols and the brokering and the
recruiting protocols) that derive from the interaction protocols
defined in the FIPA specifications [7]. This implementation
replaces the ACL messages with typed messages and
delegates to the application developer only the duty of writing
the code for processing the content of the messages, selecting

the messages to be sent and building their content.
For example, the abstract implementation of the iterated

Contract Net protocol is based on two abstract classes, that
describe the two roles involved in the protocol, i.e., the
initiator and the participant, and an interface, called Contract,
used in the content of the exchanged messages for maintaining
the information about both the task to be executed and the bids
of the participants.

The abstract class that represents the initiator role defines
three main methods; the first method sends an “offer” message
to the list of processes acting as participants. The second
method is an abstract method whose implementation must
select the participant to which send either an “accept” or
another “offer” message. Finally, the third method is an
abstract method whose implementation must process the
message containing the results of the execution of the required
task.

The abstract class, that represents the participant role,
defines two main methods. The first method is an abstract
method whose implementation must decide to propose a bit
for the task described by the “offer” message or to refuse it.
The second message must decide to execute the task and then
must send the information about the results of its execution.

Therefore, using the iterated Contract Net protocol inside an
application requires: i) the definition of concrete class
implementing the Contract interface, ii) the definition of a
concrete class that extend the initiator abstract class
implementing the methods for accepting, refusing or sending
an updated contract and for processing the result received by
the participant(s) to which the contract(s) have been assigned,
and iii) the definition of at least a concrete class that extend
the participant abstract class implementing the methods for
accepting or refusing an offer and for performing the task
associated with the contract.

V. HDS FOR DISTRIBUTED CONSTRAINT SATISFACTION
Recently we used HDS to develop a Java framework for

prototyping and evaluating distributed constraint satisfaction
algorithms. A brief introduction to distributed constraint
satisfaction is needed to better explain the role of HDS; see
[14] for an in-depth introduction to the subject and for a
discussion of possible application scenarios.

Distributed Constraint Satisfaction Problems (DCSPs) are a
very general class of problems that extend Constraint
Satisfaction Problems (CSPs) to the realm of distributed
computing; the literature defines DCSPs as a distributed and
decentralized generalization of CSPs.

A CSP consists of (i) n variables <x1, x2, … , xn>, whose
values are taken from finite, discrete domains <D1, D2, … ,
Dn>, respectively, and (ii) a set of constraints on such
variables. In very general terms, a constraint is defined by a
relation on a subset of the Cartesian product D1 x Dk2 x …
x Dn that holds for certain assignments of values to variables.
Solving a CSP is equivalent to finding an assignment of values
to all variables such that all constraints are satisfied. Since
constraint satisfaction is NP-complete in general, a trial-and-
error exploration of alternatives is inevitable.

65

A DCSP is a CSP in which variables and constraints are
distributed among agents; each agent has some owned
variables and it tries to determine their values. Agents
independently try to find assignments to their variables and the
problem is solved when all variables are assigned consistent
values.

More precisely, when dealing with DCSP, we take the
following assumptions:

1. No central orchestration is allowed and the problem is
solved by peer agents in cooperative/competitive
ways.

2. Agents communicate by means of directed messages.
3. Each agent has a unique identifier and an agent can

send messages to other agents if and only if it knows
the unique identifiers of the receiving agents.

4. The delay in delivering a message is finite, though
unknown and possibly random.

5. For the transmission between any pair of agents,
messages are received in the order in which they were
sent.

6. Each agent has exactly one variable and it knows all
constraint predicates relevant to its variable.

7. All constraints are binary.
It is worth noting that although algorithms for solving

DCSPs are similar to parallel/distributed processing methods
for solving CSPs (see, e.g., [15] [16]), the applicability of both
approaches is fundamentally different. The primary concern in
parallel/distributed processing is efficiency, and we can
choose any type of parallel/distributed computer architecture
for solving a given problem efficiently. In contrast, in a DCSP,
there already exists a situation where knowledge about the
problem is distributed among agents and no central
orchestration is available. This is the case, e.g., of sensor
networks where nodes interact independently and strive to
coordinate with no central master. If all knowledge about the
problem could be gathered into a single master agent, such an
agent could solve the problem more effectively alone by using
every day, centralized constraint satisfaction algorithms.

The Asynchronous Backtracking Algorithm (ABT) is one of
the algorithms, that we developed using HDS. This algorithm
is a distributed, asynchronous version of a backtracking
algorithm. The main message types communicated among
agents are ok?, to communicate the current assigned value,
and nogood to communicate a new constraint.

In the ABT algorithm, the priority order of agents is
predetermined, and each agent communicates its tentative
value assignment to neighboring agents via ok? messages. An
agent changes its assignment if its current value assignment is
not consistent with the assignments of higher priority agents.
If there exists no value that is consistent with the higher
priority agents, the agent generates a new constraint, called a
nogood, and it communicates the nogood to a higher priority
agent; thus the higher priority agent changes its value.

A nogood is a subset of an agent view, i.e., the current value
assignment of other agents from its viewpoint, where the agent
is not able to find any consistent value with the subset. Ideally,
generated nogood should be minimal, i.e., no subset of them

should be a nogood. However, since finding minimal nogoods
requires certain computation costs, an agent can do with non-
minimal nogoods and, in the simplest case, it could use its
entire agent view as a valid nogood.

It must be noted that since each agent acts asynchronously
and concurrently and agents communicate by sending
messages, the agent view may contain obsolete information.
Therefore, if xi does not have a consistent value with the
higher priority agents according to its agent view, we cannot
use a simple control method such as xi orders a higher priority
agent to change its value, since the agent view may be
obsolete. Each agent needs to generate and communicate a
new nogood, and the receiver of the new nogood must check
whether the nogood is actually violated based on its own agent
view.

The potential growth of the size of nogoods is a severe issue
that went often unnoticed and that we identified during our
initial experiments on solving Sudoku puzzles; this was the
main reason why we switched our initial implementation from
JADE to HDS. Moreover, we found HDS ideal for the
implementation of this kind of algorithms because:

1. Performances are important as all such algorithms are
typically demanding in terms of communication
throughput;

2. Most of such algorithms are expressed in terms of
reactions to typed messages; and

3. Composition filters allow instrumenting code with no
modifications to developed algorithms, thus enabling
performance measurement, debugging and fine tuning.

Finally, it is worth noting that HDS gave us a new dimension
for experimentations, i.e., the impact of the underlying
transport mechanism on the performances of algorithms.
Actually, distributed constraint satisfaction algorithms use
messages with very diverse sizes, ranging from few bytes in
initial stages of the process to megabytes when agents send
entire agent views across the network. We noted that different
transport protocol exhibit different performances with
massage sizes with strange and unforeseen behaviors.

VI. USING HDS IN SOCIAL NETWORK SYSTEMS
Moreover, we are using HDS for the realization of an agent

based support layer for the interaction among users in a social
network (SN). In particular, we associate an agent with each
user and such an agent can also proactively act on her/his
behalf by taking advantage the information contained in the
profile of the user.

The agent has two main roles: i) it mediates access to the
profile information, allowing or refusing queries from other
agents; ii) it uses information in the profile in order to discover
new friendships and acquaintances on his owner's behalf.
While the first role does not need a full-fledged software
agent, since a simple rule-based strategy suffices, the second
role exhibits a typical proactive behavior, as agents actively
pursue their owner's goal, without direct human intervention.

Currently available SNs are implemented with centralized
systems where information is stored on a logical central server
and users simply connect to that server. The system as a whole

66

has proactive behavior proposing the users new acquaintances,
but its monolithic structure places the system outside the
multi-agent paradigm. Moreover, the system has access to
every piece of information users provided: this both raises
security and privacy concerns and simplifies the proposal of
new friendships.

We have designed a system where independent multiple
proactive agents exchange minimal sets of data in order to
discover relationship suggested by the user profiles. For
example, if two users work in the same company, it is likely
they know each other, thus they are to be connected in the SN.

Data are distributed among the agents and are protected by
the agents themselves, since every access to a datum is
mediated through an agent. Thus, privacy is not an issue.

The system supports “typed” connections, where the parts
involved are aware they are connected, for example, because
both attended to the same University or worked in the same
company. In order to store data in the profile, we use FOAF
[17] and DOAC [18] and the “type” of the connections is
derived from those RDF descriptions. However, we do not
detail the semantics of connections in order to focus the
system presentation from a multi-agent modeling point of
view.

The HDS framework is used as the foundation of our
system because of its high efficiency and built-in support for
typed messages, which are of paramount importance in
expressing our connection negotiation algorithm.

Since the HDS framework distinguishes between active
processes (actors) and servers, and since our agents feature
both proactive and passive behavior, we decided to model the
abstract agents with more than one concrete HDS process.
Essentially, the agent discovery algorithm can be decomposed
in three main tasks: i) search new connections and friendships
according to the data available; ii) broker connections between
possibly mutual friends iii) accept/refuse connections
proposed by some other agent performing function i and ii.
Tasks i) and ii) are clearly proactive, since the agent has to
actively contact other agents, thus both tasks are implemented
through HDS actors. Although task iii) is not proactive, and
can be modeled with a server process. A passive server
process mediates access to the profile and this can be seen as a
fourth task.

Since agents are implemented through multiple processes,
they are essentially only logical entities in the system, the only
indication of their existence being a unique id in the system
(such as, e.g., their owner's username) and rules granting full
access among processes implementing the same agent.

We use capital letters to refer to the agents ids (e.g., A), and
the same capital letter with a subscript (A1, A2, A3, A4) to refer
to the HDS ids of the processes implementing the agent, e.g.,
A1 implements the first task and so on.

In the following paragraphs we describe the connection
discovery algorithm (Fig. 3), which is the component in our
system that more heavily exploits HDS typed messages.

Figure 3. A sequence diagram presenting the connection discovery algorithm.

In order to describe the algorithm, we assume agent A

wants to find new friends. As the first step, actor A1 sends a
GetConnections message to A4 to obtain the list of
connections. Each entry in the lists consists of an agent id and
an RDF payload specifying the type of connection. Of course,
the same pair of agents may be connected through multiple
connections.

Let B an identifier in the list: A sends some
FindConnection(LT, EL) messages to B2, where each
message has a different link type LT (derived from the types
of links connecting A and B). B2 is then entitled to share
pieces of information derived from LT with every agent C that
is connected with B through a LT connection and not present
in the exclude list EL. EL contains both the ids of agents A is
already connected with and the ids of agents A does not want
to connect with.

Essentially B2 acts as a broker between A and C, since
mailer filters are configured not to accept connections from
processes implementing unknown agents and consequently A
and C cannot communicate directly. Notice that A determines
the exact amount of information it wants to use in order to find
new friends. B is not allowed to use information on A to find
new friends for A or for himself until A allows usage of
information contained in LT sending the FindConnection(LT,
EL) message. For example, the link type is “attended
University of Parma”. C already knows that both he and B
attended the University of Parma: A allowed B to inform C
that A attended that University as well.

The next step consists in B2 sending C3 a
RequestConnection(A, LT) message. If C3 answers with a
RefuseConnection(A, LT), B will not tell A that he is
connected with C (and not even C existence). If C wants to be
connected with A, C3 sends an AcceptConnection(A, LT) to
B2 and consequently B2 sends an AcceptedConnection(C, LT)
message to A3.

A can confirm the connection to C or refuse it. In the former
situation, A4 will be notified it is allowed to share some
information with C and a direct negotiation between A and C

67

is started in order to establish further connections (or more
specific connections, e.g. attended the University of Parma
between 2002 and 2005, in place of the simple “attended
University of Parma”).

VII. CONCLUSION
This paper presented the HDS software framework, with the

goal of simplifying the realization of distributed applications
by merging the client-server and the peer-to-peer paradigms
and by implementing the interactions among all the processes
of a system through the exchange of typed messages.

HDS is implemented by using the Java language and its use
simplify the realization of systems in heterogeneous
environments where computers, mobile and sensor devices
must cooperate for the execution of tasks. Moreover, since
different protocols can be used to exchange messages between
processes of different computational nodes, it is possible to
use multiple implementations of the HDS framework for
different languages in the same application as long as there are
some shared protocols; this way it is possible to integrate
hardware and software platforms without Java support.

HDS can be considered a software framework for the
realization of any kind of distributed system. Some of its
functionalities derive from the one offered by JADE [19][20],
a software framework that can be considered one of the most
known and used software framework for the developing of
multi-agent systems. This derivation does not depend only on
the fact that some of the people involved in the development
of the HDS software framework were involved in the
development of JADE too, but because HDS proposes a new
view of multi-agent systems where the respect of the FIPA
specifications are not considered mandatory and ACL
messages can be expressed in a way that is more usable by
software developers outside the multi-agent system
community. This work may be of interest not only for
enriching other theories and technologies with some aspects of
multi-agent system theories and technologies, but also for
providing new opportunities for the diffusion of both the
knowledge and use of multi-agent system theory and
technologies.

HDS is a suitable software framework for the realization of
pervasive applications. Some of its features introduced above
(i.e., the java implementation, the possibility of using different
communication protocols and the possibility a multi-language
implementation) are fit for such kinds of application.
However, the combination of multi-agent and aspect-oriented
techniques [21] might be one of the best solutions for
providing an appropriate adaptation level in a pervasive
application. In fact, this solution allows to couple the power of
multi-agent based solutions with the simplicity of
compositional filters solutions guaranteeing both a good
adaptation to the evolution of the environment and a limited
overhead to the performances of the applications.

Current and future research activities are dedicated, besides
to continue the experimentation and validation of the HDS
software framework in the realization of collaborative services
for social network, to the improvement of the HDS software

framework. In particular, current activities are dedicated to: i)
the automatic creation of the Java classes representing the
typed messages from OWL ontologies taking advantage of the
O3L software library [22], and iii) the extension of the
software framework with a high-performance software library
to support the communication between remote processes, i.e.,
MINA [23].

REFERENCES
[1] Genesereth, M.R., Ketchpel, S.P. Software agents. Communications of

ACM, 37(7): 48-53, 1994.
[2] Genesereth, M.R. An agent-based framework for interoperability. In J.

M. Bradshaw (Ed.). Software Agents, pp. 317-345. MIT Press,
Cambridge, MA, 1997.

[3] O'Brien, P.D., Nicol, R.C. FIPA - Towards a Standard for Software
Agents. BT Technology Journal, 16(3):51-59. 1998.

[4] Finin, T., Fritzson, R., McKay, D. McEntire, R. KQML as an agent
communication language. In Proc. of the 3rd Int. Conf. on information
and Knowledge Management, pp. 456-463, Gaithersburg, MD, 1994.

[5] Labrou, Y., Finin, T., Peng, Y. Agent Communication Languages: The
Current Landscape. IEEE Intelligent Systems, 14(2):45-52, 1999.

[6] Singh, M.P. Agent Communication Languages: Rethinking the
Principles. IEEE Computer, 31(12):40-47, 1998.G. O. Young,
“Synthetic structure of industrial plastics (Book style with paper title and
editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-
Hill, 1964, pp. 15–64.

[7] FIPA Consortium. FIPA Specifications. Available from
http://www.fipa.org.

[8] Collier, R.: Agent Factory: An Environment for the Engineering of
Agent-Oriented Applications. Ph.D. Thesis, University College Dublin,
Ireland, 2001

[9] Mulet, L., Such, J. M., and Alberola, J. M. 2006. Performance
evaluation of open-source multiagent platforms. Proceedings of the Fifth
international Joint Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan, , 2006.

[10] G. Vitaglione, F. Quarta, and E. Cortese, "Scalability and performance
of jade message transport system," 2002.

[11] Bergmans, L., Aksit, M. Composing crosscutting concerns using
composition filters. Communications of ACM, 44(10):51-57, 2001.

[12] Pitt, E. McNiff, K. Java.rmi: the Remote Method Invocation Guide.
Addison-Wesley, 2001.

[13] Monson-Haefel, R. Chappell, D. Java Message Service. O'Reilly &
Associates, 2000.

[14] Yokoo, M., Katsutoshi, H. Algorithms for Distributed Constraint
Satisfaction: A Review, Procs. Int’l Conf. Autonomous Agents and
Multiagent Systems, Vol. 3, pp. 185-207, 2000.

[15] Zhang, Y., Mackworth, A. Parallel and distributed algorithms for finite
constraint satisfaction problems. Procs. 3rd IEEE Symposium on Parallel
and Distributed Processing. 394-397, 1991.\

[16] Collin, Z., Dechter, R. , Katz S. On the Feasibility of Distributed
Constraint Satisfaction. Procs. 12th Int’l Joint Conference on Artificial
Intelligence. 318-324, 1991.

[17] D. Brickley and L. Miller, http://www.foaf-project.org
[18] R. Antonio, http://ramonantonio.net/doac
[19] Bellifemine, F., Poggi, A., Rimassa, G. Developing multi agent systems

with a FIPA-compliant agent framework. Software Practice &
Experience, 31:103-128, 2001.

[20] Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.. JADE: a Software
Framework for Developing Multi-Agent Applications. Lessons Learned.
Information and Software Technology Journal, 50:10-21, 2008.

[21] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin (1997). "Aspect-
Oriented Programming". Proceedings of the European Conference on
Object-Oriented Programming, vol.1241. pp. 220.242. The paper
generally considered to be the authoritative reference for AOP.

[22] Poggi, A. Developing Ontology Based Applications with O3L. WSEAS
Trans. on Computers, 8(8):1286-1295, 2009

[23] Apache Foundation. MINA software. Web site. Available from:
http://mina.apache.org.

68

Author Index

Aldewereld, H., 14

Bergenti, F., 62
Bourgne, G., 34
Braubach, L., 41

Collier, R., 7
Costa, A.C.R., 21

Dignum, V., 14
Dimuro, G., 21

Franchi, E., 62

Guidi, M., 48

Hübner, A., 21

Inoue, K., 34

Jander, K., 41

Lamersdorf, W., 41
Lillis, D., 7
Lorini, E., 27

Mattos, V., 21
Maudet, N., 34
Minotti, M., 55

Perrussel, L., 27
Poggi, A., 62
Pokahr, A., 41

Ricci, A., 48, 55

Santi, A., 48, 55

Thévenin, J., 27

Third International Workshop on Logics for
Resource Bounded Agents (LRBA 2010)

held as part of

Multi-Agent Logics, Languages and Organisations – Federated Workshops
(MALLOW 2010)

Lyon, September 1-2 2010

Workshop Notes

Preface

Formal models of knowledge and belief, as well as other attitudes such as desire or intention, have been
extensively studied. However, most of the treatments of knowledge and belief make strong assumptions
about reasoners. For example, traditional epistemic logic says that agents know all logical consequences of
their knowledge. Similarly, logics of action and strategic interaction are usually based on game theoretic
models which assume perfect rationality. Models based on such assumptions can be used to describe ideal
agents without bounds on resources such as time, memory, etc, but they fail to accurately describe non-ideal
agents which are computationally bounded. The Logics for Resource Bounded Agents Workshop (LRBA)
aims to provide a forum for discussing possible solutions to the problem of formally capturing the properties
of knowledge, belief, action, etc. of non-idealised resource-bounded agents.

The 2010 workshop is the third LRBA workshop, following previous events at ESSLLI 2006 in Malaga and
MALLOW 2007 in Durham. We would like to thank the authors and the reviewers for helping to make
LRBA 2010 a success.

Thomas Ågotnes
Natasha Alechina
Brian Logan

ii

Contents

Computationally grounded account of belief and awareness for AI agents
Natasha Alechina and Brian Logan .. 1

Logic meets cognition: empirical reasoning in games
Sujata Ghosh, Ben Meijering and Rineke Verbrugge ... 15

An extension of RB-ATL
Nguyen Hoang Nga .. 35

Abduction for (non-omniscient) agents
Fernando Soler-Toscano and Fernando R. Velázquez-Quesada .. 51

Dynamic Epistemic Logic for Implicit and Explicit Beliefs
Fernando R. Velázquez-Quesada .. 65

A Construction of Logic-Constrained Functions with Respect to Awareness
Susumu Yamasaki .. 84

iii

Computationally grounded account of belief and
awareness for AI agents

Natasha Alechina and Brian Logan

Abstract

We discuss the problem of designing a computationally grounded logic
for reasoning about epistemic attitudes of AI agents, mainly concentrating on
beliefs. We briefly review exisiting work and analyse problems with seman-
tics for epistemic logic based on accessibility relations, including interpreted
systems. We then make a case for syntactic epistemic logics and describe
some applications of those logics in verifying AI agents.

1 Introduction
The Belief-Desire-Intention (BDI) model of agency is arguably the most
widely adopted approach to modelling artificial intelligence agents [18]. In
the BDI approach, agents are both characterised and programmed in terms
of propositional attitudes such as beliefs and goals and the relationships be-
tween them. For the BDI model to be useful in developing AI agents, we
must be able to correctly ascribe beliefs and other propositional attitudes to
an agent. However standard epistemic logics suffer from several problems
in ascribing beliefs to computational agents. Critically, it is not clear how
to connect the computational implementation of an agent to the beliefs we
ascribe to it. As a result, standard epistemic logics model agents as logically
omniscient. The concept of logical omniscience was introduced by Hintikka
in [19], and is usually defined as the agent knowing all logical tautologies
and all the consequences of its knowledge. However, logical omniscience
is problematic when attempting to build realistic models of agent behaviour,
as closure under logical consequence implies that deliberation takes no time.
For example, If processes within the agent such as belief revision, planning
and problem solving are modelled as derivations in a logical language, such
derivations require no investment of computational resources by the agent.

In this paper we present an alternative approach to modelling agents
which addresses these problems. We distinguish between beliefs and rea-
soning abilities which we ascribe to the agent (‘the agent’s logic’) and the
logic we use to reason about the agent. In this we follow, e.g., [21, 20, 17].
In the spirit of [33], our logic to reason about the agent’s beliefs is grounded
in a concrete computational model. However, unlike [33, 29] we choose
not to interpret the agent’s beliefs as propositions corresponding to sets of
possible states or runs of the agent’s program, but syntactically, as formulas
‘translating’ some particular configuration of variables in the agent’s internal

1

1

state. One of the consequences of this choice is that we avoid modelling the
agent as logically omniscient. This has some similarities with the bounded-
resources approach of [15] and more recent work such as [1, 4].

This paper is essentially a high-level summary of the course on logics and
agent programming languages the authors gave at the 21st European Summer
School in Logic, Language and Information held in Bordeaux in 2009. Some
of the ideas have appeared in our previous work, for example [5, 6], but have
never been summarised in a single article.

The rest of the paper is organised as follows. In section 2 we discuss mo-
tivations for modelling intentional attitudes of AI agents in logic. In section 3
we analyse problems with the standard semantics for epistemic logic, includ-
ing interpreted systems. In section 4 we discuss other approaches to mod-
elling knowledge and belief, namely the syntactic approach, logic of aware-
ness, and algorithmic knowledge. Then we introduce our proposal based on
the syntactic approach in section 5 and briefly survey some of the applica-
tions of the syntactic approach in verification of agent programs in section
6.

2 Logic for verification
There are many reasons for modelling agents in logic. The focus of our
work is on specifying and verifying AI agents using logic. The specifica-
tion and verification of agent architectures and programs is a key problem
in agent research and development. Formal verification provides a degree of
certainty regarding system behaviour which is difficult or impossible to ob-
tain using conventional testing methodologies, particularly when applied to
autonomous systems operating in open environments. For example, the use
of appropriate specification and verification techniques can allow agent re-
searchers to check that agent architectures and programming languages con-
form to general principles of rational agency, or agent developers to check
that a particular agent program will achieve the agent’s goals in a given range
of environments.

Ideally, such techniques should allow specification of key aspects of the
agent’s architecture and program, and should admit a fully automated ver-
ification procedure. One such procedure is model-checking [12]. Model-
checking involves representing the system to be verified as a transition sys-
tem M which can serve as a model of some (usually temporal) logic, spec-
ifying a property of the system as a formula φ in that logic, and using an
automated procedure to check whether φ is true in M . However, while there
has been considerable work on the formal verification of software systems
and on logics of agency, it has proved difficult to bring this work to bear on
verification of agent architectures and programs. On the one hand, it can
be difficult to specify and verify relevant properties of agent programs using
conventional formal verification techniques, and on the other, standard epis-
temic logics of agency (e.g., [16]) fail to take into account the computational
limitations of agent implementations.

Since an agent program is a special kind of program, logics intended
for the specification of conventional programs can be used for specifying
agent programming languages. In this approach we have some set of propo-

2

2

sitional variables to encode the agent’s state, and, for example, dynamic or
temporal operators for describing how the state changes as the computation
evolves. However, for agents based on the Belief-Desire-Intention model of
agency, such an approach fails to capture important structure in the agent’s
state which can be usefully exploited in verification. For example, we could
encode the fact that the agent has the belief that p as the proposition u1,
and the fact that the agent has the goal that p as the proposition u2. However
such an encoding obscures the key logical relationship between the two facts,
making it difficult to express general properties such as ‘an agent cannot have
as a goal a proposition which it currently believes’. It therefore seems natural
for a logical language intended for reasoning about agent programs to include
primitives for the beliefs and goals of the agent, e.g., where Bp means that
the agent believes that p, and Gp means that the agent has a goal that p.

Given that a logical language intended for reasoning about agent pro-
grams should include primitives for the beliefs and goals of an agent, what
should the semantics of these operators be? For example, should the belief
operator satisfy the KD45 properties? In our view, it is critical that the prop-
erties of the agent’s beliefs and goals should be grounded in the computation
of the agent (in the sense of [31], that is, there should be a clear relationship
between the semantics of beliefs and goals and the concrete computational
model of the agent). If the agent implements a full classical reasoner (per-
haps in a restricted logic), then we can formalise its beliefs as closed under
classical inference. However if the agent’s implementation simply matches
belief literals against a database of believed propositions without any ad-
ditional logical reasoning, we should not model its beliefs as closed under
classical consequence. The notion of ‘computationally grounded’ logics is
discussed in more detail in the next section.

3 Standard epistemic logic is not computation-
ally grounded
Since the first BDI logics such as [13] and [27], the knowledge and beliefs
of AI agents have been modelled using epistemic modal logics with possi-
ble worlds semantics. An agent i believes a formula φ in a possible world
or state s if φ is true in all states s′ which are belief-accessible from s. For
knowledge, the accessibility relation is usually assumed to be an equivalence
relation between states, intuitively meaning that the agent cannot tell whether
the actual state is s or one of the other knowledge-accessible states. This re-
lation is often referred to as the ‘indistinguishability relation’ of agent i and
denoted by ∼i. A more concrete version of the possible worlds semantics
are interpreted systems introduced in [16], where each state is an n-tuple of
the agents’ local states and the state of the environment (assuming the sys-
tem consists of n agents and an environment) and s ∼i s

′ holds if the local
state of agent i is the same in s and s′. The logic over interpreted systems
has temporal operators in addition to the epistemic ones, and the formulas are
interpreted over computational runs (sequences of states). The epistemic log-
ics based on this semantics have attractive formal properties. However, they
suffer from two main problems: the problem of correctly ascribing beliefs to

3

3

an agent, and the problem of logical omniscience.
The problem of belief ascription is concerned with the difficulty of de-

termining what an agent’s beliefs are at a given point in its execution. Many
agent designs do not make use of an explicit representation of beliefs within
the agent. For example, the behaviour of an agent may be controlled by a col-
lection of decision rules or reactive behaviours which simply respond to the
agent’s current environment. However when modelling the agent, it can still
be useful to view the agent as having beliefs. For example, when modelling
an agent with a reactive architecture which does not explicitly represent be-
liefs, we may say that “the agent believes there is an obstacle to the left” and
“if the agent believes there is an obstacle to the left, it will turn to the right”.
However, for this to be possible, we need some principled way of deciding
what the agent believes.

However, even when agents do represent beliefs explicitly, the mapping
between the agent’s belief state and the logical model of the agent is not
straightforward. As noted by van der Hoek and Wooldridge [32, p.149] “pos-
sible worlds semantics are generally ungrounded. That is, there is usually
no precise relationship between the abstract accessibility relations that are
used to characterise an agent’s state, and any concrete computational model.”
This makes it difficult to use BDI logics for specifying agent systems or to
use model-checking tools and algorithms to model-check a particular agent
program, since one would need to somehow extract from the program the
belief accessibility relations for generating a logical model for use in model-
checking. “Because, as we noted earlier, there is no clear relationship be-
tween the BDI logic and the concrete computational models used to imple-
ment agents, it is not clear how such a model could be derived.”[32, p. 153]
This problem does surface in model-checking BDI agent programs; see, for
example, [8], where the beliefs of an agent which is intended to implement
the LORA architecture [34] (which uses standard semantics for beliefs) are
modelled syntactically as a finite list of formulas rather than using an ac-
cessibility relation. Similar concerns about a gap between BDI logics and
concrete agent programs, or the lack of groundedness, were raised by Meyer
in [23].

One consequence of this lack of computational grounding is that epis-
temic logics based on possible worlds semantics model agents as logically
omniscient reasoners: they believe/know all tautologies and they believe/know
all logical consequences of their beliefs/knowledge (Bi> andBiφ∧Bi(φ→
ψ) → Biψ are tautologies of any logic with a modal operator Bi defined as
truth in all i-accessible worlds). In effect, agents are modelled as perfect
logical reasoners with unlimited computational powers. This is problematic
when attempting to build realistic models of agent behaviour, where the time
required by the agent to solve a problem is often of critical importance.

Some authors (for example, [26], [25]) argue that unlike the possible
worlds structures, interpreted systems can be seen as a grounded semantics
for intensional logics. The following arguments are paraphrased from [25,
p.36]

• since the semantics of interpreted systems refers to computational runs,
a system description in terms of runs (using local states, protocols, etc.)
immediately provides a logical model to evaluate formulae;

4

4

• epistemic properties are based on the equivalence of local states (which
is a concrete computational notion); and

• local states could be represented as e.g. arrays of variables, thereby
allowing for a ‘fine grained’ description of agents.

The last point and the examples of modelling multi-agent systems such as
Dining Cryptographers given in [26, 25] suggest the following way of ascrib-
ing knowledge to agents. The local state of the agent (values of variables)
determines what the agent ‘knows’. For example, a propositional variable
paidi may mean that a variable v1 in agent i’s state has value Paid (see
[26]). Clearly, we want that when the agent i is in the same local state s0i
where v1 = Paid, Kipaidi holds. And this works out with the interpreted
systems definition of knowledge: since paidi holds in all global states where
agent i′s state is s0i , in all those global states Kipaidi holds.

However, while at first sight this semantics may appear to be compu-
tationally grounded, we argue that it is a very roundabout way of defining
an agent’s knowledge. The indistinguishability relation ∼i between global
states is used for the truth definition ofKi formulas, so to determine the truth
of such formulas we need to examine all global states related by ∼i, which
adds significant complexity to, for example, the model-checking problem.
This additional (and unnecessary) complexity is purely an artefact of the pos-
sible worlds truth definition of Ki. From the start we decided that what the
agent actually knows depends on the properties of the agent’s local state and
we should really only have to examine the agent’s state.

Another, more serious, artefact of this truth definition, is that Kiφ holds
not only for the formulas φ which do correspond to some properties of the
agent’s state (the real or explicit knowledge of the agent), but also for a host
of other formulas. Among those additional formulas are tautologies and log-
ical consequences of the real knowledge of the agent such as Ki(¬(paidi ∧
¬paidi)), consequences by introspection (such as KiKiKiKipaidi and
KiKiKiKi¬Ki¬paidi) and, even more paradoxically, formulas talking about
the global properties of the system. For example, if there is just one global
state s0 where agent i’s local state is s0i , and s0 has a single successor s1,
then i ‘knows’ precisely what the next global state looks like. For example,
suppose some proposition q is true in s1. Then©q (‘in the next state, q’) is
true in s0. Since s0 is the only state ∼i-accessible from s0, agent i knows
that in the next state q: Ki©q, and similarly for all the other formulas true in
s1. This is by no means a grounded knowledge ascription. Even if the system
is entirely deterministic, agent i does not necessarily have any knowledge of
this.

4 Other approaches
Problems such as logical omniscience which arise when interpreted systems
are used to model resource-bounded reasoners have been known for a long
time, and some proposed solutions are described in [16]. One of the solutions
is termed syntactic in [16]: instead of using a possible worlds truth definition
for the knowledge modality Ki, in each state we get essentially a syntactic
assignment of formulas agent i believes in that state. For consistency with

5

5

what follows we will denote this set of formulas as Ai(s). The truth defi-
nition for Kiφ in state s of a model M will then become M, s |= Kiφ iff
φ ∈ Ai(s). Clearly, this truth definition makes Ki entirely free of the prob-
lem of logical omniscience; however in [16] it is argued that its shortcoming
is the lack of any interesting properties of Ki. They prefer a related ap-
proach, of combining Ki defined using the possible worlds definition with a
new syntactic operator Ai standing for ‘awareness’. Ki is the standard (true
in all ∼i) notion of knowledge (called ‘implicit knowledge’ in [16]); Aiφ is
true if φ ∈ Ai(s) and this only means that i is aware of φ, not that i neces-
sarily knows that φ; and Xiφ =df Kiφ ∧ Aiφ means that i explicitly knows
φ. Clearly, explicit knowledge is also not closed under consequence since i
may not be aware of some of the consequences.

Another related approach to ‘fixing’ the idealisation inherent in the pos-
sible worlds definition of knowledge is the concept of algorithmic knowledge
[16]. Instead of some arbitrary syntactic setAi(s), we assume that each state
s comes equipped with an algorithm algi(s) and agent data (used by the al-
gorithm) datai(s). An agent algorithmically knows a formula φ in s if the
output of algi(s) for φ is ‘yes’. In [16], a number of interesting questions
are raised, for example how to relate the computation of the knowledge an-
swering algorithm to the rest of the system dynamics, but the authors decided
to keep the two issues separate: the algorithm computation is assumed to be
instantaneous and not included in the rest of the system transitions. Subse-
quent work on algorithmic knowledge, see for example [24], continues to
adopt this ‘closure under the algorithm’ condition for the algorithmic knowl-
edge, although beliefs are represented as tokens, and the algorithm as a set of
rewriting rules.

5 Syntactic belief ascription
In this section we present syntactic belief ascription as an alternative ap-
proach to computationally grounded belief ascription. We distinguish be-
tween beliefs and reasoning abilities which we ascribe to the agent (‘the
agent’s logic’) and the logic we use to reason about the agent. In this we
follow, e.g., [21, 20, 17]. Our approach grounds the ascription of belief in
the state of the agent and allows us to explicitly model the computational de-
lay involved in updating the agent’s state. Our logic for reasoning about the
agent’s beliefs is grounded in a concrete computational model in the sense of
[33]. However, unlike [33, 29] we choose not to interpret the agent’s beliefs
as propositions corresponding to sets of possible states or runs of the agent’s
program, but syntactically, as formulas ‘translating’ some particular config-
uration of variables in the agent’s internal state. One of the consequences of
this choice is that we avoid modelling the agent as logically omniscient. This
has some similarities with the bounded-resources approach of [15] and more
recent work such as [14, 4, 1]. We first consider grounded belief ascription
(given an agent state, how to ascibe beliefs to it in a grounded way), and then
discuss closure assumptions (what assumptions is it safe to make concerning
the closure of the agent’s belief set under the agent’s inferential capabilities).

6

6

5.1 Grounded belief ascription
Similarly to interpreted systems, we consider states to be n + 1-tuples of
local states of n agents and the state of the environment, in other words,
s = (s1, . . . , sn, e). We describe the properties of the system in a language
built from a set of propositional variables P . Beliefs ascribable to an agent
i are a finite set of literals (variables or their negations) over P which we
will denote Li. Following, for example, Rosenschein and Kaelbling [28], we
assume that each agent’s state consists of finitely many ‘memory locations’
l1,. . . ,lm, and that each location lj can contain (exactly) one of finitely many
values, vj1 , . . . , vjk . For example, we could have a location lt for the output
of a temperature sensor which may take an integer value between -50 and
50. Based on those values, we can ascribe beliefs about the external world
to the agent: for example, based on lt = 20 we ascribe to the agent a belief
that the outside temperature is 20 C. Each literal in Li corresponds to the fact
that a given memory location lj (or set of memory locations) has a given set
of values, but ‘translates’ this into a statement about the world. We assume
a mapping Ai assigning to each state s a set of propositional variables and
their negations which form beliefs of agent i in state s. Note that this ‘trans-
lation’ is fixed and does not depend on the truth or falsity of the formulas
in the real world. In general, there is no requirement that Ai be consistent;
if a propositional variable and its negation are associated with two different
memory locations (e.g., in an agent which has two temperature sensors) then
the agent may simultaneously believe that p and ¬p1. Ai does not have to
map a single value to a single belief, for example, all values of lt > 20 could
be mapped to a single belief that it’s “warm”. Conversely, we do not assume
that for every propositional variable p ∈ P , either p or ¬p belong to Ai; if
a location lj has no value (e.g., if a sensor fails) or has a value that does not
correspond to any proposition, then the agent may have no beliefs about the
outside world at all. Other intentional notions such as goals can be modelled
analogously to beliefs, i.e., by introducing an explicit translation from the
contents of the agent’s state into the set of goals. We elaborate belief and
goal ascription using the notion of a memory location rather than assuming
that agents have an internal representation of beliefs or goals e.g., as a list
of literals, for reasons of generality. The ascription mechanism described
above is applicable to arbitrary agents, not only those with an explicit inter-
nal representation of beliefs and goals. In certain sense, we can say that this
ascriptionAi(s) corresponds to the agent’s ‘awareness’ of the facts explicitly
represented in agent i’s local state in the global state s.

Our aim is to model the transitions of the agent-environment system as
a kind of Kripke structure and express properties of the agents in a modal
logic. We consider transition systems similar to the interpreted systems of
[16], except that the beliefs of agents are modelled as a local property of
each agent’s state using syntactic assignment Ai corresponding to agent i’s
beliefs. The state of the environment e corresponds to a classical possible
world, or a complete truth assignment to propositional variables in P . Agent

1This assumes that the agent’s program is using beliefs about the outside world, rather than indi-
rect beliefs about sensor reading; in the latter case of course there would be no contradictory beliefs,
since different sensors would have different propositions associated with them.

7

7

i believes that p in state s, M, s |= Bip, if p ∈ Ai(s). Our proposal is
technically equivalent to the syntactic model of belief in [16]. The difference
between our approach and [16], is that while a syntactic assignment in [16]
is an arbitrary set of formulas, we show how to ground this set in the set of
values of variables in the agent’s state. Note that this truth definition for Bi

does not give rise to any interesting logical properties of Bi, e.g., to KD45
axioms. This is intentional: we do not want our agents to be logically omni-
scient and the logical properties of agent’s beliefs should be determined by
the agent’s architecture and program. However, the agent’s state changes as
the agent executes its program; it could be argued that we may assume that
some computation of ‘consequences’ of the agent’s beliefs takes so little time
that we can safely assume that the set of beliefs is closed with respect to the
agent’s ‘internal logic’ (this argument is made in favour of the closure under
algorithmic knowledge in [16]). This is the topic of the next section.

5.2 Deductive closure assumptions
Clearly, any assumptions concerning deductive closure of the agent’s beliefs
should be based on the agent’s program and on the requirements of mod-
elling. One could argue that if the agent only ever ‘tests’ its beliefs to check
whether it believes p or ¬p, and belief ascription with respect to p is correct,
it is safe to ascribe to the agent a set of beliefs closed with respect to full
classical logic since the agent program does not make any choices depending
on the presence of all the extraneous beliefs (logical tautologies and the like).
However, we would argue that beyond such relatively trivial agent programs,
the deductive closure assumptions should be taken seriously since they may
result in incorrect belief ascription.

We argue that for any agent which answers queries or choses actions
depending on its beliefs, the assumption of deductive closure of beliefs is
only safe if

1. the closure is with respect to the agent’s real ‘internal logic’ or query
answering algorithm implemented by the agent program (so the postu-
lated consequences are actually derivable)

2. the requirements of modelling allow for a reasonably coarse granu-
larity of time, and it is reasonable to assume that the agent’s deductive
algorithm completes within a finite and reasonably short period of time.

For example, it may make sense to model beliefs of a forward-chaining
rule-based agent as closed under applying the forward chaining procedure to
a finite set of ground beliefs, provided that it does not take a long time to
terminate and we are not concerned with the precise timing of the agent’s
response to a query. Under such conditions, it is reasonable to model the
agent’s beliefs using the deductive algorithmic knowledge approach [24].
Note that although the set of beliefs of such an agent is deductively closed,
it is deductively closed with respect to a very weak logic (basically, a logic
containing universal quantifier elimination and modus ponens, which is much
weaker that the full classical logic).

Consider again a forward-chaining rule-based agent but assume that its
deductive procedure is not guaranteed to terminate (for example, the agent’s

8

8

rules contain arithmetic expressions). In this case, even if modelling allows
for quite coarse granularity of time, it would not be safe to model beliefs of
the agent as deductively closed (since some of the logical consequences will
never be derived in reality but will be ascribed to the agent by the deductive
closure assumption). In this case, the deductively closed set of beliefs, even
in the agent’s own ‘logic’ (its ‘implicit knowledge’) will be an idealisation,
and the algorithmic knowledge approach could be made to work (for a given
granularity of modelling) by amending the agent’s forward-chaining algo-
rithm with a ‘timeout’ corresponding to the granularity of modelling: e.g. if
the agent’s state is ‘sampled’ at 10 minute intervals then the agent’s beliefs
can be modelled as closed with respect to applying the forward-chaining al-
gorithm for 10 minutes.

Finally, arguably the safest way of ascribing beliefs to a resource-bounded
agent is not to make any closure assumptions for the set of agent’s beliefs,
and to model each inference step in the agent’s internal logic as an explicit
transition of the system; this choice gives rise to dynamic syntactic logics
such as [14, 1, 4].

6 Verifying agent programs
In this section we briefly outline some applications of syntactic epistemic
logics in verifying agent programming languages.

6.1 Theorem proving
SimpleAPL is simplified version of the BDI-based agent programming lan-
guages 3APL and 2APL, see, e.g., [9]. SimpleAPL programs have explicit
data structures for beliefs and goals, and a program is specified in terms of the
agent’s beliefs, goals and planning goal rules which specify which plans the
agent should adopt given its goals and beliefs. An approach to verification of
SimpleAPL programs based on syntactic epistemic logic was described in [2]
and extended to verification of agent programs under different deliberation
strategies in [3]. Given the explicit representation of beliefs, belief ascription
for SimpleAPL agents is straightforward: B p (the agent believes that p) is
true if p is present in the belief base of the agent. SimpleAPL agents do not
do any inference, so the set of beliefs is not closed under any inference rules.
Verification in [2] is done by theorem proving; an agent program is axioma-
tised in Propositional Dynamic Logic (PDL) extended with syntactic belief
and goal operators, and a statement such as ‘all executions of this program
starting in a state with initial beliefs p1, . . . , pn and goals κ1, . . . , κm will
achieve the agent’s goals’ can be verified by checking whether the following
formula is derivable from the axiomatisation of the agent program:

i=1∧

i=n

Bpi ∧
j=1∧

j=m

Gκj → [prog]

j=1∧

j=m

Bκj

where prog is a translation of the agent’s program into PDL with syntactic
belief and goal operators.

9

9

As an example, consider the following example of a vacuum cleaner
agent. Actions in SimpleAPL are specified using pre and postcondition pairs
(intuitively, what the agent should believe before it can execute an action,
and what its beliefs are expected to be after it executes an action). Suppose
the agent has the following actions:

{room1} moveR {-room1, room2}
{room2} moveL {-room2, room1}
{room1, battery} suck {clean1, -battery}
{room2, battery} suck {clean2, -battery}
{-battery} charge {battery}

We will abbreviate goals and beliefs of the agent as: ci for cleani, ri for
roomi, b for battery, and actions s for suck, c for charge, r for moveR, l
for moveL. Suppose the program of the agent contains the following planning
goal rules:

c1 <- b | if r1 then s else l; s
c2 <- b | if r2 then s else r; s

<- -b | if r2 then c else r; c

These rules allow the agent to select an appropriate plan to achieve a goal
given its current beliefs. For example, the first rule can be read as “if the goal
is to clean room 1, and the battery is charged, adopt the following plan: if in
room one, suck, else move left and then suck”.

The corresponding PDL program expression prog is:

prog =df ((Gc1 ∧Bb)?; (Br1?; s) ∪ (¬Br1?; l; s)) ∪
((Gc2 ∧Bb)?; (Br2?; s) ∪ (¬Br2?; r; s)) ∪
(¬Bb?; (Br2?; c) ∪ (¬Br2?; r; c))

Some example axioms:

Bp → ¬Gp (for every variable p: the agent does not have as a goal some-
thing that it believes has been achieved)

Br2 ∧ Bb ∧ Gc2 → [s](Bc2 ∧ ¬Bb ∧ Br2) (corresponds to the pre and
postconditions of the suck action).

We used MSPASS and pdl tableaux theorem provers to prove the follow-
ing properties:

• if the agent has goals to clean rooms 1 and 2, and starts in the state
where its battery is charged and it is in room 1, it can reach a state
where both rooms are clean: Gc1∧Gc2∧Bb∧Br1 → 〈prog3〉(Bc1∧
Bc2) (where prog3 stands for prog repeated three times)

• the agent is guaranteed to achieve its goal (after 3 iterations of the
program) Gc1 ∧Gc2 ∧Bb ∧Br1 → [prog3](Bc1 ∧Bc2)

The logic sketched above is grounded in the agent programming language
because its models correspond to the agent’s operational semantics. It can be
used to specify and automatically verify properties of SimpleAPL programs.

10

10

6.2 Model-checking
In the previous section, we sketched an approach to verifying agent programs
using theorem proving. Another approach is to use a model-checker. There
are two main strands of work in model-checking multi-agent systems and
agent programs which are exemplified by: model-checking based on ‘stan-
dard’ BDI logics e.g., [22] and model-checking based on a syntactic inter-
pretation of beliefs e.g., [11, 10, 30].

The only model-checker which ‘understands’ epistemic operators (knowl-
edge) is MCMAS [22]. MCMAS allows checking of properties along both
temporal and knowledge accessibility relations. Unfortunately, it is nontrivial
to relate ‘possible worlds’ knowledge to the knowledge or beliefs of imple-
mented BDI agents.

An alternative approach is to model-check an agent programming lan-
guage treating belief as a syntactic modality. This is the approach implicitly
taken in [11] for the verification of AgentSpeak(F) programs. Belief, desire
and intention are defined in terms of the operational semantics of AgentS-
peak(F):

• an agent believes φ if φ is present in its belief base

• an agent intends φ if φ is an achievement goal that appears in the
agent’s set of intentions – i.e., in the agent’s currently executing or
suspended plans.

AgentSpeak(F) programs are translated into the Promela modelling language
of the Spin model checker. Properties to be model-checked are expressed in
a simplified BDI logic translated into the LTL-based property specification
language used by Spin. BDI modalities are mapped onto the AgentSpeak(F)
structures implemented as a Promela model. So, even though Bordini et
al. [11] do not mention the problems with the standard semantics of belief,
or dwell on using the syntactic approach to beliefs rather than the LORA
framework based on the standard epistemic semantics which they officially
adopt, the fact is that they do use a syntactic approach. We argue that this is
inevitable in verification of a real agent programs. A similar approach (using
syntactic or ‘shallow’ modalities) is adopted in [10] and [30].

The work on model-checking agent programs using syntactic approaches
mentioned in this section does not model agent’s deriving consequences from
its beliefs explicitly. However, in other work where the main concern is
with the time required for the agents to produce a response to a query, we
did use model-checking over systems where transitions correspond to agents
applying inference rules (usually, forward-chaining rule firing): see [4, 7] for
more details.

7 Conclusion
‘Standard’ BDI logics allow properties of beliefs and other intentional at-
titudes of AI agents to be formalised. The resulting specifications can be
model checked using model checkers such as MCMAS. However it is not
clear how to implement agents based on these specifications; in particular, it
is not clear what corresponds to belief and goal accessibility relations in the

11

11

agent programming language or the implemented agent. On the other hand,
‘syntactic’ BDI logics allow more accurate modelling of AI agents. We can
verify properties of real agent programs at the belief and goal level (as op-
posed to simply verifying the agent program as just a computer program).

Acknowledgements Natasha Alechina and Brian Logan were supported
by the Engineering and Physical Sciences Research Council [grant number
EP/E031226].

References
[1] Thomas Ågotnes and Natasha Alechina. The dynamics of syntactic

knowledge. Journal of Logic and Computation, 17(1):83–116, 2007.

[2] Natasha Alechina, Mehdi Dastani, Brian Logan, and John-Jules Ch.
Meyer. A logic of agent programs. In Proceedings of the Twenty-
Second National Conference on Artificial Intelligence (AAAI 2007),
pages 795–800. AAAI Press, 2007.

[3] Natasha Alechina, Mehdi Dastani, Brian Logan, and John-Jules Ch.
Meyer. Reasoning about agent deliberation. In Proceedings of the
Eleventh International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’08), pages 16–26, Sydney, Australia,
September 2008. AAAI.

[4] Natasha Alechina, Mark Jago, and Brian Logan. Modal logics for com-
municating rule-based agents. In Gerhard Brewka, Silvia Coradeschi,
Anna Perini, and Paolo Traverso, editors, Proceedings of the 17th Eu-
ropean Conference on Artificial Intelligence (ECAI 2006), pages 322–
326. IOS Press, 2006.

[5] Natasha Alechina and Brian Logan. Ascribing beliefs to resource
bounded agents. In Cristiano Castelfranchi and W. Lewis Johnson, ed-
itors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2002), pages 881–
888, Bologna, Italy, July 2002. ACM Press.

[6] Natasha Alechina and Brian Logan. A logic of situated resource-
bounded agents. Journal of Logic, Language and Information,
18(1):79–95, 2009.

[7] Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib.
Verifying time, memory and communication bounds in systems of rea-
soning agents. Synthese, 169(2):385–403, July 2009.

[8] Rafael Bordini, Michael Fisher, Willem Visser, and Michael
Wooldridge. State-space reduction techniques in agent verification. In
Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe,
editors, Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS-2004), pages 896–
903, New York, NY, 2004. ACM Press.

12

12

[9] Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-
Seghrouchni, editors. Multi-Agent Programming: Languages, Plat-
forms and Applications, volume 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations. Springer, 2005.

[10] Rafael H. Bordini, Louise A. Dennis, Berndt Farwer, and Michael
Fisher. Automated verification of multi-agent programs. In 23rd
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages 69–
78. IEEE, 2008.

[11] Rafael H. Bordini, Michael Fisher, Carmen Pardavila, and Michael
Wooldridge. Model checking AgentSpeak. In Proceedings of the Sec-
ond International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS’03), pages 409–416, New York, NY, USA, 2003.
ACM.

[12] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[13] P. R. Cohen and H. J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42:213–261, 1990.

[14] Ho Ngoc Duc. Reasoning about rational, but not logically omniscient,
agents. Journal of Logic and Computation, 7(5):633–648, 1997.

[15] Jennifer J. Elgot-Drapkin and Donald Perlis. Reasoning situated in time
I: Basic concepts. Journal of Experimental and Theoretical Artificial
Intelligence, 2:75–98, 1990.

[16] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, Mass., 1995.

[17] Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. A non-standard
approach to the logical omniscience problem. Artificial Intelligence,
79(2):203–240, 1996.

[18] Michael P. Georgeff, Barney Pell, Martha E. Pollack, Milind Tambe,
and Michael Wooldridge. The belief-desire-intention model of agency.
In Jörg P. Müller, Munindar P. Singh, and Anand S. Rao, editors, In-
telligent Agents V, Agent Theories, Architectures, and Languages, 5th
International Workshop, (ATAL’98), Paris, France, July 4-7, 1998, Pro-
ceedings, volume 1555 of Lecture Notes in Computer Science, pages
1–10. Springer, 1999.

[19] J. Hintikka. Knowledge and belief. Cornell University Press, Ithaca,
NY, 1962.

[20] K. Konolige. A Deduction Model of Belief. Morgan Kaufmann, San
Francisco, Calif., 1986.

[21] H. J. Levesque. A logic of implicit and explicit belief. In Proceedings
of the Fourth National Conference on Artificial Intelligence, AAAI-84,
pages 198–202. AAAI, 1984.

[22] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A
model checker for the verification of multi-agent systems. In Ahmed
Bouajjani and Oded Maler, editors, Computer Aided Verification, 21st

13

13

International Conference, CAV 2009, Grenoble, France, June 26 - July
2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Sci-
ence, pages 682–688. Springer, 2009.

[23] John-Jules Ch. Meyer. Our quest for the holy grail of agent verifi-
cation. In Nicola Olivetti, editor, Automated Reasoning with Ana-
lytic Tableaux and Related Methods, 16th International Conference,
TABLEAUX 2007, Aix en Provence, France, July 3-6, 2007, Proceed-
ings, volume 4548 of Lecture Notes in Computer Science, pages 2–9.
Springer, 2007.

[24] Riccardo Pucella. Deductive algorithmic knowledge. Journal of Logic
and Computation, 16(2):287–309, 2006.

[25] Franco Raimondi. Model-checking multi-agent systems. PhD thesis,
Department of Computer Science, University College London, Univer-
sity of London, 2006.

[26] Franco Raimondi and Alessio Lomuscio. A tool for specification and
verification of epistemic properties in interpreted systems. Electronic
Notes in Theoretical Computer Science, 85:176–191, 2004.

[27] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning (KR’91), pages
473–484, 1991.

[28] S. J. Rosenschein and L. P. Kaelbling. A situated view of representation
and control. Artificial Intelligence, 73:149–173, 1995.

[29] N. Seel. The ‘logical omniscience’ of reactive systems. In Proceedings
of the Eighth Conference of the Society for the Study of Artificial Intel-
ligence and Simulation of Behaviour (AISB’91), pages 62–71, Leeds,
England, 1991.

[30] Doan Thu Trang, Brian Logan, and Natasha Alechina. Verifying Drib-
ble agents. In Matteo Baldoni, Jamal Bentahar, M. Birna van Riems-
dijk, and John Lloyd, editors, Declarative Agent Languages and Tech-
nologies VII, 7th International Workshop, DALT 2009, Budapest, Hun-
gary, May 11, 2009. Revised Selected and Invited Papers, volume 5948
of Lecture Notes in Computer Science, pages 244–261, 2010.

[31] W. van der Hoek and M. Wooldridge. Towards a logic of rational
agency. Logic Journal of the IGPL, 11(2):133–157, 2003.

[32] W. van der Hoek and M. Wooldridge. Towards a logic of rational
agency. Logic Journal of the IGPL, 11(2):135–159, 2003.

[33] Michael Wooldridge. Computationally grounded theories of agency.
In E. Durfee, editor, Proceedings of the Fourth International Confer-
ence on Multi-Agent Systems (ICMAS-2000), pages 13–20. IEEE Press,
2000.

[34] Michael Wooldridge. Reasoning About Rational Agents. MIT Press,
2000.

14

14

Logic meets cognition: empirical reasoning in games

Sujata Ghosh, Ben Meijering and Rineke Verbrugge
Department of Artificial Intelligence

University of Groningen
e-mail: {sujata,b.meijering,rineke}@ai.rug.nl

Abstract

This paper presents a first attempt to bridge the gap between logical and cognitive treat-
ments of strategic reasoning in games. The focus of the paper is backward induction, a prin-
ciple which is purported to follow from common knowledge of rationality by Zermelo’s the-
orem. There have been extensive formal debates about the merits of principle of backward
induction among game theorists and logicians. Experimental economists and psychologists
have shown that human subjects, perhaps due to their bounded resources, do not always fol-
low the backward induction strategy, leading to unexpected outcomes. Recently, based on
an eye-tracker study, it has turned out that even human subjects who produce the outwardly
correct ‘backward induction answer’ use a different internal reasoning strategy to achieve it.
This paper presents a formal language to represent different strategies on a finer-grained level
than was possible before. The language and its semantics may lead to precisely distinguishing
different cognitive reasoning strategies, that can then be tested on the basis of computational
cognitive models and experiments with human subjects.

1 Introduction

Strategic reasoning in games concerns the plans or strategies that information-processing agents
have for achieving certain goals. Strategy is one of the basic ingredients of multi-agent interaction.
It is basically the plan of action an agent (or a group of agents) considers for its interactions, that
can be modelled as games. From the game-theoretic viewpoint, a strategy of a player can be de-
fined as a partial function from the set of histories (sequences of events) at each stage of the game
to the set of actions of the player when it is supposed to make a move [OR94]. Agents devise their
strategies so as to force maximal gain in the game.

In cognitive science, the term ‘strategy’ is used much more broadly than in game theory. A
well-known example is formed by George Polya’s problem solving strategies (understanding the
problem, developing a plan for a solution, carrying out the plan, and looking back to see what can
be learned) [Pol45]. Nowadays, cognitive scientists construct fine-grained theories about human
reasoning strategies [Lov05, JT07], based on which they construct computational cognitive mod-
els. These models can be validated by comparing the model’s predicted outcomes to results from
experiments with human subjects [And07].

Every finite extensive form game with perfect information [OR94] played by rational players
has a sub-game perfect equilibrium and backward induction is a popular technique to compute
such equilibria. The backward induction strategy, which employs iterated elimination of weakly
dominated strategies to obtain sub-game perfect equilibria, is a common strategy followed by
rational players with common knowledge (belief) of rationality. We provide below an explicit de-
scription of the backward induction algorithm in extensive form game trees [Jon80]. We are only
considering strictly competitive games played between two players.

1

15

Consider a finite extensive form game with perfect information G played between two players
E and A, say. In game G, each player i is associated with a utility function ui which maps each
leaf node of the tree to the set {0,1}. The backward induction procedure BIpG, iq takes as input
such a game G and a player i. It decides whether player i has a winning strategy in G and if
so, computes the winning strategy. The procedure proceeds as follows. Initially all nodes are
unlabelled.

Step 1: All leaf nodes l are labelled with uiplq.

Step 2: Repeat the following steps till the root node r is labelled: Choose a non-leaf
node t which is not labelled, but all of whose successors are labelled.

a) If it is i’s turn at t and there exists a successor t1 of t which is labelled 1,
then label t with 1 and mark the edge (t, t1) which gives the best response
at that stage.
b) If it is the opponent’s turn at t and every successor t1 is labelled 1, then
label t with 1.

Player i will have a winning strategy in the game G if and only if the root node r is labelled
with 1 by the backward induction procedure BIpG, iq.

One important critique of this backward induction procedure is that it ignores information,
and such ignorance is hardly consistent with a broad definition of rationality. Under backward
induction, the fact that a player ends up in one particular subgame rather than another subgame is
never considered information for the player. The past moves and reasoning of the players are not
taken into consideration. Only what follows is reasoned about. That is, the backward induction
solution ignores any forward induction reasoning [Per10].

Before proceeding further we should mention here that there have been numerous debates sur-
rounding the backward induction strategy from various angles. The paradigm discussion concerns
the epistemic conditions of backward induction. Here, Aumann [Aum95] and Stalnaker [Sta96]
have taken conflicting positions regarding the question whether common knowledge of rationality
in a game of perfect information entails the backward induction solution. Researchers such as
Binmore have argued for the need for richer models of players, incorporating irrational as well as
rational behavior [Bin96]. For more details on these issues see [Bic88, ACB07, Bra07, BSZ09,
HP09, Art09].

From the logical point of view, various characterisations of backward induction can be found
in modal and temporal logic frameworks [Bon02, HvdHMW03, vW03, JvdH04, BSZ09]. There
are also critical voices around backward induction arising from logical investigations of strategies.
While discussing large (perfect information) games played by resource-bounded players, Ramanu-
jam and Simon emphasize that strategizing follows the flow of time in a top-down manner rather
the bottom-up one advocated by the backward induction algorithm [RS08] .

Critique of a different flavor stems from experimental economics [Cam03]. As sketched above,
the game-theoretic perspective assumes that people are rational agents, optimizing their gain by
applying strategic reasoning. However, many experiments have shown that people are not com-
pletely rational in this sense. For example, McKelvey and Palfrey [MP92] have shown that in a
traditional centipede game participants do not behave according to the Nash equilibrium reached
by backward induction. In this version of the game, the payoffs are distributed in such a way that
the optimal strategy is to always end the game at the first move. However, in McKelvey and Pal-
frey’s experiment, participants stayed in the game for some rounds before ending the game: in fact,

2

16

only 37 out of 662 games ended with the backward induction solution. McKelvey and Palfrey’s
explanation of their results is based on reputation and incomplete information. They compare the
complete information dynamic centipede game to an incomplete information game, the iterated
prisoner’s dilemma as investigated by Kreps et al. [KMRW82]. McKelvey’s and Palfrey’s main
idea is that players may believe that there is some possibility that their opponent has payoffs dif-
ferent from the ‘official ones’: for example, they might be altruists, i.e., they give weight to the
opponent’s payoff. Another interpretation of this result is that the game-theoretic perspective fails
to take into account the reasoning abilities of the participants. That is, perhaps, due to cognitive
constraints such as working memory capacity, participants are unable to perform optimal strategic
reasoning, even if in principle they are willing to do so.

In conclusion, we find two very different bodies of work on players’ strategies in centipede-like
games: on the one hand we find idealized logical studies on games and strategies modelling inter-
active systems, and on the other there are experimental studies on players’ strategies and cognitive
modelling of their reasoning processes. Both streams of research have been rather disconnected
so far.

To the best of the knowledge of the authors, this article presents a first attempt to bridge the gap
between the experimental studies, cognitive modeling, and logical studies of strategic reasoning.
In particular, we investigate the question whether a logical model can be used to construct better
computational cognitive models of strategic reasoning in games. In the next section we discuss
some experimental studies on second-order reasoning of players and cognitive models of such
reasoning. Section 3 builds up a logical framework to describe empirical reasoning of players.
Finally, the last section provides a discussion with some pointers towards future work.

2 Marble Drop: experiments and cognitive model

This section presents a brief overview of the experimental work on Marble Drop games described
in [MMRV10], and of the computational cognitive model (in the cognitive architecture ACT-
R [And07]), which was developed in [MV10] to provide a model for second-order social reasoning
in predicting the opponent’s moves in Marble Drop games.

2.1 Higher-order social cognition

One of the pinnacles of intelligent interaction is higher-order theory of mind, an agent’s ability
to model recursively mental states of other agents, including the other’s model of the first agent’s
mental state, and so forth. More precisely, zero-order theory of mind concerns world facts, whereas
k � 1-order reasoning models k-order reasoning of the other agent or oneself. For example, “Bob
knows that Alice knows that he wrote a novel under pseudonym” (KBobKAlicep) is a second-order
attribution. Orders roughly correspond to the modal depth of a formula 1

The authors in [MMRV10, MvRV10] have investigated higher-order social cognition in hu-
mans by means of two experiments. They conducted a behavioral experiment to investigate how
well humans are able to apply first- and second-order reasoning. Even though behavioral measures
can shed some light on the usage of strategies (see e.g. [HZ02]), they are too crude to go into the
details of the actual reasoning steps. Johnson, Camerer, Sen, and Rymon’s study employed a novel
measure to capture those details [JCSR02]. In their sequential bargaining experiment, participants
had to bargain with one other player. The amount to bargain and the participant’s role in every

1We use the term ‘higher-order social cognition’ instead of ‘higher-order theory of mind’. The reason to do this is
that in the philosophical controversy between ‘theory-theory’ and ‘simulation-theory’, the term ‘theory of mind’ carries
the unwanted connotation that ‘theory-theory’ is preferred.

3

17

round was hidden behind boxes. The participants had to click on a box to make elements of this
information visible. This allowed Johnson et al. to record the information regarding what the
participants select at a particular time within the bargaining (i.e., reasoning) process. A potential
problem of this measure is that participants might feel disinclined to repeatedly check sets of in-
formation elements and rather develop an artificial strategy that involves fewer mouse clicks but
puts a higher strain on working memory.

To avoid this problem, Meijering et al. choose to employ eye-tracking technology to investi-
gate the details of higher-order social reasoning. They are currently conducting an eye-tracking
study to investigate the reasoning steps during higher-order social reasoning [MvRV10]. The
findings of this experiment, together with the behavioral results, help to determine the cognitive
bounds on higher-order social reasoning. We give a short overview below and refer the reader to
the full papers for more details.

2.1.1 Marble Drop games

Meijering et al. [MMRV10] presented participants with strategic games to investigate higher-order
social reasoning. In these games, the path of a white marble that was about to drop could be
manipulated by removing trapdoors (Figure 2). Experience with world-physics allowed players to
see easily how the marble would run through a game, and which player could change the path of the
white marble at each decision point in the game. In other words, higher-order social reasoning was
embedded in a context that provided an insightful overview of the decisions and the consequences
of these decisions.

Earlier, Hedden and Zhang [HZ02] and Flobbe et al. [FVHK08] had also presented partic-
ipants with strategic games to investigate higher-order social reasoning, but the performance in
those games was far from optimal with approximately 60% - 70% correct. The participants could
either have had difficulties applying higher-order social reasoning or difficulties understanding the
games.

The matrix games (Figure 1) presented in [HZ02] were very abstract, which could have made
the games difficult to understand. Embedding the games in a context could have alleviated this
problem. Some studies have shown that non-social reasoning can be facilitated by embedding
it in a context. For example, for Wason’s selection task it has been stated that a social rule-
breaking context helps [WS71]; but see [MO91, SvL04]. More convincingly, subjects have been
shown to win the game of tic-tac-toe more easily than its equivalent, Number Scrabble [Mic67,
Sim79, Wei84]). The role of context and ecological validity in decision making also plays an
important role in the work on ‘simple heuristics that make us smart’ [GT99]. Higher-order social
reasoning, which seemed to be very demanding in matrix games, might also benefit from a context
embedding.

Flobbe et al. [FVHK08] found some indirect evidence of a facilitative effect of embedding
higher-order social reasoning in a context. However, the performance in their experiment was only
slightly better than that in Hedden and Zhang’s experiments. Flobbe et al. embedded Hedden and
Zhang’s matrix games in the context of a road game. The road games were played on a computer.
The participants were presented with roads that had three junctions, which corresponded with the
cell-transitions in the matrix games. At each junction either the participant or the computer decided
to move ahead (i.e., continue the game) if there was a higher payoff to attain further in the game,
or to turn right (i.e., end the game) if there was no higher payoff to attain further in the game. The
participant and the computer alternately took seat in the driver’s position; the one in the driver’s
seat made the decision.

The performance in the road games might not have been optimal because of the unnatural char-
acteristic of the context in these games. The participants (and the computer) alternately changed

4

18

Player 1
decides

Player 2
decides

Player 1
decides

3 1

4 3

2 2

1 4

B C

DA

Figure 1: A schematic overview of a matrix game [HZ02]. The first number in each cell is Player
1’s payoff, the second Player 2’s payoff. The goal is to attain the highest possible payoff. Partici-
pants first had to predict what the other player would do at cell B before making a decision what to
do at cell A: to stay and stop the game, or to move to cell B. In this example, Player 1 would have
to predict that Player 2 will stay, because Player 1 will move to cell D if given a choice at cell C,
leading to a lower payoff for Player 2, namely 2 instead of 4. Consequently, the rational decision
for Player 1 is to move to cell B in the first move.

driver’s seat, which is not common practice in everyday life. Because this unnatural characteristic
necessitates some (additional) explanation, the context in the road games was not insightful at first
glance.

Meijering et al. [MMRV10] expected that the performance could be improved much further
by embedding higher-order social reasoning in their context of a marble game, which was more
intuitive and required less explanation. Importantly, these so-called Marble Drop games were
game-theoretically equivalent to the matrix games of [HZ02] and the road games of [FVHK08].
All game types have the same extensive form, namely that of the Centipede game [Ros81] (see
http://www.ai.rug.nl/ leendert/Equivalence.pdf). Consequently, an improvement in performance
can be attributed to a context effect.

In Marble Drop games, the payoffs are color-graded marbles, instead of payoff numbers. Mei-
jering et al. presented color-graded marbles instead of numbers to minimize the usage of numeric
strategies other than first- and second-order reasoning. The color-graded marbles can easily be
ranked according to preference, lighter marbles being less preferred than darker marbles. The
ranking makes it possible to have payoff structures similar to those in matrix and road games. The
sets of trapdoors in Marble Drop games correspond to the transitions, from one cell to another, in
matrix games [HZ02], and to the junctions in road games [FVHK08].

Figure 2 depicts example games of Marble Drop. The goal is to let the white marble end up
in the bin with the darkest color-graded marble of one’s own target color (orange or blue). Note
that, for illustrative purposes, the color-graded marbles are replaced with codes: a1 - a4 represent
the participant’s color-graded marbles and b1 - b4 represent the computer’s color-graded marbles
(which are of another color); 1 - 4 being light to dark grades. (See http://www.ai.rug.nl/
˜meijering/MarbleDrop.html for the original Marble Drop games.) The diagonal lines
represent the trapdoors.

In the example game in Figure 2a, participants need to remove the right trapdoor to attain
the darkest color-graded marble of their color (a2). The game in Figure 2a is a zero-order game,
because there is no other player to reason about. In first-order games (Figure 2b) participants
need to reason about another player, the computer. The computer is programmed to let the white

5

19

a1 b2 a2 b1 a1 b2 a3 b1a2 b3 a2 b1 a1 b4a4 b3a3 b2

(a) (b) (c)

Figure 2: A zero-order (a), first-order (b) and second-order (c) Marble Drop game. The partici-
pant’s payoffs are represented by a1 - a4, the computer’s by b1 - b4, both in increasing order of
value. The goal is to let the white marble end up in the bin with the highest attainable payoff. The
diagonal lines represent trapdoors. At the first set of trapdoors, the participant decides which of
both trapdoors to remove, at the second set the computer decides, and at the third set the participant
again decides. The dashed lines represent the trapdoors that both players should remove to attain
the highest payoff they can get.

marble end up in the bin with the darkest color-graded marble of its target color, which is different
from the participant’s target color. Participants need to reason about the computer, because the
computer’s decision at the second set of trapdoors affects at what bin a participant can end up.

In the example game in Figure 2b, if given a choice at the second set of trapdoors, the com-
puter will remove the left trapdoor, because its marble in the second bin (b2) is darker than its
marble in the third bin (b1). Consequently, the participant’s darkest marble in the third bin (a3)
is unattainable. The participant should therefore remove the left trapdoor (of the first set of trap-
doors), because the marble of their target color in the first bin (a2) is darker than the marble of
their target color in the second bin (a1).

In a second-order game (Figure 2c) there is a third set of trapdoors at which the participants
again decide which trapdoor to remove. They need to apply second-order reasoning, that is, rea-
son about what the computer, at the second set of trapdoors, thinks that they, at the third set of
trapdoors, think.

In Marble Drop games, half of the participants first had to predict what the opponent would
do (at the second set of trapdoors) before deciding what to do at the first set of trapdoors. The
participants were instructed that the opponent was rational, as were the participants in Hedden and
Zhang’s and Flobbe et al.’s experiments2.

Similar to the supporting role of scaffolding in the construction of a building, (instructional)
scaffolding provides a supporting structure to learn a new concept or skill that is beyond the in-
dependent efforts of a student [WBR76]. Asking participants to make a prediction about the
opponent before making a decision was thought to support second-order social reasoning, as de-
cisions should be based on predictions, and making a prediction involves thinking about what the
opponent thinks that the participant thinks. In matrix and road games, all the participants first had
to give their prediction of what the opponent would do before making their own decision. Mei-
jering et al. [MMRV10] set out to investigate whether embedding higher-order social reasoning
in a context that allows for an insightful overview of the decisions and the consequences of these
decisions might render such scaffolding obsolete.

2One group of participants in Hedden and Zhang’s experiments [HZ02] knew they were playing against a computer
whereas another group did not. Hedden and Zhang found no difference in performance for the two groups.

6

20

2.2 Results

Twenty first-year Psychology students participated in exchange for course credit. The mean age
of the included participants (12 female) was 21.15 years (SE = 0.36).

Whereas the participants in the matrix games [HZ02], and the road games [FVHK08] had
difficulties applying second-order reasoning, in Marble Drop games [MMRV10], participants per-
formed almost at ceiling: in 94% of the games, participants correctly applied second-order reason-
ing. In the former two game types, the performance ranged between 60 - 70%.

Exp. Manip. Test
Block

M
ea

n
A

cc
ur

ac
y

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

PD - D
D - D

Figure 3: Mean proportion of games in which participants correctly applied second-order reason-
ing, presented separately for the PD-D and D-D groups in the experimental manipulation block
and the test block. The standard errors are depicted above and below the means.

According to the results in [MMRV10], there is no need to scaffold second-order reasoning,
given that it is embedded in an ecologically valid context. The performance of the participants
that had to make a prediction before making a decision (the PD-D group) was slightly better in the
first half (the experimental manipulation block) of the experiment, but in the second half (the test
block), the participants that had to make a prediction (the PD-D group) and the participants that
did not (the D-D group) performed equally well (Figure 3).

In sum, [MMRV10] demonstrated that adolescents are able to apply second-order reasoning
if it is embedded in an ecologically valid context, and that such an embedding renders scaffold-
ing unnecessary. Currently, [MvRV10] are doing an eye-tracking study to elaborate the steps in
second-order reasoning during Marble Drop games. We will come back to this discussion in Sec-
tion 2.5.

2.3 Computational cognitive models of game reasoning

A different perspective, that focuses on cognitive validity in developing formal models, is that of a
cognitive architecture [And07]. Cognitive models developed within this framework aim to explain
certain aspects of cognition by assuming only general cognitive principles. However, the current
cognitive models that describe social interactions do not take higher-order strategic reasoning into
account. For example, cognitive models of simple games exist in which it is important to know
the opponent’s behavior [LWW00, WLB06]. These cognitive models demonstrate that declarative
memory is important in playing strategically. In [MV10] however, the authors are less interested

7

21

in how people adapt their strategy to an opposing strategy, but rather in studying the cognitive
limitations of explicit second-order reasoning.

To provide a full model of second-order social reasoning, [MV10] implemented their model
in the cognitive architecture ACT-R [And07]. ACT-R aspires to explain all of cognition using
one theoretical framework. To achieve this, the heart of ACT-R consists of a procedural memory
system, which contains condition-action pairs known as production rules. Besides the procedural
module, ACT-R has designated modules for specific types of information. For example, the visual
module processes visual information, whereas the declarative memory module processes declar-
ative or factual information. Each module has a buffer that may contain one unit of information
at a time. If the current contents of all buffers in the system match the conditions of a particular
production rule, that rule fires and its actions are executed. Each action may refer to an operation
in one of the modules.

Two modules of ACT-R deserve extra attention in the light of the model of second-order social
reasoning in [MV10]: the declarative memory module and the problem state module. The declar-
ative memory module represents long-term memory and stores information encoded in so-called
chunks (i.e., knowledge structures). Each chunk in declarative memory has an activation value that
determines the speed and success of its retrieval. Whenever a chunk is used, the activation value
of that chunk increases. As the activation value increases, the probability of retrieval increases and
the latency of retrieval decreases. Anderson [And07] provided a formalization of the mechanism
that produces the relationship between the probability and speed of retrieval. If the activation value
drops below a certain minimal value (the retrieval threshold), the related information is no longer
accessible. In that case, the system will report a retrieval failure after a constant time factor. If the
activation value is above the retrieval threshold, the information is accessible. Then, the higher
the activation value, the faster the retrieval will be. As soon as a chunk is retrieved, it is put into
the retrieval buffer. Each ACT-R module has a buffer that may contain one chunk at a time. On a
functional level of description, the chunks that are stored in the various buffers are the knowledge
structures the cognitive architecture is aware of.

The problem state module (sometimes referred to as the imaginal module) contains a buffer in
which information can be temporarily stored. Typically, this information contains a subsolution to
the problem at hand. In the case of a social reasoning task, this may be the outcome of a reasoning
step that will be relevant in subsequent reasoning. Storing information in the problem state buffer
is associated with a time cost (typically 200ms). The model that we present in Section 2.4 relies on
the combination of the declarative module and the problem state buffer. That is, the model retrieves
relevant information from memory and moves that information to the problem state buffer if new
information is retrieved from memory that needs to be stored in the retrieval buffer.

2.4 A computational cognitive model of the Marble drop game

The ACT-R model proposed by [MV10] follows a backward induction strategy to predict the
opponent’s moves further on in the game. Hedden and Zhang [HZ02] provide a decision tree
analysis of this process for their matrix version of the game. The model has knowledge on how
to solve Marble Drop games for all possible distributions of payoffs over the bins of the marble
run game. That is, the model stores chunks containing information on which payoffs to compare
at each step. In addition, chunks representing the magnitudes of the payoff shades are stored
in declarative memory, as well as chunks representing the location of the payoffs on the screen.
Finally, chunks representing ordinal information are stored in declarative memory. This means that
the model contains knowledge on the relative magnitudes of each combination of payoff values.

Because Van Maanen et al. implemented the backward induction strategy, the model starts a
second-order game by comparing its own payoff values in bins 3 and 4. First, the model retrieves

8

22

Figure 4: Flow-chart of the ACT-R model for solving Marble Drop game (figure from [MV10])

from declarative memory where the first of two payoffs is located on the screen (i.e., bin 4). If
the model retrieves the location of bin 4, it attends bin 4 and tries to retrieve the value of the
observed payoff. At the same time, the model frees the retrieval buffer for the upcoming payoff
value and stores a chunk in the problem state buffer to represent the comparison that is currently
made. Next, the model retrieves the location information for the other of the two payoffs that are
currently compared. Again, the model frees the retrieval buffer (for the upcoming payoff value)
and the payoff value of the first of two payoffs is stored in the problem state buffer. The problem
state buffer can hold only one chunk at the same time and consequently the chunk that represents
the current comparison is cleared from the problem state buffer. The location of the other payoff
(i.e. bin 3) is attended and the corresponding value is retrieved from memory. Finally, the two
payoff values are compared. The model tries to retrieve from declarative memory a chunk with
the ordinal representation of both payoff values. Based on the outcome of this retrieval the model
retrieves a next comparison.

For example, if the model’s payoff value in bin 4 is greater than the model’s payoff value
in bin 3, the model will next compare the opponent’s payoffs in bins 4 and 2. If the model’s
payoff value in bin 4 was less than the model’s payoff value in bin 3, the model will next compare
the opponent’s payoffs in bins 3 and 2. The model continues to compare payoffs following the
decision tree [HZ02] until it reaches the root of this tree. There, it decides its action based on the
final comparison.

The model was tested against data from a Marble Drop task described by [MMRV10]. In the
experiment the participants were asked to solve zero-order, first-order, and second-order Marble
Drop problems. In all these conditions, participants were instructed to indicate the optimal first
move as quickly as possible. That is, even in second-order games participants had to make only
one choice. However, because the opponent always played rationally (and the participants were
informed of this), there was always only one optimal choice.

As illustrated by figure 5, it turned out that the fit on the response time is very good (R2 =
1.0; RMSE = 0.42 s). The fit on the accuracy data is slightly less (RMSE = 0.067, R2 = 0.2),
but this may be attributed to lack of data, making the estimated means less reliable. The model
shows a very high proportion of correct responses, similar to the data of [MMRV10] (but contrary
to [FVHK08]).

As the order of the Marble Drop reasoning problems increases, the model requires more time to
respond. This is because more comparisons have to be made, and therefore more information has
to be retrieved from declarative memory and stored in the problem state buffer. These steps take
time, increasing the response time for higher-order reasoning problems. Because of the similar
behavioral patterns between model and data, this study supports the view that participants in this

9

23

!

Figure 5: Model fit to data from [MMRV10]. Left: response time. Right: Accuracy (figure
from [MV10]

task follow the same reasoning steps as the model does. That is, the hypothesis is supported that
participants in a social reasoning game follow a decision tree to make the correct decision.

Another good validation of the model is to compare the sequence of spatial locations it attends
with actual eye movements of participants during second-order social reasoning. Sequences of
eye-movements (and more generally actions) help to determine the cognitive strategies involved
in a task, and the similarity between the predicted and observed eye movements are indicative of
the model’s validity [SA01].

2.5 Eye movements during second-order reasoning

Game-theoretically, participants are expected to use backward induction [OR94, Ros81]. In Mar-
ble Drop games, this would yield eye movements from right to left. However, the preliminary
results from the eye-tracking study of [MvRV10] show opposite patterns: initially, participants
seem to reason from left to right; they fixate at bins 1, 2, 3, and 4, in that order. Also, Figure 6
clearly shows that at position 1, the mean proportion of fixations is higher in bins 1 and 2, which
correspond with the areas of interest (AOIs) A and B rather than in bins 3 and 4, which correspond
with the AOIs C and D.

Accordingly, second-order reasoning seems to be context-driven. There is an evident left to
right orientation in the Marble Drop context, as the white marble will run from left to right through
a game for as long as both players continue the game, and the eye movements seem to follow that
orientation.

Another finding that corroborates the idea of context-driven reasoning is that the proportion
trends differ for some of the payoff structures (Figure 3). If participants had used backward induc-
tion, the eye movements would not vary, and occur independent of payoff structure. Differential
proportion trends do fit context-driven reasoning, as it is susceptible to a bottom-up influence of
orientation (left to right) and probably also features such as color-saliency (i.e., payoff value).

After an initial exploration of the context, participants will have to make some additional,
backward comparisons if the intermediate reasoning steps have not yielded an optimal outcome
(i.e., there is a darker, attainable marble in another bin than the bin that is the outcome of the last
decision). Consider the payoff structure 3:1 (bin 1), 4:3 (bin 2), 1:2 (bin 3), and 2:4 (bin 4), with

10

24

Figure 6: Mean proportion of fixations in bins 1 - 4, which correspond with the areas of interest
(AOIs) A - D, as a function of position in the fixation sequence. The proportion trends differ for
games in which a rational opponent would end the game and a rational participant would continue
the game (a) and games in which both players would continue the game (b).

the first payoff value that of the participant and the second that of the opponent. A participant
could reason forwardly: “I would go right (i.e., remove the right trapdoor) if the opponent ends
the game at bin 2 (i.e., removes the left trapdoor)” and then “the opponent would end the game if
I do not to continue the game from bin 3 to bin 4”. However, as the reasoning continues with “I
would go to the right from bin 3 to bin 4”, a participant would have to reason backwards: “thus
the opponent will not stop the game at bin 2” and therefore “if the value of my first payoff (at bin
1) is higher than that of my last payoff (at bin 4) I will stop the game, otherwise I will continue the
game”.

3 A logical study

Following the lines of work in [RS08, PRS09], we now propose a language specifying strategies of
players. This provides an elegant way to describe the empirical reasoning of the participants of the
Marble Drop game (cf. Section 2.1.1), that has been found by the eye-tracking study in [MvRV10].

The basic ingredient that is needed for a logical system to model empirical reasoning of human
agents, is to forego the usual assumption of idealised agents, but rather consider agents with limited
computational and reasoning abilities. Though players with limited rationality are much more
realistic to consider, for the time being, we only focus on perfectly rational players, whose only
goal is to win the game. To model strategic reasoning of such resource-bounded players, we should
note that these players are in general forced to strategize locally by selecting what part of the past
history they choose to carry in their memory, and to what extent they can look ahead in their
analysis. We consider the notion of partial strategies (formalised below) as a way to model such
resource-bounded strategic reasoning.

3.1 Preliminaries

In this subsection, representations for extensive form games, game trees and strategies are pre-
sented, similar to those in [RS08, PRS09]. On the basis of these notations, reasoning strategies
can be formalized in Subsection 3.2.

11

25

3.1.1 Extensive form games

Extensive form games are a natural model for representing finite games in an explicit manner. In
this model, the game is represented as a finite tree where the nodes of the tree correspond to the
game positions and edges correspond to moves of players. For this logical study, we will focus on
game forms, and not on the games themselves, which come equipped with players’ payoffs at the
leaf nodes of the games. We present the formal definition below.

Let N denote the set of players; we use i to range over this set. For the time being, we restrict
our attention to two player games, i.e. we take N � t1, 2u. We often use the notation i and ı to
denote the players where ı � 2 when i � 1 and ı � 1 when i � 2. Let Σ be a finite set of action
symbols representing moves of players, we let a, b range over Σ. For a set X and a finite sequence
ρ � x1x2 . . . xm P X

�, let lastpρq � xm denote the last element in this sequence.

3.1.2 Game trees

Let T � pS,ñ, s0q be a tree rooted at s0 on the set of vertices S and ñ : pS � Σq Ñ S be a
partial function specifying the edges of the tree. The tree T is said to be finite if S is a finite set.
For a node s P S, let

Ñ
s� ts1 P S | s

a
ñs1 for some a P Σu. A node s is called a leaf node (or

terminal node) if
Ñ
s� H.

An extensive form game tree is a pair T � pT, pλq where T � pS,ñ, s0q is a tree. The
set S denotes the set of game positions with s0 being the initial game position. The edge function
ñ specifies the moves enabled at a game position and the turn function pλ : S Ñ N associates
each game position with a player. Technically, we need player labelling only at the non-leaf nodes.
However, for the sake of uniform presentation, we do not distinguish between leaf nodes and non-
leaf nodes as far as player labelling is concerned. An extensive form game tree T � pT, pλq is said
to be finite if T is finite. For i P N , let Si � ts | pλpsq � iu and let frontierpTq denote the set of
all leaf nodes of T .

A play in the game T starts by placing a token on s0 and proceeds as follows: at any stage, if
the token is at a position s and pλpsq � i then player i picks an action which is enabled for her at s,
and the token is moved to s1 where s

a
ñs1. Formally a play in T is simply a path ρ : s0a0s1 � � � in

T such that for all j ¡ 0, sj�1
aj
ñsj . Let PlayspT q denote the set of all plays in the game tree T .

3.1.3 Strategies

A strategy for player i is a function µi which specifies a move at every game position of the
player, i.e. µi : Si Ñ Σ. For i P N , we use the notation µi to denote strategies of player i and
τ ı to denote strategies of player ı. By abuse of notation, we will drop the superscripts when the
context is clear and follow the convention that µ represents strategies of player i and τ represents
strategies of ı. A strategy µ can also be viewed as a subtree of T where for each node belonging to
player i, there is a unique outgoing edge and for nodes belonging to player ı, every enabled move
is included. Formally we define the strategy tree as follows: For i P N and a player i’s strategy
µ : Si Ñ Σ, the strategy tree Tµ � pSµ,ñµ, s0, pλµq associated with µ is the least subtree of T
satisfying the following property:

• s0 P Sµ

• For any node s P Sµ,

– if pλpsq � i then there exists a unique s1 P Sµ and action a such that s
a
ñµs

1.

– if pλpsq � i then for all s1 such that s
a
ñs1, we have s

a
ñµs

1.

12

26

Let ΩipT q denote the set of all strategies for player i in the extensive form game tree T . A play
ρ : s0a0s1 � � � is said to be consistent with µ if for all j ¥ 0 we have sj P Si implies µpsjq � aj .
A strategy profile pµ, τq consists of a pair of strategies, one for each player.

3.1.4 Partial strategies

A partial strategy for player i is a partial function σi which specifies a move at some (and, not all)
game positions of the player, i.e. σi : Si á Σ. Let Dσi denote the domain of the partial function
σi. For i P N , we use the notation σi to denote partial strategies of player i and πı to denote partial
strategies of player ı. When the context is clear, we refrain from using the superscripts. A partial
strategy σ can also be viewed as a subtree of T where for some nodes belonging to player i, there
is a unique outgoing edge and for other nodes belonging to player i as well as nodes belonging
to player ı, every enabled move is included. Formally we define a partial strategy tree as follows:
For i P N and a player i (partial) strategy σ : Si á Σ the strategy tree Tσ � pSσ,ñσ, s0, pλσq
associated with σ is the least subtree of T satisfying the following property:

• s0 P Sµ

• For any node s P Sµ,

– if pλpsq � i and s P Dσ then there exists a unique s1 P Sµ and action a such that s
a
ñµs

1.

– if (pλpsq � i and s R Dσ) or pλpsq � i then for all s1 such that s
a
ñs1, we have s

a
ñµs

1.

A partial strategy can be viewed as a set of total strategies. Given a partial strategy tree Tσ for
a partial strategy σ for player i, a set of trees xTσ of total strategies can be defined as follows. A
tree T � pS,ñ, s0, pλq P xTσ if and only if

• if s P T then for all s1 P
Ñ
s , s1 P T implies s1 P Tσ

• if pλpsq � i then there exists a unique s1 P Sσ and action a such that s
a
ñσs

1.

Note that any total strategy is also viewed as a partial strategy, where the corresponding set of
total strategies becomes a singleton set.

3.2 Strategy specifications

We now propose a syntax for specifying partial strategies and their compositions in a structural
manner involving simultaneous recursion. The main case specifies, for a player, what conditions
she tests for before making a move. The pre-condition for the move depends on observables that
hold at the current game position as well as some simple finite past-time conditions and some
finite look-ahead that each player can perform in terms of the structure of the game tree. Both the
past-time and future conditions may involve some strategies that were or could be enforced by the
players.

Below, for any countable set X , let BPF pXq (the boolean, past and future combinations of
the members of X) be sets of formulas given by the following syntax:

BPF pXq :� x P X | ψ | ψ1 _ ψ2 | xa
�yψ | xa�yψ.

where a P Σ.
Formulas in BPF pXq are interpreted at game positions. The formula xa�yψ (respectively,

xa�yψ) talks about one step in the future (respectively, past). It asserts the existence of an a
edge after (respectively, before) which ψ holds. Note that future (past) time assertions up to any
bounded depth can be coded by iteration of the corresponding constructs. The “time free” fragment
of BPF pXq is formed by the boolean formulas over X . We denote this fragment by BoolpXq.

13

27

3.2.1 Syntax

Let P i � tpi0, p
i
1, . . .u be a countable set of observables for i P N and P �

�
iPN P

i. The syntax
of strategy specifications is given by:

Strat ipP iq :� rψ ÞÑ asi | η1 � η2 | η1 � η2.

where ψ P BPF pP iq.
The idea is to use the above constructs to specify properties of strategies as well as to combine

them to describe a play of the game. For instance the interpretation of a player i’s specification
rp ÞÑ asi where p P P i, is to choose move “a” at every game position belonging to player i where
p holds. At positions where p does not hold, the strategy is allowed to choose any enabled move.
The strategy specification η1 � η2 says that the strategy of player i conforms to the specification
η1 or η2. The construct η1 � η2 says that the strategy conforms to specifications η1 and η2.

Let Σ � ta1, . . . , amu, we also make use of the following abbreviation.

• null i � rJ ÞÑ a1s � � � � � rJ ÞÑ ams.

It will be clear from the semantics (which is defined shortly) that any strategy of player i conforms
to null i, or in other words this is an empty specification. The empty specification is particularly
useful for assertions of the form “there exists a strategy” where the property of the strategy is not
of any relevance.

3.2.2 Semantics

Let M � pT , V q where T � pS,ñ, s0, pλq is an extensive form game tree and V : S Ñ 2P a
valuation function. The truth of a formula ψ P BPF pP q at the state s, denoted M, s |ù ψ, is
defined as follows:

• M, s |ù p iff p P V psq.

• M, s |ù ψ iff M, s �|ù ψ.

• M, s |ù ψ1 _ ψ2 iff M, s |ù ψ1 or M, s |ù ψ2.

• M, s |ù xa�yψ iff there exists a s1 such that s
a
ñs1 and M, s1 |ù ψ.

• M, s |ù xa�yψ iff there exists a s1 such that s1
a
ñs and M, s1 |ù ψ.

Strategy specifications are interpreted on strategy trees of T . We assume the presence of
two special propositions turn1 and turn2 that specify which player’s turn it is to move, i.e. the
valuation function satisfies the property

• for all i P N , turni P V psq iff λpsq � i.

One more special proposition root is assumed to indicate the root of the game tree, that is the
starting node of the game. The valuation function satisfies the property

• root P V psq iff s � s0.

Recall that a partial strategy σ of player i can be viewed as a set of total strategies of the player
and each such strategy is a subtree of T .

The semantics of the strategy specifications are given as follows. Given the game tree T �
pS,ñ, s0, pλq and a partial strategy specification η P Strat ipP iq, we define a function v�wT :

Strat ipP iq Ñ 2ΩipT q, where each partial strategy specification is associated with a set of total
strategy trees.

For any η P Strat ipP iq, v�wT is defined inductively as follows:

14

28

• vrψ ÞÑ asiwT � Υ P 2ΩipT q satisfying: µ P Υ iff µ satisfies the condition that, if s P Sµ is
a player i node then M, s |ù ψ implies outµpsq � a.

• vη1 � η2wT � vη1wT Y vη2wT

• vη1 � η2wT � vη1wT X vη2wT

Above, outµpsq is the unique outgoing edge in µ at s. Recall that s is a player i node and therefore
by definition there is a unique outgoing edge at s.

3.2.3 Response and future planning of players

Modelling a player’s response to the opponent’s play is one of the basic notions that we need to
deal with while describing reasoning in games. To this end, we introduce one more construct
in our language of pre-conditions BPF pXq. The idea is to model the phenomenon that if player ı
has played according to π in the history of the game, player i responds following some strategy σ,
say. We may also describe that since player ı may play according to π at a certain future point of
the game (if it so happens that the game reaches that point), in anticipation to which player i can
now play according to σ.

To model such scenarios we introduce the formula ı?ζ in the syntax of BPF pP iq. The intuitive
reading of the formula is “player ı is playing according to a partial strategy conforming to the
specification ζ at the current stage of the game”, and the semantics is given by,

• M, s |ù ı?ζ iff DT 1 such that T 1 P vζwT and s P T 1.

Note that this involves simultaneous recursion in the definitions of BPF pXq and Strat ipP iq.
The framework introduced by Ramanujam and Simon [RS08] has a more simpler version of
BPF pP iq, where only past formulas are considered, but they introduce an additional construct
in the syntax of strategy specifications, viz. π ñ σ, which says that at any node player i plays
according to the strategy specification σ if on the history of the play, all the moves made by ı
conforms to π. The introduction of the formula ı?ζ in the language of BPF pP iq empowers us to
model notions expressed by the specification π ñ σ. We leave the detailed technicalities involv-
ing our proposal as well as the comparative discussion with the related framework of [RS08] for
future work.

3.3 Marble Drop game: a test case

We are now well-equipped to express the empirical reasoning performed by the participants of
the Marble drop game described in Section 2.1.1. The game form is structurally equivalent to the
Centipede game tree given in Figure 7.

Using the strategy specification language introduced in Section 3.2, we express the different
reasoning methods of participants that have been validated by the experiments described in Section
2.5. The reasoning is carried out by an outside agent (participant) regarding the question:

How would the players 1 and 2 play in the game, under the assumptions that both
players are rational (thus will try to maximize their utility), and that there is common
knowledge of rationality among the players.

In particular, we encode three different types of reasoning. Note that we are not talking about
why the players reason in some way, i.e. what considerations lead them to such reasoning, (e.g. in
the marble drop game, the darker marble may lie at the first bin itself or may be at the third bin)
but rather how they can go about playing the game. Combining the “why” and “how” at this level
is something we leave for future work:

15

29

s, 1

l

��~~
~~

~~
~~ r

!!CC
CC

CC
CC

o t, 2

l

}}{{
{{

{{
{{

{
r

!!CC
CC

CC
CC

o u, 1
l

||yyyyyyyy
r

!!B
BB

BB
BB

B

o o

Figure 7: Centipede game tree

• forward reasoning: xr1?rroot^turn1 ÞÑ rs1^xr�yroot^turn2 ÞÑ rs2, r2?rxr�yroot^
turn2 ÞÑ rs2 ^ xr�yxr�yroot^ turn1 ÞÑ ls1y.

if player 1 makes the move r at the root node, player 2 will respond with playing
r, and if player 2 behaves like that, player 1 would play l.

• backward reasoning: xr1?rxr�yxr�yroot^turn1 ÞÑ rs1^turn2 ÞÑ rs2, r2?rxr�yroot^
turn2 ÞÑ rs2 ^ root^ turn1 ÞÑ ls1y.

if player 1 makes the move r at the u node (if the game reaches there) , player 2
will play r when her turn comes, and if player 2 behaves like that, player 1 would
play l at the start node.

• combined reasoning: xrroot ^ turn1 ÞÑ rs1, r1?rxr�yxr�yroot ^ turn1 ÞÑ rs1 ^
xr�yroot^ turn2 ÞÑ rs2y.

player 1 would play l at the root node, and then player 2 will play r after that,
since if the game reaches the u node, player 1 will play r.

The partial strategy profiles of the two players describe in each case what sort of reasoning
players 1 and 2 might perform in the course of the game so as to gain maximum benefits. As
apparent from the descriptions of such reasoning, this really captures the arbitrary as well as me-
thodical reasoning that humans can do when confronted with such games, as exemplified (to a
certain extent) in Section 2.5. In fact, the combined reasoning suggests that player 1 might make
an arbitrary move at the beginning, which can often be the case in reality. As found in the eye-
tracking study of [MvRV10], the human participants follow different procedures of reasoning (in
particular, first a forward scan of the context, followed if necessary by backward reasoning), rather
than the backward induction strategy prescribed by game theorists. These reasoning procedures
are adequately described by the (partial) strategy specification language proposed in Section 3.2.
This formal representation can provide the building blocks for a better cognitive model based on
the ACT-R architecture, in order to construct precise computational cognitive models for the varied
thought processes of human agents.

4 Discussion and future work

To put this first attempt at bridge-building between logic and experimental work on games and
strategies into perspective, it may be fruitful to keep in mind the three levels of inquiry for cognitive

16

30

science that David Marr characterized [Mar82]:

• identification of the information-processing agents task as an input - output function: the
computational level;

• specification of an algorithm which computes the function: the algorithmic level;

• physical/neural implementation of the algorithm specified: the implementation level.

Researchers aiming to answer the question what logical theories may contribute to the study
of resource-bounded strategic reasoning could be disappointed when it turns out that logic is not
the best vehicle to describe such reasoning at the implementation level. Still, logic surely makes
a contribution at Marr’s first computational level by providing a precise specification language
for cognitive processes. Quite possibly, logic may also have a fruitful role to play in theories of
resource-bounded strategic reasoning at the algorithmic level, in the construction of computational
cognitive models in ACT-R. A first step in this direction was made in the previous subsection.

Future work would be to distinguish several possible reasoning strategies for resource-bounded
agents in games. For example, Van Maanen et al. propose a new ACT-R model that predicts how
humans perform in experiments with a dual task done in parallel to the Marble Drop game [MV10].
That ACT-R model presumes a reasoning strategy following the decision tree analysis of Hedden
and Zhang [HZ02]. It would be interesting to also test the predictions of alternative models that
correspond to different reasoning strategies, for example, the forward, backward and combined
ones introduced in the previous section.

It would also be interesting to define reasoning strategies for games that consist of many more
steps and construct corresponding ACT-R models to drive new experimental work.

The great advantage of coupling a strategy logic to ACT-R is that ACT-R already implements
very precise, experimentally validated theories about human memory and cognitive bounds on
reasoning processes. Thus, there is no need to add (possibly arbitrary) resource bounds in the
logical language. The combined strengths of logic, coupled with cognitive modeling and ACT-R,
will hopefully lead to an improved understanding of human resource-bounded reasoning in games.

From the logical perspective, providing a sound and complete system for strategic reasoning
that models empirical human reasoning will be the essential next step. We would need to take
players’ preferences into consideration as well as intentions of other players. Evidently, reason-
ing about intentions is essential for forward induction and solution concepts like extensive-form
rationalizability and refinements of sequential equilibrium.

Acknowledgements:
The authors would like to thank the anonymous referees for their insightful comments which

helped in the discussions throughout the paper. They also thank Leendert van Maanen and Hedd-
erick van Rijn for the helpful comments regarding the experimental work and cognitive architec-
ture.The first author acknowledges NWO grant # 600.065.120.08N201 and the second and third
authors acknowledge NWO grant # 227-80-001.

References

[ACB07] H. Arló-Costa and C. Bicchieri. Knowing and supposing in games of perfect
information. Studia logica, 86:353373, 2007.

[And07] J.R. Anderson. How Can the Human Mind Occur in the Physical Universe? Ox-
ford University Press, New York (NY), 2007.

17

31

[Art09] S. Artemov. Knowledge-based rational decisions. Technical report, The CUNY
Graduate Center, 2009.

[Aum95] Robert J. Aumann. Backward induction and common knowledge of rationality.
Games Econ. Behav., 8(1):6–19, 1995.

[Bic88] C. Bicchieri. Common knowledge and backward induction: a solution to the
paradox. In TARK ’88: Proceedings of the 2nd conference on Theoretical aspects
of Reasoning about Knowledge, pages 381–393, San Francisco, CA, USA, 1988.
Morgan Kaufmann Publishers Inc.

[Bin96] Ken Binmore. A note on backward induction. Games and Economic Behavior,
17(1):135–137, November 1996.

[Bon02] Giacomo Bonanno. Modal logic and game theory: two alternative approaches.
Risk, Decision and Policy, 7(03):309–324, December 2002.

[Bra07] A. Brandenburger. The power of paradox: Some recent developments in interac-
tive epistemology. International Journal of Game Theory, 35:465–492, 2007.

[BSZ09] A. Baltag, S. Smets, and J. Zvesper. Keep ’hoping’ for rationality: A solution to
the backward induction paradox. Synthese, 169(2):301–333, 2009.

[Cam03] C. F. Camerer, editor. Behavioral Game Theory: Experiments in Strategic Inter-
action. Princeton University Press, Princeton, 2003.

[FVHK08] L. Flobbe, R. Verbrugge, P. Hendriks, and I. Krämer. Children’s application of
theory of mind in reasoning and language. Journal of Logic, Language and Infor-
mation, 17:417–442, 2008. Special issue on formal models for real people, edited
by M. Counihan.

[GT99] G. Gigerenzer and P.M. Todd. Simple Heuristics that make us Smart. Oxford
University Press, New York, 1999.

[HP09] J. Y. Halpern and R. Pass. Iterated regret minimization: A new solution concept.
In C. Boutilier, editor, Proceedings of IJCAI-09: 21st International Joint Confer-
ences on Artificial Intelligence, Pasadena, CA, USA, pages 153–158, 2009.

[HvdHMW03] B.P. Harrenstein, W. van der Hoek, J.-J. Ch. Meyer, and C. Witteveen. A modal
characterization of Nash equilibrium. Fundamenta Informaticae, 57(2):281–321,
2003.

[HZ02] T. Hedden and J. Zhang. What do you think I think you think? Strategic reasoning
in matrix games. Cognition, 85:1–36, 2002.

[JCSR02] E. J. Johnson, C. F. Camerer, S. Sen, and T. Rymon. Detecting failures of back-
ward induction: Monitoring information search in sequential bargaining. Journal
of Economic Theory, 104(1):16–47, 2002.

[Jon80] A. Jones. Game theory: Mathematical Models of Conflict. John Wiley, 1980.

[JT07] I. Juvina and N. A. Taatgen. Modeling control strategies in the n-back task. In Pro-
ceedings of the 8th International Conference on Cognitive Modeling, New York,
NY, 2007. Psychology Press.

18

32

[JvdH04] W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta
Informaticae, 63, 2004.

[KMRW82] D. M. Kreps, P. Milgrom, J. Roberts, and R. Wilson. Rational cooperation in the
finitely repeated prisoners’ dilemma. Journal of Economic Theory, 27(2):245–
252, 1982.

[Lov05] Marsha C. Lovett. A strategy-based interpretation of Stroop. Cognitive Science,
29(3):493–524, 2005.

[LWW00] C. Lebiere, D. Wallach, and R. West. A memory-based account of the prisoner’s
dilemma and other 2x2 games. In N.A. Taatgen and J. Aasman, editors, Proceed-
ings of Third International Conference on Cognitive Modeling, pages 185–193,
Veenendaal, 2000. Universal Press.

[Mar82] D. Marr. Vision. Freeman and Company, New York, 1982.

[Mic67] J. A. Michon. The game of JAM–an isomorph of Tic-Tac-Toe. American Journal
of Psychology, 80(1):137–140, 1967.

[MMRV10] B. Meijering, L.. van Maanen, H. van Rijn, and R. Verbrugge. The facilitative
effect of context on second-order social reasoning. In Proceedings of the 32nd
Annual Meeting of the Cognitive Science Society, Cognitive Science Society, 2010.

[MO91] K.I. Manktelow and D.E. Over. Social roles and utilities in reasoning with deontic
conditionals. Cognition, 39(2):85–105, 1991.

[MP92] R.D. McKelvey and T.R. Palfrey. An experimental study of the centipede game.
Econometrica, 60(4):803–836, 1992.

[MV10] L.. van Maanen and R. Verbrugge. A computational model of second-order so-
cial reasoning. In Proceedings of the 10th International Conference on Cognitive
Modeling, 2010.

[MvRV10] B. Meijering, H. van Rijn, and R. Verbrugge. The facilitative effect of context on
second-order social reasoning. Technical report, University of Groningen, 2010.
(in prep).

[OR94] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge,
MA, 1994.

[Per10] A. Perea. Backward induction versus forward induction reasoning. Games,
1(3):168–188, 2010.

[Pol45] G. Polya. How to Solve It. A New Aspect of Mathematical Method. Princeton
University Press, Princeton, N.J., 1945.

[PRS09] S. Paul, R. Ramanujam, and S. Simon. Stability under strategy switching. In
Proceedings of the 5th Conference on Computability in Europe (CiE 2009), LNCS
5635, pages 389–398. Springer, 2009.

[Ros81] R.W. Rosenthal. Games of perfect information, predatory pricing and the chain-
store paradox. Journal of Economic theory, 25(1):92–100, 1981.

19

33

[RS08] R. Ramanujam and S. Simon. A logical structure for strategies. In Logic and the
Foundations of Game and Decision Theory (LOFT 7), volume 3 of Texts in Logic
and Games, pages 183–208. Amsterdam University Press, Amsterdam University
Press, 2008.

[SA01] D. D. Salvucci and J. R. Anderson. Automated eye-movement protocol analysis.
Human-Computer Interaction, 16(1):39–86, 2001.

[Sim79] H.A. Simon. Information processing models of cognition. Annual Review of
Psychology, 30(1):363–396, 1979.

[Sta96] R. Stalnaker. On the evaluation of solution concepts. Theory and Decision, 37:49–
73, 1996.

[SvL04] K. Stenning and M. van Lambalgen. A little logic goes a long way: basing ex-
periment on semantic theory in the cognitive science of conditional reasoning.
Cognitive Science, 28(4):481–529, 2004.

[vW03] W. van der Hoek and M. Wooldridge. Time, knowledge and cooperation:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75 (1):125–157, 2003.

[WBR76] D. Wood, J. S. Bruner, and G. Ross. The role of tutoring in problem solving.
Journal of Child Psychology and Psychiatry, 17(2):89–100, 1976.

[Wei84] J. S. Weitzenfeld. Valid reasoning by analogy. Philosophy of Science, 51(1):137–
149, 1984.

[WLB06] R.L. West, C. Lebiere, and D.J. Bothell. Cognitive architectures, game playing,
and human evolution. In R. Sun, editor, Cognition and Multi-Agent Interaction:
From Cognitive Modeling to Social Simulation, pages 103–123. Cambridge Uni-
versity Press, New York (NY), 2006.

[WS71] P.C. Wason and D. Shapiro. Natural and contrived experience in a reasoning prob-
lem. The Quarterly Journal of Experimental Psychology, 23(1):63–71, 1971.

20

34

An extension of RB-ATL

Nguyen Hoang Nga

Abstract

RB-ATL is a logic to specify coalitional properties of multiagent systems
where actions cost certain amount of resources. RB-ATL allows us to express
properties such as within a limited amount of resources, a group of agents can
produce a particular result but not another. This paper extends RB-ATL so
that it is possible to express coalitional properties where we only consider
the limitation over a subset of all resources.

1 Introduction

In previous work [2], we have presented a logic, namely RB-ATL, which allows
expressing and reasoning about properties of coalitional ability under resource con-
straints. The logic extended ATL [3] where a bound over resources is added into
each cooperation modality. Each resource bound, defined as a vector, specifies the
upper bound over each resource available to (or willing to contribute by) an agent
or a group of agents. This means it is not possible to express properties in RB-ATL
where the upper bound over a subset of resources is of interest.

For example, let us consider a set of two resources: memory and network band-
width. It is possible to express in RB-ATL the property that Agents 1 and 2 can
enforce p to become true without using more than 4 units of memory and 2 units
of network bandwidth by the formula ⟪{1,2}(4,2)⟫⊺Up. However, if we would
like to express the same property except we do not care about how much net-
work bandwidth can be used, it is not possible to do so in RB-ATL unless the
language allows infinite disjunction. For this reason, the property can only be writ-
ten as⋁n≥0⟪{1,2}(4,n)⟫⊺Up. In order to express such properties, in this paper, we
extend RB-ATL by allowing the inclusion of an extra symbol ∞ in the resource
bounds. The idea is that whenever no limit is required over a resource, we can set
the bound for this resource as ∞. We also show that the resulting logic RBATL∞

is sound and complete.
The remainder of this paper is structured as follows. We first briefly recall the

syntax and semantics of RB-ATL. Then, we introduce the syntax and semantics

1

35

of the extended logic RBATL∞. After that, we give a complete axiomatization
followed by a sketch proof of the completeness. At the end is the section of related
work and conclusion.

2 Resource-bounded ATL

As RBATL∞ is based on RB-ATL [2], we first briefly recall RB-ATL. RB-ATL
extended ATL in order to allow expressing properties of coalitional ability under
limited amounts of resources. Bounds on resources are defined as vectors of num-
bers each of which corresponds to the bound on a type of resources. If we fix a
finite set of resources r, then the set of bounds is defined as B = N∣r∣. Given a set
of propositions Φ and a finite set of agents N , formulas of RB-ATL are defined by
the following syntax:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∨ ψ ∣ ⟪Ab
⟫◯ϕ ∣ ⟪Ab

⟫ϕUψ ∣ ⟪Ab
⟫ ◻ ϕ

where p ∈ Φ, A ⊆ N and b ∈ B. Intuitively, ⟪Ab⟫◯ϕ says that the coalition A
can co-operate (in one step) to make ϕ true without spending more than b amount
of resources. Similarly, ⟪Ab⟫ϕUψ means that the coalition A can co-operate (in
many consecutive steps) to eventually make ψ true without spending more than b
amount of resources while keeping ϕ true; and ⟪Ab⟫ ◻ ϕ says that the coalition
A can co-operative from now on to guaranty that ϕ is true without spending more
than b amount of resources.

For convenience, we only study the soundness and completeness of the normal
form version of RB-ATL whose syntax is as follows:

ϕ ∶∶= (¬)p ∣ ϕ ∨ ψ ∣ ϕ ∧ ψ ∣ (¬)⟪Ab
⟫◯ϕ ∣ (¬)⟪Ab

⟫ϕUψ ∣ (¬)⟪Ab
⟫ ◻ ϕ

For short, normal form RB-ATL are referred to as RB-ATL in the rest of this paper.
We also use ∼ϕ to denote the equivalent normal form formula of ¬ϕ.

Semantics of RB-ATL is defined in terms of Resource-bounded Concurrent
Game Structures (RB-CGS) together with the notions of move, co-move, strategy
and co-strategy. A Resource-bounded Concurrent Game Structure (RB-CGS) is a
tuple S = (n,Q,Π, π, d, c, δ) where:

• n ≥ 1 is the number of players (agents), we denote the set of players {1, . . . , n}
by N

• Q is a non-empty set of states

• Π is a finite set of propositional variables

2

36

• π ∶ Q → ℘(Π) is a mapping which assigns each state in Q a subset of
propositional variables

• d ∶ Q × N → N is a mapping to indicate the number of available moves
(actions) for each player a ∈ N at a state q ∈ Q such that d(q, a) ≥ 1. At each
state q ∈ Q, we denote the set of joint moves available for all players in N
by D(q). That is

D(q) = {1, . . . , d(q,1)} × . . . × {1, . . . , d(q, n)}

• c ∶ Q×N ×N→ B is a mapping to indicate the minimal amount of resources
required by each move available to each agent at a specific state.

• δ ∶ Q×Nn → Q is a mapping which assigns the next state of the system after
agents perform a joint move in D(q) from a state.

From the definition of RB-CGSs, resource bounds are used to specify the costs
of actions performed by agents. In order to express the spending of a subset of
agents in one or many steps, we aggregate the spending of each agent in the subset.
This type of aggregation is called parallel aggregation. Another type of aggregation
is called serial where an agent (coalition) performs some (joint) action and then
performs another (joint) action; the aggregative spending of the agent (coalition)
after the two steps is the serial aggregation of the costs of the two (joint) actions.
For simplicity, we assume in this paper that both types of aggregations are defined
as addition.

Given a RB-CGS S = (n,Q,Π, π, d, c, δ), we denote the set of infinite se-
quences of states by Qω as usual. Let λ = q0q1 . . . ∈ Q

ω, we denote λ[i] = qi
and λ[i, j] = qi . . . qj . A move for a coalition A ⊆ N at a state q ∈ Q is a tuple
σA = (σa)a∈A such that 1 ≤ σa ≤ d(q, a). For convenience, we denote DA(q)
to be the set of all moves for A at q. Furthermore, given m ∈ D(q), we de-
note mA = (ma)a∈A. Then we define the set of all possible outcomes by a move
σA ∈DA(q) at a state q as follows

out(q, σA) = {q′ ∈ Q ∣ ∃m ∈D(q) ∶mA = σA ∧ q
′
= δ(q,m)}

The cost of a move σA ∈DA(q) then is defined as cost(q, σA) = ∑a∈A c(q, a, σa).
A strategy for a coalition A ⊆ N is a mapping FA which associates each

sequence λq ∈ Q+ to a move in DA(q). A computation λ ∈ Qω is consistent with
FA iff for all i ≥ 0, λ[i + 1] ∈ out(λ[i], FA(λ[0, i])). We denote by out(q,FA)

the set of all such sequences λ starting from q, i.e. q = λ[0]. Given a bound
b ∈ B, a computation λ ∈ out(q,FA) is b-consistent with FA iff, for every i ≥ 0,
∑

i
j=0 cost(λ[i], FA(λ[0, i])) ≤ b. We denote out(q0, FA, b) the set of all such

3

37

sequences. Then, a strategy FA is a b-strategy iff out(q,FA) = out(q,FA, b) for
any q ∈ Q.

Similarly to the case of moves and strategies, we define a co-move for a coali-
tion A ⊆ N as a mapping σcA ∶ DA(q) → Q such that σcA(σA) ∈ out(q, σA) for
any σA ∈ DA(q). We denote Dc

A(q) be the set of all co-moves for A at a state
q ∈ Q. A state q′ is consistent with a co-move σc iff there is some move σA such
that σc(σA) = q′. We define the set of consistent outcomes for a co-move σc by

out(q, σc) = {q′ ∈ Q ∣ q′ is consistent with σc}

Given a bound b ∈ B, a state q′ is b-consistent with a co-move σc at q iff there is
some move σA ∈ DA(q) with cost(q, σA) ≤ b such that σc(σA) = q′. We denote
the set of b-consistent outcomes for a co-move σc by

out(q, σc, b) = {q′ ∈ Q ∣ q′ is b-consistent with σc at q}

A co-strategy for a coalition A ⊆ N is a mapping F c
A which assigns each

sequence λq ∈ Q+ to a co-move in Dc
A(q). We say a computation λ ∈ Qω is con-

sistent with F c
A iff, for all i ≥ 0, λ[i + 1] ∈ out(λ[i], F c

A(λ[0, i])). Let us define
out(q,F c

A) to be the set of all such sequences where q = λ[0]. We say a computa-
tion λ ∈ out(q,F c

A) is b-consistent with F c
A iff, for all i ≥ 0, there is a sequence of

moves σ0
A ∈DA(λ[0]), . . . , σiA ∈DA(λ[i]) such that λj+1 = F

c
A(λ[0, j])(σjA) for

all j = 0, . . . , i and ∑j cost(λ[j], σ
j
A) ≤ b. Let us denote out(q,F c

A, b) be the set
of all such sequences where q = λ[0].

The truth of a RB-ATL formula ϕ at a state q of a RB-CGS S is defined by
induction on the structure of ϕ. We ignore the propositional cases, other cases are
listed as follows:

• S, q ⊧ ⟪Ab⟫◯ϕ iff there exists a b-strategyFA such that for all λ ∈ out(q,FA),
S,λ[1] ⊧ ϕ iff there is a move σA ∈ DA(q) such that for all q′ ∈ out(σA),
S, q′ ⊧ ϕ

• S, q ⊧ ¬⟪Ab⟫◯ϕ iff there exists a co-strategy F c
A such that for all λ ∈

out(q,FA, b), S,λ[1] ⊧∼ ϕ iff there is a co-move σc ∈ Dc
A(q) such that

for all σA ∈DA(q) and cost(σA) ≤ b, S,σc(σA) ⊧∼ϕ

• S, q ⊧ ⟪Ab⟫ ◻ ϕ iff there exists a b-strategy FA for any λ ∈ out(q,FA),
S,λ[i] ⊧ ϕ for all i ≥ 0

• S, q ⊧ ¬⟪Ab⟫◻ϕ iff there exists a co-strategy F c
A for any λ ∈ out(q,F c

A, b),
S,λ[i] ⊧ ϕ for all i ≥ 0

4

38

• S, q ⊧ ⟪Ab⟫ϕUψ iff there exists a b-strategyFA such that for all λ ∈ out(q,FA),
there is a position i ≥ 0 such that S,λ[i] ⊧ ψ and S,λ[j] ⊧ ψ for all
j ∈ {0, . . . , i − 1}

• S, q ⊧ ¬⟪Ab⟫ϕUψ iff there exists a co-strategy F c
A such that for all λ ∈

out(q,FA, b), either S,λ[i] ⊧ ψ for all i ≥ 0 or if there is a position i ≥ 0
such that S,λ[i] ⊧ ψ then there exists 0 ≤ j < i such that S,λ[j] ⊧∼ϕ

3 Syntax and semantics of RBATL∞

We define the set of resource bounds with infinity as B∞ = (N∪ {∞})∣r∣. To make
addition and comparison over resource bounds compatible with infinity, we extend
them to include the case ∞ as follows:

n +∞ = n +∞ = ∞

∞+∞ = ∞

n ≤ ∞

∞ ≤ ∞

where n ∈ N. Notice that costs of actions in RB-CGSs are still defined by B while
bounds appearing in RB-ATL formulas may include infinity. The syntax of (normal
form) RBATL∞ is defined as follows.

ϕ ∶∶= (¬)p ∣ ϕ ∨ ψ ∣ ϕ ∧ ψ ∣ (¬)⟪Ab
⟫◯ϕ ∣ (¬)⟪Ab

⟫ϕUψ ∣ (¬)⟪Ab
⟫ ◻ ϕ

where p ∈ Φ, b ∈ B∞ and A ⊆ N . We define the ⟪∅b⟫◯ modality as the dual one
of ⟪N b⟫◯, i.e. ⟪∅b⟫◯ϕ ≡ ¬⟪N b⟫◯ ∼ϕ. This modality is to say that a system
of multiple agents cannot avoid some thing if they are not allowed to spend more
than some b amount of resources.

The semantics of RBATL∞ is also defined by means of RB-CSGs. However,
we need to extend the notion of b-consistency of strategies to include the case where
b ∈ B∞. Given a bound b ∈ B∞ and a strategy FA, a computation λ ∈ out(q,FA)

is b-consistent with FA iff, for every i ≥ 0, ∑i
j=0 cost(λ[i], FA(λ[0, i])) ≤ b. We

denote out(q0, FA, b) the set of all such sequences. Then, a strategy FA is a b-
strategy iff out(q,FA) = out(q,FA, b) for any q ∈ Q. Similar extensions are also
applied for the case of co-moves and co-strategies.

Given a RB-CGS S = (n,Q,Π, π, d, c, δ), the truth of a RBATL∞ formula is
defined inductively as follows where A is a non-empty coalition:

• S, q ⊧ p iff p ∈ π(q)

• S, q ⊧ ¬p iff p ∉ π(q)

5

39

• S, q ⊧ ϕ ∨ ψ iff S, q ⊧ ϕ or S, q ⊧ ψ

• S, q ⊧ ϕ ∧ ψ iff S, q ⊧ ϕ and S, q ⊧ ψ

• S, q ⊧ ⟪Ab⟫◯ϕ iff there exists a b-strategyFA such that for all λ ∈ out(q,FA),
S,λ[1] ⊧ ϕ. In other words, it is equivalent to say that there is a move
σA ∈DA(q) such that for all q′ ∈ out(σA), S, q′ ⊧ ϕ

• S, q ⊧ ¬⟪Ab⟫◯ϕ iff there exists a co-strategy F c
A such that for all λ ∈

out(q,FA, b), S,λ[1] ⊧∼ϕ. In other words, it is equivalent to say that there
is a co-move σc ∈ Dc

A(q) such that for all σA ∈ DA(q) and cost(σA) ≤ b,
S,σc(σA) ⊧∼ϕ

• S, q ⊧ ⟪∅b⟫◯ϕ iff for every b-strategy FN for all λ ∈ out(q,FA), S,λ[1] ⊧
ϕ

• S, q ⊧ ¬⟪∅b⟫◯ϕ iff there is a b-strategy FN such that for all λ ∈ out(q,FN),
S,λ[1] ⊧∼ϕ

• S, q ⊧ ⟪Ab⟫ ◻ ϕ iff there exists a b-strategy FA for any λ ∈ out(q,FA),
S,λ[i] ⊧ ϕ for all i ≥ 0

• S, q ⊧ ¬⟪Ab⟫◻ϕ iff there exists a co-strategy F c
A for any λ ∈ out(q,F c

A, b),
S,λ[i] ⊧ ϕ for all i ≥ 0

• S, q ⊧ ⟪Ab⟫ϕUψ iff there exists a b-strategyFA such that for all λ ∈ out(q,FA),
there is a position i ≥ 0 such that S,λ[i] ⊧ ψ and S,λ[j] ⊧ ψ for all
j ∈ {0, . . . , i − 1}

• S, q ⊧ ¬⟪Ab⟫ϕUψ iff there exists a co-strategy F c
A such that for all λ ∈

out(q,FA, b), either S,λ[i] ⊧ ψ for all i ≥ 0 or if there is a position i ≥ 0
such that S,λ[i] ⊧ ψ then there exists 0 ≤ j < i such that S,λ[j] ⊧∼ϕ

4 Axiomatisation

In this section, we present an axiomatisation system of RBATL∞. We first in-
troduce notations appearing in the axiomatisation. In the following, A, A1, A2

denotes non-empty coalitions, b, b1, b2 and d ∈ B∞. We say that b+∞ d = e for any
b, d and e ∈ B∞ iff for every i = 1, . . . , ∣r∣,

bi + di = ei if ei /=∞
bi = di =∞ if ei =∞

6

40

Intuitively, +∞ is used to split the usage of resources over multiple stages. As ∞ in
some bound component means no constraint is required on the corresponding re-
source, we can also ignore the limitation on this resource in each stage by assigning
∞ to the corresponding component in each stage. For example, consider the bound
(2,3,∞), it can be split into (1,2,∞) and (1,1,∞) so that the bound on the third
resource is ignored. Using +∞ rather than + makes sure that the number of ways
to split of resource bounds is finite.

Hence, we define the following macros:

⟪Ab⟫◯◻ ϕ = ⋁b1+∞b2=b⟪A
b1⟫◯⟪Ab2⟫ ◻ ϕ

¬⟪Ab⟫◯◻ ϕ = ⋀b1+∞b2=b ¬⟪A
b1⟫◯⟪Ab2⟫ ◻ ϕ

⟪Ab⟫◯ϕUψ = ⋁b1+∞b2=b⟪A
b1⟫◯⟪Ab2⟫ϕUψ

¬⟪Ab⟫◯ϕUψ = ⋀b1+∞b2=b ¬⟪A
b1⟫◯⟪Ab2⟫ϕUψ

⟪∅b⟫◯◻ ϕ = ⋀b1+∞b2=b⟪∅
b1⟫◯⟪∅b2⟫ ◻ ϕ

¬⟪∅b⟫◯◻ ϕ = ⋁b1+∞b2=b⟪∅
b1⟫◯⟪∅b2⟫ ◻ ϕ

Similar to the reason of introducing +∞, we also define a zero bound 0̄b with
respect to a bound b in B∞ as follows, for all i = 1, . . . , ∣r∣

(0̄b)i = {
0 if bi /=∞
∞ otherwise

This means we ignore any component which is ∞.
The axiomatisation system of RBATL∞ is as follows:

Axioms

(PL) Tautologies of Propositional Logic

(�) ¬⟪Ab⟫◯�

(⊺) ⟪Ab⟫◯⊺

(B) ⟪Ab⟫◯ϕ→ ⟪Ad⟫◯ϕ
where b ≤ d

(S) ⟪Ab1
1 ⟫◯ϕ ∧ ⟪Ab2

2 ⟫◯ψ → ⟪(A1 ∪A2)
b1+b2⟫◯(ϕ ∧ ψ)

where A1 ∩A2 = ∅

(S∅) ⟪∅b1⟫◯ϕ ∧ ⟪∅b2⟫◯ψ → ⟪∅b1⟫◯(ϕ ∧ ψ)
where b1 ≤ b2

(SN) ⟪N b1⟫◯ϕ ∧ ⟪∅b2⟫◯ψ → ⟪N b1⟫◯(ϕ ∧ ψ)
where b1 ≤ b2

7

41

(FP◻) ⟪Ab⟫ ◻ ϕ↔ ϕ ∧ (⟪Ab⟫◯◻ ϕ ∨ ⟪A0̄b⟫◯(⟪Ab⟫ ◻ ϕ))

(FPU) ⟪Ab⟫ϕUψ↔ ψ ∨ (ϕ ∧ (⟪Ab⟫◯ϕUψ ∨ ⟪A0̄b⟫◯(⟪Ab⟫ϕUψ)))

(N◯) ⟪∅b⟫◯ϕ↔ ¬⟪N b⟫◯(¬ϕ)

(N◻) ⟪∅b⟫ ◻ ϕ↔ ϕ ∧ ¬⟪N b⟫⊺U¬ϕ

(NU) ⟪∅b⟫ϕUψ↔ ¬(⟪N b⟫¬ψU¬(ϕ ∨ ψ) ∨ ⟪N b⟫ ◻ ¬ψ)

Inference rules

(MP)
ϕ,ϕ→ ψ

ψ

(⟪Ab⟫◯-Monotonicity)
ϕ→ ψ

⟪Ab⟫◯ϕ→ ⟪Ab⟫◯ψ

(⟪∅b⟫◻-Necessitation)
ϕ

⟪∅b⟫ ◻ ϕ

(⟪Ab⟫◻-Induction)
θ → (ϕ ∧ (⟪Ab⟫◯◻ ϕ ∨ ⟪A0̄b⟫◯θ))

θ → ⟪Ab⟫ ◻ ϕ

(⟪Ab⟫U-Induction)
(ψ ∨ (ϕ ∧ (⟪Ab⟫◯ϕUψ) ∨ ⟪A0̄b⟫◯θ)))→ θ

⟪Ab⟫ϕUψ → θ

Proposition 1. The above axiomatization system for RBATL∞ is sound and com-
plete.

In the rest of this section, we provide a sketch proof of Proposition 1. As
the proof of soundness is straightforward, it is ignored here. To prove the com-
pleteness, as usual, we will construct a model for any consistent formula ϕ0 of
RBATL∞. The constructed models are in the form of fixed-branch trees defined as
follows.

Given a finite alphabet Θ, we denote the sets of finite words and infinite words
of Θ by Θ∗ and Θω, respectively.

Definition 1. A tree T is a subset of N∗ where for any x ⋅ c ∈ T , where x ∈ N∗ and
c ∈ N:

• x ∈ T

• x ⋅ c′ ∈ T for all 0 ≤ c′ ≤ c

8

42

Given a tree T , ε is the root of T . Nodes of T are elements of T . We define
succ ∶ T → 2T as a function to return the successors of a node x ∈ T . Formally,
succ(x) = {x ⋅ c ∈ T ∣ c ∈ N}. The degree d(x)of a node x is defined as the
cardinality of succ(x), i.e. d(x) = ∣succ(x)∣. A node x is a leaf iff d(x) = 0. A
node x is an interior node iff d(x) > 0.

Definition 2. Given a set Θ, a Θ-labeled tree is a pair (T,V) where T is a tree
and V ∶ T → Θ is a mapping which labels each node of T with an element of Θ.

Given a finite set of agents N = {1, . . . , n}, for the purpose of constructing
models for consistent formulas of RB-ATL, we are interested in a special form of
Θ-labeled trees (T,V) where Θ is the set 2Π of subsets of propositions and the
degree of every node of T is fixed by some given number k ∈ N, i.e. deg(x) =

kn for all x ∈ T . Then, a 2Π-labeled tree (T,V) with a fixed degree kn can be
considered as the skeleton of a model for RB-ATL formulas. We call a tree with a
fixed degree kn as a kn-tree. Informally, each node of T is considered as a state.
From each state x ∈ T , there are kn transitions to its successors, namely from x ⋅ 0
to x ⋅ kn − 1. We can name each transition from x to x ⋅ c by a tuple (a1, . . . , an)
where

1. 1 ≤ ai ≤ k

2. encode((a1, . . . , an)) = c

Where encode ∶ {1, . . . , k}n → {0, . . . , kn − 1} is a bijective function which is
defined as

encode((x1, . . . , xn)) = (x1 − 1)kn−1
+ (x2 − 1)kn−2

+ . . . + (xn − 1)

For convenience, we call the inverse function of encode as decode. Then, each
transition from x to x ⋅ c can be considered as the effect of the joint action of
n agents in N where agent i performs the action ai for all i ∈ {1, . . . , n} and
(a1, . . . , an) = decode(c). Moreover, to become a model for RB-ATL formulas,
we need to supply for each 2Π-labeled kn-tree (T,V) a costing function which
defines the cost of each action of an agent at a node on the tree. We have the
following definition.

Definition 3. A 2Π-labeled kn-costed-tree is a tuple (T,V,C) where (T,V) is a
2Π-labeled kn-tree and C ∶ T ×N × {1, . . . , k}→ B is a costing function.

Given a 2Π-labeled kn-costed-tree (T,V,C), we define the corresponding RB-
CGS S(T,V,C) = (n,T,Π, V, d,C, δ) where d(x, i) = k for all x ∈ T and i ∈ N and
δ(x, (a1, . . . , an)) = x ⋅encode((a1, . . . , an)). It is straightforward that S(T,V,C) is

9

43

well-defined. We shall write (T,V,C), x ⊧ ϕ for S(T,V,C), x ⊧ ϕ and (T,V,C) ⊧

ϕ for (T,V,C), ε ⊧ ϕ. Furthermore, we also have that in S(T,V,C), the available
joint actions for any coalition A at any state are the same, i.e. DA(x) = DA(x′)
for any x,x′ ∈ T , hence we shall write ∆A for DA(x).

Notice that when constructing the tree model for a consistent formula, we build
kn-costed-trees which are labeled by subsets of formulas rather than only a subset
of propositional variables. However, we can consider them as models for RB-ATL
formulas by restricting the labeling function V over the set of propositions, i.e.
V (t) ∩ Π. Finally, we define a simple tree as a tree which consists of only a root
and its children.

The ingredients for labeling nodes of tree during the construction are defined
in terms of closure of ϕ0.

Definition 4. The closure cl(ϕ0) is the smallest set of formulas that satisfies the
following closure condition:

• All sub-formulas of ϕ including itself are in cl(ϕ0)

• If ⟪Ab⟫◻ϕ is in cl(ϕ0), then so are ⟪Ab1⟫◯⟪Ab2⟫◻ϕ for all b1 +∞ b2 = b
and also ⟪A0b⟫◯⟪Ab⟫ ◻ ϕ

• If ⟪Ab⟫ϕUψ is in cl(ϕ0), then so are ⟪Ab1⟫◯⟪Ab2⟫ϕUψ for all b1+∞b2 = b
and also ⟪A0b⟫◯⟪Ab⟫ϕUψ

• If ϕ is in cl(ϕ0), then so is ∼ϕ

• cl(ϕ0) is also closed under finite positively boolean operator (∨ and ∧) up
to tautology equivalence.

Hence, cl(ϕ0) is finite. We denote cl(ϕ0)◯ to be the set of all formulas of
form ⟪Ab⟫◯ϕ or ¬⟪Ab⟫◯ϕ in cl(ϕ0).

Then, the following three lemmas describe each step of the construction of the
tree model. We only provide the proof of the last lemma.

Lemma 1. Let Φ = {⟪Ab1
1 ⟫◯ϕ1, . . . ,⟪A

bk
k ⟫◯ϕk,¬⟪A

b⟫◯ϕ} be a consistent set
of formulas where:

• All Ai are both non-empty and pair-wise disjoint

• ⋃iAi ⊆ A

• ∑i bi ≤ b

We have Ψ = {ϕ1, . . . , ϕk,∼ϕ} is also consistent.

10

44

Lemma 2. Let Φ = {⟪Ab1
1 ⟫◯ϕ1, . . . ,⟪A

bk
k ⟫◯ϕk,⟪∅

e1⟫◯χ1, . . . ,⟪∅
em⟫◯χm}

be a consistent set of formulas where:

• All Ai are both non-empty and pair-wise disjoint

• ∑i bi ≤ ej for all j

We have Ψ = {ϕ1, . . . , ϕk, χ1, . . . , χm} is also consistent.

We now use the above lemma to construct a simple tree which is locally con-
sistent for a consistent set of formulas.

Definition 5. A tree (T,V,C) is locally consistent if and only if for any interior
node t ∈ T :

1. If ⟪Ab⟫◯ϕ ∈ V (t), then there is a move σA such that C(t,A, σA) ≤ b and
for any c ∈ out(σA) we have ϕ ∈ V (c)

2. If ¬⟪Ab⟫◯ϕ ∈ V (t), then for any move σA with C(t,A, σA) ≤ b, there
exists c ∈ out(σA) where ∼ϕ ∈ V (c)

Lemma 3. Let Φ be a finite consistent set of formulas, Φ◯ the subset of Φ which
contains all formulas of the forms ⟪Ab⟫◯ϕ or their negations from Φ and k some
number where ∣Φ◯∣ < k, there is a simple kn-costed-tree (T,V,C) which is locally
consistent such that V (ε) = Φ.

Proof. Firstly, we have ¬⟪N b⟫◯ϕ and ¬⟪∅b⟫◯ϕ are equivalent to ⟪∅b⟫◯ ∼ϕ
and ⟪N b⟫◯ ∼ ϕ, respectively. Therefore, we only consider the case when Φ◯
does not contain formulas of the form ¬⟪N b⟫◯ϕ and ¬⟪∅b⟫◯ϕ.

Assume that

Φ◯ = {⟪Ab1
1 ⟫◯ϕ1, . . . ,⟪A

bm
m ⟫◯ϕm}∪

{¬⟪Bd1
1 ⟫◯ψ1, . . . ,¬⟪B

dl
l ⟫◯ψl}∪

{⟪∅e1⟫◯χ1, . . . ,⟪∅
eh⟫◯χh}

where all Ai are non-empty, all Bi are both non-empty and not equal to the grand
coalition N . We define a vector max ∈ B where each component of max is the
maximal bound except infinity of the corresponding resource appearing in Φ◯. In
the case that there is no maximal bound, then the component of max is set to 0.
For example, assume that ∣r∣ = 2 and Φ◯ = {⟪{1,2}(2,2)⟫◯p,⟪{1}(3,∞)⟫◯p},
then max = (3,2); in another case, if Φ◯ = {⟪{1}(3,∞)⟫◯p} then max = (3,0).

Then, we define a function deinf ∶ B∞ → B which removes infinity from a
bound as follows: deinf(b) = b′ where for all i = 1, . . . , ∣r∣

(b′)i = {
(b)i if (b)i /=∞
maxi +1 otherwise

11

45

Let e be a bound of resources such that e > deinf(ei) for all i ∈ {1, . . . , h}.
We construct a tree with a root labelled by Φ and kn children, each is denoted

by c = encode(a1, . . . , an) where ai ∈ {1, . . . , k}. Intuitively, we allow each agent
i to perform k different actions and the special action k for each agent will be
considered as the costless idle-action. We shall denote c(i) = ai for the action
performed by agent i with the corresponding outcome c. In the following, we
define the labeling function V (c) for each node c and the cost function C(ε, i, a)
for each agent i and action a ∈ {1, . . . , k}.

For each ⟪A
bp
p ⟫◯ϕp ∈ Φ◯ wherein Ap /= ∅, ϕp is added to V (c) whenever

c(i) = p for all i ∈ Ap. Let minAp be the smallest number in Ap, we assign the
cost of action p performed by minAp to be bp, i.e. C(ε,minAp , p) = deinf(bp). For
actions of other agents i in Ap, we assign C(ε, i, p) = 0̄.

After considering all ⟪Abp
p ⟫◯ϕp ∈ Φ◯, for all other unassigned-cost actions,

i.e. actions a > m but a < k for all agents, we simply set their costs to be e. The
action k performed by all agents is defined to associate with the cost 0. We denote
C(c) = ∑i∈N C(ε, i, c(i)). Then, for each ⟪∅

ep
p ⟫◯χp ∈ Φ◯, χp is added to V (c)

whenever C(c) ≤ ep.
Finally, we will add at most one formula from the negation formulas of Φ◯

to V (c). We denote C(c,A) = ∑i∈AC(ε, i, c(i)). For each c, let Φ−
◯(c) =

{¬⟪Bd⟫◯ψ ∈ Φ◯ ∣ C(c,B) ≤ d} = {¬⟪B
di1
i1

⟫◯ψi1 , . . . ,¬⟪B
dlc
ilc

⟫◯ψlc} where
i1 < i2 < . . . < ilc . Let I = {i ∣ m < c(i) ≤ m + lc} and j = ∑i∈I(c(i) − 1 −m)

mod lc+1. Consider ¬⟪B
dij
ij

⟫◯ψij : ifN ∖Bij ⊆ I , then ∼ψij is added into V (c).
We now need to show that our simple tree is locally consistent. In the first step,

we show that all labels are consistent. It is obvious that V (ε) = Φ is consistent.
Let us firstly consider every child c of the root where ∼ψq ∈ V (c) from some

negation formula in Φ◯. This will imply that there will be no χ ∈ V (c) from the
formulas of the form ⟪∅b⟫◯χ in Φ◯. The reason is that because some ∼ ψq ∈

V (c), there must be some agent performing an action a ∈ {m + 1, . . . ,m + lc} as
otherwise I = ∅ and the condition N ∖Bij ⊆ I fails since Bij /= N . We know that
the cost of this action is e, then C(c) ≥ e, therefore, no χ will be added into V (c).

When there is no ϕ ∈ V (c) from the formulas of the form ⟪Ab⟫◯ϕ in Φ◯, the
proof is trivial as there is only one ∼ψq ∈ V (c). If there are some ϕp ∈ V (c) where
⟪A

bp
p ⟫◯ϕp ∈ Φ◯, then for each p, c(i) = p < m for all i ∈ Ap. Hence, all Ap

are pair-wise disjoint. This simply shows that the set of ⟪A
bp
p ⟫◯ϕp ∈ Φ◯ where

ϕp ∈ V (c) and ∼⟪Bbq
q ⟫◯ψq satisfies the conditions of Lemma 1. Therefore, V (c)

is consistent.
Now, we consider every child c of the root where there is no ∼ψ ∈ V (c) from

some negation formula in Φ◯.

12

46

When there is no ϕ ∈ V (c) from the formulas of the form ⟪Ab⟫◯ϕ in Φ◯, the
proof is trivial as there are only some χq ∈ V (c). If there are someϕp ∈ V (c) where
⟪A

bp
p ⟫◯ϕp ∈ Φ◯ and Ap /= ∅, then for each p, c(i) = p <m for all i ∈ Ap. Hence,

all Ap are pair-wise disjoint. For any χq ∈ V (c) by some ⟪∅eq⟫◯χq ∈ Φ◯, we
have that eq ≥ C(c) ≥ ∑p bp. This simply shows that the set of ⟪A

bp
p ⟫◯ϕp ∈ Φ◯

where ϕp ∈ V (c) and ⟪∅
eq
q ⟫◯χq satisfies the conditions of Lemma 2. Therefore,

V (c) is consistent.
Let us now check the conditions of local consistency on the newly built tree.
For ⟪Abp

p ⟫◯ϕp ∈ Φ◯, it is straightforward that the move σAp where all agents
in Ap performs action p < m has cost equal to bp and for any c ∈ out(σAp),
ϕp ∈ V (c).

For ¬⟪Bdp
p ⟫◯ψp ∈ Φ◯ and σ being an arbitrary move of agents inBp of which

cost is at most equal to dp, we will point out an output c ∈ out(σ) where ∼ψ ∈ V (c)
and the actions of agents out of Bp are within m + 1 and m + l which always cost
e amount of resources. Even though we do not know the exact actions of agents
out of Bp, the costs of those unspecified actions are known to be e. Hence, we can

determine the set Φ−
◯(c) = {¬⟪B

di1
i1

⟫◯ψi1 , . . . ,¬⟪B
dilc
ilc

⟫◯ψilc
} as well as lc. It

is obvious that ¬⟪Bdp
p ⟫◯ψp ∈ Φ−

◯(c), then p = ir for some 1 ≤ r ≤ lc. Let σi
be the action performed by agent i in Bp, we define c(i) = σi for all i ∈ Bp. Let
I ′ = {i ∈ Bq ∣m < c(i) ≤m+ lc} and j′ = ∑i∈I′(c(i)−1−m)) mod lc. We select
an arbitrary i′ ∉ Bp and set c(i′) =m+(r−1−j′) mod lc+1. For all other i ∉ Bp,
let c(i) = m + 1. Then, we have I = {i ∣ m < c(i) ≤ m + lc} = (N ∖ Bp) ∪ I

′.
Therefore,∑i∈I(c(i)−1−m) mod lc+1 = ∑i∈I′∪{i′}(c(i)−1−m) mod lc+1 =
(j′ + c(i′)−1−m) mod lc +1 = (r−1) mod lc +1 = r, and N ∖Bp ⊆ I because
I = (N ∖Bp) ∪ I

′. Hence ∼ψp ∈ V (c).

Let us consider an example of building such a locally consistent tree. Consider
a system of 2 agents, i.e. N = {1,2}, 1 resource, i.e. ∣r∣ = 1, and the following set
Φ◯ of RB-ATL formulas.

Φ◯ = {⟪11
⟫◯p,⟪2∞⟫◯(p→ q),¬⟪12

⟫◯q,¬⟪22
⟫◯p,⟪∅2

⟫◯(¬q)}

It is easy to see that max = 2 and we can pick e = 3. We now construct a simple
tree which is locally consistent and the root is labeled by Φ◯. As ∣Φ◯∣ = 5, let us
consider the number of actions for each agent k = 6. Then, the set of outcomes is
O = {(i, j) ∣ 1 ≤ i, j ≤ 6}.

Consider the formula ⟪11⟫◯p ∈ Φ◯, we add to the label of every V ((1, j))
the formula p, for any 1 ≤ j ≤ 6. The cost of action 1 of agent 1 is 1.

13

47

Consider the formula ⟪2∞⟫◯(p → q) ∈ Φ◯, we add to the label of every
V ((i,2)) the formula p → q, for any 1 ≤ i ≤ 6. The cost of action 2 of agent 2 is
max+1 = 3.

As we mean the action 6 for both agents to be the idle action, we simply assign
the cost 0 for 6 of both agents. Then we assign the cost e = 3 for all cost-unassigned
actions of both agents. After this step, we add ¬q to every outcome (i, j) of which
the total cost of i and j is no more than 2.

We have the assignment of labels V ((i, j)) for every 1 ≤ i, j ≤ 6 so far as in
the following table where each column (row) corresponds to an action of agent 1
(2) together with its cost.

AC 11 23 33 43 53 60

13 {p} {} {} {} {} {}

23 {p, p→ q} {p→ q} {p→ q} {p→ q} {p→ q} {p→ q}

33 {p} {} {} {} {} {}

43 {p} {} {} {} {} {}

53 {p} {} {} {} {} {}

60 {p,¬q} {} {} {} {} {¬q}
Let us consider the negation formulas in Φ◯. We take each outcome into ac-

count to decide whether one of the sub-formulas of the negation formulas in Φ◯ is
included in the label of the outcome.

We consider the outcome c = (11,13), then Φ◯(c) = {¬⟪12⟫◯q}. Then lc = 1,
I = {i ∣ 2 < c(i) ≤ 2 + 1} = ∅. Therefore, as N ∖ {1} /⊆ I , ¬q is not included in
V (c).

We consider the outcome c = (11,33), then Φ◯(c) = {¬⟪12⟫◯q}. Then lc = 1,
I = {i ∣ 2 < c(i) ≤ 2+1} = {2}. Therefore, as N ∖{1} ⊆ I , ¬q is included in V (c).

We consider the outcome c = (33,60), then Φ◯(c) = {¬⟪22⟫◯p}. Then lc = 1,
I = {i ∣ 2 < c(i) ≤ 2+1} = {1}. Therefore, as N ∖{2} ⊆ I , ¬p is included in V (c).

We can apply the similar argument, and obtain the following table.
AC 11 23 33 43 53 60

13 {p} {} {} {} {} {}

23 {p, p→ q} {p→ q} {p→ q} {p→ q} {p→ q} {p→ q}

33 {p,¬q} {} {} {} {} {¬q}

43 {p} {} {} {} {} {}

53 {p} {} {} {} {} {}

60 {p,¬q} {} {¬p} {} {} {¬q}
In the following, Γ is the finite set of all maximal consistent sets of formulas

from cl(ϕ0). As cl(ϕ0) is finite, Γ is also finite. We extend the construction for
satisfying eventuality formulas which are in forms of ⟪Ab⟫ϕUψ and ⟪Ab⟫ ◻ ϕ by
the following lemma. We also omit the proof.

14

48

Firstly, we say that a formula ⟪Ab⟫ϕUψ (¬⟪Ab⟫ ◻ ϕ) is realised from a node
t of a Γ-labeled tree (T,V,C) if there exists a strategy (co-strategy) FA such that
for all λ ∈ out(t, FA, b) (λ ∈ out(t, F c

A, b)), there is some i such that ψ ∈ V (λ[i])
and ϕ ∈ V (λ[j]) for all j ∈ {0, i − 1} (∼ϕ ∈ V (λ[i])).

Lemma 4. For each formula ⟪Ab⟫ϕUψ (¬⟪Ab⟫ ◻ ϕ) and x ∈ Γ, there is finite
Γ-labeled kn-costed-tree (T,V,C) where:

• k = ∣cl(ϕ0)◯∣ + 1

• (T,V,C) is locally consistent

• V (ε) = x

• If ⟪Ab⟫ϕUψ ∈ x (¬⟪Ab⟫◻ϕ ∈ x) then (T,V,C) realises ⟪Ab⟫ϕUψ (¬⟪Ab⟫◻

ϕ)from ε

Then, the final construction is as follows. For each consistent set x in Γ and
an eventual formula ϕ of cl(ϕ0), we have a finite tree (Tx,ϕ, Vx,ϕ,Cx,ϕ) which
realises ϕ with the root having label x. Let the eventual formulas in cl(ϕ0) be
listed as ϕe

0, . . . , ϕ
e
m. In the following, we have the definition of the final tree.

Definition 6. The final tree (Tϕ0 , Vϕ0 ,Cϕ0) is constructed inductively as follows.

• Initially, select an arbitrary x ∈ Γ such that ϕ0 ∈ x. As that formula is
consistent, x must exist. Let (Tx,ϕe

0
, Vx,ϕe

0
,Cx,ϕe

0
) be the initial tree.

• Given the tree constructed so far and the last used eventual formula ϕe
i .

Then, for every leaf labelled by y ∈ Γ of the currently constructed tree, we
replace it with the tree (Ty,ϕe

j
, Vy,ϕe

j
,Cy,ϕe

j
) where j = i + 1 if i <m or j = 0

if otherwise.

Let Sϕ0 be the model which is based on (Tϕ0 , Vϕ0 ,Cϕ0). We have the follow-
ing truth lemma which completes the proof of completeness of the axiomatization
system for RBATL∞. The proof of this lemma is omitted in this paper.

Lemma 5. For every node t of (Tϕ0 , Vϕ0 ,Cϕ0) and every formula ϕ ∈ cl(ϕ0), if
ϕ ∈ Vϕ0(t) then Sϕ0 , t ⊧ ϕ.

5 Related work and Conclusion

The extended logic RBATL∞ is an useful tool which allows us to flexibly express
properties in multiagent systems where available amount of resources may affect

15

49

the ability of the agents. Rather than specifying upper-bounds on every resource in
a property, we can set up limitation over some resources which are of interest. A
sound and complete axiomatization of RBATL∞ is also presented in this paper.

Recently, there have been several efforts on logics for expressing resource-
bounded properties for multi-agent systems. In [4], the authors extend the tem-
poral logic CTL (and CTL∗) where agents not only consume but also produce
resources. However, such logics only express properties of single agent system.
In [1], the authors extend ATL in order to express properties of coalitional abilities
of bounded-memory multi-agent systems. The limitation of memory in the logic is
set up by restricting the size of strategy mappings and the length of history in each
strategy mapping. Both extensions have no axiomatization result.

In the future, we will consider the satisfiability and model-checking problem
of RBATL∞.

Acknowledgments

I gratefully acknowledge Natasha Alechina for supporting and giving me valuable
comments and suggestions about the proofs. I also thank anonymous referees for
careful reading, corrections and suggestions on the text.

References

[1] Thomas Ågotnes and Dirk Walther. A logic of strategic ability under bounded
memory. Journal of Logic, Language and Information, 18(1):55–77, 2009.

[2] Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib.
Resource-bounded alternating-time temporal logic. In Wiebe van der Hoek,
Gal Kaminka, Yves Lesperance, Michael Luck, and Sandip Sen, editors, Pro-
ceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010), Toronto, Canada, May 2010. IFAAMAS,
IFAAMAS. (to appear).

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM (JACM), 49(5):672–713, 2002.

[4] Nils Bulling and Berndt Farwer. RTL and RTL∗: Expressing abilities of
resource-bounded agents. In J. Dix, M. Fisher, and P. Novak, editors, Pro-
ceedings 10th International Workshop Computational Logic in Multi-Agent
Systems, pages 2–19, 2009.

16

50

Abduction for (non-omniscient) agents

Fernando Soler-Toscano and Fernando R. Velázquez-Quesada

Abstract

Among the non-monotonic reasoning processes, abduction is one
of the most important. Usually described as the process of looking
for explanations, it has been recognized as one of the most commonly
used in our daily activities. Still, the traditional definitions of an
abductive problem and an abductive solution mention only theories
and formulas, leaving agency out of the picture.

Our work proposes a study of abductive reasoning from an epis-
temic and dynamic perspective, making special emphasis on non-ideal
agents. We begin by exploring what an abductive problem is in terms
of an agent’s information, and what an abductive solution is in terms
of the actions that modify it. Then we explore the different kinds
of abductive problems and abductive solutions that arise when we
consider agents whose information is not closed under logical conse-
quence, and agents whose reasoning abilities are not complete.

1 Abductive reasoning

Beyond the obvious facts that he has at some time done manual labour, that he
takes snuff, that he is a Freemason, that he has been in China, and that he has
done a considerable amount of writing lately, I can [get] nothing else.

Sherlock Holmes
The Red-Headed League

Among the non-monotonic reasoning processes, abduction [1] is one
of the most important. Usually described as the process of looking for an
explanation, it has been recognized as one of the most commonly used in
our daily activities. Observing that Mr. Wilson’s right cuff is very shiny
for five inches and the left one has a smooth patch near the elbow, Holmes
assumes that he (Mr. Wilson) has done a considerable amount of writing
lately. Given the symptoms A and B, a doctor suspects that the patient
suffers from C. Karen knows that when it rains, the grass gets wet, and that
the grass is wet right now; then, she suspects that it has rained.

1

51

But though traditional examples of abductive reasoning are given in
terms of an agent’s information and its changes, classical definitions of an
abductive problem and its solutions are given in terms of theories and for-
mulas, without mentioning the agent’s information and how it is modified.

The present work proposes a study of abductive reasoning from an
epistemic and dynamic perspective. After recalling the classical definitions
of an abductive problem and an abductive solution (the rest of the current
section), we explore what an abductive problem is in terms of the agent’s
information, and what an abductive solution is in terms of the actions that
modify it (Section 2). Then we focus on non-ideal agents, analyzing not
only the cases that arise when the agent’s information is not closed under
logical consequence (Section 3) but also those that arise when the agent’s
reasoning abilities are not complete (Section 4). We finish with a summary,
proposing lines for further work (Section 5).

In this paper we will use the term information in the most general sense,
with the notions of knowledge or belief being particular instances that impose
further restrictions, like truth or consistency. Moreover, though we will use
formulas in Epistemic Logic (EL; [9]) and Dynamic Epistemic Logic style (DEL;
[5]), we will not commit ourselves to any particular semantic model. The
main goal of this work is to explore the possibilities and concepts that
emerge from a dynamic epistemic analysis of abductive reasoning.

1.1 The classical approach to abduction

Traditionally, it is said that there is an abductive problem when there is a
formula χ that is not predicted by the current theory Φ. Recently, it has
been observed that, even if the theory does not entail χ, it might entail its
negation. Following [1], we can identify two basic abductive problems.

Definition 1.1 (Abductive problem). LetΦ and χ be a theory and a formula,
respectively, in some language L. Let ` be a consequence relation on L.

The pair (Φ, χ) is a novel abductive problem when neither χ nor ¬χ are
consequences of Φ, i.e., when

Φ 0 χ and Φ 0 ¬χ

The pair (Φ, χ) is an anomalous abductive problem when, though χ is not a
consequences of Φ, ¬χ is, i.e., when

Φ 0 χ and Φ ` ¬χ

Traditionally, a solution for an abductive problem (Φ, χ) is a formula ψ
that, together with Φ, entails χ. This solves the problem because now the
theory is strong enough to explain χ. The anomalous case requires an extra
initial step, since adding directly such ψwill make the theory to entail both
χ and ¬χ. The agent should perform first a theory revision that stop ¬χ from
being a consequence of Φ. Here are the formal definitions.

2

52

Definition 1.2 (Abductive solution).

• Given a novel abductive problem (Φ, χ), the formula ψ is an abductive
solution if

Φ, ψ ` χ

• Given an anomalous abductive problem (Φ, χ), the formula ψ is an
abductive solution if it is possible to perform a theory revision to get a
novel problem (Φ′, χ) for which ψ is a solution.

In some cases, Definition 1.2 is too weak since it allows trivial solu-
tions, like χ itself. Again, following [1], it is possible to make a further
classification.

Definition 1.3 (Classification of abductive solutions). Let (Φ, χ) be an ab-
ductive problem. An abductive solution ψ is

consistent if Φ, ψ 0 ⊥

explanatory if ψ 0 χ

minimal if, for every other abductive solution ϕ, ψ ` ϕ implies ϕ ` ψ

The consistency requirement discards those ψ inconsistent with Φ and
the explanatory requirement discards χ itself. Minimality works as the
Occam’s razor, asking for the solution ψ to be logically equivalent to any
other solution it implies.

2 From an agent’s perspective

Most of the examples of abductive reasoning involve an agent and its in-
formation. It is Holmes who observes that Mr. Wilson’s right cuff is very
shiny; it is a doctor who observes the symptoms A and B; it is Karen who
observes that the grass is wet. So when does an agent has an abductive
problem (Φ, χ)? By interpreting Φ as the agent’s information, we get the
following definitions. We use formulas in EL style, where Infϕ is read as
“ϕ is part of the agent’s information”.

Definition 2.1 (Subjective abductive problem). Let χ be a formula.
We say that an agent has a novel χ-abductive problem when neither χ nor

¬χ are part of her information, i.e., when the following formula holds:

¬Infχ ∧ ¬Inf¬χ (1)

We say that an agent has an anomalous χ-abductive problem when χ is not
part of her information but ¬χ is, i.e., when the following formula holds:

¬Infχ ∧ Inf¬χ (2)

3

53

So an agent has a χ-abductive problem when χ is not part of her infor-
mation. What about an abductive solution? Definition 1.2 states that ψ is a
solution to a novel problem if, when added to the theoryΦ, we get a theory
that entails χ. But a theory is actually closed under logical consequence, so
ψ is a solution if, when added to the theory, makes χ part of the theory too.
The anomalous case needs another step, since a revision is required first.

We have identified Φ with the agent’s information. Then, a solution
for the subjective novel case is a formula ψ that, when added to the agent’s
information, makes the agent informed about χ. This highlights the fact the
requisites of a solution involve an action; an action that changes the agent’s
information by adding ψ to it. In the subjective anomalous case, the action
was already clear, since the theory should be modified. But now we can
see that the requisites for this case involves two actions: removing a piece
of information and then incorporating a new one.

We will express changes in the agent’s information by using formulas
in DEL style. In particular, formulas of the form 〈Addφ〉ϕ will be read as
“φ can be added to the agent’s information and, after that, ϕ is the case”, and
formulas of the form 〈Remφ〉ϕ will be read as“φ can be removed from the
agent’s information and, after that, ϕ is the case”.

Definition 2.2 (Subjective abductive solution). Suppose an agent has a novel
χ-abductive problem, that is, ¬Infχ ∧ ¬Inf¬χ holds. A formula ψ is an
abductive solution to this problem if, when added to the agent’s information,
the agent becomes informed about χ. In a formula,

〈Addψ〉 Infχ

Now suppose the agent has an anomalous χ-abductive problem, that is,
¬Infχ∧ Inf¬χ holds. A formula ψ is an abductive solution to this problem if
the agent can revise her information to remove ¬χ from it and, after it, the
incorporation of ψ makes χ part of her information. In a formula,

〈Rem¬χ〉
(
¬Inf¬χ ∧ 〈Addψ〉 Infχ

)
What about the further classification for abductive solutions? We can

also provide formulas that characterize them.

Definition 2.3 (Classification of subjective abductive solutions). Suppose
an agent has a χ-abductive problem. A formula ψ is a(n)

• consistent abductive solution if it is a solution and can be added to the
agent’s information without making the latter inconsistent:

〈Addψ〉
(
Infχ ∧ ¬Inf⊥

)
4

54

• explanatory abductive solution if it is a solution and it does not imply
χ, that is, it only complements the agent’s information to produce χ:

¬(ψ→ χ) ∧ 〈Addψ〉 Infχ

• minimal abductive solution if it is a solution and, for any ϕ, if ϕ is a
solution that becomes part of the agent’s information afterψ is added,
then ψ also becomes part of the agent’s information after ϕ is added.

〈Addψ〉 Infχ ∧
(
(〈Addϕ〉 Infχ ∧ 〈Addψ〉 Infϕ)→ 〈Addϕ〉 Infψ

)
3 A non-omniscient agent

In the classical definition of an abductive problem, the set of formulas
Φ is understood as a theory, usually assumed to be closed under logical
consequence, as we mentioned before. If this is the case, then we have
actually revised an omniscient case.

But our agent does not need to be ideal. And if the agent’s information
is not closed under logical consequence, then we should make a difference
between the information she actually has, her explicit information, and what
follows logically from it, her implicit information [12; 11; 15].

3.1 Abductive problems

A non-omniscient agent has an abductive problem whenever χ is not part of
her explicit information. As a consequence, the modality Inf in Definition 2.1
becomes InfEx . But now each of our two abductive problems splits into four,
according to the agent’s implicit information (InfIm) about χ and ¬χ. These
eight cases include inconsistent situations in which the agent is implicitly
informed about both χ and ¬χ. They can be discarded under particular
interpretations of the agent’s information, like knowledge or consistent beliefs,
but we have chosen to keep them here for the sake of generality.

Still, not all these cases are possible. We have said that implicit informa-
tion is what follows logically from the explicit one, so explicit information
itself should be implicit information, that is,

InfEx ϕ→ InfIm ϕ

By assuming this formula, we can drop the cases in which some formula is
in the agent’s explicit information, but not in her implicit one.

Definition 3.1 (Non-omniscient abductive problems). A non-omniscient
agent can face six different abductive problems, each one of them charac-
terized by a formula in Table 1.

5

55

¬InfEx χ ∧ ¬InfEx ¬χ ∧

¬InfIm χ ∧ ¬InfIm ¬χ (1.1)

InfIm χ ∧ ¬InfIm ¬χ (1.2)
¬InfIm χ ∧ InfIm ¬χ (1.3)

InfIm χ ∧ InfIm ¬χ (1.4)

¬InfEx χ ∧ InfEx ¬χ ∧

 ¬InfIm χ ∧ InfIm ¬χ (2.3)
InfIm χ ∧ InfIm ¬χ (2.4)

Table 1: Abductive problems for non-omniscient agents.

Let us review each one of the novel cases. In case (1.1), the truly novel one,
the agent lacks explicit and implicit information about both χ and ¬χ; the
formula χ is a real novelty for her. But in case (1.2), the not implicit novelty
one, though the agent does not have explicit information about neitherχ not
¬χ, she has implicit information about χ. In other words, χ is a novelty for
the agent’s explicit information, but not for her implicit one since χ follows
logically from what she explicitly has. In case (1.3), the implicitly anomaly
one, the agent lacks explicit information about both χ and¬χ, but implicitly
she is informed about ¬χ. Finally we have the implicitly inconsistent case,
(1.4), in which the agent lacks explicit information about both χ and ¬χ, but
has an implicit inconsistency.

Now for the anomalous cases. Case (2.3) is the truly anomalous one: the
agent has both explicit and implicit information about ¬χ, and lacks both
explicit and implicit information about χ. In the remaining one (2.4), called
anomaly with implicit inconsistency, though the agent has explicit information
about ¬χ but not about χ, the latter follows from her explicit information.
Omniscience as a particular case An agent is omniscient when she has ex-
plicitly all her implicit information. With this extra requirement, expressed
by the formula InfIm ϕ→ InfEx ϕ, cases (1.2), (1.3), (1.4) and (2.4) can be dis-
carded since explicit and implicit information do not coincide. This leaves
us only with cases (1.1) and (2.3); exactly the two cases of Definition 2.1.

3.2 Abductive solutions

We have defined non-omniscient χ-abductive problems as situations in
the agent is not explicitly informed about χ. Accordingly, for defining a
solution, we will look for an action (or a sequence of them) that makes
the agent explicitly informed about χ, without having neither implicit nor
explicit information about ¬χ. We will focus on cases (1.1), (1.2), (1.3) and
(2.3), leaving the inconsistent ones, (1.4) and (2.4), for future work.

Consider the truly novel case (1.1): the agent lacks explicit and implicit
information about both χ and ¬χ. Then, just like in the omniscient case, a
solution is a formula ψ that when added to the agent’s explicit information
makes the agent explicitly informed about χ.

6

56

Now consider the not implicit novelty case (1.2): though the agent does
not have χ explicitly, she has it implicitly. A solution for case (1.1), adding
some ψ, would also work here, but the agent does not really need this
external interaction, since a non-omniscient agent has another possibility:
she can make the implicit χ explicit by performing the adequate reasoning
steps. And this gives us new possibilities not only this case. For example,
in (1.1), the agent does not need a ψ that makes χ explicit after added: a ψ
that makes χ implicit is also a solution, since now she can make χ explicit
by only reasoning. In fact, there are several strategies for solving each one
of the abductive problems, but for simplicity we will focus on the most
representative one for each one of them.

In case (1.3), reasoning will only make the anomaly explicit. But then the
agent will be in the truly anomaly case (2.3), which can be solved by revising
the agent’s information to remove ¬χ from the explicit and implicit part,
and then adding a ψ that makes χ part of her explicit information.

In the following definition, formulas of the form 〈α〉ϕ indicates that the
agent can perform some reasoning step α after which ϕ is the case.

Definition 3.2 (Non-omniscient abductive solutions). Solutions for consis-
tent non-omniscient abductive problems are provided in Table 2.

Case Solution

(1.1) A formula ψ such that
〈Addψ〉 InfEx χ

(1.2) A reasoning α such that
〈α〉 InfEx χ

(1.3) A reasoning α and a formula ψ such that
〈α〉
(
InfEx ¬χ ∧ 〈Rem¬χ〉 (¬InfIm ¬χ ∧ 〈Addψ〉 InfEx χ)

)
(2.3) A formula ψ such that

〈Rem¬χ〉
(
¬InfIm ¬χ ∧ 〈Addψ〉 InfEx χ

)
Table 2: Solutions for consistent non-omniscient abductive problems.

Note how actions take us from some abductive problem to another. In
case (1.3), the proper reasoning will take the agent to case (2.3) from which,
by applying the proper revision, the agent will reach case (1.1), where a
new piece of information is needed. The flowchart of Figure 1 shows this.
Classification of abductive solutions The extra requisites of Definition 2.3
can be adapted in this non-omniscient case. For the consistency and the
explanatory requirements there are no important changes: we just require
for the agent’s implicit (and therefore her explicit information too) to be
consistent at the end of the sequence of actions (¬InfIm⊥), and for the
formula ψ to not imply χ (¬(ψ → χ)) in the cases in which it is needed

7

57

1.3 InfEx ¬χ 2.3 ¬InfIm ¬χ 1.1

InfEx χ1.2 InfEx χ Solved

α Rem¬χ

Addψ

α

Yes

No

Yes

No

YesYes

No

No

Figure 1: Flowchart of abductive solutions for non-omniscient agents.

((1.1), (1.3) and (2.3)). The minimality requirement now gives us more
options. We can define it over the action 〈Addψ〉 , looking for the weakest
formula ψ, but it can also be defined over the action 〈Rem¬χ〉 , looking for
the revision that removes the smallest amount of information. It can even
be defined over the action 〈α〉 , looking for the shortest reasoning chain.

4 A non-dynamically-omniscient agent

Even though the agents of the previous section are non-omniscient, there
is still an idealization about them. We have defined the agent’s implicit
information as what follows logically from her explicit information, but a
more ‘real’ agent does not need to be dynamically omniscient in the sense that
she does not need to have complete reasoning abilities. In other words, she
may not be able to derive all logical consequences of her explicit informa-
tion. This difference is important, because then a solution for a χ-abductive
problem does not need to be as strong as a formula that, when added, also
informs explicitly the agent about χ; it can also be some formula that, when
added, allow the agent to derive χ

4.1 Abductive problems

Now we can make a further refinement. We can distinguish between what
follows logically from the agent’s explicit information, the objective implicit
information InfIm , and what the agent can actually derive, the subjective
implicit information InfDer . In other words, InfDer ϕ holds when the agent
can perform a sequence of reasoning steps that makeϕ explicit information.
In particular, an empty sequence of reasoning steps makes explicit the
information that is already explicit, so we assume

InfEx ϕ→ InfDer ϕ

8

58

Though not complete, we can assume that the agent’s reasoning abilities
are sound. This makes subjective implicit information part of objective
implicit one, giving us

InfDer ϕ→ InfIm ϕ

Each one of the six abductive problems of Table 1 turns into four cases,
according to whether the agent can derive or not what follows logically
from her explicit information, that is, according to whether InfDer χ and
InfDer ¬χ hold or not. Our two assumptions allow us to discards some of
the cases, leaving us with the following.

Definition 4.1 (Extended abductive problems). A non-omniscient agent
without complete reasoning abilities can face eleven different abductive
problems, each one of them characterized by a formula in Table 3.

¬InfEx χ ∧ ¬InfEx ¬χ ∧
{
¬InfDer χ ∧ ¬InfDer ¬χ

}
∧ ¬InfIm χ ∧ ¬InfIm ¬χ (1.1.a)

¬InfEx χ ∧ ¬InfEx ¬χ ∧

 ¬InfDer χ ∧ ¬InfDer ¬χ

InfDer χ ∧ ¬InfDer ¬χ

 ∧ InfIm χ ∧ ¬InfIm ¬χ
(1.2.a)
(1.2.b)

¬InfEx χ ∧ ¬InfEx ¬χ ∧

 ¬InfDer χ ∧ ¬InfDer ¬χ

¬InfDer χ ∧ InfDer ¬χ

 ∧ ¬InfIm χ ∧ InfIm ¬χ
(1.3.a)
(1.3.c)

¬InfEx χ ∧ ¬InfEx ¬χ ∧

¬InfDer χ ∧ ¬InfDer ¬χ

InfDer χ ∧ ¬InfDer ¬χ

¬InfDer χ ∧ InfDer ¬χ

InfDer χ ∧ InfDer ¬χ

 ∧ InfIm χ ∧ InfIm ¬χ

(1.4.a)
(1.4.b)
(1.4.c)
(1.4.d)

¬InfEx χ ∧ InfEx ¬χ ∧
{
¬InfDer χ ∧ InfDer ¬χ

}
∧ ¬InfIm χ ∧ InfIm ¬χ (2.3.c)

¬InfEx χ ∧ InfEx ¬χ ∧
{

InfDer χ ∧ InfDer ¬χ
}
∧ InfIm χ ∧ InfIm ¬χ (2.4.d)

Table 3: Abductive problems with subjective/objective implicit information.

4.2 Abductive solutions

Recall that different abductive problems in Table 1 can have the same solu-
tion. For example, though abductive problem (1.2), the non-implicit novelty
case, can be solved by means of reasoning steps (see Table 2), we mentioned
that it can also be solved like case (1.1). But the further refinement that we
have just done really makes them different. In case (1.2.b), χ is subjective
implicit information, so the agent can derive it and solve the problem by
only reasoning. Nevertheless, this is not possible in (1.2.a) since χ is ob-
jective but not subjective implicit information. The agent cannot derive χ;
she needs a formula that, when added to her explicit information, makes χ
explicit (like in the truly novel case); or, more interesting, she can extend her
reasoning abilities with a formula/rule that allows her to derive χ.

9

59

The same happens with other cases; consider those derived from (1.3).
In (1.3.c) the anomaly will be detected so the agent can start with a revision
of her information. But in (1.3.a) the anomaly cannot be derived, so we
have an objective but not subjective anomaly. The agent cannot detect and,
moreover, cannot derive the anomaly, so a better approach for a solution is
to solve (1.3.a) as a novel abductive problem. In fact, we can say that (1.3.a)
is an objective anomaly but a subjective novelty.

Just like actions of reasoning, revision and addition can take us from
one abductive problem of Table 1 to another, they also allows us to move
between the abductive problem of Table 3. Again, we will focus on the
consistent cases, discarding (1.4.∗) and (2.4.d).

Definition 4.2 (Extended abductive solutions). Solutions for consistent ex-
tended abductive problems are provided in Table 4. It should be read as
a transition table that provides actions and conditions that should hold
in order to move from one abductive problem to another. There are six
operations/conditions which are described below, from left to right.

• Action 〈Addψ〉 consists in addingψ to the agent’s explicit information.
The aim is to make the agent explicitly informed about χ.

• Action 〈Addψ/α〉 extends the agent’s explicit information by adding
a formula ψ or some inference resource α (e.g., a rule) with the aim to
provide the agent with enough information so she can derive χ.

• Action 〈α〉 consists on the application of reasoning steps. The goal
here is to make χ explicit.

• Action 〈Addψ/α〉 is just as before. The goal is that after the action, the
agent should be able to derive ¬χ.

• Action 〈α〉 is just as before, this time with the aim to make ¬χ explicit.

• Action 〈Rem¬χ〉 removes ¬χ from the agent’s explicit information,
but the goal here is to remove it from her implicit information as well.

Case 〈Addψ〉 InfEx χ 〈Addψ/α〉 InfDer χ 〈α〉 InfEx χ 〈Addψ/α〉 InfDer ¬χ 〈α〉 InfEx ¬χ 〈Rem¬χ〉 ¬InfIm ¬χ

(1.1.a) Solved — — — — —
(1.2.a) — (1.2.b) — — — —
(1.2.b) — — Solved — — —
(1.3.a) — — — (1.3.c) — —
(1.3.c) — — — — (2.3.c) —
(2.3.c) — — — — — (1.1.a)

Table 4: Solutions for consistent extended abductive problems.

10

60

Table 4 establishes a natural path to solve a consistent extended ab-
ductive problem in. The longest path corresponds to case (1.3.a) in which
the agent does not have explicit information about neither χ nor ¬χ and,
though¬χ follows logically from her explicit information, she cannot derive
it. A sequence of actions to solve this problem is, first, to provide the agent
with enough information so she can derive ¬χ, turning this case into (1.3.c).
Then, after reasoning to derive ¬χ she will have an explicit anomaly, case
(2.3.c). From here she needs to revise her information to remove ¬χ from it
and, once she has done this and reached case (1.1.a), she needs to extend her
information with some ψ that will make her be explicitly informed about χ.

4.3 Collapsing the cases

We have taken the perspective of an outsider. From a subjective point
of view, the agent does not need to solve an anomaly that she cannot
detect. What guides the process of solving an abductive problem is explicit
information and what she can derive from it, that is, the subjective implicit
one. In other words, unaccessible inconsistencies should not matter!

We can simplify the solution of abductive problem by observing that
some problems in Table 3 are in fact indistinguishable for the agent. Without
further external interaction, she can only access her explicit information and
eventually what she can derive from it; the rest, the implicit information
that is not derivable is not relevant. For example, abductive problems
(1.{1,2,3,4}.a) are in fact the same from the agent’s point of view, and she
will try to solve them in the same way. By reducing Table 3 according to
the agent’s subjective information we get:

¬InfEx χ ∧ ¬InfEx ¬χ ∧

¬InfDer χ ∧ ¬InfDer ¬χ (1.{1,2,3,4}.a)

InfDer χ ∧ ¬InfDer ¬χ (1.{2, 4}.b)
¬InfDer χ ∧ InfDer ¬χ (1.{3, 4}.c)

InfDer χ ∧ InfDer ¬χ (1.4.d)

¬InfEx χ ∧ InfEx ¬χ ∧

 ¬InfDer χ ∧ InfDer ¬χ (2.3.c)
InfDer χ ∧ InfDer ¬χ (2.4.d)

Note how these classes correspond to abductive problems in Table 1 in
which InfDer appears in place of InfIm . Then the abductive solutions in
Table 3 can be considered the objective solutions for the eleven objectively
different abductive problems. But if we consider only the information
accessible to the agent then the subjective paths she follows to solve abductive
problems are similar to the Figure 1.

11

61

5 Summary and future work

We have presented definitions of novel and anomalous abductive problems
from a subjective perspective. We have focused not only on omniscient
agents, but also on those whose information is not closed under logical con-
sequence and those whose reasoning abilities are not complete. Moreover,
we have also provided definitions for what an abductive solution is for each
one of this problems, identifying actions that allow the agent to move from
one problem to another and the conditions that such actions should verify
in order to provide an abductive solution.

Our work is just an initial exploration on abductive reasoning for (non-
omniscient) agents, and there are many aspects yet to be studied. To begin
with, we can still make a further refinement in our notions of information,
this time relative to the explicit one. Among our explicit information, there
are things that are supported by the rest of our information. Consider, for
example, the quadratic formula for solving quadratic equations: even if we
do not know or forget the formula, we can derive it if we know the process
of completing squares. But we also have information that is not supported
by the rest; things that, if not observed, we would not have. Consider our
initial example of Mr. Wilson having a very shiny right cuff: Holmes did not
know him before, so there is no way he could have derived this information
about his cuff without observing him. And in fact, the intuitive idea of
abductive reasoning is closer to situations of this kind in which we try to
find support (justification) for facts that, being observed, have become part
of our explicit information.

But we can also look for a more concrete form of what we already have.
First, we have talked about information, but we can study more specific
notions, like knowledge and beliefs, by asking for more specific requirements,
like truth or consistency. Moreover, the real definite step will be given
by providing a semantic model in which we can represent not only the
introduced notions of information (explicit, subjective implicit, objective
implicit) in their knowledge and belief versions, but also provide a concrete
definition for the discussed actions that modify them: adding external
information, reasoning in order to extend the explicit one or removing
part of it. Our current efforts are oriented to dynamic epistemic approaches,
following not only ideas like public announcements [14; 6] and revision
[3; 2], but also the finer grained notions of dropping [4] and inference [7].

And finally we can look at, possibly, the most important question in ab-
ductive reasoning. We know now what an abductive solution is but, how
can we find them? In other words, given a particular semantic model rep-
resenting an agent’s information, can we provide a procedure that returns
‘the set of abductive solutions’? And though an abductive solution can be a
formula that, when assumed, provides the agent with explicit information
about the observed χ, the most interesting solutions are those that allow

12

62

the agent to derive χ, linking tightly the search for solutions with the agent’s
reasoning tools. This emphasize the need of a semantic model that allows
us to represent an agent’s inference dynamics.

Even more: an important topic in abductive reasoning is the selection
of the best explanation (e.g., [13] and [10]). Beyond logical requisites to
avoid triviality, the definition of a suitable criteria to model the agent’s
preference for solutions is still an open problem. By using Kripke frames, we
can provide some criteria based in a plausibility measure among accessible
worlds [3; 2]. And at last (but not least), once the agent has selected her
’best’ explanation, what shall she do with it?

Acknowledgements We thank Johan van Benthem and Ángel Nepomu-
ceno-Fernández for their valuable comments and suggestions.

References

[1] A. Aliseda. Abductive Reasoning. Logical Investigations into Discovery and
Explanation, volume 330 of Synthese Library Series. Springer, 2006.

[2] A. Baltag and S. Smets. A qualitative theory of dynamic interactive
belief revision. In G. Bonanno, W. van der Hoek, and M. Wooldridge,
editors, Logic and the Foundations of Game and Decision Theory (LOFT7),
volume 3 of Texts in Logic and Games, pages 13–60. AUP, 2008.

[3] J. van Benthem. Dynamic logic for belief revision. Journal of Applied
Non-Classical Logics, 17(2):129–155, 2007.

[4] J. van Benthem and F. R. Velázquez-Quesada. Inference, promotion,
and the dynamics of awareness. Technical Report PP-2009-43, ILLC,
Universiteit van Amsterdam, 2009.

[5] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library Series. Springer, 2007.

[6] J. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, ILLC, Univer-
siteit van Amsterdam, 1999. ILLC Dissertation Series DS-1999-01.

[7] D. Grossi and F. R. Velázquez-Quesada. Twelve Angry Men: A study on
the fine-grain of announcements. In X. He, J. F. Horty, and E. Pacuit,
editors, LORI, volume 5834 of LNCS, pages 147–160. Springer, 2009.

[8] J. Y. Halpern, editor. Proceedings of the 1st Conference on Theoretical
Aspects of Reasoning about Knowledge, Monterey, CA, March 1986, San
Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

13

63

[9] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press, Ithaca, N.Y., 1962.

[10] J. Hintikka. What is abduction? The fundamental problem of con-
temporary epistemology. Transactions of the Charles S. Peirce Society,
34(3):503–533, 1998.

[11] G. Lakemeyer. Steps towards a first-order logic of explicit and implicit
belief. In Halpern [8], pages 325–340.

[12] H. J. Levesque. A logic of implicit and explicit belief. In Proc. of AAAI-
84, pages 198–202, Austin, TX, 1984.

[13] P. Lipton. Inference to the Best Explanation. Routledge, New York, 1991.

[14] J. A. Plaza. Logics of public communications. In M. L. Emrich,
M. S. Pfeifer, M. Hadzikadic, and Z. W. Ras, editors, Proceedings of
the 4th International Symposium on Methodologies for Intelligent Systems,
pages 201–216, Tennessee, USA, 1989. Oak Ridge National Laboratory,
ORNL/DSRD-24.

[15] M. Y. Vardi. On epistemic logic and logical omniscience. In Halpern
[8], pages 293–305.

14

64

Dynamic Epistemic Logic for Implicit and
Explicit Beliefs

Fernando R. Velázquez-Quesada

Abstract
The dynamic turn in Epistemic Logic is based on the idea that no-

tions of information should be studied together with the actions that
modify them. Dynamic epistemic logics have explored how knowl-
edge and beliefs change as consequence of, among others, acts of
observation and upgrade. Nevertheless, the omniscient nature of the
represented agents has kept finer actions outside the picture, the most
important being the action of inference.

Following proposals for representing non-omniscient agents, re-
cent works have explored how implicit and explicit knowledge change
as a consequence of acts of observation, inference, consideration and
even forgetting. The present work proposes a further step towards a
common framework for representing finer notions of information and
their dynamics. We propose a combination of existing works in order
to represent implicit and explicit beliefs. Then, after adapting defini-
tions for the actions of upgrade and retraction, we discuss the action of
inference on beliefs, analyzing its differences with respect to inference
on knowledge and proposing a rich system for its representation.

1 Introduction

Epistemic Logic [21] and its possible worlds semantics is a powerful and
compact framework for representing an agent’s information. Their dynamic
versions [14] have emerged to analyze not only information in its knowledge
and belief versions, but also the actions that modify them. Nevertheless,
agents represented in this framework are logically omniscient, that is, their
information is closed under logical consequence. This property, useful in
some applications, hides finer reasoning actions that are crucial in some
others, the most important being that of inference.

Based on the awareness approach of [17], several works have explored
dynamics of information for non-omniscient agents. In a propositional dy-
namic logic (PDL) style, some of them have explored how the act of inference
modifies an agent’s explicit knowledge [15; 22]. In a dynamic epistemic style,
some others have explored how the acts of observation, inference, consid-
eration and forgetting affect implicit and explicit knowledge [5; 18; 10; 13].

1

65

The present work follows the previous ones, now focussing on the notion
of beliefs. We combine approaches of the existing literature, proposing a
setting for representing the notions of implicit and explicit belief (Section
2). Then we look into the dynamics of these notions; first, by adapting
existing proposals to define the actions of explicit upgrade (explicit revision)
and retraction (Section 3), and second, by discussing the action of inference
on beliefs and its differences with inference on knowledge, and by proposing a
rich system for its representation (Section 4).

2 Modelling implicit and explicit beliefs

This section recalls a framework for implicit and explicit information and
a framework for beliefs. By combining them, we will get our model for
representing implicit/explicit beliefs. But before going into their details, we
recall the framework on which all the others are based.

Epistemic Logic. The frameworks of this section are based on that of
Epistemic Logic (EL; [21]). Given a set of atomic propositions P, the EL
language extends the propositional one with formulas of the form �ϕ: “the
agent is informed aboutϕ”. Though there are several possibilities, the classical
semantic model for EL-formulas are Kripke models, tuples M = 〈W,R,V〉with
W a non-empty set of possible worlds, V : W → ℘(P) an atomic valuation
function indicating which atomic propositions are true at each world, and
R ⊆ (W × W) an accessibility relation indicating which worlds the agent
considers possible from each one of them.

Formulas are evaluated on pointed models (M,w) with M a Kripke model
and w ∈W a given evaluation point. Boolean connectives are interpreted as
usual; the key clause is the one for �ϕ, indicating that the agent is informed
about ϕ at w iff ϕ is true in all the worlds the agent considers possible from w:

(M,w) �ϕ iff for all u ∈W, Rwu implies (M,u) ϕ

2.1 Implicit and explicit information

Non-omniscient agents. The formula � (ϕ→ ψ)→ (�ϕ→ �ψ) is valid in
Kripke models: the agent’s information is closed under logical consequence.
This becomes obvious when we realize that each possible world stands for
a maximally consistent set of formulas. So if both� (ϕ→ ψ) and�ϕ hold at
world w, both ϕ→ ψ and ϕ are true in all worlds R-reachable from w. But
then ψ also holds in all such worlds, and therefore �ψ holds at w. Usually
the discussion revolves around whether this is a reasonable assumption
for ‘real’ agents. Even computational agents may not have this property,
since they may lack of resources (space and/or time) to derive all the logical
consequences of their information [1].

2

66

One of the most influential solutions to this omniscience problem is aware-
ness logic [17]. This approach follows the idea of making a difference be-
tween implicit (potential) information, what the agent can eventually get, and
explicit information, what the agent actually has [23; 25; 24; 27]. The main ob-
servation is that, in order to have explicit information about some formula
ϕ, besides having it as implicit information, the agent should be aware of ϕ.

Syntactically, awareness logic extends the EL language with formulas
of the form Aϕ: “the agent is aware of ϕ”. Semantically, it extends Kripke
models with a function A that assigns a set of formulas to the agent in each
possible world. The new formulas are evaluated in the following way:

(M,w) Aϕ iff ϕ ∈ A(w)

Implicit information about ϕ is defined as �ϕ, but explicit information
is defined as �ϕ ∧Aϕ. Although implicit information is still closed under
logical consequence, explicit information is not. This follows from the fact
that, different from the possible worlds, the A-sets do not need to have any
closure property; in particular, {ϕ→ ψ,ϕ} ⊆ A(w) does not imply ψ ∈ A(w).

Agents with reasoning abilities. Still, though a ‘real’ agent’s information
does not need to be closed under logical consequence, it does not need to
be static. The more interesting approach for us is that in which the agent
can extend her explicit information by the adequate actions. But, which are
these actions and what does the agent needs in order to perform them?

In [15], the author proposes a framework in which the actions available
to the agent are different rules (e.g., modus ponens, conjunction elimina-
tion), each one of them represented by a relation between worlds that should
be faithful to the rule’s spirit (e.g., the modus ponens relation should connect
worlds with an implication and its antecedent with worlds augmented with
the consequent). This yields an agent that does not need to be omniscient,
but still is able to perform inferences.

In [22] the author goes one step further: a rule cannot be used by an
agent unless the rule itself is also part of her explicit information. For
example, for two worlds to be connected by the modus ponens relation, the
initial one should have not only an implication and its antecedent, but also
the modus ponens rule itself.

The combination of the mentioned ideas have produced models for
representing implicit and explicit knowledge ([5; 28; 13; 18; 10] among others).
But the notion of belief is different, as we discuss in the next subsection.

2.2 Modelling beliefs

The KD45 approach. For modelling knowledge in EL, it is usually asked
for the accessibility relation R to be at least reflexive (making �ϕ→ ϕ valid:

3

67

if the agent knows ϕ, then ϕ is true), and often to be also transitive and
euclidean (giving the agent full positive and negative introspection). Beliefs
can be represented in a similar way, now asking for R to satisfy weaker
properties, the crucial one following the idea that, though beliefs do not
need to be true, we can expect them to be consistent. This is achieved by
asking for the relation to be serial, making the D axiom ¬�⊥ valid. Full
introspection is usually assumed, yielding the classical KD45 approach.

Belief as what is most plausible. But beliefs are different from knowledge.
Intuitively, we do not believe something because it is true in all possible
situations; we believe it because it is true in those we consider most likely
to be the case [19; 26]. This idea has led the development of variants of
Kripke models [12; 4; 3]. Here we recall the plausibility models of [3].

A plausibility model is a Kripke model in which the accessibility rela-
tion, denoted now by ≤, is interpreted as a plausibility relation ordering
possible worlds. This relation is assumed to be a preorder (a reflexive
and transitive relation). Moreover, since the idea is to define the agent’s
beliefs as what is true in the most plausible worlds from the evaluation
point, ≤ should satisfy an important extra property: for any possible world
w, the set of worlds that are better than w among those comparable to
it should have maximal worlds. In order to state this property formally,
denote by Vw the set of worlds comparable to w (its comparability class:
Vw := {u | w ≤ u or u ≤ w }) and by Max≤(U) the set of ≤-maximal worlds of
U (Max≤(U) := {v ∈ U | for all u ∈ U, u ≤ v }). Then, in a plausibility model,
the accessibility relation ≤ is asked to be a locally well-preorder: a reflexive
and transitive relation such that, for each comparability class Vw and for
every non-empty U ⊆ Vw, Max≤(U) , ∅. Note how the existence of maxi-
mal elements in every U ⊆ Vw implies the already required reflexivity, but
also connectedness inside Vw. In particular, if two worlds w2 and w3 are more
plausible than a given w1 (w1 ≤ w2 and w1 ≤ w3), then these two worlds
should be ≤-related (w2 ≤ w3 or w3 ≤ w2 or both).

Interestingly, the agent’s indistinguishability relation can be derived
from the plausibility one. If two worlds are ≤-related, then though the
agent considers one of them more plausible than the other, she cannot
discard one of them when the other one is given. In other words, worlds
that are ≤ related are in fact epistemically indistinguishable.

For the language we have two options.1 We can extend the propositional
language with formulas of the form Bϕ, semantically interpreted as

(M,w) Bϕ iff for all u ∈W, u ∈Max≤(R≤(w)) implies (M,u) ϕ,
where R≤(w) := {u ∈W | w≤u}.

1In fact, the mentioned works, [12; 4; 3], use the notion of conditional belief as the primitive
one, rather than plain belief. We have chosen to stick with the notion of plain belief through
the present notes, leaving an analysis of the notions of implicit/explicit conditional beliefs
for further work.

4

68

The second option is to use a standard modal language with [≤] standing
for the relation≤, and then define beliefs in terms of it. Given the properties
of ≤ (in particular, reflexivity, transitivity and connectedness), it is not hard
to see that ϕ is true in the most plausible worlds from w iffw can see a better
world from which all successors are ϕ worlds. This yields the following
definition for “the agent believes ϕ”:

Bϕ := 〈≤〉 [≤]ϕ

2.3 Combining the models

Our framework for representing implicit and explicit beliefs combines the
mentioned ideas. The language has two components: formulas and rules.
Formulas are given by a propositional language extended, first, with modal-
ities 〈≤〉 and 〈'〉 , and second, with formulas of the form Aϕ and Rρ, where
ϕ is a formula and ρ a rule. Rules, on the other hand, are pairs consisting
of a set of formulas, the rule’s premises, and a single formula, the rule’s
conclusion. The formal definition of our language is as follows.

Definition 2.1 (Language L). Given a set of atomic propositions P, formulas
ϕ and rules ρ of the plausibility-access language L are given, respectively, by

ϕ ::= p | Aϕ | Rρ | ¬ϕ | ϕ ∨ ψ | 〈'〉ϕ | 〈≤〉ϕ
ρ ::= ({ϕ1, . . . , ϕnρ}, ψ)

where p ∈ P. Formulas of the form Aϕ are read as “the agent has acknowl-
edged that formula ϕ is true”, and formulas of the form Rρ as “the agent has
acknowledged that rule ρ is truth-preserving”. For the modalities, 〈≤〉ϕ is read
as “there is a more plausible world where ϕ holds”, and 〈'〉ϕ as “there is an epis-
temically indistinguishable world where ϕ holds”. Other boolean connectives
as well as the box modalities ['] and [≤] are defined as usual. We denote
by L f the set of formulas of L, and by Lr its set of rules.

Though rules are usually presented as schemas, our rules are defined
as particular instantiations (e.g., the rule ({p ∧ q}, p) is different from the
rule ({q ∧ r}, q)). Since they will be applied in a generalized modus ponens
form (if the agent has all the premises, she can derive the conclusion), using
concrete formulas avoids details of instantiation, therefore facilitating the
definition. When dealing with them, the following definitions will be useful.

Definition 2.2. Given a rule ρ, we will denote its set of premises by pm(ρ), its
conclusion by cn(ρ), and its translation (an implication whose antecedent is
the finite conjunction of ρ’s premises and whose consequent is ρ’s conclu-
sion) by tr(ρ).

For the semantic model, we will extend the described plausibility mod-
els with two functions.

5

69

Definition 2.3 (Plausibility-access model). With P the set of atomic propo-
sitions, a plausibility-access (PA) model is a tuple M = 〈W,≤,V,A,R〉 where
〈W,≤,V〉 is a plausibility model over P and

• A : W → ℘(L f) is the access set function, assigning to the agent a set of
formulas of L in each possible world,

• R : W → ℘(Lr) is the rule set function, assigning to the agent a set of
rules of L in each possible world.

Functions A and R can be seen as valuations with a particular range, as-
signing to the agent a set of formulas and a set of rules at each possible
world, respectively. Moreover, recall that two worlds that are ≤ related are
epistemically indistinguishable, so we define ' as the union of ≤ and its
converse (' :=≤ ∪ ≥): the agent cannot distinguish between two worlds if
she considers one of them more plausible than the other.

A pointed plausibility-access model (M,w) is a plausibility-access model
with a distinguished world w ∈W.

Here it is important to emphasize our interpretation of the A-sets. Dif-
ferent from [17] and [10], we do not interpret them as “the formulas the agent
is aware of at world w”, but rather as “the formulas the agent has acknowledged
as true at world w”, closer to the ideas in [15; 22; 18].

Now the semantic evaluation. The modalities 〈≤〉 and 〈'〉 are inter-
preted via their correspondent relation in the usual way, and formulas of
the form Aϕ and Rρ are interpreted with our two new functions.

Definition 2.4 (Semantic interpretation). Let (M,w) be a pointed PA model
with M = 〈W,≤,V,A,R〉. Atomic propositions and boolean operators are
interpreted as usual. For the remaining cases,

(M,w) Aϕ iff ϕ ∈ A(w)
(M,w) Rρ iff ρ ∈ R(w)
(M,w) 〈≤〉ϕ iff there is a u ∈W such that w ≤ u and (M,u) ϕ
(M,w) 〈'〉ϕ iff there is a u ∈W such that w ' u and (M,u) ϕ

For characterizing valid formulas, an important observation is that a
locally well-preorder is a locally connected and conversely well-founded pre-
order [3]. Then, by standard results on canonicity and modal correspon-
dence (Chapter 4 of [11]), the axiom system of Section 2.6 of [3] (Table 1) is
also sound and (weakly) complete for our language L with respect to ‘non-
standard’ plausibility-access models: those in which ≤ is reflexive, transitive
and locally connected (axioms T≤, 4≤ and LC) and ' the symmetric exten-
sion of ≤ (axioms T', 4', B' and Inc). But such models also have the finite
model property (with respect to formulas in our language), so completeness

6

70

Prop ` ϕ for ϕ a propositional tautology MP If ` ϕ→ ψ and ` ϕ, then ` ψ

K≤ ` [≤] (ϕ→ ψ)→ ([≤]ϕ→ [≤]ψ) K' ` ['] (ϕ→ ψ)→ ([']ϕ→ [']ψ)

Dual≤ ` 〈≤〉ϕ↔ ¬[≤]¬ϕ Dual' ` 〈'〉ϕ↔ ¬[']¬ϕ

Nec≤ If ` ϕ, then ` [≤]ϕ Nec' If ` ϕ, then ` [']ϕ

T≤ ` [≤]ϕ→ ϕ T' ` [']ϕ→ ϕ

4≤ ` [≤]ϕ→ [≤] [≤]ϕ 4' ` [']ϕ→ ['] [']ϕ

B' ` ϕ→ ['] 〈'〉ϕ

LC (〈'〉ϕ ∧ 〈'〉ψ)→
(
〈'〉 (ϕ ∧ 〈≤〉ψ) ∨ 〈'〉 (ψ ∧ 〈≤〉ϕ)

)
Inc 〈≤〉ϕ→ 〈'〉ϕ

Table 1: Axiom system for L with respect to plausibility-access models.

with respect to plausibility-access models follows from the fact that every
strict preorder is conversely well-founded.

Note how the axiom system does not have axioms for formulas of the
form Aϕ and Rρ. This is because, as mentioned before, such formulas are
simply special atoms for the dedicated valuation functions A and R. More-
over, we have not asked for the A- and R-sets to have any special closure
property and there is no restriction in the way they interact with each other.2

Just like axiom systems for Epistemic Logic do not require special axioms
describing the behaviour of atomic propositions (unless, of course, they
have special properties, like q being true every time p is, characterized by
p→ q), our system does not require special axioms for these special atoms.
More precisely, in the canonical model construction, we only need to define
access and rule sets in the proper way:

A(w) := {ϕ ∈ L f | Aϕ ∈ w} R(w) := {ρ ∈ Lr | Rρ ∈ w}

Then, formulas of the form Aϕ and Rρ also satisfy the crucial Truth Lemma,
and completeness follows. Again, see Chapter 4 of [11] for details.

2.3.1 Implicit and explicit beliefs

It is time to define the notions of implicit and explicit beliefs. Our defini-
tions, shown in Table 2, combine ideas from [3], [18] and [10]. Note how the
agent believes the formula ϕ (the rule ρ) implicitly iff ϕ (tr(ρ)) is true in the
most plausible worlds, but in order to believe it explicitly, the agent should
also acknowledge ϕ (ρ) as true (truth-preserving) in these ‘best’ worlds.

Explicit beliefs are implicit beliefs, witness the following validities:

BExϕ→ BImϕ BExρ→ BImρ

2In [17], the authors explore and characterize several closure properties of A-sets.

7

71

The agent implicitly believes formula ϕ BImϕ := 〈≤〉 [≤]ϕ

The agent explicitly believes formula ϕ BExϕ := 〈≤〉 [≤]
(
ϕ ∧Aϕ

)
The agent implicitly believes rule ρ BImρ := 〈≤〉 [≤] tr(ρ)

The agent explicitly believes rule ρ BExρ := 〈≤〉 [≤]
(
tr(ρ) ∧ Rρ

)

Table 2: Implicit and explicit beliefs about formulas and rules.

A possibly more interesting point is the following. An agent in [17; 10]
is non-omniscient due to lack of attention; she does not need to be aware
of every formula. On the other hand, our agent is aware of all formulas,
but still she is non-omniscient because she does not need to be aware that a
formula is true. This may seem a small difference, but the interpretation of
the A sets determines the reasonable operations over them. An agent can
become aware of any formula at any time, so any formula can be added
to the A-sets without further requirement [10]. On the other hand, it is a
stretch to assume that an agent can recognize as true any formula at any
moment; it is more reasonable to ask for some derivation device, which in
this work will be a rule application [15; 22; 18].

We finish this section by mentioning some properties of implicit and
explicit beliefs about formulas. (Rules behave in a similar way.) Implicit
beliefs are closed under logical consequence: if the most plausible worlds
satisfy both ϕ → ψ and ϕ, then they also satisfy ψ. But explicit beliefs do
not need to have this property because the A-sets do not need to have any
closure property: having ϕ and ϕ→ ψ does not guarantee to have ψ.

Though ≤ is reflexive, neither implicit nor explicit beliefs have to be
true because the real world does not need to be among the most plausible
ones. Nevertheless, reflexivity makes implicit (and therefore explicit) beliefs
consistent. Every world has at least one ≤-successor, so ¬BIm⊥ is valid.

Implicit beliefs are positively and negatively introspective. This is the
case because the notion of ‘most plausible worlds’ is global inside the same
comparability class. For positive introspection, if the set of maximal worlds
contains onlyϕ-worlds (BImϕ), so does the maximal from the maximal ones
(BImBImϕ). And for negative introspection, if there is a ¬ϕ-world u in the
maximal worlds, (¬BImϕ), then u is also in those maximal from the maximal
ones (BIm¬BImϕ). But this does not extend to explicit beliefs, again because
the A-sets do not need to have any closure property. Having ϕ does not
guarantee to have BExϕ (so BExϕ→ BExBExϕ is not valid), and not having ϕ
does not guarantee to have ¬BExϕ (so ¬BExϕ→ BEx¬BExϕ is not valid).

8

72

3 Dynamics part one: upgrade and retraction

We have a framework for representing implicit and explicit beliefs. We now
look at their dynamics by introducing two actions that modify them.

3.1 Explicit upgrade

The χ-upgrade operation [4; 3] modifies the plausibility relation ≤ to put
the χ-worlds at the top, therefore revising the agent’s beliefs. Here we have
two possibilities, depending on whether it also adds χ to the A-sets (explicit
upgrade) or not (implicit upgrade). Here is the definition of the first case.

Definition 3.1 (Explicit upgrade). Let M = 〈W,≤,V,A,R〉 be a PA model and
χ a formula in L. The PA model Mχ⇑+ = 〈W,≤′,V,A′,R〉 differs from M in
the plausibility relation and in the access set function:

≤
′ := (≤;χ?) ∪ (¬χ?;≤) ∪ (¬χ?;';χ?)

A′(w) := A(w) ∪ {χ} for every w ∈W

Note how the upgrade operation is functional: for every model M it returns
one and only one model Mχ⇑+ .

The new plausibility relation is given in a PDL style: we have w ≤′ u iff
(1) w ≤ u and u is a χ-world, or (2) w is a ¬χ-world and w ≤ u, or (3) w ' u,
w is a ¬χ-world and u is a χ-world. There are other possible definitions for
≤
′ [4; 3], and the chosen one, so-called radical upgrade, is just an example of

what can be defined.

The operation preserves models in the intended class.

Proposition 1. If M is a PA model, then so is Mχ⇑+ .

We extend the language to express the effect of an explicit upgrade;
formulas of the form 〈χ⇑+〉ϕ are read as “it is possible to perform an explicit
χ-upgrade after which ϕ holds”. There is no precondition for this action (the
agent can perform an explicit upgrade whenever she wants), so the semantic
interpretation is as follows.

Definition 3.2. Let (M,w) be a pointed PA model:

(M,w) 〈χ⇑+〉ϕ iff (Mχ⇑+ ,w) ϕ

Note how the operation puts on top those worlds that are χ-worlds in
the original model, but they do not need to be χ-ones after the upgrade. The
plausibility relation changes, therefore changing the truth-value of formulas
containing the modalities for ≤ and/or ' and, in particular, changing the
agent’s beliefs. This is not strange at all, and in fact it corresponds to the

9

73

well-known Moore-like sentences (“p is the case and you do not know it”) in
Public Announcement Logic that become false after being announced, and
therefore cannot be known.

Nevertheless, the operation behaves as expected for propositional for-
mulas. The operation does not change valuations, so if χ is purely proposi-
tional, the operation will put current χ-worlds on top, and they will still be
χ-worlds after the operation so the agent will believe χ.

The validities in our new language can be axiomatized by using reduction
axioms, valid formulas that indicate how to translate a formula with the
new modality 〈χ⇑+〉 into a provably equivalent one without them. Then,
completeness follows from the completeness of the basic system. We refer
to [8] for an extensive explanation of this technique.

Theorem 1. The axiom system of Table 1 together with axioms and rules of Table
3 (with > the always true formula) provide a sound and (weakly) complete axiom
system for formulas in the language L plus the explicit upgrade modality with
respect to plausibility-access models.

` 〈χ⇑+〉 p ↔ p ` 〈χ⇑+〉Aχ ↔ >

` 〈χ⇑+〉 ¬ϕ ↔ ¬〈χ⇑+〉ϕ ` 〈χ⇑+〉Aϕ ↔ Aϕ for ϕ , χ

` 〈χ⇑+〉 (ϕ ∨ ψ) ↔
(
〈χ⇑+〉ϕ ∨ 〈χ⇑+〉ψ

)
` 〈χ⇑+〉Rρ ↔ Rρ

` 〈χ⇑+〉 〈≤〉ϕ ↔ 〈≤〉

(
χ ∧ 〈χ⇑+〉ϕ

)
∨

(
¬χ ∧ 〈≤〉 〈χ⇑+〉ϕ

)
∨

(
¬χ ∧ 〈'〉 (χ ∧ 〈χ⇑+〉ϕ)

)
` 〈χ⇑+〉 〈'〉ϕ ↔ 〈'〉 〈χ⇑+〉ϕ

From ` ϕ infer ` 〈χ⇑+〉ϕ

Table 3: Axioms and rules for explicit upgrade formulas.

The reduction axioms simply indicate how each kind of formula is af-
fected by the explicit upgrade operation. For example, 〈χ⇑+〉 p ↔ p states
that atomic propositions are not affected, and both 〈χ ⇑+〉Aχ ↔ > and
〈χ⇑+〉Aϕ↔ Aϕ for ϕ , χ together state that χ and only χ is added to the
A-sets. The interesting axiom is the one for the plausibility modality 〈≤〉 . It
is obtained with techniques from [9], and simply translates the three-cases
PDL definition of the new plausibility relation: after an upgrade with χ
there is a ≤-reachable world where ϕ holds iff before the operation (1) there
is a ≤-reachable χ-world that will become ϕ after the upgrade, or (2) the
current is a ¬χ-world that can ≤-reach another that will turn into a ϕ-one
after the operation, or (3) the current is a ¬χ-world that can '-reach another
that is χ and will become ϕ after the upgrade. Similar reduction axioms
have been presented in [9] in the context of preference upgrade.

10

74

3.2 Retraction

But there are also situations in which the agent simply retracts some explicit
belief, that is, she does not acknowledge it as true anymore. This is achieved
simply by removing the formula from the A-sets.

Definition 3.3 (Retraction). Let M = 〈W,≤,V,A,R〉 be a PA model and χ a
formula in L. The PA model M−χ = 〈W,≤,V,A′,R〉 differs from M just in the
access set function, given for every w ∈W as

A′(w) := A(w) \ {χ}

Again, the retraction operation is functional. Moreover, it does not mod-
ify ≤, so it preserves plausibility models.

This operation is represented in the language by formulas of the form
〈−χ〉ϕ, read as “it is possible to retract χ and after it ϕ holds”. Just like an
upgrade, no precondition is needed.

Definition 3.4. Let (M,w) be a pointed PA model:

(M,w) 〈−χ〉ϕ iff (M−χ,w) ϕ

Our definition behaves as we intend, witness the validity of 〈−χ〉 ¬BExχ:
after retracting χ, the agent will not believe it explicitly.

For an axiom system, we can use reduction axioms again. In this case
the axioms are simpler since only A-sets are affected.

Theorem 2. The axiom system of Table 1 together with axioms and rules of Table
4 (with ⊥ the always false formula) provide a sound and (weakly) complete axiom
system for formulas in the language L plus the retraction modality with respect to
plausibility-access models.

` 〈−χ〉 p ↔ p ` 〈−χ〉 Aχ ↔ ⊥

` 〈−χ〉 ¬ϕ ↔ ¬〈−χ〉ϕ ` 〈−χ〉 Aϕ ↔ Aϕ for ϕ , χ

` 〈−χ〉 (ϕ ∨ ψ) ↔
(
〈−χ〉ϕ ∨ 〈−χ〉ψ

)
` 〈−χ〉 Rρ ↔ Rρ

` 〈−χ〉 〈≤〉ϕ ↔ 〈≤〉 〈−χ〉ϕ

` 〈−χ〉 〈'〉ϕ ↔ 〈'〉 〈−χ〉ϕ

From ` ϕ infer ` 〈−χ〉ϕ

Table 4: Axioms and rules for retraction formulas.

Here the key axioms are 〈−χ〉 Aχ↔ ⊥ and 〈−χ〉 Aϕ↔ Aϕ for ϕ , χ,
stating that χ and only χ is removed from the A-sets. Similar reduction
axioms have been presented in [10] in the context of dynamics of awareness.

11

75

4 Dynamics part two: inference on beliefs

We now turn into the main part of our work. In this section we analyze
rule-based inference on beliefs. We start by recalling the case of rule-based
inference on knowledge [18].

The definition of implicit and explicit knowledge are simpler than those
for beliefs since they depend directly on all the worlds the agent considers
possible. The agent knows ϕ implicitly when it holds in all the worlds she
considers possible, and she knows ϕ explicitly when she also recognizes it
as true in all such worlds. The definitions of explicit knowledge about a
rule ρ is given in a similar way.

KImϕ := [']ϕ KExϕ := ['] (ϕ ∧Aϕ)

KImρ := ['] tr(ρ) KExρ := ['] (tr(ρ) ∧ Rρ)

The action of inference on knowledge with rule σ is defined as an operation
that adds σ’s conclusion to the A-set of those worlds where the agent knows
explicitly σ and its premises (KExσ ∧ KExpm(σ)). More precisely, if M is a
plausibility-access model with access set function A, then the operation of
σ-inference on knowledge produces the model M↪→K

σ
, differing from M just

in the access set function A′, which is given by

A′(w) :=

 A(w) ∪ {cn(σ)} if (M,w) KExσ ∧ KExpm(σ)

A(w) otherwise

A new modality 〈↪→K
σ 〉 is introduced to express the effects of this oper-

ation, and its semantic definition is given by

(M,w) 〈↪→K
σ 〉ϕ iff (M,w) KExσ ∧ KExpm(σ) and (M↪→K

σ
,w) ϕ

But take a closer look at the inference on knowledge operation. What
it actually does is to discard all worlds where KExσ ∧ KExpm(σ) holds, and
replace them with copies that are almost identical, the only difference being
their A-sets that, after the operation, will have cn(σ). And this is reason-
able because, under the assumption that knowledge is true information,
inference based on a known (therefore truth-preserving) rule with known
(therefore true) premises is simply deductive reasoning: the premises are
true and the rule preserves the truth, so the conclusion should be true. In
fact, inference based on a known rule with known premises is the act of
recognizing two things. First, since the applied rule is truth-preserving and
its premises are true, its conclusion must be true; and second, situations
where the premises are true but the conclusion is not are not possible.

12

76

The case of beliefs is different, as suggested in [6]. An inference on
beliefs is based on a rule that is believed to be truth-preserving, but that it
is not necessarily so. Even though it is reasonable to consider a situation in
which the premises and the conclusion hold, the agent should not discard
a situation where the premises hold but the conclusion does not.

Our proposal is the following. An inference on beliefs should create
two copies of each world where the rule and the premises are believed:
an exact copy of the original one, and another extending it by adding the
rule’s conclusion to it. But not only that. The agent believes that the rule is
truth-preserving and the premises are true, so the extended world should
be more plausible than the ‘conclusionless’ one.

But, how to create copies of a possible world? We can use the action
models and product update of the so-called BMS approach [2].

4.1 Plausibility-access action models

The main idea behind action models [2] is that actions can be represented
with a model similar to that used for representing the static situation. In
other words, just as the agent can be uncertain about which one is the real
world, she can also be uncertain about which action has taken place. Then,
the uncertainty of the agent after an action is a combination of her uncertainty
about the situation before the action and her uncertainty about the action itself.

This idea has been extended in two different directions: in order to
deal with plausibility models [3] and in order to deal with non-omniscient
multi-agent situations [10]. Our proposal combines and extends these two
ideas, now with the aim of dealing with single-agent inference on beliefs.
We start by defining the structures that will represent this kind of actions.

Definition 4.1 (Plausibility-access action model). A plausibility-access action
model is a tuple A = 〈S,4,Pre,PosA,PosR〉where

• 〈S,4,Pre〉 is a plausibility action model [3] with S a finite non-empty
set of events, 4 a plausibility relation on S (with the same requirements
as those for a plausibility-access model) and Pre : S→ L f a precondi-
tion function indicating the requirement for each event to be executed.

• PosA : (S × ℘(L f)) → ℘(L f) is the new access set function, which will
allow us to define the access set of the agent in the model that will
result from applying this action.

• PosR : (S × ℘(Lr)) → ℘(Lr) is the new rule set function, which will
allow us to define the rule set of the agent in the model that will result
from applying this action.

Just as before, the plausibility relation 4 defines an equivalence relation by
putting it together with its converse: ≈ :=4 ∪ <. A pointed plausibility-ac-
cess action model (A, s) has a distinguished event s ∈ S.

13

77

Examples of plausibility-access action models will be shown in Section
4.2. But first we will define the plausibility-access model that results from
an action model application as well as the formula that will represent this
operation and its semantic interpretation.

Definition 4.2 (Product update). Let M = 〈W,≤,V,A,R〉 be a PA model and
A = 〈S,4,Pre,PosA,PosR〉 be a PA action model. The PA model M ⊗ A =
〈W′,≤′,V′,A′,R′〉 is given by

• W′ := {(w, s) ∈ (W × S) | (M,w) |= Pre(s)}

• (w1, s1) ≤′ (w2, s2) iff
(
s1 ≺ s2 and w1 ' w2

)
or
(
s1 ≈ s2 and w1 ≤ w2

)
• V′(w, s) := V(w)

• A′(w, s) := PosA(s,A(w))

• A′(w, s) := PosR(s,R(w))

Note how the set of worlds of the new plausibility-access model is given
by the restricted cartesian product of W and S; a pair (w, s) will be a world in
the new model iff event s can be executed at world w. The new plausibility
order follows the so-called ‘Action-priority’ rule [3], making (w2, s2) more
plausible than (w1, s1) iff either s2 is strictly more plausible than s1 and
w1,w2 are indistinguishable, or else s1, s2 are indistinguishable and w2 is
more plausible than w1.

Now, for the valuations of the new worlds. First, a new world inherits
the atomic valuation of its static component, that is, an atom p holds at (w, s)
iff p holds at w. The cases for access sets gives us full generality: the access
set of world (w, s) is given by the function PosR with the event s and the
access set of w as parameters [10]. The case for rule sets is similar.

It is not hard to verify that the product update operation preserves plau-
sibility-access models.

Proposition 2. If M is a plausibility-access model and A a plausibility-access
action model, then M ⊗ A is a plausibility-access model.

In order to express how product updates affect the agents’ information,
we extend our language with modalities for each pointed plausibility-ac-
cess action model (A, s), allowing us to build formulas of the form 〈A, s〉ϕ,
whose semantic interpretation is given below.

Definition 4.3. Let (M,w) be a pointed PA model and let (A, s) be a pointed
PA action model with Pre its precondition function.

(M,w) 〈A, s〉ϕ iff (M,w) Pre(s) and (M ⊗ A, (w, s)) ϕ

14

78

4.2 Plausibility-access action models for basic inference

The action of inference on knowledge can be represented with plausibility-
access action models.

Definition 4.4 (Inference on knowledge). Let σ be a rule. The action of
inference on knowledge is given by the pointed PA action model (A↪→K

σ
, s)

whose definition (left) and relevant diagram (right) are given by

• S := {s} • 4 := {(s, s)} • Pre(s) := KExσ ∧ KExpm(σ)

• PosA(s,X) := X ∪ {cn(σ)} • PosR(s,Y) := Y
s X ∪ {cn(σ)}

But now we can represent more. Following our previous discussion,
here is the action model for basic inference on beliefs.

Definition 4.5 (Basic inference on beliefs). Let σ be a rule. The action of
basic inference on belief is given by the pointed PA action model (A↪→B

σ
, s1)

whose definition is

• S := {s1, s2} •

 PosA(s1,X) := X

PosA(s2,X) := X ∪ {cn(σ)}

• 4 := {(s1, s1), (s1, s2), (s2, s2)} •

 PosR(s1,Y) := Y

PosR(s2,Y) := Y

•

 Pre(s1) := PreBσ

Pre(s2) := PreBσ

The precondition is that the agent believes explicitly
the rule and its premises, that is,

PreBσ := BExσ ∧ BExpm(σ)

The relevant diagram appears on the right.

s1

s2

X

X ∪ {cn(σ)}

4.3 Extended inference: an exploration

Plausibility-access action models allow us to represent more than what
we have discussed. As observed in [3], a plausibility relation generates a
Grove’s system-of-spheres, that is, several layers of possible events ordered
according to their plausibility. The presented action models for basic in-
ference on beliefs are just those models with two layers, each one of them
having just one event, and with the most plausible one being the extended
one. But we do not have to restrict ourselves to such kind of inferences.

15

79

Action models with more than two layers allow
us to represent inference based on rules with
more than one conclusion. The action model
on the right has three layers, each one contain-
ing one event. Event s1 preserves access sets,
s2 extends them with the first conclusion and s3
extends them with both conclusions.

s1

s2

s3

X

X ∪ {cn1(σ)}

X ∪ {cn1(σ), cn2(σ)}

s1

s2

s3

s4

X

X ∪ {cn1(σ)}

X ∪ {cn2(σ)}

X ∪ {cn1(σ), cn2(σ)}

And we can do more by using layers
with more than one world, like the action
model on the left that allows the agent to
have cn2(σ) without having cn1(σ).

So far our examples have one characteristic in common. The new access
set function is monotone, reflecting the optimism of the agent with respect
to the conclusion: events that extend A-sets are always more plausible.

Definition 4.6 (Plausibility-access action models for optimistic inference).
Plausibility-access action models in which, for every event s1, s2,

s1 4 s2 implies PosA(s1,X) ⊆ PosA(s2,X)

are called action models for optimistic inference.

But then we can also consider the opposite case. Models with an anti-
monotone new access set function reflect the pessimism of the agent with
respect to the conclusion: events that extend A-sets are always less plausible.

Definition 4.7 (Plausibility-access action models for pessimistic inference).
Plausibility-access action models in which, for every event s1, s2,

s1 4 s2 implies PosA(s1,X) ⊇ PosA(s2,X)

are called action models for pessimistic inference.

Of course these two classes do not cover all possibilities. Plausibili-
ty-access action models allow us to represent many different and complex
inferences whose detailed study has to be left for further work.

16

80

4.4 Brief discussion on completeness

The reduction axioms of [3] are inherited by our system. In particular, the
following one states the way the plausibility relation changes:

〈A, s〉〈≤〉ϕ ↔
(
Pre(s) ∧

(∨
s4s′
〈'〉 〈A, s′〉ϕ ∨

∨
s≈s′′
〈≤〉 〈A, s′′〉ϕ

))
But when looking for reduction axioms for access and rule set formulas,
PosA and PosR pose a problem. The reason is that they allow the new
access and rule sets to be arbitrary sets. Compare this with other product
update definitions. The one of [7] can change the atomic valuation, but
the set of worlds in which a given atomic proposition will be true should
be given by a formula of the language; the one of [16] can change the
relation in a point-wise way, but the new relation is given in terms of the
previous ones by using only regular operations. Our current efforts focus on
particular definitions expressive enough to describe our desired inferences
and restricted enough to get the needed reduction axioms.

5 Conclusions and further work

We have presented a framework for representing implicit and explicit be-
liefs. We have also provided representations of three actions that modify
them, starting with those of explicit upgrade and retraction but, more im-
portant, discussing intuitive ideas and proposing a rich framework for
representing the action of inference on beliefs.

There are parts of this work that deserve further exploration, the most
appealing being the study of the different kind of inferences that we can
represent with plausibility-access action models. We have defined those
for inference on knowledge and basic inference on beliefs, and we have
briefly explored some others, but our structures can represent much more.
Another interesting extension is to look at dynamics of rules, that is, to
look for reasonable actions that extend not only the rules the agent knows
[28], but also the rules she believes. These two studies will not be complete
without the appropriate axiom system for our product update definition.
Finally we mention a third direction: the study of a multi-agent setting,
including not only the addition of more agents to the picture, but also the
analysis of implicit/explicit versions of multi-agent notions, like common
knowledge and common beliefs.

References

[1] T. Ågotnes and N. Alechina, editors. Special issue on Logics for Resource Bounded
Agents, 2009. Journal of Logic, Language and Information, 18(1).

17

81

[2] A. Baltag, L. Moss, and S. Solecki. The logic of public announcements, com-
mon knowledge and private suspicious. SEN-R9922, CWI, Amsterdam, 1999.

[3] A. Baltag and S. Smets. A qualitative theory of dynamic interactive belief
revision. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic
and the Foundations of Game and Decision Theory (LOFT7), volume 3 of Texts in
Logic and Games, pages 13–60. AUP, 2008.

[4] J. van Benthem. Dynamic logic for belief revision. Journal of Applied Non-
Classical Logics, 17(2):129–155, 2007.

[5] J. van Benthem. Merging observation and access in dynamic logic. Journal of
Logic Studies, 1(1):1–17, 2008.

[6] J. van Benthem. Logic, mathematics, and general agency. In P. Bour, M. Re-
buschi, and L. Rollet, editors, Festschrift for Gerhard Heinzmann. Laboratoire
d’histoire des ceinces et de la philosophie, Nancy, 2009.

[7] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and
change. Information and Computation, 204(11):1620–1662, 2006.

[8] J. van Benthem and B. Kooi. Reduction axioms for epistemic actions. In
R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Ad-
vances in Modal Logic (Technical Report UMCS-04-09-01), pages 197–211. Uni-
versity of Manchester, 2004.

[9] J. van Benthem and F. Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logics, 17(2):157–182, 2007.

[10] J. van Benthem and F. R. Velázquez-Quesada. Inference, promotion, and the
dynamics of awareness. PP-2009-43, ILLC, Universiteit van Amsterdam, 2009.

[11] P. Blackburn, M. de Rijke, and I. Venema. Modal Logic. Cambridge University
Press, 2001.

[12] O. Board. Dynamic interactive epistemology. Games and Economic Behavior,
49(1):49–80, 2004.

[13] H. van Ditmarsch, A. Herzig, J. Lang, and P. Marquis. Introspective forgetting.
Synthese (KRA), 169(2):405–423, 2009.

[14] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,
volume 337 of Synthese Library Series. Springer, 2007.

[15] H. N. Duc. Resource-Bounded Reasoning about Knowledge. PhD thesis, Institut
für Informatik, Universität Leipzig, Leipzig, Germany, 2001.

[16] J. van Eijck and Y. Wang. Propositional dynamic logic as a logic of belief
revision. In W. Hodges and R. J. G. B. de Queiroz, editors, WoLLIC, volume
5110 of LNCS, pages 136–148. Springer, 2008.

[17] R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34(1):39–76, 1988.

18

82

[18] D. Grossi and F. R. Velázquez-Quesada. Twelve Angry Men: A study on the
fine-grain of announcements. In X. He, J. F. Horty, and E. Pacuit, editors,
LORI, volume 5834 of LNCS, pages 147–160. Springer, 2009.

[19] A. Grove. Two modellings for theory change. Journal of Philosophical Logic,
17(2):157–170, 1988.

[20] J. Y. Halpern, editor. Proceedings of the 1st Conference on Theoretical Aspects
of Reasoning about Knowledge, Monterey, CA, March 1986, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc.

[21] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Cornell University Press, Ithaca, N.Y., 1962.

[22] M. Jago. Rule-based and resource-bounded: A new look at epistemic logic.
In T. Ågotnes and N. Alechina, editors, Proceedings of the Workshop on Logics
for Resource-Bounded Agents, pages 63–77, Malaga, Spain, 2006.

[23] K. Konolige. Belief and incompleteness. Technical Report 319, SRI, 1984.

[24] G. Lakemeyer. Steps towards a first-order logic of explicit and implicit belief.
In Halpern [20], pages 325–340.

[25] H. J. Levesque. A logic of implicit and explicit belief. In Proc. of AAAI-84,
pages 198–202, Austin, TX, 1984.

[26] K. Segerberg. The basic dynamic doxastic logic of AGM. In M.-A. Williams
and H. Rott, editors, Frontiers in Belief Revision, number 22 in Applied Logic
Series, pages 57–84. Kluwer Academic Publishers, 2001.

[27] M. Y. Vardi. On epistemic logic and logical omniscience. In Halpern [20],
pages 293–305.

[28] F. R. Velázquez-Quesada. Inference and update. Synthese (KRA), 169(2):283–
300, 2009.

19

83

A Construction of Logic-Constrained Functions
with Respect to Awareness

Susumu Yamasaki

Department of Computer Science, Okayama University, Japan
email: yamasaki@momo.cs.okayama-u.ac.jp

Abstract

A logic-constrained function is motivated by modelling the be-
haviour of the electronic device (like a mobile phone) with respect
to evocation caused by awareness. This paper presents an analysis
to develop a logic-constrained function system. We firstly have the
contradiction removal procedure for a proof system which is expected
with negation as failure rule (as denoting unawareness) to derive the
constraint (supposedly as awareness) with reference to the (abstract)
functions like λ-terms. Though the system deriving constraints can be
the logic programming system (Alferes,J.J. et al.) of coherence prin-
ciple, a limited reasoning (with negation as failure) is treated in this
paper to cope with inconsistency (contradiction) caused by classical
negation, in terms of contradiction removal facility. We then have a
description of the logic-constrained function. As a logic-constrained
function, we have an outlook on a literal-constrained term, an ex-
tended λ-term, where the literal may be derivable from a proof sys-
tem. The term conversions are defined such that a system originating
from awareness may have abstract function applications, based on the
literal-constrained term.

1 Introduction

As a ubiquitous system, we can assume the electronic device (like a mobile
phone) in place of the PC in distributed environments through internets or
wireless communications. (i) The device is expected to hold functional and
objective knowledge abstractly. (ii) The device as a resource is bounded to
be left alone until it is evoked and of use. The evocation of the device can
be supported by constraint awareness of (a set of) states (as in [11]) which
some predicate (with or without classical negation) may denote. That is,
the evocation may be interpreted to be realized by an awareness of states
(i.e., of a predicate). (iii) As long as we are concerned with awareness of a
predicate for such a set of states, it is implementable as derivability from
a proof system. (iv) In a proof system, negation as failure is applicable
to unawareness, owing to derivability of the designated predicate. (Note

1

84

that the closed world assumption is broader than negation as failure with
reference to unawareness.)

Therefore we have an illustrative structure on logical awareness as in
Table 1.

Derivability basis Evocation Device

A proof system ⇒ Awareness ⇒ Function construction

Table 1: Logical awareness

We then have technical problems: (1) Function constructions constrained
by predicates (constructions of logic-constrained function) are to be mod-
elled for the mobile phone evoked by awareness of a state set. (2) If we
regard awareness as caused by derivability from a proof system, paracon-
sistency should be denied. If a complementary pair of predicates with and
without negation is derivable, one of them must be removed.

Regarding the problems, abstract functions have been deeply studied in
the λ-calculus such that there were many compact textbooks among which
we can see the one ([9]). From knowledge views on function applications,
an analysis of the function (application) constrained by logic concerning
awareness is also a problem. For the function to conceive logical awareness,
the logic-constrained function may be constructed, where the logical formula
(which constrains functions) is often interpreted as: procedure or process
([12]) and state set ([11]) possibly inducing space and/or time notions, such
that the logical formula can be concerned with awareness of some agent. In
this paper, the notion of the state set is adopted. The denotation of a state
set is described by a predicate (with or without classical negation) which
may be derived (deduced) from a proof system. As regards derivability,
negation as failure in computational logic ([12]), the inference rule “̸⊢ p ⇒
∼ p (or denoted as not p)” has been well studied. Unawareness may be
defined in terms of negation as failure.

Motivated by the above problems, this paper is to analyze the logic-
constrained function construction, where: (a) the logic programming system
derives the literals with and without classical negation, by means of reason-
ing containing negation as failure, and (b) a logic-constrained function is
defined by means of a combination of λ-terms with the logical formulae.

Regarding the logic programming system, the negative literals are as
significant as positive ones, with reference to the closed world assumption,
the default and/or negation as failure rules ([2, 17]). As an analysis, we
need the negation as failure to denote unawareness with a contradiction-free
reasoning. As before pointed out for the second problem, a complementary

2

85

pair of literals with and without classical negation causes a contradiction
even with respect to awareness. That is, the contradiction is not allowed for
logic-constrained function: the contradiction is to be removed from aware-
ness view such that reasoning to remove contradiction must be restricted.
Concerning the logic-constrained function, the established λ-calculus is fun-
damental and may be extended to the one where the (λ-)term constrained by
logical formulae is definable. This paper focuses on the definable terms gen-
erally denoting the logic-constrained functions, where the logic-constrained
function is a λ-term with respect to awareness expressed by a logical formula.
The awareness is regarded as caused by derivability from a proof system,
while negation as failure for derivability supposedly denotes unawareness.

The paper of the analysis for logic-constrained functions is organized
for the problem as motivations described here. In Section 2, the logic pro-
gramming system is reviewed from the propositional logic version, where an
idea of the contradiction removal is presented. Section 3 presents a con-
tradiction removal procedure and its soundness is shown. In Section 4, we
have an outlook on an extended λ-term with the literal (possibly containing
classical negation) and its conversions. Section 5 gives comments regarding
logic-constraints on the λ-term.

2 Logical Expressions

We now review the terminologies in propositional logic programming, as a
proof system to possibly derive literals with and without classical negation.
Negation as failure is to denote an unawareness, while contradiction caused
by a pair of derivable literals (awareness) with and without classical negation
must be removed by a limited reasoning.

(1) A set of symbols to stand for propositions is assumed.

(2) Two kinds of negation sign are taken: the classical negation “¬” and
the negation as failure “∼”.

(3) A literal l is either an atom a, or a classical negation ¬a of an atom a.
An atom is an expression consisting of a symbol to denote a proposi-
tion.

Classical negation vs. negation as failure

3

86

The class of extended logic programs in the propositional logic is treated,
where two kinds of negation may be contained. As a theory for the literal-
constrained term which would be mentioned later, an extended logic program
(ELP, for short) is a set of clauses of the form

l ← l1, . . . , lm, ∼ lm+1, . . . , ∼ ln (0 ≤ m ≤ n),

where l and li are literals, and “∼” stands for the negation as failure (NAF,
for short). The literal ∼ l is called a negation-as-failure literal. The literal
l of the clause is said to be its head, and the literal sequence l1, . . . , lm,
∼ lm+1, . . . , ∼ ln is its body. The classical negation ¬l means

(i) ¬a if l = a, and

(ii) a if l = ¬a,

for an atom a. The pair of literals a and ¬a is said to be complementary.
The expressions L, L1, . . . , Lm, . . . , M , M1, . . . , Mn, . . . are reserved

to denote literals or negation-as-failure literals. The expressions α, α1, . . . ,
αm, . . . , β, β1, . . . , βn, . . . are reserved to denote sequences of literals or
negation-as-failure literals.

A goal is an expression of the form ← l1, . . . , lm, ∼ lm+1, . . . , ∼ ln (0 ≤
m ≤ n), where li are literals. The goal of the form ← ∼m1, . . . , ∼ mq (q ≥ 0)
is said to be a negative goal. The negative goal is the empty clause, denoted
by 2, if it contains no literal. For the ELPs, we must note a well established
paraconsistent reasoning (which is regarded as a proof procedure to possibly
derive literals) equipped with coherence principle ([1]):

“For any objective literal ¬l, if ¬l is entailed by the semantics,
then ∼ l is also entailed.”

In the paper, a proof procedure with coherence principle is given, while some
condition for the program to be consistent is shown.

We have an outlook on SLD resolution and negation as failure, where we
can see [12, 17] among so many papers.

SLD resolution applied to goals is a rule to derive

← L1, . . . , Li−1,M1, . . . ,Mn, Li+1, . . . , Lm

from a goal ← L1, . . . , Li−1, l, Li+1, . . . , Lm and a clause l ← M1, . . . ,Mn in
the given ELP. That is, a literal l of a goal may be replaced by the body
M1, . . . ,Mn of a clause l ← M1, . . . ,Mn, whose head is just the literal l.

4

87

Negation as failure is a rule to infer a negation-as-failure literal ∼ l, when
the literal l is not derived by some proof procedure. We refine negation as
failure in relation to SLD resolution such that the succeeding and failing
(derivations) of a goal (with reference to a given ELP) are defined recursively
as follows:

(i) The goal ← l succeeds if ← l is reduced to 2 by applying finitely many
SLD resolutions.

(ii) The goal ← l fails if one of following conditions holds:

(a) there is no clause whose head is the literal l.

(b) there are goals ← α1, L1, β1, . . . , ← αn, Ln, βn (n ≥ 1), derived
by SLD resolutions for the goal ← l such that all the goals ← L1,
. . . , ← Ln fail.

(c) the goal ← ¬l succeeds.

(iii) The goal ← ∼ l succeeds if the goal ← l fails.

(iv) The goal ← ∼ l fails if the goal ← l succeeds.

Note the sense that if the goal ← l may succeed, then we may be aware of l.

Contradiction removal

Compared with the method of [1] involving the coherence principle, we
have a different method of removing contradictory succeeding derivations
of both the goal ← a and the goal ← ¬a. If both goals may succeed,
contradictory awareness of a and ¬a is made, which should be escaped.

Now assume a propositional ELP

Q = {r ← q, ¬q; q ← ∼ p; p ← ∼ q; ¬q ←}.

For the goal ← r, we have the derivation by SLD resolution: A goal ← r is
reduced to a goal ← q, ¬q, as illustrated below.

← r
| (with a clause r ← q, ¬q)

← q, ¬q

The goal ← ¬q can succeed with the clause ¬q ←, where it is reduced to
the goal 2 as shown below.

5

88

← ¬q
| (with a clause ¬q ←)
2

It follows that the goal ← q, ¬q is reduced to the goal ← q, while the goal
← q cannot succeed, for contradiction removal, after the success of the goal
← ¬q.

Alternatively, if we have a derivation of the goal ← q to 2, whose details
is omitted, the goal ← q, ¬q is reduced to the goal ← ¬q, which is to be
suspended. Here we can see that the goal ← r cannot succeed. Finally the
following requirements are implemented.

(i) At most one of goals ← q and ← ¬q is permitted to succeed. (By
means of some memory for the succeeding derivation to eliminate con-
tradictions, the contradiction-free derivation is automated.)

(ii) If the goal ← q succeeds, then the goal ← ¬q can be regarded as
failing.

3 Reasoning Procedure

For reasoning to be apart from paraconsistency, we have two sets to be kept,
which are to be transformed through succeeding and failing derivations:

(i) the set of literals to remove contradictory succeeding derivations

(ii) the set of negation-as-failure literals

The former set (i) is expressed by Σ, Σ1, . . . , and the second one (ii) is by ∆,
∆1, Given an ELP P , the predicate sucP (G; Σ1;∆1; Σ2;∆2) is derived,
when a goal G succeeds with the assumed sets Σ1 and ∆1, to acquire the
sets Σ2 and ∆2. The predicate failP (G; Σ1;∆1; Σ2;∆2) is derived, when a
goal G fails with the assumed sets Σ1 and ∆1, to acquire the sets Σ2 and
∆2. Following the derivations as above, we have the rules. Intuitively the
succeeding derivation expresses some awareness, while the failing derivation
detects unawareness, in relation to negation-as-failure rules.

We assume an ELP P and have the relational representations of succeed-
ing and failing derivations, where the relations sucP and failP are defined
simultaneously by recursion to be the least set satisfying the following clo-
sure. Because the relations demonstrate the implementation as procedural
methods for the given ELP, they can be regarded as providing behaviours

6

89

such that the abstraction of the representation is more general than those
in [19]. The subscript P for the ELP P may be omitted if it is clear in the
context.

(0) sucP (2; Σ;∆;Σ;∆) for any Σ and ∆.

(1) sucP (← L1, . . . , Li−1,M1, . . . ,Mm, Li+1, . . . , Ln; Σ1 ∪ {l}; ∆1; Σ2;∆2)
for ¬l ̸∈ Σ1 and (l ← M1, . . . ,Mm) ∈ P ⇒
sucP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ1;∆1; Σ2;∆2).

(2) sucP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ1;∆1; Σ2;∆2) and ∼ l ∈ ∆1 ⇒
sucP (← L1, . . . , Li−1, ∼ l, Li+1, . . . , Ln; Σ1;∆1; Σ2;∆2).

(3) sucP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ′
2;∆

′
2; Σ2;∆2) and

failP (← l; Σ1;∆1 ∪ {∼ l}; Σ′
2; ∆

′
2) for ∼ l ̸∈ ∆1 ⇒

sucP (← L1, . . . , Li−1, ∼ l, Li+1, . . . , Ln; Σ1;∆1; Σ2;∆2).

(4) There is no clause in P , which contains l in the head ⇒
failP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ;∆;Σ;∆) for any Σ and ∆.

(5) For any clause l ← M j
1 , . . . ,M j

nj
∈ P (1 ≤ j ≤ k) of all the clauses

which contain l in the head,
failP (← L1, . . . , Li−1, M j

1 , . . . , M j
nj

, Li+1, . . . , Ln; Σj ; ∆j ; Σj+1;
∆j+1) ⇒ failP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ1;∆1; Σk+1;∆k+1).

(6) sucP (← ¬l; Σ1;∆1; Σ2;∆2) ⇒ failP (← l; Σ1; ∆1; Σ2;∆2).

(7) failP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ1;∆1; Σ2;∆2) and ∼ l ∈ ∆1 ⇒
failP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; ∆1; Σ2;∆2).

(8) sucP (← l; Σ1; ∆1; Σ2;∆2) for ∼ l ̸∈ ∆1 ⇒
failP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; ∆1; Σ2;∆2).

We can see the characteristics of the relational representations:

(a) If we have the relation sucP (G; ∅; ∅; Σ;∆) for a goal G, the whole
interpreter for the logic program can detect corresponding derivations.
The literals of the goal G in the relation sucP are regarded as made
aware of, while if the goal G is included in the relation failP then the
literals of the goal is concerned with unawareness.

(b) In the relation sucP (G; ∅; ∅; Σ;∆), the set ∆ contains the extraction
of negation-as-failure literals.

7

90

(c) By the set Σ of the relation sucP (G; ∅; ∅; Σ;∆), we can trace the literals
used for SLD resolution.

We see an illustration.

Example. Take a simple ELP P = {p ←, ¬p ←}.

(i) Clearly we have the empty clause 2 from a goal ← p with a given
clause p ← such that

sucP (← p; ∅; ∅; {p}; ∅).

(ii) Similarly we have sucP (← ¬p; ∅; ∅; {¬p}; ∅). However, we cannot have

sucP (← ¬p; {p}; ∅; {¬p}; ∅),

after that we have got sucP (← p; ∅; ∅; {p}; ∅), as in the case of (i).

(iii) After we have got sucP (← p; ∅; ∅; {p}; ∅) which is concerned with
awareness of the literal p, the inference rule gives

failP (← ¬p; ∅; ∅; {p}; ∅),

which detects unawareness of the literal ¬p.

In the following sense, the relation sucP , which may involve the effect of
the relation failP , is sound. This is paraphrased to the sense of consistency
that if a goal ← l succeeds, then ∼ l cannot be included in the set of negation-
s-failure literals. It also contains an interpretation that awareness reasoned
by the relation sucP is consistent with unawareness detected by the relation
failP . The proof is made. Here we see its outline.

Definition 3.1 For a set Σ, we define the set Σ̃ to be {∼ ¬l | l ∈ Σ}.

Theorem 3.2 Assume that sucP (← l; Σ1;∆1; Σ2;∆2) such that Σ1 = ∆1

= ∅. Then ∼ l ̸∈ ∆2 ∪ Σ̃2.

Proof (Outline) (1) By the definition of the relation sucP , ¬l ̸∈ Σ2. It follows
that ∼ l ̸∈ Σ̃2.
(2) On the contrary to the assumption that ∼ l ̸∈ ∆2, suppose that ∼ l ∈ ∆2.
Then, by the construction of the set ∆2, it follows that

failP (← l; Σ′
1;∆

′
1; Σ

′
2;∆

′
2)

for some sets Σ′
1, ∆

′
1, Σ

′
2, ∆

′
2 such that l ∈ ∆′

1 ⊆ ∆′
2 ⊆ ∆2. There are the

following cases to support this relation failP .

8

91

(i) In case that sucP (← ¬l; Σ′
1;∆

′
1; Σ

′
2; ∆

′
2), this contradicts the first as-

sumption that sucP (← l; Σ1;∆1; Σ2;∆2).

(ii) In case that there is no clause whose head is l for the relation failP ,
this contradicts the first assumption that sucP (← l; Σ1;∆1; Σ2;∆2)
such that there is some clause whose head is l.

(iii) In case that failP (← ∼m1, . . . , ∼ mn; Σ′′
1;∆

′′
1; Σ′′

2;∆
′′
2) for some sets

Σ′′
1, ∆

′′
1, Σ′′

2, ∆
′′
2, which may be caused for some negative goal

← ∼ m1, . . . , ∼mn

derivable from the goal ← l, it is concluded that n ̸= 0. Otherwise, the
negative goal ← ∼ m1, . . . , ∼mn is 2 and it contradicts the relation
failP . For the negative goal

← ∼m1, . . . , ∼mn,

there is some literal mi ̸∈ ∆′′
1 (1 ≤ i ≤ n) such that sucP (← mi; Σ

′′
1;∆

′′
1;

Σ′′
2;∆

′′
2), because of the relation failP . On the assumption that ∼mi

∈ ∆2, we repeat the same discussion. We finally reach the case that:

failP (← ∼mf
1 , . . . , ∼mf

n; Σf
1 ;∆f

1 ; Σf
2 ;∆f

2)

for some sets Σf
1 , ∆f

2 , Σf
2 ,∆f

2 , but there is no literal ∼mf
i such that

∼mf
i ̸∈ ∆f

1 . This causes the case that ← ∼mf
1 , . . . , ∼mf

n = 2, which

contradicts that failP (← ∼ mf
1 , . . . , ∼mf

n; Σf
1 ;∆f

2 ; Σf
2 ;∆f

2). This con-
cludes the proof.

Q.E.D.

4 Literal-Constrained Term

We here have the form: a constrained literal followed by a (function) term,
where

(a) the literal is derivable from some proof system like the logic program-
ming system such that the literal may be interpreted as awareness (of
an agent), and

(b) the function term is held (by an agent) under the awareness of the
literal,

9

92

such that the form may be regarded as denoting a behaviour of an agent.

Syntax

An extended term from the original is shown below, where a logic-
constraint may be made by a literal. If we prefer to the ELP, which derives
literals, then the derivable literals may be constraints.

Definition 4.1 On the assumption of a proof system (say, Γ), a literal-
constrained term (term, for short) is recursively defined as follows:

(i) If x is a variable, then x is a term.

(ii) If M , N are terms, then (M N) is a term.

(iii) If x is a variable and M a term, then (λx.M) is a term.

(iv) If p is a literal and M a term, then p < M > is a term.

Semantics

By the term p < M > with some system Γ (which may possibly be the
ELP in the previous section), we mean that:

• If p is derivable from Γ, then the term M is supported.

• Unless p is derivable from Γ, then the term M is not supported.

When the ELP may be taken as a proof system Γ, the contradiction
removal procedure is significant, because p < M > and ¬p < M > cannot
be coherent.

Illustration

Assume the following functional program.

Even(x) = if x = 0 then true
else if x = 1 then false
else Odd(x − 1)

Odd(x) = if x = 0 then false

10

93

else if x = 1 then true
else Even(x − 1)

As a standard way, by means of a fixed point operator:

Let Y = λf.(λx.f(x x))(λx.f(x x)),

Let evenfn = λg.λn.(if n = 0 then true
else if n = 1 then false
else g (− n 1))

Let oddfn = λf.λm.(if m = 0 then false
else if m = 1 then true
else f (− m 1))

Let even = Y (evenfn oddfn)
Let odd = Y (oddfn evenfn)

The terms “evenfn” and “oddfn” may be included in the expressions
such as:

p < evenfn > and q < oddfn >,

where the literals may denote awareness, which acknowledges the application
of p < evenfn > to q < oddfn > for the usual term (evenfn oddfn) to even,
and vice versa for the term (oddfn evenfn) to odd.

Condition and conversion

By the expression p −→ q, we mean that if p is derivable from Γ, then q
is derivable from Γ.

In addition to the standard α, β, and η conversions, the following two
conversions are to be presented:

(γ1)
(p < M > q < N >) p −→ q

q < (M N) >

(γ2)
(λx.p < M >)
p < λx.M >

11

94

Assume the program.

f(x) = if x = 0 then 1 else x × f(x − 1)

Let factorial = Y factorialfn,
Let factorialfn = λf.λx.(((iszero x) 1) (times x (f (−x 1)))),

where the λ-term ((B X1) X2) can denote the conditional sentence if B
then X1 else X2. If we have the fixed point operator p < Y >, the if-part
q < (iszero 0) 1 >, and the else-part

r < Times x (f (− x 1)) >

such that p −→ q and q −→ r, then

r < Y factorialfn > = r < factorial >.

The relation ⇒∗ denotes a reflexive and transitive closure based on α,
β, η, γ1 and γ2 conversions.

Church-Rosser theorem

Because

(a) the calculus for terms constructed by using only (i), (ii) and (iii) con-
ceives the Church-Rosser Theorem, and

(b) α, β and η conversions are commutative with γ1 and γ2 conversion
applications,

we may see that the term constructed by Definition 4.1 is transformed to a
normal form (which any conversion except α cannot be applied to) uniquely
up to α conversion, with respect to the relation ⇒∗, if the term has one. It
is stated as:

Theorem 4.2 If the term M has a normal form, it is unique up to α con-
version.

Proof (Outline) Applications of γ1 and γ2 may be sound with respect to
the transformation to the normal form by the following senses:

Assume two terms M and N whose normal forms are Mnormal and
Nnormal, respectively. For any terms M1 and N1 such that

M ⇒∗ M1 ⇒∗ Mnormal, and
N ⇒∗ N1 ⇒∗ Nnormal,

12

95

we have:

p < M >⇒∗ p < M1 > q < N >⇒∗ q < N1 >
(p < M1 > q < N1 >) p −→ q

q < (M1 N1) >
q < Mnormal Nnormal >

with respect to γ1 conversion, and

λx.p < M > p < M >⇒∗ p < M1 >
λx.p < M1 >
p < λx.M1 >

p < λx.Mnormal >

with respect to γ2 conversion such that we intuitively see the induction for
the proof. Q.E.D.

If we adopt the ELP P as a formal system (Γ as above), whether

p −→ q

can be determined by reasoning that on condition that we have sucP (←
p; ∅; ∅; Σ;∆), we then have sucP (← q; Σ;∆;Σ′; ∆′) for ∆ ⊆ ∆′ and Σ ⊆ Σ′.

5 Concluding Remarks

The problem of treatments for the logic-constrained function is related to
the backgrounds: (i) Logic and database views are fundamental to ana-
lyze knowledge structure ([14, 17]), to understand dynamic structure with
reference to knowledge ([15, 16]). (ii) Process algebra deals with sequence
structure of communications (evaluations) ([10, 13]) even for distributed
systems ([5]). (iii) The logic programming system (in computational logic)
contains the notion of negatives such that both classical negation (in the
literal regarding awareness) and negation as failure (regarding unawareness)
are combined for more powerful representations ([1]).

For a literal-constrained term, the literal should be derivable from an
indicated proof system. If derivability is concerned with awareness, the term
(as a function application) is regarded as originating from awareness with
constraint. In this paper, the logic programming system with a contradiction
removal procedure is presented, not allowed to be paraconsistent.

13

96

As regards awareness in terms of derivability, we can also have the formal
systems: hybrid logic (with modality and nomination) (as in [3]), and action
logic (as in [8]).

With reference to actions like those of [15, 16], analyses of whether or
not we can apply them to the literal-constrained term are needed.

As the proof system itself, we summarize some points on specific expres-
siveness of the ELP. (1) This paper presents an abstract representation of
reasoning for its application to the reasoning of contradiction removal re-
garding derivability vs. awareness, independent of abduction reasoning as
in [4, 6]. (2) The backgrounds of soundness of succeeding and failing deriva-
tions may be closely related to model theory, following [1, 19]. (3) The
notion of exceptions for each literal to be constrained by is implementable
in the derivations we present, while we may apply weak negation to it as in
[20]. (4) There is a problem of whether or not a non-grounded version of
the literals (for awareness constraints) may be built in the proof system to
derive literals for constraints. A non-grounded version of negation as failure
is relevant to the discussions as in [17, 18].

References

[1] Alferes,J.J., Damásio,C.V. and Pereira,L.M., A logic programming sys-
tem for nonmonotonic reasoning, J. of Automated Reasoning, 14, pp.93-
147, 1995.

[2] Besnard,P., An Introduction to Default Logic, Springer-Verlag, 1989.

[3] Brauner,T., Natural deduction for hybrid logic, JLC, 14, 3, pp.329–353,
2004.

[4] Brogi,A., Lamma,P., Mancarella,P. and Mello,P., A unifying view for
logic programming with non-monotonic reasoning, Theoretical Com-
puter Science, 184, 1-2, pp.1-59, 1997.

[5] Bruns,G., Distributed Systems Analysis with CCS, Prentice-Hall, 1996.

[6] Dung,P.M., An argumentation-theoretic foundation for logic program-
ming, J. of Logic Programming, 22, pp.151–177, 1995.

[7] Gelfond,M. and Lifschitz,V., The stable model semantics for logic pro-
grams, Proc. of 5th ICLP, pp.1070–1080, 1988.

14

97

[8] Giordano,L., Martelli,A. and Schwind,C., Ramification and causality in
a modal action logic, JLC, 10, 5, pp.625–662, 2000.

[9] Gordon,M.J.C., Programming Language Theory and its Implementa-
tion, Prentice Hall, 1988.

[10] Hoare,C.A.R., Communicating Sequential Processes, Prentice-Hall,
1985.

[11] Kucera,A. and Esparza,J., A logical viewpoint on process-algebra, J. of
Logic and Computation, 13, 6, pp.863–880, 2003.

[12] Lloyd,J.W., Foundations of Logic Programming, 2nd, Extended Edi-
tion, Springer-Verlag, 1993.

[13] Milner,R., Communication and Concurrency, Prentice-Hall, 1989.

[14] Minker,J. (ed.), Foundations of Deductive Databases and Logic Pro-
gramming, Morgan Kaufmann Publishers, Inc., 1987.

[15] Mosses,P.M., Action Semantics, Cambridge University, 1992.

[16] Reiter,R., Knowledge in Action, The MIT Press, 2001.

[17] Shepherdson,J.C., Negation in Logic Programming, in: Minker,J. (ed.),
Foundations of Deductive Databases and Logic Programming, pp.19-88,
1987.

[18] Yamasaki,S. and Kurose,Y., Soundness of abductive proof procedure
with respect to constraint for non-ground abducibles, Theoretical Com-
puter Science, 206, pp.257-281, 1998.

[19] Yamasaki,S. and Kurose,Y., A sound and complete procedure for a
general logic program in non-floundering derivations with respect to
the 3-valued stable model semantics, Theoretical Computer Science,
266, pp.489–512, 2001.

[20] Yamasaki,S., Logic programming with default, weak and strict nega-
tions, Theory and Practice of Logic Programming, 6, pp.737-749, 2006.

15

98

The 4rd International Workshop on Multi-Agent
Systems and Simulation (MAS&S): Engineering

Complex Systems through Agent-Based Modeling
and Simulation, MALLOW-MAS&S’10

(Introductory Essay of the Workshop)

Carole Bernon∗, Alfredo Garro†, and Jorge J. Gomez-Sanz‡
∗IRIT, Université Paul Sabatier (France)

118, Route de Narbonne, 31062 TOULOUSE Cedex 09, France
Email: carole.bernon@irit.fr

†Department of Electronics, Informatics and Systems (DEIS)
Universitá della Calabria

Via P. Bucci cubo 41C, 87036 Arcavacata di Rende (CS), Italy
Email: alfredo.garro@unical.it

‡Dep. Ingenierı́a del Software e Inteligencia Artificial
Universidad Complutense Madrid (Spain)

Ciudad Universitaria s/n, 28040 Madrid, Spain
Email: jjgomez@fdi.ucm.es

Abstract

Multi-agent systems (MASs) provide powerful models for representing both real-world systems and applications
with an appropriate degree of complexity and dynamics. Several research and industrial experiences have already
shown that the use of MASs offers advantages in a wide range of application domains (e.g. financial, economic,
social, logistic, chemical, engineering). When MASs represent software applications to be effectively delivered,
they need to be validated and evaluated before their deployment and execution, thus methodologies that support
validation and evaluation through simulation of the MAS under development are highly required. In other emerging
areas (e.g. ACE, ACF), MASs are designed for representing systems at different levels of complexity through the
use of autonomous, goal-driven and interacting entities organized into societies which exhibit emergent properties
The agent-based model of a system can then be executed to simulate the behavior of the complete system so that
knowledge of the behaviors of the entities (micro-level) produce an understanding of the overall outcome at the
system-level (macro-level). In both cases (MASs as software applications and MASs as models for the analysis of
complex systems), simulation plays a crucial role which needs to be further investigated.

I. INTRODUCTION

This is the fourth edition of MAS&S. The first edition was jointly held with EUROSIS ISC 2006
(Industrial Simulation Conference), June 5-7, 2006, Palermo, Italy [1]. The second edition happened in
EUROSIS ESM 2007 (European Simulation and Modelling Conference), October 22-24, 2007, St. Julian’s,
Malta [2]. The third edition took place as part of MALLOW, the second edition of Multi-Agent Logics,
Lan- guages, and Organisations (Federated Workshops), 7-11 September Torino, Italy.

The best papers of the first edition have also been selected and their extended and revised version
published in International Journal of Agent Oriented Software Engineering [3]. Similarly, best papers
from second to third editions were selected and extended for a special issue of the Simulation Modelling
Practice and Theory Journal, which is in press.

MAS&S was conceived for stimulating discussion among researchers and practitioners working on ABS
and AOSE, to enable the identification and the definition of methodologies and techniques for integrating
them.

Carole Bernon
Alfredo Garro

Jorge J. Gomez-Sanz
August 3, 2010

II. WORKSHOP COMMITTEES

A. Workshop Organizers

Carole Bernon IRIT - Université Paul Sabatier, France
Alfredo Garro Università della Calabria, Italy
Jorge J. Gomez-Sanz Universidad Complutense de Madrid, Spain

B. Programme Commitee

Jean-Paul Arcangeli Université Paul Sabatier, France
Juan Antonio Botı́a Blaya Universidad de Murcia, Spain
Paul Davidson Blekinge Institute of Technology, Sweden
Paolo Giorgini Università di Trento, Italy
Samer Hassan Universidad Complutense de Madrid, Spain
Vincent Hilaire Université de Belfort-Montbéliard, France
Franziska Klügl Örebro Universitet, Sweden
Adolfo López-Paredes University of Valladolid, Spain
Muaz Niazi Foundation University, Pakistan
Michael J. North Argonne National Laboratory, USA
Andrea Omicini Università di Bologna, Italy
Paolo Petta OFAI, Austria
Gauthier Picard ENSM, Saint-Etienne, France
Sébastien Picault LIFL, Lille, France
Luca Sabatucci ITC-irst, FBK, Italy
Valeria Seidita Università degli Studi di Palermo, Italy
Pietro Terna Università di Torino, Italy
Erwan Tranvouez LSIS, France
Giuseppe Vizzari Università di Milano Bicocca, Italy

C. Steering Committee

Massimo Cossentino ICAR/CNR, Italy
Giancarlo Fortino University of Calabria, Italy
Juan Pavón Universidad Complutense Madrid, Spain
Marie-Pierre Gleizes IRIT - Université Paul Sabatier, France
Wilma Russo University of Calabria, Italy

III. LIST OF PAPERS
• The Impact of Market Preferences on the Evolution of Market Price and Product Quality

by Hongliang Liu, Enda Howley, and Jim Duggan

• Learning Virtual Agents for Decision-Making in Business Simulators
by Javier Garcia, Fernando Borrajo, and Fernando Fernandez

• Looking for the Self-fulfilling Prophecy Effect in a Double Auction Artificial Stock Market
by Albert Meco, Javier Arroyo, Juan Pavón, and Javier Pajares

• BDI Agents with Fuzzy Perception for Simulating Decision Making in Environments with Imperfect
Information
by Giovani Farias, Graçaliz Dimuro, and Antonio Carlos Costa

• When Will I See you Again: Modelling the Influence of Social Networks on Social Activities
by Nicole Ronald, Virginia Dignum, and Catholijn Jonker

• Human Behaviours Simulation in Ubiquitous Computing Environments
by Teresa Garcı́a-Valverde, Francisco Campuzano, Emilio Serrano, and Juan A. Botı́a

• A Survey on Coordination Methodologies for Simulated Robotic Soccer Teams
by Fernando Almeida, Nuno Lau, and Luis Paulo Reis

• ELDAMeth: A Methodology for Simulation-based Prototyping of Distributed Agent Systems
by Giancarlo Fortino and Wilma Russo

• Design and Simulation of a Wave-like Self-Organization Strategy for Resource-Flow Systems
by Jan Sudeikat, Jan-Philipp Steghöfer, Hella Seebach, Wolfgang Reif, Wolfgang Renz, Thomas
Preisler, and Peter Salchow

• Generating Inspiration for Multi-Agent Simulation Design by Q-Learning
by Robert Junges and Franziska Klügl

IV. SPONSORING INSTITUTIONS
Alfredo Garro has partially been funded by the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Italy.

Jorge J. Gomez-Sanz has partially been funded by the the project Agent-based Modelling and Simulation of
Complex Social Systems (SiCoSSys), supported by Spanish Council for Science and Innovation, with grant
TIN2008-06464-C03-01, and by the Programa de Creaciòn y Consolidaciòn de Grupos de Investigaciò n
UCM-Banco Santander for the group number 921354 (GRASIA group).

V. ACKNOWLEDGMENT

The workshop organizers would like to thank the MALLOW organizers (Olivier Boissier, Amal El
Fallah Seghrouchni, Salima Hassas, and Nicolas Maudet,) for their endless support in making possible
the organization of the 4rd edition of MAS&S in MALLOW and the chair sponsorships for financial
funding.

REFERENCES

[1] Alessandro Genco, Antonio Gentile and Salvatore Sorce, editors. Proceedings of the Industrial Simulation Conference (ISC 2006), June
5-7, 2006, University of Palermo, Palermo, Italy, 535 pages, ISBN 90-77381-26-0.

[2] Jaroslav Sklenar, Cyrille Bertelle and Giancarlo Fortino. Proceedings of the European Simulation and Modeling Conference (ESM 2007),
October 22-24, 2007, University of Malta, St Julians, Malta, 615 pages, ISBN 978-90-77381-36-6.

[3] Massimo Cossentino, Professor Giancarlo Fortino and Professor Wilma Russo. Special Issue on Multi-Agent Systems and Simulation,
International Journal of Agent-Oriented Software Engineering (IJAOSE), 2(2), 2008, ISSN 1746-1383.

1

The impact of market preferences on the evolution
of market price and product quality

Hongliang Liu, Enda Howley and Jim Duggan

Abstract—A significant challenge for firms in an open-
competition marketplace is to balance the conflicting attributes of
price and quality. Higher quality levels tend to lead to increased
product costs, which, depending on market preferences, can
trigger an increase in consumer demand. This paper presents a
multi-agent model that allows for an exploration of how price and
quality evolve as a result of direct market competition between
firms. A new competition model, based on price and quality, is
defined. Agents compete by determining their price and quality
levels with a view to maximizing their profit. Our goal is to
examine a range of market configurations and study how agent
strategies evolve over time. We focus on those factors which
contribute to each agent’s survival in this evolutionary setting.
We use game theoretic simulation as a basis to examine various
agent strategies. A genetic algorithm is used to characterize a
changing environment which evolves over time to reflect the
emergence of fitter strategy attributes. Individuals can evolve
their own market preferences over subsequent generations and
adapt to their preferred market strategy. Agent strategies evolve
rapidly to reflect the bias of their individual market. The price
and quality relationship of a given market is a primary driver
of the evolution of agent strategies in that market. Significantly,
our results show the emergence of strategies that prefer low
price and high quality sensitive markets. This is despite the
penalties which are incurred by the higher costs of increased
quality. These results have potentially interesting applications to
real-world market dynamics, particularly as companies strive to
position their products optimally on different markets.

Index Terms—Price and Quality Competition, Agent Compu-
tational Economics, Agent-based Simulation, Genetic Algorithm

I. Introduction

Consumers from different markets exhibit wide preference
differences due to natural variation in tastes and income
disparities. These are mainly reflected by consumers’ accepted
price and quality levels. For example, consumers in rural areas
may prefer lower price products while consumers in urban
areas maybe willing to pay higher prices for higher quality
products. These consumer preferences can indirectly establish
trends in production. From the view of the firms, higher quality
usually requires the use of more expensive components, and
less standardized production process, and so on. As a result,
higher quality levels tend to lead to increased product costs.
Nevertheless, higher quality, depending on market preferences,
can trigger an increase in consumer demand, and probably
gain market share [1]. Therefore, there are trade-offs between
quality and cost for firms. In terms of price, it is also a decision

Hongliang Liu, Enda Howley and Jim Duggan are with the
Department of Information Technology, National University of Ireland,
Galway (email: h.liu1@nuigalway.ie, enda.howley@nuigalway.ie and
jim.duggan@nuigalway.ie)

challenge. Firms can charge a higher price for their product in
order to get a higher unit profit. However, higher price levels
usually lead to a reduction in customer demand. Therefore,
ensuring a good balance between the conflicting attributes of
price and quality is a significant challenge for firms in an
open-competition marketplace.

In order to better understand this problem, a number of
game theoretic models have been proposed [2] [3] [4]. This
existing research has focused on the strategic or rational be-
havior of competition between two firms. However, what will
happen when there are more than two firms and their decisions
are affected by the effect of bounded rationality? Another
common feature of the current research is that researchers limit
their analysis on one market in these models. However, in the
real world, firms usually compete with each other in different
marketplaces. In order to address this issue, we propose a new
multi-agent competition model, based on price and quality.
In this model, we consider many firm agents competing in a
number of markets. Markets are defined by their own unique
properties. Price and quality sensitivities are used to represent
these properties, and reflect a consumers’ preferred product.
Variations in these values effect the demand of the products
in the market. Different markets may have different price and
quality sensitivities. Each market demand is determined by the
average price and quality levels of firm agents in that market.
Thus, each firm agent faces decision challenges including their
product price and quality levels, and their preferred markets.
Furthermore, the effectiveness of one agent’s strategy depends
on the strategies of others. In this paper, we model firm agents
as individuals in a genetic algorithm which has been widely
used as learning mechanism for economic agents [5] [6]. The
genetic algorithm is also used to characterize a competitive
market environment where the agents compete with each other
for the market share. The firm agents can make price and
quality decisions and evolve their own market preferences.
However, they have a limited knowledge of their environment
and their performance is largely determined by the actions
of their peers. These features of our model are significantly
different with models in the existing research.

In this paper, we aim to examine a range of market con-
figurations and study how firm agent strategies evolve over
time. We investigate how firm agents strategically position
their products over time and what are the impacts of alternative
market preferences on the evolution. We have conducted a
series of experiments on a range of market configurations.
Our results show the impacts of market preferences on the
evolution of market price and product quality. The firm agent
strategies evolve rapidly to reflect the bias of their individual

2

market. The price and quality relationship of a given market
is a primary driver of the evolution of agent strategies in
that market. Significantly, our results show the emergence of
strategies that prefer markets which have low price and also
high quality sensitive markets. This is despite the penalties
which are incurred by the higher costs of increased quality.
These results have potentially interesting applications to real-
world market dynamics, particularly as companies strive to
position their products optimally on many markets.

The sections of this paper are structured as follows. In
Section II, we will review much of the related work relevant
to price and quality competition. In Section III, we will
outline our model design. Section IV will provide a detailed
examination of our experimental results. Finally, in Section V
we will outline our conclusions and some future work.

II. Background Research

The study of price and quality competition has attracted
many researchers’ attention. There are two main streams
in the current research. One is a formal study of rational
behaviors among strategically interacting agents using game
theory. While the alternative approach is to use agent-based
modeling and simulation to examine market economies. This is
also known as agent-based computational economics (ABCE)
which is the computational study of economics modeled as
evolving systems of autonomous interacting agents [6].

A. Game Theory Models

Since the seminal work of Hotelling [2], a rich and di-
verse literature on price and quality competition has emerged.
Harold Hoteling analyzes a model of spatial competition which
demonstrates the relationship between location and pricing
behavior of firms. In this model, Hotelling assumes that
potential consumers are evenly distributed in a linear geo-
graphic location such as a straight street. Consumers have no
preferences to the firms and only buy products from these that
provides better value in terms of price and transportation cost.
Both firms have the same constant marginal costs and compete
on the store location and price. From this spatial competition
model, Hotelling argues that the equilibrium strategy for each
firm is to choose a location at the center of the market
which is commonly referred to as “Principe of Minimum
Differentiation” or “Hotelling’s law”. This argument means
that for any location of one firm, the other firm has an incentive
to move toward its opponent in order to expand the the territory
under its exclusive control. In this model, a customer’s location
can also be interpreted as a customer’s preference for quality,
therefore, many papers on price and quality competition are
inspired by this work. For example, Moorthy considers the
quality choice in a duopoly, assuming the existence of a
quadratic cost function for quality which is different with
the Hotelling’s location model [7]. Banker et al. examine a
price and quality competition also under a duopoly setting,
where consumers’ demand is a linear function of price and
quality levels and the cost of quality is also a quadratic form
[3]. Moorthy and Banker et al. analyze the impact of quality
on competitive advantages. Vörös designs a price and quality

model using decreasing and increasing exponential demand
functions for price and quality, respectively, and analyzes the
influences of the quality inflating which means that the same
quality performance is worth less tomorrow than today [8].
Recently, Matsubayashi et al. explore the impact of different
customers’ loyalty to each firm on the outcome of price and
quality competition [4].

B. Agent based simulations

Agent based simulations have been successfully applied
many problems such as telecommunications and market strate-
gies [9]. In many economic applications, genetic algorithms
(GAs) have been widely used to represent the learning pro-
cesses of agents [10] [11]. GAs were developed by Holland in
1975 as a way of studying adaptation, optimization and learn-
ing [12]. GAs are inspired by evolutionary biology such as
selection, crossover (also called recombination) and mutation.
A basic GA manipulates a population of chromosomes that
encode candidate solutions to a problem. Each chromosome
or individual in a GA is assigned a measure of performance,
called its fitness. In a game context, a chromosome can be
interpreted as a strategy, and the GAs processes are models of
learning. In GAs, the reproduction operator can be interpreted
as learning by imitation, the crossover operator can be inter-
preted as learning through communication, and the mutation
operator is interpreted as learning by experiment [13].

GAs have been used to examine some well known game
theory models such as Prisoner’s Dilemma [10], Cournot
competition and Bertrand competition[14]. However, almost
all the existing research has employed classical game theory
to examine the price and quality competition as we have
examined earlier. Only recently, Tay et al. have used a genetic
algorithm to test Hunt’s General Theory of competition [15].
They consider an oligopolistic market with a number of sellers
who are competing on price and a product attribute which
reflects a consumer’s ideal preferences. The sellers’ demand
function is a linear function of price and and the product
attribute which differs from our demand function for markets.
Furthermore, we are interested in different research topics.
They aim to use a GA as an alternative simulation method
to test a competition theory. Our purpose of this paper is to
investigate the impact of market preferences on the evolution
of agents’ strategies.

In summary, there is a body of literature in economics on
price and quality competition. However, these models rely on
very strong assumptions such as rational behaviour of two
firms and one market. The research from ABCE has not been
addressed this perspective on price and quantity competition.
In this paper, we propose a multi-agent model and aim to
address these issues.

III. Price and Quality CompetitionModel

In this section, we propose our game theoretic model. We
consider many firm agents competing with each other over a
number of competitive markets. Different markets may have
different preferences over price and quality which are reflected
through market demands in the markets. Firms in the same

3

C C

C
C

CC C CC

C

C C

C
C

CC C CC

C C C

C CC C CC

C

C C

C
C

CC C CC

C

C C

C
C

CC C CC

C

Market Market

Market

Market

Market

Firm
Firm

Firm

Firm

Firm

Firms in the same market compete
with each other on price and quality

Different markets have different
preferences over price and quality

Fig. 1. Price and Quality Competition Model

marketplace compete with each other on price and quality
for higher profits. As for firms, a relative lower price level
or a higher quality level may attract more consumers. This
depends not only on other firm agents’ strategies but also on
the preferences of the markets. Furthermore, the lower price or
higher quality strategies also reduce unit profit level as higher
quality levels incur higher unit cost levels. Therefore, in our
model, each firm agent faces decision challenges including
price levels, quality levels and their preferred markets as shown
in Figure 1. In the following, we first present our market
properties, then the firm agents and their decision-making
process. Finally, our simulator design is outlined.

A. Market Properties

We consider m markets. Each market demand is dependent
on the average price and quality levels (p, q) of all firm agents
in the market. The market demand will increase as the price
level goes down given any quality level, and on the contrary, it
increases as the quality of the product improves for any price
level. In order to reflect these relationships in real markets, we
use Equation (1) to model market k’s demand Dk(p, q).

Dk(p, q) = Ake−αk p(1 − be−βkq) (1)

where Ak is the potential maximum demand, b ∈ (0, 1],
αk ∈ [0, 1], and βk ∈ [0, 1] are parameters. Note that the
demand function is monotonically decreasing over price p
and increasing over quality q since ∂D(p, q)/∂p < 0 and
∂D(p, q)/∂q > 0. The combination of the parameters (α, β)
corresponds to a set of consumers’ price and quality sensitiv-
ities for a given market.

(α) This represents the consumers’ price sensitivity as
the higher α the demand goes down faster given
the same price change. The higher α means higher
consumers’ price sensitivity.

(β) This represents the consumers’ quality sensitivity as
the higher β the demand changes faster given the
same quality change. Similarly, the higher β value
reflects higher consumers’ quality sensitivity.

B. Firm Agents

In these m markets there are f firm agents in total. Each
firm agent faces decision challenges including their product
price and quality levels, and their preferred markets. Let ηi =

(pi,t, qi,t, ki,t) denote the agent i’s decision strategies at time
step t where pi,t, qi,t, ki,t are the price level, the quality level and
the market ki,t (ki,t ∈ [1,m]). The firm agents from the same
marketplace k compete with each other for a higher market
share and profit over time.

The firm agent i’s market share (si,k,t) in market k at time
step t depends not only on its own price and quality levels
but also on the other agents’ strategies. We propose a new
mechanism as follows.

si,t =
Dk(pi,t, qi,t)∑w

j=1 Dk(p j,t, q j,t)
(2)

where w is the number of firm agents in the market k at time t.
This mechanism is different with the mechanisms used in the
existing price and quality competition models [7] [16] [3] [4].
In the existing models, researchers only consider two firms
competing with each other and one firm’s demand is a linear
function of both firms strategies.

The firm agents from the same market compete in deter-
mining their price and quality levels to maximise their profits.
The profit (πi,t) for agent i in market k at time step t is given
as follows:

πi,t = (pi,t −C(qi))si,tDk(p̄, q̄) (3)

where p̄ =
∑w

i=1 pi,t, q̄ =
∑w

i=1 qi,t, Dk(p̄, q̄) is the demand of
market k, si,tDk(p̄, q̄) is the firm agent i’s demand, and C(qi)
the agent i’s quality cost.

Higher quality levels are usually accompanied by higher
costs in most businesses. In our model, we use a quadratic
cost function: C(q) = ϵq2. The ϵ is a positive parameter. This
type of cost function reflects the nonlinear impact of quality
levels on costs and is often used in the marketing literature
[7] [3] [4].

1) Decision-making process: From the discussion above,
we note that the firm agents face decision challenges on
their product price and quality levels, and their preferred
markets (pi,t, qi,t, ki,t). In this paper, the GA is not only used
to characterize a competitive market environment, where the
firm agents interact and compete with each other over time, but
also model firm agents’ decision-making process. In our GA,
each firm agent is represented through an agent chromosome.
This chromosome holds a number of genes which represents
how that particular agent behaves.

Chromosome = (GP,GQ,GM) (4)

The GP gene represents the agent’s price decision strategy.
The GQ gene represents the agent’s quality decision strategy.
Finally, the GM gene represents the preferred market’s ID and
is used to determine which market the agent participants in.

Furthermore, we use the profit function as the fitness
function in our GA (See Equation 3. We do not distinguish
between profit and fitness and will alternatively use both words
in the following context.

4

TABLE I
Parameter settings.

Variable Range/value Description Variable Range/value Description
T 200 Simulation length β [0, 1] market preference over quality
f 60 Firm agent number 0.05 Selection rate (GA)
m 5 Market number 0.8 Crossover rate (GA)
Ak 6000 Potential maximum demand 0.05 Mutation rate (GA)
b 0.9 Weight parameter GP [0, 5] Price gene
ϵ 1.0 Quality cost parameter GQ [0, 1] Quality gene
α [0, 1] market preference over price GM {1, 2, 3, 4, 5} Market ID gene

In our GA, we use an elitism mechanism to implement our
selection operator. We select the best agents directly into the
following generation which is controlled by the selection rate.
This means, in each generation, a small number of agents do
not change their strategies as their current strategies perform
well. The rest of individuals or firm agents, have a certain
probability to learn new strategies through our crossover oper-
ator and mutation operator. A single point crossover operator is
implemented. For our mutation operator, the degree of change
of each strategy gene is 0.1 ∗ (max−min) where max and min
is a gene’s range.

C. Simulator Design

In order to examine the impact of market preferences on
the evolution of market price and product quality, the GA is
used to facilitate evolution and a competitive dynamic market
environment. Our competitive market consists a number of
markets and many firm agents interacting with each other.
We assume that the firm agents can freely participant in
any market, however, one firm agent can only participant
in one market at each period. The firm agents in the same
market compete with each other. In other words, firm agents
compete locally in a market of their peers, where they have
no knowledge about their peers, or the individual market
preferences.

Initially these firm agent genes are generated using a
uniform distribution for the first generation. Over subsequent
generations new agent chromosomes are generated using our
genetic algorithm. For each generation, we firstly calculate
each market’s demand, and then each firm agents market
share, and profit (fitness) according to Equation 1, 2 and 3.
Finally, the selection operator, crossover operator and mutation
operator are applied. Through these operators, a number of
the least fit individuals are removed and replaced with other
new strategies which may perform better or worse than those
replaced.

IV. Experimental Results

In this section, we will present a series of experimental
results from our simulations. Table I shows the parameter
settings for the markets, firm agents and our GA. By varying
the different parameters in our model we investigate the impact
of market preferences on the evolution of market price and
product quality. We examine two different market configu-
rations: homogeneous and heterogeneous market settings. In
the homogeneous model, all markets have the same price and
quality sensitivities while in the heterogeneous model, the

markets have different price and quality sensitivities. In the
following sections, we will firstly examine the results from
homogeneous markets and then the results from heterogeneous
markets.

A. Competition in homogeneous markets

All 5 markets have the same setting in homogeneous mar-
kets. Each market has two parameters α and β which reflect the
market preferences. A high α reflects that a market is highly
sensitive to price, while a high β reflects that a market places
a premium on quality. The results in Figure 2 are from 50 runs
of our simulator for each combination of α and β. Figures 2(a),
2(b), 2(c), and 2(d) depict the average price, quality, profit and
demand quantity for the whole agent population at generation
200, respectively.

There are a number of features involving these experiments.
Firstly, we observe that the agents’ average price evolves to
a lower level as the α value increases. In other words, the
agents lower their price levels as the market becomes more
sensitive to the price levels. Secondly, the agents’ average
quality level evolves to a higher level as the β value increases.
This reflects that the agents increase the product quality levels
as the markets pay more attention to quality. Therefore, we
can conclude that agent strategies evolve to reflect the bias
of their market. These emergent phenomena stem from firm
agents’ competition provided by our GA. As the markets
are more sensitive to price or quality, the firm agents with
lower price and higher quality products have a competitive
advantage. These firms are considered the most fit agents in
our GA. The lower price and higher quality genes are then
promoted in the following generations. Finally, the market
price and quality evolve to a lower level and a higher level
respectively. Furthermore, these strategies subsequently affect
the average profit as shown in Figure 2(c). Specifically, the
average profit decreases as the markets are more sensitive
to price. Higher market price sensitivities lead to intense
competition, resulting in a decrease in profits. Conversely, we
observe that the average profit increases as the markets are
more sensitive to quality despite the higher costs of increased
quality for firms. This is because that higher quality levels of
products in the markets result in a higher market demand as
shown in Figure 2(d), and subsequently an increased profit.
Therefore, higher quality has a positive impact on agents’
profit in our model. This feature of our model is consistent
with the existing research results [1].

5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Price

 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

(a) Average price

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Quality

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(b) Average quality

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

 0
 500

 1000
 1500
 2000
 2500
 3000

Fitness

 0
 500
 1000
 1500
 2000
 2500
 3000

(c) Average profit

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

 0
 100
 200
 300
 400
 500
 600
 700
 800

Demand

 0
 100
 200
 300
 400
 500
 600
 700
 800

(d) Average demand

Fig. 2. Agent behaviors for values of α and β in homogeneous markets

B. Competition in heterogeneous markets

In this section, we examine a scenario where agents compete
on price and quality in heterogeneous markets. In heteroge-
neous markets, each market has different price and quality sen-
sitivities. Our purpose is to investigate how agents’ strategies
evolve over time in heterogeneous markets. The 5 different
markets are set as (Market 1: α = 0.1 and β = 0.8), (Market
2: α = 0.1 and β = 0.1), (Market 3: α = 0.4 and β = 0.4),
(Market 4: α = 0.8 and β = 0.8) and (Market 5: α = 0.8 and
β = 0.1). Each market represents different degrees of price and
quality sensitivities. Our markets have the following features.
Markets 1, 2 and 3 have lower price sensitivities while Markets
4 and 5 have higher price sensitivities. Markets 2, 3 and 5 have
lower quality sensitivities, while Markets 1 and 4 have higher
quality sensitivities.

Figure 3 shows the average data from 50 runs. Figures 3(a),
3(b), 3(c), 3(d) and 3(e) depict how the firm agents’ average
price, quality, profit, each market demand and the firm agent
numbers evolve over time. From these figures, we notice that
the markets’ preferences on price are significant factors on
the evolution of market price levels. As Figure 3(a) shows, the
price levels evolve to higher levels in Markets 1, 2 and 3 (lower
price sensitivities), while in Markets 4 and 5 (higher price
sensitivities), the agent price levels evolve to lower levels. This
also stems from firm agents’ competition provided by our GA

which we have discussed in the homogeneous markets. More
interestingly, the effect of quality preferences in heterogeneous
markets is different with that in homogeneous markets. For
example, the quality levels in Market 4 do not evolve to a
higher level although Market 4 is a higher quality sensitive
market as shown in Figure 3(b). Conversely, in Market 2, the
quality levels evolve to a higher level although this market has
very low quality sensitivities. This derives from the features
of these markets. Market 4 is very sensitive to price and
subsequently, firm agents from this market have to reduce
their product price levels. This drives their profits down and
consequently, they have lower incentive to produce higher
quality products although consumers in this market prefer
higher quality products. For Market 2, we can apply similar
analysis. Finally, we can observe the emergence strategies of
the firm agents that many firm agents enter into Market 1
which is a lower price sensitive and higher quality sensitive
market as Figure 3(e) shows. Although higher quality levels
lead to a production cost, it results in a higher market demand.
In Market 1, agents have to produce higher quality products
which will incur higher quality cost, but also could stimulate
consumer demand. In fact, due to the relationship of price and
quality preferences, Market 1 becomes the biggest one among
the 5 markets (see Figure 3(d)). Furthermore, we find that
many agents rush into Market 1 which increases the degree

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180 200

Pr
ic

e

Generation

Market 1
Market 2
Market 3
Market 4
Market 5

(a) Price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Q
ua

lit
y

Generation

Market 1
Market 2
Market 3
Market 4
Market 5

(b) Quality

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s

Generation

Market 1
Market 2
Market 3
Market 4
Market 5

(c) Profit

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

D
em

an
d

Generation

Market 1
Market 2
Market 3
Market 4
Market 5

(d) Demand quantity for each market

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

A
ge

nt
 n

um
be

r

Generation

Market 1
Market 2
Market 3
Market 4
Market 5

(e) The firm agent numbers in each market

Fig. 3. Heterogeneous markets ((Market 1: α = 0.1, β = 0.8), (Market 2: α = 0.1, β = 0.1), (Market 3: α = 0.4, β = 0.4), (Market 4: α = 0.8, β = 0.8) and
(Market 5: α = 0.8, β = 0.1))

of competition. Subsequently, this drives the average profit
down at the beginning as Figure 3(c) shows. However, the
average profit in Market 1 goes up a little due to their learning
on Market 1’s preferences. Furthermore, we observe that the
distribution of agents in the markets is related to the average
agent profits of the markets. This reflects the agents’s rational
choices on market position.

Furthermore, we compare the agent numbers in each market
from homogeneous markets and heterogeneous markets. Table
II shows the agent’s distribution in both market settings. This

data is recorded from 50 runs of our simulator over 200
generations. From this table, we can find that the number of
agents is almost evenly distributed in homogeneous markets
since there are no differences in markets. The distribution of
agents in heterogeneous markets reflects the bias of agents’
preferences which has been analysed above.

V. Conclusions and Some FutureWork
The research outlined in this paper have investigated the

evolution of the price and quality competition under a range

7

TABLE II
Agent distribution in different market settings

Market Name Homogeneous markets Heterogeneous markets
Agent Number Standard Deviation Agent Number Standard Deviation

Market 1 11.9 1.1 36.3 3.0
Market 2 12.3 1.2 14.1 2.7
Market 3 11.8 0.9 6.9 1.8
Market 4 11.6 1.1 2.1 1.5
Market 5 12.4 0.9 0.6 1.1

of market configurations. This research holds particular sig-
nificance for those interested in price and quality competition.
The contributions of this paper include the following several
aspects.

We have proposed a new multi-agent price and quality
competition model. This model differs from existing models in
a number of ways. Firstly, we consider many firms competing
with each other in a number of markets simultaneously while
existing models only consider one or two firms competing in
one market such as Hotelling’s Model [2], and Banker et al’s
model [3]. Furthermore, different markets may have different
properties, such as the demand size, price and quality sensi-
tivities. Secondly, we design a new mechanism to determine
each firm agent’s demand quantity. This mechanism indirectly
reflects each firm agent’s market share is not only determined
by their own strategies but also affected by other agents’
decisions. This model could be easily extended to include
many extra features, such as advertisement effects of firms.

We have investigated the impact of market preferences on
the evolution of price and quality under a range of market
configurations. We find that the price and quality relationship
in a given market is a primary driver of the evolution of firm
agent strategies in that market. Firm agents’ price strategies
evolve rapidly to reflect the preferences of the markets in both
homogeneous and heterogeneous markets. We can also observe
the similar features for the agents’ quality strategies in the
homogeneous markets. However, in heterogeneous markets,
the agents’ average quality levels evolve to higher quality
level even in the lower quality sensitive markets despite the
penalties incurred by higher cost of increased quality due to the
positive impact of quality. Furthermore, we notice an emergent
phenomenon in the heterogeneous markets that the firm agents
prefer low price and high quality sensitive markets. Based
on these results, we can conclude that market preferences
have significant effects on the agents’ rational decisions. These
results have potentially interesting applications to real-world
market dynamics and help make strategic decisions on market
competition and market entry.

However, there are still a number of factors that influence
this study. Firstly, the assumption that all the firms have the
same quality cost function is not realistic in the real world.
Secondly, the firm agents in our model have no capacity
constraints. In future, we would like to improve our model and
explore its applications to the real-world market dynamics.

Acknowledgment
The authors would like to gratefully acknowledge the con-

tinued support of Science Foundation Ireland.

References
[1] L. W. Phillips, D. R. Chang, and R. D. Buzzell, “Product quality, cost

position and business performance: A test of some key hypotheses,”
The Journal of Marketing, vol. 47, no. 2, pp. 26–43, 1983. [Online].
Available: http://www.jstor.org/stable/1251491

[2] H. Hotelling, “Stability in competition,” The Economic Journal,
vol. 39, no. 153, pp. 41–57, 1929. [Online]. Available:
http://www.jstor.org/stable/2224214

[3] R. D. Banker, I. Khosla, and K. K. Sinha, “Quality and competition,”
Manage. Sci., vol. 44, no. 9, pp. 1179–1192, 1998.

[4] N. Matsubayashi and Y. Yamada, “A note on price and quality
competition between asymmetric firms,” European Journal of
Operational Research, vol. 187, no. 2, pp. 571 – 581, 2008. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6VCT-
4NJ0TH8-5/2/e8c7e1d12dfec6c8ed064d4f3f34e606

[5] J. H. Holland and J. H. Miller, “Artificial adaptive
agents in economic theory,” American Economic Review,
vol. 81, no. 2, pp. 365–71, May 1991. [Online]. Available:
http://ideas.repec.org/a/aea/aecrev/v81y1991i2p365-71.html

[6] L. Tesfatsion, “Agent-based computational economics: Growing
economies from the bottom up,” Artif. Life, vol. 8, no. 1, pp. 55–82,
2002.

[7] K. S. Moorthy, “Product and Price Competition in a Duopoly,”
Market Science, vol. 7, no. 2, pp. 141–168, 1988. [Online]. Available:
http://mktsci.journal.informs.org/cgi/content/abstract/7/2/141

[8] J. Vörös, “Product balancing under conditions of quality inflation, cost
pressures and growth strategies,” European Journal of Operational
Research, vol. 141, no. 1, pp. 153 – 166, 2002. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6VCT-45WYVSK-
C/2/00d166996cca8bfb329bd190096a44a7

[9] M. J. Jennings, Nicholas R.; Wooldridge, Agent Technology Foundations,
Applications, and Markets, 2002.

[10] R. E. Marks, “Breeding hybrid strategies: Optimal behaviour
for oligopolists,” Journal of Evolutionary Economics, vol. 2,
no. 1, pp. 17–38, March 1992. [Online]. Available:
http://ideas.repec.org/a/spr/joevec/v2y1992i1p17-38.html

[11] H. Dawid, Adaptive Learning by Genetic Algorithms: Analytical Results
and Applications to Economic Models. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1999.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

[13] T. Riechmann, “Genetic algorithm learning and evolutionary
games,” Journal of Economic Dynamics and Control, vol. 25,
no. 6-7, pp. 1019–1037, June 2001. [Online]. Available:
http://ideas.repec.org/a/eee/dyncon/v25y2001i6-7p1019-1037.html

[14] T. C. Price, “Using co-evolutionary programming to simulate
strategic behaviour in markets,” Journal of Evolutionary
Economics, pp. 219–254, Jun. 1997. [Online]. Available:
http://ideas.repec.org/p/cla/levarc/588.html

[15] N. S. Tay and R. F. Lusch, “A preliminary test of hunt’s
general theory of competition: using artificial adaptive agents to
study complex and ill-defined environments,” Journal of Business
Research, vol. 58, no. 9, pp. 1155 – 1168, 2005. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V7S-
4D34NPF-2/2/a024f676d852c9ed088dda30bd37173c

[16] M. Polo, “Hotelling duopoly with uninformed consumers,” The Journal
of Industrial Economics, vol. 39, no. 6, pp. 701–715, 1991. [Online].
Available: http://www.jstor.org/stable/2098672

Learning Virtual Agents for Decision-Making in
Business Simulators

Javier Garcı́a and Fernando Fernández
Universidad Carlos III de Madrid

Avenida de la Universidad, 30, 28911
Leganés, Madrid, Spain

Email: fjgpolo,ffernand@inf.uc3m.es

Fernando Borrajo
Universidad Autónoma de Madrid

Crta. de Colmenar Viejo, km. 14, 28049, Madrid, Spain
Email: fernando.borrajo@uam.es

Abstract—In this paper we describe SIMBA, a simulator for
business administration, as a Multi-Agent platform for the design,
implementation and evaluation of virtual agents. SIMBA creates
a complex competitive environment in which intelligent agents
play the role of business decision makers. An important issue
of SIMBA architecture is that humans can interact with virtual
agents. Decision making in SIMBA is a challenge, since it requires
handling large and continuous state and action spaces. In this
paper, we propose to tackle this problem using Reinforcement
Learning (RL) and K-Nearest Neighbors (KNN) approaches. RL
requires the use of generalization techniques to be applied in large
state and action spaces. We present different combinations in the
choice of the generalization method based on Vector Quantization
(VQ) and CMAC. We demonstrate that learning agents are very
competitive, and they can outperform human expert decision
strategies from business literature.

I. INTRODUCTION

Business simulators are a promising tool for research. The
main characteristic of SIMBA (SIMulator for Business Admin-
istration) [2] is that it emulates business reality. It can be used
from a competitive point of view, since different companies
compete among themselves to improve their results. In this
paper, SIMBA is considered as a multi-agent framework where
the different agents manage their companies in different ways.
SIMBA can include several autonomous agents to play the role
of competing teams and, based on the research on decision
making patterns of human teams, further research is made to
improve the complexity and effectiveness of such intelligent
agents.

Decision making in SIMBA requires handling more than
100 continuous state variables, and more than 10 continuous
decision variables, which makes the problem hard even for
business administration experts. The motivation of this paper
is the design, implementation and evaluation of virtual agents
in SIMBA using different machine learning (ML) approaches.
The goal is that the developed agents can outperform human-
like behavior when competing against hand-coded and random
virtual agents, but also against expert humans players.

Human players have experimented the consequences of their
decisions in competition with the developed virtual agents.
But, given that the agents try to “win” in all cases, they
make the game too hard for novice players. So “pedagogical”
objectives for human players competing with our virtual

agents, are not directly included in the goal of this paper.
Designing virtual agents whose behavior challenges human
players adequately is a key issue in computer games devel-
opment [23]. Games are boring when they are too easy and
frustrating when they are too hard [8]. Difficulty of the game
is critically important for its “pedagogical” worth. The game
difficulty must be such that it is “just barely too difficult” for
the subject. If the game is too easy or too hard, “pedagogical”
worth appears to be less efficient. So most games allow human
players adjust basic difficulty (easy, medium, hard).

However, developing agents that can outperform human-like
behavior, under narrow circumstances, can do pretty well [15]
(ex: chess and Deep Blue or Othello and Logistello). Deep Blue
defeated World Chess Champion Garry Kasparov in an exhi-
bition match. Campbell and Hsu describe the architecture and
implementation of their chess machine in the paper [7]. A few
months after this chess success, Othello became the new game
to fall to computers when Michael Buro’s program Logistello
defeated the World Othello Champion Takeshi Murakami. In
the paper [3], Buro discusses the learning algorithms used in
his program. Thus, the goal of this paper is the development of
virtual “business” agents that can be able to beat hand-coded
and random virtual agents, but also human business experts.

To do so, we use two different learning approaches. The
first one is Instance Based Learning (IBL). In this paper we
propose the Adaptive KNN algorithm, a variation of KNN,
where experience tuples are stored and selected automatically
to generate new behaviors.

However, decision making for business administration is an
episodic task where decisions are sequentially taken. Therefore
we also propose to use Reinforcement Learning (RL). The
RL agents developed need to apply generalization techniques
to perform the learning process, given that both the state
and action spaces are continuous. In this paper, we propose
two different generalization methods in order to tackle the
large state and action spaces. The first one, Extended Vector
Quantization for Q-Learning, uses Vector Quantization (VQ)
to discretize both the state and action spaces, extending
previous works where VQ was used only to discretize the state
space[6]. Some tasks have been solved by coarsely discretizing
the action variables [14], but up to our knowledge, this is
the first time that VQ is used to discretize the action space.

Fig. 1. SIMBA’s Arquitecture

The second generalization approach, CMAC-VQQL, is based
on the combination of VQ to discretize the action space and
CMAC (Cerebellar Model Articulation Controller) [1], which
is motivated by CMAC’s demonstrated capability to generalize
the state space.

Section II describes SIMBA. Section III introduces the
learning approaches proposed, while Section IV shows how
these approaches have been used to learn the virtual agents
for decision making in SIMBA. Section V shows comparative
results of the virtual agents, when competing among them but
also when competing against expert human players. Section VI
summarizes the related work. Last, Section VII concludes.

II. SIMBA

In this section, SIMBA simulator is described in detail.

A. SIMBA’s Architecture

Figure 1 shows the architecture of the business simulator
from a Multi-Agent perspective. The architecture designed
enables multiple players to interact with the simulator, in-
cluding both software agents and human players. The main
components of the system are:
• Simulation Server: Once all decisions are taken for the

current round, it computes the values of the variables
in the marketplace for every player. Finally, it sends the
results computed to each player. The player (software of
human) uses these results to choose the best decisions in
the next round of the simulation.

• Simulation Control: It manages the software agents
and their decisions. It receives the decision taken by
the software agents and sends them to the Simulation
Server. The simulation server the results computed to
the simulation control. The simulation control sends the
results to the corresponding software agent.

• Software Agents: They represent an alternative to human
players. In every step, the software agents receive the
results computed for the Simulation Server. The software
agents use this information to take the decisions for the
next round of the simulation.

B. Business Human Strategies

Different business strategies appear in the business litera-
ture, and they all could be followed to manage the companies

in SIMBA, as will be shown in Section V. We describe some
classical ones:

1. Incremental decisions. This type of business strategy
is based on incremental decisions for all decision variables,
which typically ranges from a 10% to a 20%. This business
strategy is considered as a conservative behavior.

2. Risk decisions. It is based on strong changes in business
decisions. It has strong impacts in market reactions, and is
useful to detect gaps and market opportunities.

3. Reactive. An organization with this type of strategy
attempts to locate and maintain a secure niche in a relatively
stable product or service area [11].

4. Low cost strategy. With this strategy, managers try to
gain a competitive advantage by focusing the energy of all the
departments on driving the organization’s costs down below
the costs of its rivals [12].

5. Differentiation and specialization. A differentiation
strategy is seen when a company offers a service or product
that is perceived as unique or distinctive from its competi-
tors [12].

Which strategy management is chosen in every moment
depends on the organization’s strengths and its competitor’s
weaknesses.

C. Autonomous Decision Making in Simba

The goal of this section is to describe how a SIMBA software
agent can be implemented. To do this, we describe the state
and action spaces, the transition function to transit between
states and the variable to maximize.

State Space. The state computed in every round or simu-
lation step is composed of 174 continuous variables. Table I
shows some of the features that compose the state space.

Action Space. The players (software or humans) must ap-
proach the decisions on the different functional areas of their
companies. Each market in the competition requires the use
of 25 variables. This is an indicator of SIMBAS’s capacity to
approach the complexity of managerial decision-making. In
our experiments, we consider a subspace of the total action
space and we use only the ten variables shown in table I. This
reduction was suggested by the experts, because the discarded
variables are not very significant. All the actions that the agents
can perform are constrained by the semantic of the business
model. For instance, a company can not sell its product if it
does not have stock.

Transition function. The different players participate in a
simulation in a step by step round mode. Each simulation step
is called a period, which is equivalent to three real months.
When a round ends, the time machine is run. By doing this, the
simulator integrates the previous periods situation, the teams’
decisions, and the parameters of the general economic envi-
ronment together with those of each geographic market, and
orders the Simulators Server to generate output information
for the new period.

Variable to maximize. The agents try to maximize the result
of the exercise (profit). From a RL point of view, the objective
is to maximize the total reward received. In this case, we

TABLE I
A SUBSET OF FEATURES OF THE STATE AND ACTION SPACES.

FEATURES FEATURES
of the State Space of the Action Space

Account value Selling price
Human resources Advertising expenses

Material cost Network sales budget
Operating margin Commercial information

Financial expenses Training budget
Pre-tax income Production scheduled

Tax Material order
Training expenses Research and Development budget

Bank overdraft Loan
Economic productivity Term loan
Advertising prediction
Effort sales network

define the immediate reward as the result of the exercise in
a period or step. Therefore, there is no delayed reward and,
like in other classical domains like Keepaway [17], immediate
rewards received in every simulation step are relevant.

III. PROPOSED ALGORITHMS FOR LEARNING VIRTUAL
AGENTS

In this section we describe the new learning algorithms
proposed, based on KNN and RL.

A. Adaptive KNN
In this paper, we propose a variant of KNN called Adaptive

KNN (Table II). In this variant, we can distinguish two phases.
In the first one, a data set C is obtained during an interaction
between the agent and the environment. This data set C is
composed by tuples in the form < s, a, r > where s ∈ S,
a ∈ A and r ∈ < is the immediate reward. In the second one,
the set C obtained in the previous phase is improved during
a new interaction between the agent and the environment. In
each step of this second phase, the simulator returns the current
state s where the agent is. The algorithm selects the K nearest
neighbors to the state s in C. Among these K neighbors, it
selects the tuple with the best reward obtained in the phase
one. Then modify slightly the actions of this tuple and execute
it. If the new reward obtained is better than the worst reward
in K, it replaces the worst tuple in K with the new experience
generated. Thus, the algorithm adapts the initial set C obtained
in the phase one, to get increasingly better results in the second
phase.

B. RL Approaches
Among many different RL algorithms, Q-learning has been

widely used in the literature [20].In Q-Learning, the update
function is performed following equation 1, where α is a
learning parameter, and γ is a discount factor that reduces
the relevance of future decisions.

Q(st, at) → Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (1)

Except in very small environments it is impossible to enu-
merate the state and action spaces. In this section we explain
two new approaches for state and action space generalization
problem.

TABLE II
ADAPTIVE KNN ALGORITHM

Adaptive KNN
1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s, a, r > from an
interaction of the agent in the environment, where s ∈ S, a ∈ A and r ∈ <
is the immediate reward.

2. During a new interaction between the agent and the environment
2.1 Get state s from simulator
2.2 Select the K nearest neighbors of s in the set C

2.2.1 For each tuple ci ∈ C, where ci =< si, a, r >, calculate d(s, si)

2.2.2 Order d(s, si) from lowest to highest
2.2.3 Select first K tuples, CK

2.3. Select the tuple cb with the best r, where cb =< sb, ab, rb > and cb ∈ CK

2.4. Modify ab from cb, am = ab ± random∆

2.5. Execute action am obtaining reward r′ ∈ <
2.6. Update set C using the new experience
2.6.1. Select the tuple cw ∈ CK with the worst reward rw

2.6.2. if r′ > rw then replace the tuple cw =< sw, a, rw > with the tuple
< s, am, r′ >

3. Return C

TABLE III
EXTENDED VQQL ALGORITHM

Extended VQQL
1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s1, a, s2, r > from
an interaction of the agent in the environment, where s1, s2 ∈ S, a ∈ A and
r ∈ < is the immediate reward.

2. Reduce the dimension of the state space
2.1. Let Cs the set of states in C

2.2. Apply a feature selection approach using Cs to reduce the number of
features in the state space. The resulting feature selection process is defined
as a projection Γ : S → S′

2.3. Set C′s = Γ(Cs)

3. Discretize the state space
3.1. Use GLA to obtain a state space discretization, Ds′ = s′1, s′2, ..., s′n,
s′i ∈ S′, from C′s.
3.2. Let V QS′ : S′ → Ds′ the function that given any state in S′ returns the
discretized value in Ds.

4. Discretize the action space
4.1. Let Ca the set of actions in C

4.2. Use GLA to obtain an action space discretization, Da = a1, a2, ..., am,
ai ∈ A, from Ca

4.3. Let V QA : A → Da the function that given any state in A returns the
discretized value in Da

5. Learn the Q-Table
5.1. Map the set C of experience tuples to a set C′. For each tuple
< s1, a, s2, r > in C, introduce in C′ the tuple
< V QS′ (Γ(s1)), V QA(a), V QS′ (Γ(s2)), r >

5.2. Apply the Q-Learning update function defined in equation 1 to learn a Q
table Q: Ds′ ×Da → <, using the set of experience tuples C′

6. Return Q, Γ, V QS′ , and V QA

1) Extended VQQL for state and action space generaliza-
tion: Applying VQ techniques permits to find a more compact
representation of the state and action space [6]. A vector
quantizer Q of dimension K and a size N is a mapping from a
vector (state or action) in the K-dimensional Euclidean space,
Rk, into a finite set C containing N states, Q : Rk → C where
C = {y1, y2, ..., yN}, yi ∈ Rk. In this way, given C, and a
state x ∈ Rk, V Q(x) assigns x to the closest state from C,
V Q(x) = arg miny∈C{dist(x, y)}.

To design the vector quantizer we use the Generalized Lloyd
Algorithm (GLA). The Extended VQQL algorithm is shown
in Table III.

It uses VQ to generalize the state and action spaces. In
Extended VQQL algorithm, two vector quantizers are designed
for each agent. The first one is used to generalize the state
space and the second one is used to generalize the action
space. The vector quantizers are designed from the input data
C obtained during an interaction between the agent and the
environment. The data set C is composed by tuples in the
form < s1, a, s2, r > where s1 and s2 is in the state space S,
a is in the action space A and r is the immediate reward. In
many problems, s is composed by a large number of features.
In these cases, we suggest to apply feature selection to reduce
the number of features in the state space. Feature selection is a
technique of selecting a subset of relevant features for building
a new subset. So feature selection is used to select the relevant
features of S to obtain a subset S′. This feature selection
process is defined as Γ : S → S′. The set of states s′ ∈ S′,
C ′s, are used as input for the Generalized Lloyd Algorithm to
obtain the first vector quantizer. The vector quantizer V Qs′

is a mapping from a vector s′ → S′ into a vector s′ ∈ Ds′ ,
where Ds′ is the state space discretization Ds′ = s′1, s

′
2, ..., s

′
n

for s′i ∈ S′. The set of actions a ∈ A, Ca, are used as input
for the GLA to obtain the second vector quantizer.

The vector quantizer V QA is a mapping from a vector
a ∈ A into a vector a ∈ Da, where Da is the action space
discretization Da = a1, a2, ..., am for ai ∈ A. In the last
part of the algorithm, the Q-table is learned from the obtained
discretizations using the set C ′ of experience tuples. To obtain
the set C ′ from C, each tuple in C is mapped to the new
representation. Therefore, every state in C is firstly projected
to the space S′ and then discretized, i.e. V QS′(Γ(S)); every
action a ∈ A in C is also discretized V QA(a).

2) CMAC-VQQL for state and action space generalization:
CMAC is a form of coarse coding [20]. In CMAC the features
are grouped into partitions of input state space. Each of such
partition is called a tiling and each element of a partition is
called a tile. Each tile is a binary feature. The tilings were
overlaids, each offset from the others. In each tiling, the state is
in one tile. The approximate value function, Qa, is represented
not as a table, but as a parameterized form with parameter
vector ~θt. This means that the approximate value function Qa

depends totally on ~θt. In CMAC, each tile has associated a
weight. The set of all these weights is what makes up the
vector ~θ. The approximate value function, Qa(s) is calculated
in the equation 2.

Qa(s) = ~θ
T ~φ =

n∑
i=0

θ(i)φ(i) (2)

The CMAC-VQQL algorithm, described in Table IV, com-
bines two generalization techniques. It uses CMAC to gener-
alize the state space and VQ to generalize the action space.
In this case, a data set C is obtained during an interaction
between the agent and the environment. This data set C is
composed by tuples in the form < s1, a, s2, r > where s1 and
s2 is in the state space S, a is in the action space A and r is
the immediate reward. In the same way that previously, s is

TABLE IV
CMAC-VQQL ALGORITHM

CMAC-VQQL
1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s1, a, s2, r > from
an interaction of the agent in the environment, where s1, s2 ∈ S, a ∈ A and
r ∈ < is the immediate reward.

2. Reduce the dimension of the state space
2.1. Let Cs the set of states in C

2.2. Apply a feature selection approach using Cs to reduce the number of
features in the state space. The resulting feature selection process is defined
as a projection Γ : S → S′

2.3. Set C′s = Γ(Cs)

3. Discretize the action space
3.1. Let Ca the set of actions in C

3.2. Use GLA to obtain an action space discretization, Da = a1, a2, ..., am,
ai ∈ A, from Ca

3.3. Let V QA : A → Da the function that given any state in A returns the
discretized value in Da

4. Design CMAC
4.1. Design a CMAC function approximator from C′s taking into account the
obtained action space Da.

5. Approximate the Q function
5.1. Map the set C of experience tuples to a set C. For each
tuple < s1, a, s2, r >∈ C, introduce in C’ the tuple
< Φ(Γ(s1)), V QA(Ca), Φ(Γ(s2)), r >

where Φ is the binary vector of features
5.2. Update the vector weights θ for the action V QA(Ca) using Φ(Γ(s1)),
Φ(Γ(s2)) and r.
5.3. Apply the approximate value function defined in equation 2 to approximate
the Q function for the action V QA(Ca) using θ and Φ(Γ(Cs)).

6. Return Q, Γ, θ, and V QA

composed by a large number of features. Feature selection is
used to select a subset S′ of the relevant features of S.

The set of actions a ∈ A, Ca, are used as input for
the GLA to obtain the second vector quantizer. The vector
quantizer V QA is a mapping from a vector a ∈ A into a
vector a ∈ Da, where Da is the action space discretization
Da = a1, a2, ..., am for ai ∈ A. Later, the CMAC is built
from C ′s taking into account the obtained action space Da.
For each state variable x′i in s′ ∈ S′ the tile width and the
number of tiles per tiling are selected taking into account their
ranges. In our work, a separate value function for each of the
discrete actions is used. In CMAC, each tile has associated a
weight. The set of these weights is what makes up the vector θ.
In the last part, the Q function is approximated by the equation
2.

IV. VIRTUAL AGENTS IN SIMBA

In the following evaluation performed, we assume that 6
companies are controlled by agents of different types. These
agents are: Random Agents, that assign to each decision
variable a random value following an uniform distribution;
Hand-Coded Agents, that modify their decision variables by
increasing their values using the Consumer Price Index (CPI);
RL Agents, using the Extended VQQL and CMAC-VQQL
algorithms described in Section III-B; and Adaptive KNN
Agents, using the algorithm described in section III-A.

3) Executing the Extended VQQL Algorithm: Executing the
Extended VQQL algorithm to learn the VQ Agents requires
performing the 5 steps of the algorithm:

Step 1: Gather experience tuples. To gather experience, we
perform an exploration in the domain by using hand-coded
agents. Specifically, we obtain the experiences generated by
a hand-coded agent managing company 1 against five hand-
coded agents managing companies 2, 3, 4, 5 and 6 respectively.

Step 2: Reduce the dimension of the state space. The goal
of this step is to select, from among all features in the state
space, those features most related to the reward (the result
of the exercise). To perform this phase, we use the data-
mining tool, WEKA [22] using the attribute selection method
CfsSubsetEval. This method evaluates the worth of a subset
of attributes by considering the individual predictive ability
of each feature along with the degree of redundancy between
them. The resulting description of the state space after the
attribute selection process is shown in Table I.

Step 3: State space discretization. Now, we use the GLA to
discretize the state space.

Step 4: Discretize the action space. Again, we use GLA to
discretize the action space. The action space is composed of
the features shown in Table I.

Step 5: Learn the Q table. Once both the state and action
spaces are discretized, the Q function is learned using the
mapped experience tuples and the Q-Learning update function.
The Q table is generated, composed of n rows (where n is the
number of discretized states) and m columns (where m is the
number of discretized actions).

4) Executing CMAC-VQQL Algorithm: Executing the
CMAC-VQQL algorithm to learn the CMAC Agents requires
performing the 5 steps of the algorithm as described in
Table IV. Steps 1 and 2 of CMAC-VQQL are the same as
steps 1 and 2 of Extended VQQL (gather experience and
the reduction of the dimension of the state space). Step 3 of
CMAC-VQQL (action space discretization) is also the same
as step 4 of Extended-VQQL. Step 4 is the design of the
CMAC function approximator. In our experiments we use
single-dimensional tilings. For each state variable, 32 tilings
were overlaid, each offset from the others by 1/32 of the tile
width. For each state variable, we specified the width of the
tiles based on the width of the generalization that we desired.
In the experiments we use three different configurations. The
size of the primary vector θ in Configuration #1 is 754272
(x1tiles

+x2tiles
++x12tiles

), in Configuration #2 is 1364320,
in Configuration #3 is 2440704. In our work, we use a
separate value function for each of the generalized actions.
Last, step 5 of the algorithm, learning the Q approximations,
can be performed.

A. Adaptive KNN in SIMBA

To apply the Adaptive KNN algorithm to create a SIMBA
software agent, we use the same state space, action space, and
transition and reward functions that for the RL agent. We also
use the same experience tuples than for the RL agent, although
in the learning process, the set is updated following step 6 of
the algorithm (as described in Table II).

TABLE V
RESULTS FOR DIFFERENT CONFIGURATIONS OF EXTENDED VQQL (IN

MILLIONS OF EUROS).

Decisions 128 64 32

States Mean Std Mean Std Mean Std

128 4,3 1,73 5,43 4,2E-04 7,73 0,09

64 6,21 3,15 7,51 0,32 8,14 0,51

32 4,94 3,68 5,69 0,06 7,62 0,28

TABLE VI
RESULTS FOR DIFFERENT CONFIGURATIONS OF CMAC-VQQL (IN

MILLIONS OF EUROS).

Decisions 64 32 8

Configuration Mean Std Mean Std Mean Std

1 4,87 1,62 6,49 0,04 7,0 0,12

2 6,23 0,13 5,82 0,90 6,25 0,37

3 5,26 0,20 5,95 3,2E-04 6,24 0,96

V. RESULTS

In the experiments, the learning agent always manages
the first company of the six involved in the simulations.
Each experiment consists of 10 simulations or episodes with
20 rounds and we obtain the mean value and the standard
deviation for the result of the exercise during the 20 periods. In
this situation, a hand-coded agent that manages the company
1 against five hand-coded agents that manage companies 2,
3, 4, 5 and 6 respectively obtains a mean value of the result
of the exercise of 2,901,002.13 euros. A random agent in the
same situation obtains -2,787,382.78 euros.

In the experiments with human experts, simulations have 8
rounds.

A. RL and KNN Results

In the first set of experiments we use the Extended VQQL
algorithm to learn an agent that manages company 1 and plays
against five hand-coded agents that manage companies 2, 3, 4,
5 and 6 respectively. The results for different discretizations
size of the state (rows) and action (columns) spaces are shown
in Table V.

The best result is obtained when we use a vector quantizer
of 64 centroids (or states) to generalize the state space and a
vector quantizer of 32 centroids (or actions) to generalize the
action space.

In the second set of experiments we use the CMAC-VQQL
algorithm. The results for the different CMAC configurations
described in section IV-4 (rows) combined with the different
sizes of the action space obtained by VQ (columns) are shown
in Table VI.

The best result is obtained when we use the Configuration
#1 of CMAC to generalize the state space and a vector
quantizer of 8 centroids to generalize the action space. This
value is smaller than the obtained with Extended VQQL but,
again, all the configurations obtain better results than the hand-
coded agent.

In the next set of experiments we use the KNN algorithm
to build an agent. The results for the different KNN configu-
rations are shown in Table VII.

TABLE VII
RESULTS FOR DIFFERENT CONFIGURATIONS OF KNN (IN MILLIONS OF

EUROS).

K 5 10 15

Learning Mean Std Mean Std Mean Std

Adaptive 6,44 3,99 9,81 0,21 9,89 0,32

No adaptive 7,86 1,15 5,20 1,11 7,47 4,36

The columns of Table VII show different results for different
values of K (5, 10 and 15 respectively). The first row presents
the results of the Adaptive KNN algorithm, as it was described
in Table II. The second row shows the results of a classical
KNN approach, without the adaptation of the training set,
i.e. without executing the steps five and six of the Adaptive
KNN algorithm. The best results are obtained with the adaptive
version, for K=10 and K=15. In these cases, we obtain a mean
value for the result of the exercise of 9,8 millions of euros,
which is higher than the ones obtained with RL.

In previous experiments, the learning agent always learned
to manage the first company of the six involved in the
simulations. However, the behavior of each company depends
on their initial states and of historical data (periods -1, -
2, etc). Therefore, learning performance may vary from one
company to other. To evaluate this issue, we repeat the learning
process for the best learning configurations, for each of the six
companies. Each experiment consists of 10 simulations with
20 rounds and we obtain the mean value and the standard
deviation for the result of the exercise during the 20 periods.
The results shown in Figure 2 demonstrate that the Extended
VQQL agent and Adaptative KNN agent obtain similar results,
and both obtain better results than the hand-coded agent.

Fig. 2. Mean value and Standard deviation for the result of the exercise.

Now, we compare the behavior of the best RL agent with
the behavior of the best Adaptative KNN agent obtained in
previous experiments. In this experiment, all the companies
have the same initial state and historical data, so the result
is independent of the company managed. This experiment
consists of 10 simulations with 20 rounds and we obtain the
mean value and the standard deviation for the result of the
exercise during the 20 periods. Figure 3 shows the mean value
and the standard deviation for each kind of agent.

For the Adaptive KNN agent, the average value grows from
the first period, and raises up to 16 millions of euros. However,

Fig. 3. RL Agents vs. Adaptive KNN Agents

TABLE VIII
RESULTS FOR INCREMENTAL DECISION STRATEGY (IN MILLIONS OF

EUROS)

Simulation 10% 20%
Agent
Extended VQQL 64-32 7,27 7,28
Adaptive KNN K=15 1,58 1,58
Human Expert 0,56 -0,18

we see that standard deviation is very high, so the behavior of
the agent managing different companies is very different. The
result for the Extended VQQL agent have two behaviours well
differentiated: before period 8, and after period 8. In the first
part, the result of the exercise always grows up, and dominates
the result of the Adaptive KNN agent. However, from period
8, the result of the exercise for the Extended VQQL agent
stabilizes to a value of around 10 millions, and it is dominated
by the other agent from period 10. Interestingly, we have
revised all the simulations performed, and this behavior always
appears. We believe that the RL agent is affected by the CPI
and the evolution of the market and, with time, the actions
obtained by the VQ algorithm becomes old-fashioned (note
that 8 periods are equivalent to two years). Therefore, if we
focus in the early periods, typically the RL agents behave
better than the KNN ones.

B. RL and KNN Agents vs. Human Experts

In this section, we present experiments where software
agents play against a human expert during 8 periods. The
human expert actually is an associate full time professor in
Strategic and Business Organization at Universidad Autónoma
de Madrid (UAM), where he is Director of Master of Business
Administration (Executive) and Director of Doctorate Program
of Financial Economics.

In all the experiments, we use the best RL and Adaptive
KNN agents obtained in the previous section. In the first
experiment, the human expert uses the incremental decision
strategy, described in section II. The results are shown in
table VIII.

In this case, the Extended VQQL agent obtains the best
results. Furthermore, given that only 8 episodes are run, the
RL agent performs much better than the Adaptive KNN agent.

TABLE IX
AGENTS VS. HUMAN EXPERT (IN MILLIONS OF EUROS)

Simulation 1 2
Agent
Extended VQQL 64-32 5,36 6,09
Adaptive KNN K=15 3,47 2,53
Human Expert -0,32 -1,30

The human expert obtains the worst results (independently of
the increment used).

In the second experiment, two different simulations with 8
rounds each are performed. The human expert combines the
use of the different business strategies described in section II.
The results are shown in table IX.

In all the experiments, the software agents obtain better
results than the human expert. From a qualitative point of
view, the virtual agents usually compete in the same market
scope. They are very effective and efficient, been almost
impossible to beat them under the parameter setting used in
these simulations. The best strategies usually make decisions
in different market scopes, using high or low strategies (for
instance, low cost or differentiation and specialization). It
means that using more competitive strategies, the gap between
the performance of the virtual agents and the human experts
could be reduced.

VI. BACKGROUND

Business gaming usage has grown globally and has a long
and varied history [4]. The first modern business simulation
game can be dated back to 1932 in Europe and 1955 in
North America. In 1932, Mary Birshstein, while teaching at
the Leningrad Institute, got the idea to adapt the concept of
war games to the business environment. In North America
the first business simulator dates back to 1955, when RAND
Corporation developed a simulation exercise that focused on
the U.S. Air Force logistics system [9]. However, the first
known use of a business simulator for pedagogical purposes
in an university course, was at the University of Washington
in a business policy course in 1957 [21].

From this point, the number of business simulation games in
use grew rapidly. A 2004 e-mail survey of university business
school professors in North America reported that 30.6% of
1,085 survey respondents were current business simulation
users, while another 17.1% of the respondents were former
business game users [5].

Over the years Artificial Intelligence (AI) and simulation
have grown closer together. AI is used increasingly in complex
simulation, and simulation is contributing to the development
of AI [24]. The need for increased level of reality and fidelity
in domain-specific games calls for the use of methods that
bring realism and intelligence to actors and scenarios (also in
business simulators). Intelligent software agents, called “au-
tonomous” avatars or virtual players, are now being embodied
in business games. Software agents can interact with each
other and their environment producing new states, business
information and events. In addition, these agents not only

provide information but also may affect the environment and
direction of the simulation [19].

Machine learning techniques (decision trees, reinforcement
learning,. . .) have been used widely to develop software
agents [18]. In [19] for example, the software agents uses
decision trees to learn different behaviors. In this case, virtual
players could take on the role of an executive or sales-
person from a supplier firm, a union leader, or any other
role relevant to the simulation exercise. In [10] the learning
agents uses a typical genetic-based learning classifier system,
XCS (eXtended learning Classifier System). In that work, RL
techniques are used, allowing decision-making agents to learn
from the reward obtained from executed actions and, in this
way, to find an optimal behavior policy. In stochastic business
games, the players take actions in order to maximize their
benefits. While the game evolves, the players learn more about
the best strategy to follow. With this, RL can be used to
improve the behavior of the players in a stochastic business
game [13]. However, in all these cases, the business simulator
games used did not involve the huge state and action spaces
that SIMBA involves.

In complex domains with large state and action spaces
is necessary to apply generalization techniques such as VQ
or CMAC. VQ has been used successfully in many other
domains [6]. In addition, CMAC [17] are extensively used
to generalize the state space, but the research on problems
where the actions are chosen from a continuous space is
much more limited. KNN has also been used in the scope
of Business Intelligence. In [16], the authors investigates the
relationship among corporate strategies, environmental forces,
and the Balanced Scorecard (BSC) performance measures
using KNN. In this case, the authors used all time the same
initial set of experience and they did not try to adapt it, using
the new experience generated during the game.

An important issue that make SIMBA different from other
classical RL domains (like Keepaway [17]) is that it is not
defined a priori as a cooperative or competitive domain. In
SIMBA, the number of adversaries is very high, and the
number of variables involved in the state and action space,
too. In addition, in SIMBA software agents can play against
humans. It is hard to find all these issues in other classical
domains. So the learning process in SIMBA represent a real
challenge.

VII. CONCLUSION

This paper introduces SIMBA as a business simulator which
architecture enables different players, including both software
agents and human players, to manage companies in different
markets. The simulator generates a competitive environment,
where the different agents try to maximize their companies’
profits. SIMBA represents a complex domain with large state
and action spaces. Therefore, the learning approaches applied
to generate the virtual agents must handle that handicap. We
have demonstrated that the proposals presented, based on Lazy
Learning and RL, achieve the goal of being very competitive

when compared with previous hand-coded strategies. Further-
more, we demonstrate that when competing with a human
expert, which follows classical management strategies, the
learning agents are able to outperform the behavior of the
human.

In the case of RL, the choice of the generalization method
have a strong effect on the results that we obtain. For this
reason, the state and action space representation is chosen with
great care, and we have proposed two new methods: Extended-
VQQL and CMAC-VQQL. This is the first time that VQ
is used to discretize the action space, and some preliminary
results have shown that it is also useful in other domains,
like autonomous helicopter control. The challenging results
obtained by the learning approaches to generate virtual agents
in SIMBA offers promising results for Autonomous Decision
Making.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
MICINN project TIN2008-06701-C03-03 and by the Spanish
TRACE project TRA2009-0080. The authors would like to
thank the people from Simuladores Empresariales S.L.

REFERENCES

[1] J. S. Albus. A new approach to manipulator control: The cerebellar
model articulation controller (CMAC). Journal of Dynamic Systems,
Measurement, and Control, 97(3):220–227, 1975.

[2] F. Borrajo, Y. Bueno, I. de Pablo, B. n. Santos, F. Fernández, J. Garcı́a,
and I. Sagredo. Simba: A simulator for business education and research.
Decision Support Systems, June 2009.

[3] M. Buro. Improving heuristic mini-max search by supervised learning.
Artificial Intelligence, 134:85–99, 2002.

[4] A. J. Faria, D. Hutchinson, W. J. Wellington, and S. Gold. Developments
in business gaming: A review of the past 40 years. Simulation Gaming,
40(4):464–487, August 2009.

[5] A. J. Faria and W. J. Wellington. A survey of simulation game users,
former-users, and never-users. Simul. Gaming, 35(2):178–207, 2004.

[6] F. Fernández and D. Borrajo. Two steps reinforcement learning.
International Journal of Intelligent Systems, 23(2):213–245, 2008.

[7] F.-H. Hsu. Behind Deep Blue: Building the Computer that Defeated
the World Chess Champion. Princeton University Press, Princeton, NJ,
USA, 2002.

[8] R. Hunicke and V. Chapman. Ai for dynamic difficulty adjustment in
games. 2004.

[9] J. R. Jackson. Learning from experience in business decision games.
California Management Review, 1:23–29, 1959.

[10] M. Kobayashi and T. Terano. Learning agents in a business simulator.
In Proceedings 2003. IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2003.

[11] R. E. Miles and C. C. Snow. Organizational strategy, structure, and
process. McGraw-Hill, New York, 1978.

[12] M. E. Porter. Competitive Advantage: Creating and Sustaining Superior
Performance. Free Press, New York, 1 edition, June 1985.

[13] K. K. Ravulapati and J. Rao. A reinforcement learning approach to
stochastic business games. IIE Transactions, 36:373–385, 2004.

[14] J. Santamaria, R. Sutton, and A. Ram. Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive
Behavior, 6:163–217, 1998.

[15] J. Schaeffer and H. J. van den Herik. Games, computers, and artificial
intelligence. Artif. Intell., 134(1-2):1–7, 2002.

[16] M. H. Sohn, T. You, S.-L. Lee, and H. Lee. Corporate strategies,
environmental forces, and performance measures: a weighting decision
support system using the k-nearest neighbor technique. Expert Syst.
Appl., 25(3):279–292, 2003.

[17] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for
RoboCup-soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[18] P. Stone and M. Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, June 2000.

[19] G. J. Summers. Today’s business simulation industry. Simul. Gaming,
35(2):208–241, 2004.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Mit Pr, May 1998.

[21] H. J. Watson. Computer Simulation in Business. John Wiley & Sons,
Inc., New York, NY, USA, 1981.

[22] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, second edition, June 2005.

[23] J. Yang, S. Min, C.-O. Wong, J. Kim, and K. Jung. Dynamic game
level generation using on-line learning. In Edutainment’07: Proceedings
of the 2nd international conference on Technologies for e-learning
and digital entertainment, pages 916–924, Berlin, Heidelberg, 2007.
Springer-Verlag.

[24] L. Yilmaz, T. Ören, and N.-G. Aghaee. Intelligent agents, simulation,
and gaming. Simul. Gaming, 37(3):339–349, 2006.

Looking for the self-fulfilling prophecy effect in a
double auction artificial stock market

Abstract—This work proposes a double auction artificial stock
market based on the Santa Fe market structure. Our market tries
to shed light on some facts that usually arise in real stock markets,
specially the creation of technical figures in price series. The
origin of these figures is believed to be caused by the self-fulfilling
prophecy effect, which will be investigated with the proposed
market.

I. INTRODUCTION

The main purpose of the agent-based simulation of an
artificial stock market (ASM) is to reproduce, in a controlled
environment, some properties of real stock markets. In that
way, ASMs are a suitable tool to analyze and understand
market dynamics. See [1] for a comprehensive review of the
topic.

Many market models has been developed in order to
reproduced those properties, like Genoa Stock Market [2],
[3], $-Game [4], or the Santa Fe Institute Stock Market
(SFM), developed by LeBaron and his coauthors since the
early nineties and analyzed in depth in [5]. Most of them
are able to reproduce several well-known market properties
-called stylized facts,- while each market has his own special
microstructure. However, in the time series of prices that
emerges in ASMs it is difficult to find some of the typical
behaviors that appear in real-life price time series, for example,
the bid-ask bouncing or the sideways movement within the
support and resistance lines.

These behaviors, which are usually know as technical
patterns, cannot be explained from the fundamental analysis
perspective. Despite this fact, they are used by many investors
and also by chief dealers, as is reported in [6]. The reality is
that patterns such as trends, channels, resistances and supports
can be spotted in stock charts. A possible explanation to these
phenomena is the self-fulfilling prophecy effect [7]. As many
people look for similar technical patterns in the stock markets
and place their orders according to them, the patterns finally
emerge as a result of this collective belief. This belief is
reinforced when the stock price behave as expected, because
technical traders feel confident with their chartist strategy and
technical analysis is considered as a useful tool.

Technical analysts, also known as chartist investors, base
their expectations in historical price patterns that are expected
to appear again at some future point. They try to predict future
extreme prices in order to buy assets when the value is under
those limits, and sell them when the price is close to a bounce
zone. Moreover, technical traders usually follow price trends.
A common example is the use of the moving averages crosses
to set their trading strategies. This method provides buy and

sell signals when a short run moving average crosses a long
run moving average price.

Chartism is one of the two main investment approaches that
can be usually found in stock markets [8]. The other one is fun-
damental trading, where investors base their investments upon
future price expectations based on fundamental and economic
factors, such as future dividend expectations, macroeconomic
data and growth prospects. Nowadays, investors and chief
dealers combine both technical and fundamental information
[6]. Frankel and Froot in [9] showed that both approaches
affected the US dollar exchange rate in the eighties. They as-
sociated the long-term expectations, which are stabilizing, with
fundamentalists, and the shorter term forecasts, which seem to
have a destabilizing nature, with the chartist expectations. As
a result, many people used weighted averages of the chartist
and fundamentalist forecasts in formulating their expectations
for the value of the dollar at a given future date, with weights
depending on how far the date is.

This article proposes an ASM based on the SFM structure
that exhibits technical figures and that reproduce the self-
fulfilling prophecy effect. The proposed ASM modifies some
important features of the SFM with the aim of being more
realistic and reproducing stylized facts. The most relevant
changes are introduced in the next section.

II. DESCRIPTION OF THE DOUBLE AUCTION ARTIFICIAL
STOCK MARKET PROPOSED

The SFM [10], [11] consists of a small number (typically
25) of artificially-intelligent agents that each period choose be-
tween investing in a stock and leaving their money invested in
a fixed interest rate asset. The stock pays a stochastic dividend
and has a price which fluctuates according to agent demand.
The agents make their investment decisions by attempting to
forecast the future return on the stock with the help of a set of
forecast rules that are triggered when they match certain states
of the market. Each rule map into a set of parameters that
are used to yield a forecast for the future price and dividend
using the rational expectations equilibrium theory. The forecast
is converted to the share demand, according to the agent’s
demand function which follows risk aversion behavior. Agents
learn through time because their predictive rules evolve by
means of a genetic algorithm.

The SFM shows, amongst other features, the theoretically-
predicted rational expectations behavior, with low overall trad-
ing volume, uncorrelated price series. However, it is difficult
to find realistic market behavior such as high trading volume,
time-varying volatility clustering (periods of swings followed

by periods of relative calm), bubbles and crashes and market
patterns such as supports, resistances, channels, etc. One of the
main reasons is that the auction mechanism is not realistic as
there is an auctioneer that takes into the account the demand
of shares and the fixed supply of shares (25 shares) to set the
price that clears the market.

In our ASM, a continuous double auction system is imple-
mented. In continuous double auction markets, agents place
buy or sell orders at any time in an asynchronous manner.
In this kind of auctions, a public order book lists the bids
in descending order and the sell offers in ascending order.
When a new order matches with the best waiting order of
the opposite type then a trade is made, otherwise the new
order remains waiting. Once the transaction is carried out, both
orders are removed from the order book. This kind of auction
is implemented in stock markets such as NYSE or AMEX.
This kind of auction has been already implemented as an ASM
[12], [13], [2], [14], where some aspects of market dynamics
are successfully explored. As continuous double auction is
commonly used in real stock markets, we believe that is the
most suitable auction mechanism for an ASM that aims to
replicate these markets.

In our market, agents are rationally bounded, , which means
that their rationality is limited by the information they have.
They make price bids (offers to buy) and/or price asks (offers
to sell) subject to a budget constraint and using the information
they have about the state of the market. Our market allows
agents to place both market-price and fixed-price orders. The
ASM does not allow fixed-price orders. However, this kind
of orders are used in real-life stock markets. In an artificial
market that allows this orders it is possible to observe technical
patterns. If a group of traders set fixed-price orders close
to a certain price value, then supports or resistances lines
may appear in the resulting price time series. Also, cascade
effects could emerge behind certain price limits obtained using
technical analysis.

In our ASM, agents tune the fixed-price orders using a
system of forecasting rules similar to that used in the SFM, but
based on support and resistance lines. In doing so, they will fix
the price taking into account the support and resistance lines
and the length of the trading horizon (it denotes if is a short-,
mid- or long-term trade). The mechanism will be described
below.

Our market follows the basic structure of the SFM model,
but implementing a double auction market. Another notewor-
thy difference is the number of agents. Instead of the 25 agents
used in the SFM, in our market there are 512 agents that
will make possible to have enough trade operations in the
market and a great variety of behaviors. It is important to
remark that our aim is not related with the rational expectations
equilibrium theory, but with the study of real-life phenomena
such as resistance and support lines. These changes affect
not only the auction mechanism but also the equations that
determine the wealth and the classifier rules. More details will
be given in the next subsections.

A. Agent’s trading strategy

As in the SFM, our market has two assets: a risk free bond
in infinite supply with constant interest rate (r = 0.1) and a
risky asset. The price of the risky asset in t, pt is endogenously
determined by the market. The risky asset considered does not
pay dividends, in contrast to the SFM’s risky asset.

The trading strategy consists of buying (or selling, if the
agent goes short) risky assets at the current price of the market
and at the same time placing a fixed price stop-profit order.
The price of the stop-profit order is determined by taking into
account the agent’s resistance line (or the agent’s support line,
if the agent goes short). Both orders are sent at time ta. In
addition, the agent also estimates the price of a stop-loss order
using the support line (or the resistance line, if the agent goes
short). This order will be placed as a market-price order only
if the risky asset reaches the stop-loss price.

As any market-price operation has its corresponding stop-
profit order, the total number of stocks M is always available
in the market, providing the necessary liquidity to supply the
possible demands of other investors. The system restrictions
ensure the liquidity of the market and consequently market
price orders are executed at the time when they are placed.

In ta the stop-profit order is booked in its corresponding
priority queue of awaiting orders, depending on if the trading
agent goes long or short. The agent determines the stop-profit
price using a future stock price that is forecasted with the
help of a support line (or a resistance line if the investor is
going short) that is drawn by the agent using three parameters
determined by the activated forecast rule j (more details
about the forecast rules are given in the next subsection).
The parameters are: the number of local maximum (resp.
minimum) points used to draw the resistance (resp. support)
lines ai,j , the length of the sliding window used to look for the
local maxima and minima bi,j , and the length of the trading
horizon ci,j . A support (resp. resistance) line is drew joining
at least two minimum (resp. maximum) price values. These
parameters allow agents to operate to different time horizons.

If at time ci,j the price of the risky stock has not been
matched the agent close its position and cancel the stop-profit
order that was previously submitted. This is an interesting
feature because, as is reported in [15] not all researchers in the
experimental markets literature allow to cancel limit orders.

B. The classifier system

The behavior of the trader is determined by the classifier
system they use to set their trade orders. The classifier system
consists of a set of rules that are triggered when some market
conditions are present. The classifier system implemented that
follow our agents is based on the one used in the SFM, which
is described in detail in [11].

The agents have to set of rules one for ”going long” and
other for ”going short”. The rules of both sets have the same
structure, which consists of two parts. The left part of the
rule is a string of 30 conditions, where each string position
represents a state of the market. The possible values of each
position are 1, 0 or]. The 1 means that the state have to be

ta tb tb+2

resistances

buy price

Target Price
Resist. Adj. Target Price

stop-pro�t

Stocks sold at
di�erent times

ta+cj

Max Holding Period

E�ective Holding Period

tb+1

Fig. 1. Time line that illustrates an investment operation made by a trading
agent

present, the zero that the state have not to be present while the
] is a wildcard that matches either. The right part of the rule
consists of three parameters (ai,j , bi,j and ci,j) that are used
to draw the resistance and the support for the trade operation.
If the agent is going long, it will use the resistance to set the
stop-profit order and the support for the stop-loss order, while
if the agent is going short it will do it the other way round.
The idea is that each rule matches a state of the system, where
the agent invest in the risky stock asset at market price. The
position will be held until the asset reaches either the stop-
profit or the stop loss prices. If the rule is matched at ta, the
agent expects to reach the stop profit price at ta + ci,j .

The parameters are initially set to random values distributed
uniformly. As in the SFM the rules are not static. Each agent
is allowed to learn by changing its set of rule. The learning
process is implemented by means of a genetic algorithm where
the poorly performing rules are substituted by new ones. Rules
are selected for rejection and persistence based on a accuracy
measure that takes into account both the errors in the price
and in the forecast horizon.

C. The state of the agents

When a forecast rule j of agent i is activated in ta, the
agent will forecast the future stock returns for time horizon
ta+ci,j , instead of ta+1 as in the SFM. Once the operation is
done, the agent will hold its position until instant ta + ci,j or
until the price of the stock reaches a stop-profit or a stop-loss
value at an undetermined time tb > ta, whatever comes first.
In the second case, the operation may not be closed at that
undetermined time, which will be denoted as tb. It happens
when there are not enough buy (resp. sell) orders to sell (resp.
buy) all the stocks at the stop price in tb. Figure 1 illustrates
the process for the case where the agent goes long.

Once the transaction is completed (i.e. once the ordered
stocks have been bought and then sold or viceversa for short
positions), the investor’s wealth has to be updated. As said
before, the transaction is completed either when stocks reach
the stop-profit price at tb or when the holding time period is
expired ta + cj . For the sake of simplicity, we will refer to
these periods as te. The wealth equation must take into account
that the sold of stocks can require more than one period. The

number of extra periods will be denoted as f . While agent
traders can not execute several operations at the same time, and
also can not modify their current trading strategy, wealth value
is updated when a trading operation has concluded. Given that,
the wealth of agent i in te+f is

Wte+f ,i = W risky
ta→te+f

+W free
ta→te+f

+W free
te→te+f

. (1)

The equations of these three terms are explained next.
The term W risky

ta→te+f ,i represents the changes from ta to te+f

in the wealth invested in the risky asset. Its equation is slightly
different depending on the way stocks are sold. If they are sold
because they reach the stop-profit price, then te = tb is the
period when that price is reached and the wealth is

W risky
ta→te+f ,i = pte

f∑
l=0

xout
te+l,i

, (2)

where xout
te+l,i

is the number of stocks sold at time te+l by
agent i and satisfying

∑f
l=0 x

out
te+l,i

= xta,i.
On the other hand, if stocks are sold because the maximum

holding time ends, which happens at te = ta+cj
, then all

the stocks are sold at that time (which means that f = 0).
However, it may happen that not all the stocks are sold at
the price pte . This happens when the demand of the awaiting
order does not cover the whole sell. If this is the case, other
awaiting orders, possibly with a different price are required.
The wealth W risky

ta→te+f ,i in this case is estimated as

W risky
ta→te+f ,i =

v∑
l=1

xout
te,l,i

pte,l. (3)

As all the stocks are sold at the same price, the price pte,l

and the stocks number xout
te,l,i

both depend on a parameter
l = 1, ..., v that represents the number of awaiting sell order
matched.

The second term, W free
ta→te+f ,i, represents the evolution of

the capital invested in the free risk asset since ta. It is given
by

W free
ta→te+f ,i = (1 + r)tb+f−ta

(
Wta,i −

k∑
l=1

pta,lx
in
ta,i,l

)
, (4)

where r is the constant interest rate of the free-risk asset
and the pair of values (pta,l, x

in
ta,i,l) represents the awaiting

sell order matched at time t with the market price order. It
means that xin

ta,i,l stocks have been bought at price pta,l with∑k
l=1 x

in
ta,i,l = xta,i.

Finally, the term W free∗
te→te+f ,i represents the evolution of the

capital of the stocks sold between te and tef
, because during

this period this capital is invested in the free risk asset. Thus,
the term is only taken into account if f > 0. It is given by

W free∗
te→te+f ,i =

f∑
l=1

(1 + r)tb+f−tb+l(ptb+l
xout

tb+l,i
). (5)

In our market as in the SFM, investors use a simply constant
relative risk aversion preference for stock demands [16]. When

a classifier detects an investment opportunity, the investor
agent estimates the asset demands, trying to maximize the
wealth utility function Ui,t+cj = − exp (−λWi,t+cj), where
the wealth equation has been described above.

III. VALIDATION OF THE MODEL

This paper represents the current state of a work-in-progress.
An example of a candlestick time series with the trading
volume generated by the ASM is shown in Figure 2. The
model is being satisfactorily programmed using Nvidia CUDA
technology, which allows to drastically reduce the simulation
time. This parallel programming technology also allows to
scale the number of agents without increasing the simulation
time. Detailed information about trading strategies, agent be-
havior and evolution, the rule system and auction mechanism
will be explained in the subsequent extended paper along with
the simulation results and validation.

Regarding validation it will consist of analyzing two issues.
First the usual econometric properties, i.e. the stylized-facts,
that are present in real-life stock market time series such us fat
tails and leptokurtic properties in return distributions, excess of
kurtosis, no significant autocorrelation and volatility clusters.
Second, it will be shown that technical patters, familiar to
professional technical analysts, do appear in the time series of
the prices as a result of the self-fulfilling prophecy effect.

Fig. 2. Preliminary results: synthetic market (blue bars) following SP500
daily closing price (red line) as reference market.

ACKNOWLEDGMENT

The authors acknowledge support from the project Agent-
based Modelling and Simulation of Complex Social Systems
(SiCoSSys), supported by Spanish Council for Science and
Innovation, with grant TIN2008-06464-C03-01. We also thank
the support from the Programa de Creación y Consolidación
de Grupos de Investigación UCM-BSCH, GR58/08

REFERENCES

[1] B. LeBaron, The Handbook of Computational Economics, Vol. 2: Agent-
Based Computational Economics, ser. Handbooks in Economics Series.
Amsterdam: North-Holland, 2006, ch. Agent-based Computational Fi-
nance, pp. 1187–1234.

[2] M. Raberto, S. Cincotti, S. M. Focardi, and M. Marchesi, “Agent-
based simulation of a financial market,” arXiv.org, Quantitative
Finance Papers cond-mat/0103600, Mar. 2001. [Online]. Available:
http://ideas.repec.org/p/arx/papers/cond-mat-0103600.html

[3] S. Cincotti, S. Focardi, L. Ponta, M. Raberto, and E. Scalas, “The
waiting-time distribution of trading activity in a double auction artificial
financial market,” vol. 567, pp. 239–247, 2006.

[4] J. Andersen and D. Sornette, “The d-game,” European Physics Journal,
vol. 31, no. 1, pp. 141–145, 2003.

[5] N. Ehrentreich, Agent-Based Modeling: the Santa Fe Institute Artificial
Stock Market Model Revisited. Springer-Verlag, 2008.

[6] L. Menkhoff, “Examining the use of technical currency analysis,”
International Journal of Finance and Economics, vol. 2, pp. 307–318,
1997.

[7] M. P. Taylor and H. Allen, “The use of technical analysis in the foreign
exchange market,” Journal of International Money and Finance, vol. 11,
no. 3, pp. 304–314, June 1992.

[8] C. Hommes, “Heterogeneous agent models in economics and finance,”
in Handbook of Computational Economics, 1st ed., L. Tesfatsion and
K. L. Judd, Eds. Elsevier, 2006, vol. 2, ch. 23, pp. 1109–1186.

[9] J. Frankel and K. Froot, Private Behaviour and Government Policy in
Interdependent Economies. New York: Oxford University Press, 1990,
ch. Chartists, fundamentalists and the demand for dollars, pp. 73–126.

[10] B. LeBaron, W. B. Arthur, and R. Palmer, “Time series properties of
an artificial stock market,” Journal of Economic Dynamics and Control,
vol. 23, no. 9-10, pp. 1487–1516, September 1999.

[11] B. LeBaron, “Building the santa fe artificial stock market,” Brandeis
University, Working paper, june 2002.

[12] N. T. Chan, B. LeBaron, A. W. Lo, and T. Poggio, “Agent-based models
of financial markets: A comparison with experimental markets,” MIT
Sloan, Working Paper 4195-01, 2001.

[13] D. K. Gode and S. Sunder, “Double auction dynamics: structural
effects of non-binding price controls,” Journal of Economic Dynamics
& Control, vol. 28, no. 9, pp. 1707–1731, 2004.

[14] J. Derveeuw, B. Beaufils, P. Mathieu, and O. Brandouy, “Testing double
auction as a component within a generic market model architecture,”
vol. 599, pp. 47–61, 2007.

[15] S. Crowley and O. Sade, “Does the option to cancel an order in a double
auction market matter?” Economics Letters, vol. 83, no. 1, pp. 89 – 97,
2004.

[16] S. J. Grossman and J. Stiglitz, “On the impossibility of informationally
efficient markets,” American Economic Review, vol. 70, no. 3, pp. 393–
408, 1980.

BDI Agents with Fuzzy Perception
for Simulating Decision Making

in Environments with Imperfect Information
Giovani P. Farias, Graçaliz P. Dimuro and Antônio C. Rocha Costa

PPGMC - C3, Universidade Federal do Rio Grande
96201-900 Rio Grande, RS, Brazil, Email: {giovanifarias, gracaliz, ac.rocha.costa}@gmail.com

Abstract—This work introduces a model of fuzzy perception
for BDI agents, to support the simulation of decision making
processes in environments with imperfect information. An appli-
cation to a fuzzy prey-predator environment was developed, as
an example, where the process of deciding which prey a predator
should attack is based on its fuzzy perception of the strength of
the prey, and on the comparison of the preys’ strengths with
its own strength. Different simulations were realized for the
comparative evaluation of different types of predator agents,
in contexts with and without competition between predators.
The quantitative analysis of the simulations shows that the fuzzy
predator agent presents the best scores. However, the important
result is that the fuzzy predator seems to behave more adequately
in the environment, in the sense that it presents an apparently
more natural, coherent and realistic behavior.

I. INTRODUCTION

Fuzzy sets and Fuzzy Logic (FL) [1] may be viewed as an
attempt to formalize/mechanize two kinds of human capabili-
ties. The first one is the capability to reason and make rational
decisions in an environment of imperfect information (i.e,
of imprecision, uncertainty, incompleteness of information,
conflicting information, partiality of truth and partiality of
possibility). And second, the capability to perform a wide
variety of physical and mental tasks without any measurements
and any computations [2].

Zadeh [3] pointed out the Incompatibility Principle, which
states that “complexity and precision are incompatible prop-
erties”, arguing that the conventional numerical-based ap-
proaches are inadequate to model human-like complex pro-
cesses. Therefore, “the closer one looks at a real-world prob-
lem, the fuzzier becomes its solution”.

In the context of Social Simulation (SS), Grüne-Yanoff [4]
and Rossiter et al. [5] remarked that one often has to deal
with “fuzzy” social concepts, which are difficult to formalize
and observe in the real-world system. For that reason, FL has
been used in SS for representing vagueness, uncertainty and
subjectiveness in everyday life.

Among the agent models commonly used in agent-based
simulation of decision processes in complex environments,
there are the ones of an intentional nature, whose behaviors
can be explained by attributing certain mental attitudes to the
agents, such as knowledge, belief, desire, intention, obligation,
commitment (see, e.g., [6], [7]).

A well-known intentional model is the BDI (Beliefs, De-
sires and Intentions) architecture, introduced by Rao and
Georgeff [8]. This model is based on the representation of
the agent’s beliefs about the states of the world and a set of
desires, which identify those states that the agent has as goals.
By a process of deliberation, the agent formulates one or more
intentions (the states which the agent is committed to bringing
about). The agent then builds a plan to achieve those intentions
(through some form of means-ends reasoning), and executes it.
After that, the agent uses its perception about the environment
(which may include itself) in order to have its beliefs updated.

Although Rao and Georgeff explicitly acknowledge that an
agent’s model of the world is incomplete, the BDI model
does not take into account the influence of the imperfect
information (in the sense discussed above) acquired from the
world in beliefs, desires and intensions. In particular, it does
not consider that the agent could have a “fuzzy” perception of
the world. Then, in this paper, we experiment with a BDI agent
with fuzzy perception operating in a task environment with
imperfect information, namely, a fuzzy prey-predator system.

Prey-Predator systems are an important theme in the area
of Population Dynamics, their modeling having achieved a
classical status through the formulation of the so-called Lotka-
Volterra equations [9]. The particular type of systems that
we simulate was inspired by the Fuzzy Prey-Predator Model
introduced by Peixoto et al. [10].

The paper is organized as follows. Section II discusses
related work. Section III presents some concepts on the fuzzy
inference system used in this work. The environment with
imperfect information inspired by the Fuzzy Prey-Predator
Model is introduced in Sect. IV, including our approach for the
fuzzy perception module to be included in the BDI architecture
of the predator agent. The results on simulations are discussed
in Sect. V. Section VI is the Conclusion.

II. RELATED WORK

In the context of social simulation, FL has been playing
an important role, and it is possible to find many interesting
works using FL to deal with different problems that can not
be solved with classical simulation models and tools. In this
section, we briefly present some of those works, according to
the different issues covered by them.

Hassan et al. [11] observed that simple agent models, as
those normally used with exiting tools, are neither sufficient
nor adequate to deal with the uncertainty and subjectiveness
that have to be considered in the analysis of values (e.g.,
trust) in human societies. In their agent-based social modeling
and simulation, FL was used to naturally specify attributes
of the agents representing individuals, the evolution of the
agent minds, the inheritance, the relationship and similarity
between individuals, etc. In the same direction, in [12], fuzzy
filters were used for modeling trust in social modeling using
multiagent systems.

In Ghasem-Aghaee and Ören [13], human personality facets
and traits (according to the Big Five and OCEAN models)
were specified as conditional rules in fuzzy agents, in order to
perform human behavior simulation. With related objectives,
Dimuro et al. [14] introduced an approach based on FL for
the evaluation of the social exchange values generated in
the simulation of social exchanges between personality-based
agents, with the analysis of the fuzzy equilibrium equation.

Sabeur and Denis [15] presented an application of FL
in the simulation of human behavior and social networks,
representing behavioral elements, such as stress, motivation
or fatigue, and sociological aspects. Hassan et al. [16] use a
fuzzy system to model friendship dynamics with an agent-
based model that could manage social relationships, together
with demographics and evolutionary crossover.

Fort and Pérez [17] used FL to model the adaptive behaviour
of the agents playing the Iterated Prisoner’s Dilemma, gov-
erned by Pavlovian strategies, to analyze the evolution of co-
operation. Sabater et al. [18] proposed a fuzzy representation
of evaluations for the system Repage, which adopts a cognitive
theory of reputation.

Concerning fuzzy perception in robots, Cuesta and
Ollero [19] used it to improve robot’s navigation, and Mobahi
and Ansari [20] applied fuzzy perception to improve the
credibility in robot’s emotions.

Notice that the agent architectures proposed so far mostly
deal with two-valued information. Casali et al. [21], however,
incorporated a formal model to represent and reason under
uncertainty, introducing a general model for graded BDI
agents, and an architecture, based on multi-context systems,
able to model these graded mental attitudes. In [22], the model
was used to specify an architecture for a travel assistant agent
that helps a tourist to choose holiday packages, and in [23] it
was applied to build a recommender system for tourism.

Hybrid models can be found in the literature, introducing
some kind of fuzziness to BDI architecture. Long and Ester-
line [24] introduced a BDI agent, which uses fuzzy inference
engines, fuzzy controllers and classifiers, for the modeling
of co-operative societies of artificial agents, outlining some
social conditions necessary for agents to form joint intentions
and actions. Lokuge and D. Alahakoon [25] introduced a BDI
agent coupled with a neural network and an adaptive neuro
fuzzy inference system for application in container terminal
operations, allowing the improvement the decision making
process in such a complex, dynamic environment. A BDI

agent with a fuzzy neural network was also used by Hai-bo
et al. [26] for application in autonomous underwater vehicles.
Shen et al. [27] have explored a hybrid BDI model based on
deliberative and fuzzy reasoning, and in [28] the model was
improved within the context of wireless sensor networks.

However, neither the nice formalization by Casali et al.
nor the other analyzed works have considered the influence
of fuzzy perception on the operation of a BDI agent and its
decision making.

III. ON FUZZY INFERENCE SYSTEMS

Fuzzy set theory [1], [2], [3] is based on the idea that several
elements in human thinking are not exact data, but can be
approximated as classes of objects in which the transition from
membership to nonmembership is gradual rather than abrupt,
represented by membership grades in the interval [0; 1]. Since
human reasoning sometimes does not follow the two-valued
or multivalued logic, FL is a logic with fuzzy truths, fuzzy
connectives, and fuzzy rules of inference.

Fuzzy inference systems are non-linear models that aim to
describe the input-output relationship of a real system using a
family of linguistic If-then constructions and the inference
mechanisms of FL. Among the several methods available
for fuzzy inference, we adopt in this work the Kang-Takagi-
Sugeno (KTS) method [29], where each fuzzy rule represents
a local model of the real system under consideration1. The kth

rule of a KTS system with input vector X = (x1, . . . , xN) and
output z presents the general form:

If (x1 is A1,k) and . . .and (xN is AN,k)
then z = fk(X), (1)

where the linguistic terms An,k (n = 1, . . . , N) in the rule
antecedents represent fuzzy sets with membership functions
µn,k, which are used to partition the domains of the input
variables into overlapping regions. The functions fk in the rule
consequents are usually first-order polynomials of the form:

fk(x1, . . . , xN) = b0,k + b1,kx1 + . . . , bN,kxN . (2)

For a given input X = (x1, . . . , xN), the degree of fulfil-
ment of the kth rule evaluates the compatibility of the input
X with the rule antecedent and determines the contribution of
the rule’s response z = fk(x1, . . . , xN) to the overall model’s
output. The degree of firing of the kth rule is expressed as

wk(x1, . . . , xN) = T1(µA1,k(x1), . . . , µAN ,k(xN)), (3)

where T1 is a t-norm (triangular norm). In this work, T1 is
the Minimum t-norm (called Gödel t-norm), and then Eq. 3
becomes :
wk(x1, . . . , xN) = min{µA1,k(x1), . . . , µAN ,k(xN)}. (4)

The overall output of a normalized first-order TSK fuzzy
model with K rules is given by

z =

K∑
k=1

T2(wk(x1, . . . , xN), fk(x1, x2, . . . , xN))

K∑
k=1

wk(x1, . . . , xN)
, (5)

1The adoption of the KTS method is due to its better performance in some
applications, since it avoids the defuzzification step. See [29] for details.

where T2 is also a t-norm. In this work, T2 is the Product
t-norm, so that Eq. 5 results in:

z =

K∑
k=1

wk(x1, . . . , xN) · fk(x1, x2, . . . , xN)

K∑
k=1

wk(x1, . . . , xN)
. (6)

IV. A FUZZY PREY-PREDATOR ENVIRONMENT

In [10], Peixoto et al. proposed a fuzzy rule-based system
to elaborate a predator-prey model to study the interaction
between aphids (preys) and ladybugs (predators) in citricul-
ture. Due to the lack of available information about the phe-
nomenon, instead of using the usual differential equations that
characterize the classic deterministic models, they introduced
a fuzzy approach for analyzing the problem.

In this paper, we informally build on the fuzzy prey-predator
approach for an agent-based simulation in order to analyze the
ability of a predator with fuzzy perception in surviving in an
environment of imperfect information.2

In this environment, the age and the weight of a prey (and
of a fuzzy predator itself) are vague information for the fuzzy
predator. However, such information is crucial for a predator
to evaluate the strength level of a certain prey in comparison
with its own strength level, and, therefore, to estimate the
probability of the success of its attack to such prey, which
is given by:

Prob = 50 +
RAP −RPP

200
, (7)

where RAP and RPP are the predator’s and the prey’s
strength levels, respectively.

We assume that (i) predators and preys are initially ran-
domly distributed in a grid; (ii) the food is always available
for the different preys, and (iii) a predator loses weight for
being looking around for preys and much more for each
unsuccessful attack (on the contrary, it gains weight if its
attack is successful). Then, the predator survival during the
evolution of the time depends on its decision about attacking
or not any prey it finds during its life. This decision is based on
the imperfect information that the agent can perceive through
its fuzzy perception mechanism, which uses a fuzzy inference
system to determine the prey’s strength level and its own.

The predator is a BDI agent with beliefs3 on the following
parameters: age, weight and strength level. The age and weight
the agent can perceive through its perception mechanism.
The strength level can be estimated considering perceived
ages and weights. The abilities of the predator are: random
movement looking for preys, perception of preys’s age and
weight, estimation of prey’s strength level in comparison with
its own strength level at the current time, and decision on
attacks to preys, which considers if the probability of success
satisfies Prob > 0.25 (Eq. 7). The constraints of its life are:

2Notice that we did not study population dynamics, as it was done in [10],
although this can be considered in future work.

3In this paper, we do not refer to the agent’s desires or intentions, only to
its beliefs, since this is the component of the BDI model that is connected to
the fuzzy perception mechanism.

Sensors

BRF Beliefs Deliber
ations

Actuators

Perceptions ActionsEnvironment

Fig. 1. Part of the BDI model with a fuzzy perception module.

(i) at each movement it loses a fixed amount of weight (weight
loss rate), and has its age incremented by a fixed value (aging
rate); (ii) at each successful attack, it gains a fixed amount of
weight (attack reward); otherwise, it loses a fixed amount of
weight (attack punishment); (iii) there is a minimum weight
that a predator can support; if it achieves a weight less than the
minimum then it dies by weakness; (iv) there is a maximum
age that a predator can achieve; after that it dies by ageing.

A. Characterizing the Fuzzy Predator (FP) Agent

The Fuzzy Predator (FP) has a perception mechanism
directly connected to the BRF (Belief Revision Function) of
its BDI architecture, partially depicted in Fig. 1. This means
that the fuzzy perception mechanism receives as input data
the prey’s age and weight, as well as the predator’s own age
and weight, all of which are perceived through the predator’s
non precise sensors. Then, using the KTS inference system
(Sect. III), the predator infers the prey’s strength level, and also
its own strength level, updating its beliefs with the inferred
information, in order to let this information be used in the
decision process.

The linguistic variables age, weight and strength
level are modeled as fuzzy sets with trapezoidal member-
ship functions (Fig. 2). The analysis of those linguistic vari-
ables allowed the construction of a knowledge base composed
by the linguistic rules presented in part in Table I. Table II
shows part of the rule base for the KTS inference system of
the perception model of the FP agent, each one with 2 inputs
(age,weight) ∈ R2 and the output z ∈ R, where “young”,
“adult”, “old”, “very light”, “light”, “average”, “heavy” e
“very heavy” represent fuzzy subsets of R.

Example 1: In order to see how the inference system of
the fuzzy perception mechanism operates, let us consider the
following crisp input data: age = 16 and weight = 84.
Those values are fuzzified, considering the membership grades
in relation to the fuzzy subsets that define those linguistic
variables, given in Fig. 2. Then, the age value age = 16 is
considered “young” with grade µyoung(16) = 0, 4 and “adult”
with grade µadult(16) = 0, 6. The weight value weight = 84
is evaluated as “heavy” with grade µheavy(84) = 0, 6 and
“very heavy” with grade µvery−heavy(84) = 0, 4.

For each combination of those sets achieved by the input
data, some of the rules of the knowledge base are activated.
In this case, four rules are fired, namely, the rules R4, R5, R9

and R10 of the Tables I and II. Using Eq. 4, it is possible to

Fig. 2. Membership function for the considered linguistic variables.

find the degrees of firing of each one of those rules, as, e.g.,
w4 = min {µyoung(16), µheavy(84)} = 0, 4. Then, one has
that w5 = 0, 4, w9 = 0, 6 and w10 = 0, 4. Using Eq. 6, we
obtain the overall output of the process, where f4, f5, f9 and
f10 are calculated using Table II:

z=
w4f4(16, 84)+w5f5(16, 84)+w9f9(16, 84)+w10f10(16, 84)

w4 + w5 + w9 + w10
=74,

which represents the predator’s strength level.

B. The Crisp Predator (CP)

For the comparative analysis of simulations, we imple-
mented a Crisp Predator (CP), which is a BDI agent that
does not consider that the information about itself and the
one perceived from the environment are vague or incomplete.
Its perception mechanism is inspired on the perception mecha-
nism of the fuzzy predator, but, instead of using fuzzy subsets
for the modeling of the input linguistic variables, we use
classical sets with the usual characteristic functions into the
set {0, 1}. For each set of input date, only one rule of the

TABLE I
LINGUISTIC RULE BASE.

If age and weight then strength level
R1 young very light very weak
R2 young light very weak
R3 young average weak
R4 young heavy average
R5 young very heavy average
R6 adult very light average
R7 adult light average
R8 adult average strong
R9 adult heavy very strong
R10 adult very heavy very strong
R11 old very light very weak
R12 old light very weak
R13 old average weak
R15 old very heavy average

knowledge base is activated. The characteristic functions of
the sets related to the linguistic variable age are:

µyoung(x) =

{
1 if x ≤ 15;
0 otherwise µadult(x) =

{
1 if 15 < x < 35;
0 otherwise

µold(x) =

{
1 if x ≥ 35;
0 otherwise (8)

The characteristic functions of the sets related to the lin-
guistic variable weight are:

µvery−light(x) =

{
1 if x ≤ 15;
0 otherwise µlight(x) =

{
1 if 15 < x ≤ 35;
0 otherwise

µaverage(x) =

{
1 if 35 < x ≤ 65;
0 otherwise (9)

µheavy(x) =

{
1 if65 < x ≤ 85
0 otherwise µvery−heavy(x) =

{
1 if x > 85
0 otherwise

Example 2: Considering the same input data (age,
weight) of Ex. 1 and the characteristic functions given in
Equations 8 and 9, one has that weight = 84 and age = 16
are definitely evaluated as “heavy” (µheavy(84) = 1) and
“adult” (µadult(16) = 1), respectively. In this case, only the
rule R9 of the rule base of Tables I and II is activated.
Obviously, the firing degree of this rule is w9 = 1. The general
output, given by Eq. 6, results in the value of the straight level:

z =
w9f9(16, 84)

w9
=

1 · 88
1

= 88

To enrich the possible comparisons, we have implemented
a Greedy Predator (GP), which always attacks the preys it
encounters, without considering any reasoning on strength
levels and the probability of success of its attacks to preys.

V. ANALYSIS OF THE SIMULATION RESULTS

The simulations were realized to obtain a general view
of the behaviors of the different predators4 in two kinds
of the Fuzzy Prey-Predator Environment: competitive (Sect-
V-A) and non-competitive environments (Sect. V-B). The
implementation was done in the Jason platform [30].

4Since we are not analyzing population behavior, in the simulations we
only consider either 2 or 3 predators, in order to be able to compare directly
their surviving abilities.

TABLE II
RULE BASE FOR THE KTS INFERENCE SYSTEM.

If age and weight then strength level = fk(age,weight)

R1 young very light f1(x, y) =
x+ y

2

R2 young light f2(x, y) =
x+ (

y

2
)

2

R3 young average f3(x, y) =
(x+ y) − 10

2

R4 young heavy f4(x, y) = (x− 1) +
y

2

R5 young very heavy f5(x, y) = x+
y

2

R6 adult very light f6(x, y) =
x+ y

2
+ 25

R7 adult light f7(x, y) =
x+ y

2
+ 30

R8 adult average f8(x, y) =
x+

y

2
+ 100

2

R9 adult heavy f9(x, y) =
x+ y

4
+ 63

R10 adult very heavy f10(x, y) =

x

2
+ y

2
+ 40

R11 old very light f11(x, y) =
(50 − x) + y

2

R12 old light f12(x, y) =
(50 − x) +

y

2
2

R13 old average f13(x, y) =
(50 − x) + (y − 10)

2

R15 old very heavy f15(x, y) = (50 − x) +
y

2

The results were obtained from a total of 100 simulation
runs. In each run, the time grows in discrete units (1 time
unit = one predator movement). In the beginning of each run,
the predators present the following initial parameters: age =
1 and weight = 50. Those parameters change at each time
instant according to the following fixed rates5: the weight loss
rate (-0,1 kg for each movement/time), the aging rate (-0.05
year for each movement/time), the attach reward (+2 kg for
each successful attack), and the attack punishment (-1 kg for
each non successful attack). The simulation run ends when all
the predators have died, either for weakness (weight less than
1 kg) or for ageing (age equal to 50 years).

A. The Competitive Environment

The competitive environment consists of 2 kinds of preda-
tors (FP e CP) and different 250 preys. At each successful
predator attack, the corresponding defeated prey dies. Consid-
ering that there is no prey reproduction, the prey population
tends to decrease, increasing the probability of the predator
not finding a prey as it moves in the environment, which may
cause increasing weight losses. In this sense, both predators
compete for the preys remaining in the environment.

5Variations of the initial parameters and rates are not considered here, since
they affect only the agent’s deliberations, not its perceptions.

Fig. 3. The average of attacks (top), victories (middle) and defeats (bottom)
at an age i, with 1 ≤ i ≤ 50, in a competitive environment.

Figure 3 (top) shows the average number of predators’
attacks at each year. Observe that the number of the CP’s
attacks surges around the age of 15. This is so because, before
15, the agent thinks that it is young (with too low strength
level), but, suddenly, as it achieves 15 years old, it concludes
that it is already an adult (with too high strength level). The
increase in the number of the FP’s attacks is more gradual,

showing more coherence in its decisions. On the other hand,
one might have expected that the high number of attacks would
have lasted until around the age of 35, since it is only after
this age that the CP considers itself old. However, due the
prey population decreasing, the number of the attacks of both
predators also decreases, even before the age 35. Around the
age 35, the decrease in the number of the attacks of the CP is
much more abrupt than the smooth decreasing of the number
of the attacks of the FP, as it passes from young to adult/old.

Figure 3 (middle) presents the average of predators’ victo-
ries at each year. There is a significant increase in the number
of victories when the CP is around 15, which is an expected
result, since this is the period that, as it considers itself an
adult by this age, it increases a lot the number of attacks until
around the age of 35, when it considers itself old, as discussed
in the previous paragraph. Also, due to the decrease in the prey
population, and consequently, the decrease in the number of
attacks, the number of victories also decreases, even before
the age 35. Again, it is possible to observe that the graph
corresponding to the FP increases and decreases smoothly, as
the agent becomes old, whereas the one of the CP increases
abruptly around 15 and decreases around 35, also drastically.

Analogous analysis can be done concerning the average of
number of the predators’ defeats at each year, which is shown
in Fig. 3 (bottom).

B. The Non-competitive Environment

The non-competitive environment consists of 3 kinds of
predators (FP, CP and GP), and 250 different preys. For each
prey that dies in consequence of a predator attack, another
prey with similar characteristics appears in the environment,
at a random position. This means that the predators always
have the same chance to find a prey to attack.

Figure 4 (top) shows the average number of predators’
attacks at each year. For the same reasons discussed in
Sect. V-A, the number of the CP’s attacks surges around the
age of 15. However, since the prey population is constant
along the time, the high number of attacks of the CP lasts
until around the age of 35, and then it follows drastically. The
behavior of the FP is much more natural and coherent, since
it presents a gradual increase in the number of attacks as it
becomes an adult, and a also a smooth decrease as it becomes
old. The high number of attacks of the GP during its life was
as expected. During adulthood the numbers of attacks of all
predators are similar.

Figure 4 (middle) presents the average number of predators’
victories at each year. There is an abrupt increase in the
number of victories when the CP is around 15, due to the high
increase in the number of its attacks by this age. However,
since the prey population does not decrease, the number
of victories stays high until around the age 35. After that,
it decreases radically. Again, it is possible to observe that
the graph corresponding to the FP increases and decreases
smoothly, as the agent becomes old. The higher number of
victories of the GP is due to its attack strategy. During
adulthood, the numbers of victories of the three kinds of

Fig. 4. The average of attacks (top), victories (middle) and defeats (bottom)
at an age i, with 1 ≤ i ≤ 50, in a non-competitive environment.

predators are similar. The highest numbers of victories, for
Crisp and Fuzzy predators, appear between the ages of 20 and
33. Analogous analysis can be done concerning the average of
number of predators’ defeats at each year (Fig. 4 (bottom)).

Figure 5 (top) shows the average number of accumulated
attacks during the predators’ lives, until they reach a certain
age i, with 1 ≤ i ≤ 50. As expected, the GP had an average
number of accumulated attacks much higher than the other
two predators, which had a similar attack behavior.

Fig. 5. Average accumulated number of attacks (top), victories (middle) and
defeats (bottom) during the predator life until the age i, with 1 ≤ i ≤ 50.

Figure 5 (middle) presents the average number of accumu-
lated victories during the predators’ lives, until they reach an
specific age. As expected, the GP had an average number
of accumulated victories much higher than the other two
predators. However, this number for the FP is higher than that
of the CP, as they become older.

Analogous analysis can be done concerning the average
number of accumulated defeats during the predators’ lives,
until they reach an specific age, shown in Fig. 5 (bottom).
Figure 6 (top) shows the average lifetime of the predators. As

Fig. 6. Average lifetime (top), average weight at the end of the life (middle)
and average of number of attacks/victories/defeats (bottom) of predators.

expected, the Greedy and Fuzzy predators present the lowest
and the highest average lifetimes, respectively.

Figure 6 (middle) presents the average weight of predators
at the end of their lives. The average weight of the FP at the
end of its life is the highest one.

Figure 6 (bottom) shows the average number of attacks,
victories and defeats of predators during its whole life. The GP
is the one that presents the highest averages in all categories,
and it is the one that has the average number of defeats
higher than that of victories. Its average numbers of attacks
and victories are higher than the ones of the CP, whereas the

average number of defeats is lower than that of the CP.
We conclude that the simulation of the fuzzy perception

of the FP allowed for a more faithful simulation of naturally
expected smoothness of the development of predation ability
of predators in a Fuzzy Prey-Predator environment.

VI. CONCLUSION

This paper introduces a model of fuzzy perception for
BDI agents in task environments with imperfect information,
which was inspired by an analysis of a particular Fuzzy Prey-
Predator model. The aim was to analyze the influence of fuzzy
perception on the ability of BDI agents to simulate decision
making processes in fuzzy environments. For that, we have
defined a perception mechanism directly connected to the BDI
agent’s BRF. The perception mechanism uses a KTS inference
system, which is application dependant.

The simulations allowed us to obtain a general view of
the behaviors of the different predators (CP, FP, GP) in
two kinds of the Fuzzy-Predator Environment: a competitive
environment and a non-competitive environment.

Although the difference between the results obtained by the
Fuzzy and the Crisp predator agents were not so significant
in the quantitative analysis that we have performed, it seems
that the Fuzzy predator agent showed a more adequate simu-
lated behavior in the environment with imperfect information,
presenting a more natural, coherent and realistic behavior than
the other agents.

Finally, two issues on the obtained results are important to
point out. Firstly, the BDI agent with fuzzy perception seems
to be a good model to be used in agent-based simulations in
environments with imperfect information. Secondly, a fuzzy
perception module can be a good alternative solution in the
design of a BDI agent that can not perceive the information
of the environment with accuracy.

Future work will consider a fuzzy perception mechanism for
a BDI agent that is more application independent. For that, we
are considering the use of the Mamdani inference method [1]
in the level of the agent plans, so that the fuzzification of the
input data will be directly reflected in the agent’s set of beliefs,
then extending to account for fuzzy beliefs.
Acknowledgements. This work is part of a larger project (RS-
SOC: Rede Estadual de Simulação Social), being run under the
FAPERGS/CNPq/PRONEX (Proc. 10/0049-7) context, where fuzzy
perception of social interactions are considered. It is also supported
by CAPES and CNPq (Proc. 483257/09-5, 307185/07-9, 304580/07-
4). We thank R. Bordini for valuable suggestions.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Inf. and Control, vol. 8, pp. 338–353, 1965.
[2] ——, “Is there a need for fuzzy logic?” Information Sciences, vol. 178,

no. 13, pp. 2751–2779, 2008.
[3] ——, “Outline of a new approach to the analysis of complex systems and

decision processes,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. SMC-3, no. 1, pp. 28 –44, 1973.

[4] T. Grüne-Yanoff, “The explanatory potential of artificial societies,”
Synthese, vol. 169, no. 3, p. 3, 2006.

[5] S. Rossiter, J. Noble, and K. R. W. Bell, “Social simulations: Improving
interdisciplinary understanding of scientific positioning and validity,”
JASSS, vol. 13, no. 1, p. 10, 2010.

[6] B. Subagdja, L. Sonenberg, and I. Rahwan, “Intentional learning agent
architecture,” JAAMAS, vol. 18, no. 3, pp. 417–470, 2009.

[7] S. Sardina and L. Padgham, “A BDI agent programming language with
failure handling, declarative goals, and planning,” JAAMAS, 2010.

[8] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” in Proc. 2nd Intl. Conf. on Principles of Knowledge
Representation and Reasoning), R. Fikes and E. Sandewall, Eds. San
Mateo: Morgan Kaufmann, 1991, pp. 473–484.

[9] A. A. Berryman, “The origins and evolution of prey-predator theory,”
Ecology, vol. 73, no. 5, pp. 1520–1535, 1992.

[10] M. S. Peixoto, L. C. Barros, and R. C. Bassanezi, “Predator-prey fuzzy
model,” Ecological Modelling, vol. 124, no. 1, pp. 39–44, 2008.

[11] S. Hassan, L. Garmendia, and J. Pavón, “Agent-based social modeling
and simulation with fuzzy sets,” in Innovations in Hybrid Intelligent
Systems, ser. Advances in Soft Computing, E. Corchado et al., Eds.
Berlin: Springer, 2008, no. 44, pp. 40–47.

[12] E. del Acebo and J. L. de la Rosa, “A fuzzy system based approach
to social modeling in multi-agent systems,” in Proc. of Intl. Conf. on
Autonomous Agents and Multiagent Systems. ACM, 2002, pp. 463–464.

[13] N. Ghasem-Aghaee and T. I. Ören, “Towards fuzzy agents with dynamic
personality for human behavior simulation,” in Proc. of the 2003 Summer
Computer Simulation Conference, Montreal, July 20-24, 2003. San
Diego: SCS, 2003, pp. 3–10.

[14] G. P. Dimuro, A. V. Santos, G. P. Bedregal, and A. C. R. Costa, “Fuzzy
evaluation of social exchanges between personality-based agents,” in
New Trends In Artificial Intelligence, L. S. Lopes et al., Eds. Aveiro:
APIA, 2009, pp. 451–462.

[15] E. Sabeur and G. Denis, “Human behavior and social network simula-
tion: Fuzzy sets/logic and agents-based approach,” in Proc. of the 2007
Spring Simulation Multi-Conference, Norfolk, 2007. San Diego: SCS,
2007, pp. 102–109.

[16] S. Hassan, M. Salgado, and J. Pavon, “Friends forever: Social relation-
ships with a fuzzy agent-based model,” in Hybrid Artificial Intelligence
Systems, ser. LNCS. Berlin: Springer, 2008, no. 5271, pp. 523–532.

[17] H. Fort and N. Pérez, “The fate of spatial dilemmas with different fuzzy
measures of success,” JASSS, vol. 8, no. 3, 2005.

[18] J. Sabater-Mir, M. Paolucci, and R. Conte, “Repage: REputation and
imAGE among limited autonomous partners,” JASSS, vol. 9, no. 2, pp.
539–555, 2009.

[19] F. Cuesta and A. Ollero, “Intelligent control of mobile robots with fuzzy
perception,” in Intelligent Mobile Robot Navigation, ser. Springer Tracts
in Advanced Robotics. Berlin: Springer, 2005, vol. 16, pp. 79–122.

[20] H. Mobahi and S. Ansari, “Fuzzy perception, emotion and expression
for interactive robots,” in Proc. of the IEEE Intl. Conf. on Systems, Man
and Cybernetic (SMCC03), vol. 4, Washington, 2003, pp. 3918–3923.

[21] A. Casali, L. Godo, and C. Sierra, “Graded BDI models for agent
architectures,” in Computational Logic in Multiagent Systems, ser. LNAI.
Berlin: Springer, 2005, no. 3487, pp. 126–143.

[22] ——, “Modeling travel assistant agents: a graded BDI approach,” in
Artificial Intelligence in Theory and Practice, ser. IFIP. Berlin: Springer,
2006, vol. 217, pp. 415–424.

[23] ——, “g-BDI: A graded intensional agent model for practical rea-
soning,” in Modeling Decisions for Artificial Intelligence, ser. LNCS.
Berlin: Springer, 2009, no. 5861, pp. 5–20.

[24] S. A. Long and A. C. Esterline, “Fuzzy BDI architecture for social
agents,” in Proc. IEEE Southeastcon 2000, N. R. Pal et al., Eds. Los
Alamitos: IEEE, 2000, pp. 68–74.

[25] P. Lokuge and D. Alahakoon, “Decisions based upon multiple values: the
BVG agent architecture,” in Neural Information Processing, ser. LNCS,
N. R. Pal et al., Eds. Berlin: Springer, 2004, no. 3316, pp. 941–946.

[26] L. Hai-bo, G. Guo-chang, S. Jing, and F. Yan, “AUV fuzzy neural BDI,”
Marine Science and Application, vol. 4, no. 3, pp. 37–41, 2007.

[27] S. Shen, G. M. P. O’Hare, and R. Collier, “Decision-making of BDI
agents, a fuzzy approach,” in Proc. 4th Intl. Conf. on Computer and
Information Technology. Washington: IEEE, 2004, pp. 1022 – 1027.

[28] S. Shen, G. M. P. O’Hare, and M. J. O’Grady, “Fuzzy-set-based decision
making through energy-aware and utility agents within wireless sensor
networks,” Art. Intelligence Review, vol. 27, no. 2-3, pp. 165–187, 2008.

[29] Y. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[30] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. New Jersey: Wiley, 2007.

When will I see you again: modelling the influence
of social networks on social activities

Nicole Ronald
Design and Decision Support

Systems Group
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: n.a.ronald@tue.nl

Virginia Dignum
Faculty of Technology, Policy

and Management
Delft University of Technology

Delft, The Netherlands
Email: M.V.Dignum@tudelft.nl

Catholijn Jonker
Man-Machine Interaction Group
Delft University of Technology

Delft, The Netherlands
Email: C.M.Jonker@tudelft.nl

Abstract—Social activities account for a large amount of travel,
yet due to their irregularity and the number of options regarding
location, participants, and timing, they are difficult to model
and predict. We assume that social activities are constrained by
one’s social network, which consists of people you are close to,
both socially and spatially. Therefore, a model of social activity
behaviour should be sensitive to the network. In this paper, an
agent-based model to describe social activities between two people
over time is described and four different input networks (random,
based on spatial distance, based on social distance, based on
both distances) are experimented with. The results show that the
overall social network has an effect on the number of activities
generated in the entire system and also between pairs of friends.

I. INTRODUCTION

Every transport system may be described as a social sys-
tem, composed of individuals who interact and influence the
behaviour of each other. Multi-agent simulation is therefore
becoming increasingly important in travel simulation, travel
analysis, and travel forecasting, in particular due to its pos-
sibilities to model explicitly the individuals’ decision making
processes. In fact, all travel is a result of individual decisions,
as people try to manage his/her life in a satisfying way. As
such, travel can be seen as result of individual goals (e.g. go
to work to earn money, visit friends for pleasure) [1].

Our focus in this paper is on social face-to-face activities.
People frequently interact face-to-face with each other. This
could fulfill several needs: to gather information, to share an
experience, to help one another, or for relaxation. Face-to-
face interaction is sometimes also crucial for relationships to
continue. Urry [2] notes that “[e]specially in order to sustain
particular relationships with a friend or family or colleague
that are ‘in the mind’, that person has intermittently to be
seen, sensed, through physical copresence”.

In order to model these activities, the transport modelling
field is experiencing a shift from understanding “where are
people going” and “what activity are they doing” towards
“who are they interacting with”. The generation and schedul-
ing of social activities depends not only on the structure of
the spatial network, which is covered by “where” and “what”,
but requires that social networks, which mean “who” need to
be incorporated as well.

In this project, we are interested in ascertaining the influence
of social network typology on the number, frequency and type
of social activities between network nodes. This is necessary
because incorporating social networks into existing activity-
travel models will add a lot of complexity and require more
intensive data collections. Testing the sensitivity of potential
models of activity behaviour to different networks is an im-
portant step in evaluating the usefulness of their incorporation.

The aim of this paper is to demonstrate the relevance of the
social network structure, by investigating the performance of
a simplified model with different input structures with respect
to the number of activities generated for individuals, pairs of
individuals, and for the entire population. We begin with a
review of activity modelling and social network generation. A
model with utility-based agents is described and the results
are discussed. We conclude with recommendations for other
applications and future work.

II. BACKGROUND AND RELATED WORK

A. Activity generation

Human activities are generated due to “physiological, psy-
chological and economical needs” [3]. A distinction is com-
monly made between subsistence (e.g., work-related), main-
tenance (e.g., keeping the household running), and leisure
activities.

Non-discretionary activities such as work and school can be
partly explained by the traveller’s sociodemographic charac-
teristics and generalised travel costs [4], as well as long-term
decisions such as a decision to move to a particular town.
Participation in, and scheduling of, other activities is not as
easily predicted. Social and leisure activities are the reported
purpose for a large number of trips, ranging from 25 to 40%
for various countries [5].

In current state-of-the-art activity-travel models, social ac-
tivities, if at all scheduled, are assigned to random locations
and times [6] and do not take into account the constraints or
preferences of friends. Being able to model these activities
could lead to better prediction of activity schedules and
forecasts of travel patterns and demand for urban facilities,
in particular those relating to social and leisure activities.

A theory currently being explored for generating discre-
tionary activities is based on needs. Activities both satisfy and
generate needs and needs grow over time [7]. Maslow’s hierar-
chy of needs has been proposed as a starting point [8], however
it is difficult to collect data for model validation. A separate
set of needs was proposed by Arentze and Timmermans [7]
which could be identified through empirical research.

B. Social networks

Social networks are a representation of individuals and the
relationships between them. The relationship between two
individuals can be defined in a number of ways, for example
how similar they are, how they are related to each other,
whether they interact or how often they interact, or how
information flows between them [9].

Networks can be represented in two ways: complete or
personal. A complete network contains all of the relationships
for all the individuals in the network, for example, all the
friendship links between students in a class. Personal networks
contain the relationships for a particular individual (known
as the ego), however the attributes of the people they name
(known as alters) are provided by the ego rather than the alter
themselves. It is not guaranteed that the personal networks of
egos in the sample will intersect.

As Newman [10] recognised, research has been slow in
understanding the actual workings of networked systems and
the focus has been on structural form and analysis. As a result,
there are many methods for generating (e.g., the small world
model [11] and the scale-free network [12]) and measurements
for comparing static, complete (and not necessarily social)
networks (e.g., [13]). However, it has been recognised that
social networks have certain properties, in particular with re-
spect to the similarity between people, their spatial proximity,
the overall clustering coefficient (i.e., how tightly-knit the
network is) and the variation in size of personal networks
(e.g., how many friends do people have; also known as the
degree). Hamill and Gilbert [14] presented a model known
as social circles, where two people are connected depending
on the distance between them. This distance could be social
(e.g., based on whether two people are similar in terms of age,
gender, occupation, religion, or shared values etc.) or spatial.

C. The effects of social networks on activities

The bulk of the research on the effects of social networks on
activities is at the data analysis stage. Individuals are surveyed
about their social network and asked to complete an activity
diary for several days, listing who they interacted with and the
nature of the activity.

As part of the Connected Lives study, Carrasco [15] col-
lected data on individuals’ personal networks and interactions,
then used multi-level modelling to look for influences on
frequencies of activities. The results showed that the number
of components (i.e., subgroups), density (i.e., clustering), and
degree of the personal network influences the frequency of
social interactions, and are a better indication of frequency
than the size of the network or isolates. Younger people tend

to have a higher frequency of activities, as well as egos and
alters with similar ages.

The latter is an example of homophily, which is based on
the idea that individuals interact with others who are similar
to them [16]. Homophilies can be separated into two groups:
those based on status, both ascribed (e.g., age, gender, etc.)
and acquired (e.g., occupation, religion, etc.), and those based
on values, such as attitudes and beliefs.

Given the data collected for activity-travel modelling pur-
poses, at least two network generation algorithms have been
developed. Illenberger et al. [17] presented a model based
on spatial distance, while Arentze and Timmermans [18]
developed an algorithm based on spatial and social distance.
The latter can also be extended to include the influence of
common friends, following the theory that if person 1 is friends
with person 2 and person 3, then persons 2 and 3 have a good
chance of also being friends.

Hackney and Marchal [19], building on previous work,
developed a microsimulation which incorporated a social
network on top of a daily activity scheduler. The individuals
in the system exchange information with each other, either
about locations or about friends. Currently their system does
not include collaborative scheduling.

III. MODEL DESCRIPTION AND DESIGN

Joint social activities are defined by the different people
involved, their relationships and interactions with each other,
and their activities in and possible movement around the
environment. The topology of interactions is not homogeneous
and clusters may form. Therefore agent-based modelling ap-
pears to be appropriate for our model, due to the complex
relationships and interactions between individuals and the
individuals’ situatedness in an urban environment [20].

The model consists of agents located in a spatial environ-
ment, where they have a home location. This environment is
represented by a network of locations. Each agent has a list
of other agents he/she is friends with and a list of locations
that he/she knows. They also have sociodemographic attributes
(e.g., age, gender, car ownership, work status etc.) and a
schedule with a certain number of time periods. Each agent
can undertake maximally one activity per time period.

Each pair of agents has a similarity measure, which follows
from the notion of homophily. Pairs also keep track of when
they last saw each other. Links are undirected, meaning that
friendships are mutual.

The goals of the agents in the system are derived from the
social needs of humans, which include interacting with, and
gaining the respect and esteem of others. The agent goals are
therefore:
• making and maintaining (long-term) relationships with

other people;
• sharing experiences with other people, in the form of joint

activity participation;
• sharing (giving and gaining) information with other peo-

ple; and
• learning about their local environment.

In this paper we focus on the second goal of joint activity
participation. Utility-based agents are used as this allows the
agents to evaluate the outcomes of participating in different
activities. This has advantages and disadvantages: utility func-
tions are difficult to develop and tend to oversimplify the real-
world processes [21], however as the aim is to create a model
of a sample population for a city, i.e., thousands of agents, the
agent model needs to be simple in order to be scalable.

A utility function (Equation 1) has been developed to take
into account the required issues – type (a) and purpose (p) of
the activity, location (l), day (d), the other person involved (j)
–, essentially, what, where when and who. This is based on
the needs-based theory discussed in Section II-A.

Ui(a, p, l, d, j) = V ap
i + V l

i + V j
i + ϵ (1)

V ap
i = ft(α

ap
i , d− tap) (2)

V l
i = ft(1− dil, d− tl) (3)

V j
i = ft(sij , d− tj) (4)

ft(x, t) = (
2

1 + e−xt
)− 1 (5)

sij = Qg + Qa (6)

Activities can have a purpose, chosen from sharing experi-
ences, sharing information, informal chatting, and support. The
different purposes can be used to determine who is suitable
for a given activity. Activities can also have a type, such as
shopping, eating out, or sporting activities, which determines
the location of the activity. In future, this will be also used to
determine the duration of the activity.

The components of the utility function Ui consider when
an individual last undertook an activity (Equation 2), visited
a location (Equation 3), or saw someone (Equation 4). These
values (tl, tap, tj) are combined with the date of the proposed
activity d to find the last time the particular event happened.
The utility increases over time (Equation 5), so that an
activity/location/person that an individual hasn’t seen/visited
for a while is more attractive than one seen/visited the previous
day.

The preferences for an activity with a particular purpose and
type (αap

i) is also an input to the model. In this instance of
the model, we consider preferences to be unidimensional as a
simplification. It could be that preferences are dependent on
the composition of the group, for example, in terms of gender,
cultural background, size of the group etc.

The distance to the location (dil) is also taken into account,
based on the individual perception of the environment and
travel time. For each pair of individuals i and j, a similarity
measure was calculated (Equation 6), taking into account age
(a) and gender (g). The values of dij and sij are scaled to
[0, 1].

In order to schedule activities, the agents need to negotiate
with each other. This can be done using a negotiation protocol.
Given that our aim is to understand the relation between
social network and activities, we are more interested in the
group formation than on the specific time and type of activity

undertaken. As such, we use the package deal method [22]
that abstracts from negotiation issues (for example, the activity
may determine the time and location or vice versa, or in which
order they should be discussed).

We further assume that interactions and activities are under-
taken between two agents, who are connected to each other
in the social network. This means that the social and location
networks do not change (as new connections are not being
made), therefore the centrality calculations do not change.

Agent i, the host, makes a decision to start an interaction
using an altered utility function, where the initial location l is
set to the other agent’s (j; the participant) house:

Us(a, p, l, d, j) = V ap
i + V j

i + V jl
i (7)

V jl
i = ft(1− dil, tj) (8)

If Us exceeds i’s threshold, the host and participant ex-
change ideas for days and locations.

1) Host proposes an activity.
2) The respondent then creates a list of the possible

day/time combinations (taking into account the host’s
time window) and sends them to the host.

3) The host collates the day/times and creates a list of the
intersection of the suggestions.

4) The respondent determines what type of locations are
appropriate from the patterns provided. They then look
up which locations they know of that match those
location types.

5) The host collates the locations and creates a list of the
union of the suggestions.

6) The host then creates a list of possible activities, taking
into account when agents are available and the locations
they have suggested. The list is returned to the respon-
dent.

7) The respondent evaluates this list using a utility function
and returns the list with their preferences.

8) Using the Borda ranking method, the host determines
the chosen option and notifies the respondent, who adds
the activity to their schedule. The host also adds the
activity to their schedule.

Negotiations can be unsuccessful if neither individual is
available on the same day, neither can suggest any suitable
locations, or one individual finds that the utility of all proposed
activities does not exceed their threshold.

IV. NETWORK INPUTS

For all input networks, the agent population was constant,
with the same personal properties (age, gender), thresholds
and parameters, and home location. The average degree was
kept roughly the same (∼10), which is in line with analysis
of friendship/social interaction networks [18].

Four different networks were generated. The first was a
random graph based on Erdos-Renyi random graph [23],
randomly generated by the NetworkX package for Python [24].
This network is shown in Figure 1.

Pajek

Fig. 1. The random network.

Pajek

Fig. 2. The social circles network taking into account spatial distance.

The other networks were based on the social circles algo-
rithm [14]. All individuals used the same distance size for
simplicity, however this varied per network in order to meet
the average degree requirement. The social distance was based
on Equation 6.

The second network used only spatial distance as the
distance measurement (Figure 2).

The third used only social distance as the distance measure-
ment (Figure 3).

The fourth used both spatial and social distance as the
distance measurement (Figure 4).

The different social networks have differing clustering coef-
ficients and assortativity on degree (i.e., nodes are connected to
other nodes with similar number of nodes [10]) and on node
attributes such as age, gender, and activity threshold. These
properties are shown in Table I.

Pajek

Fig. 3. The social circles network taking into account social distance.

Pajek

Fig. 4. The social circles network taking into account spatial and social
distance.

V. AN ILLUSTRATIVE SCENARIO

In this scenario, the only locations present are home lo-
cations. This means, that for an activity between two agents,
only two locations are possible. Activities were also scheduled
for the current time period, however the protocol does allow
for looking ahead. For the one activity type and purpose,
αhome,social was set to 0.5. Each agent has an activity thresh-
old randomly chosen from [0.5, 1, 1.5, 2.0].

The agents all use the same utility function and negotiation
protocol. Each agent also has an age level in the range [1−4],
which is consistent with the aggregation used in activity-travel
surveys (e.g., [18]). The gender similarity is Qg = 1 if two
agents have the same gender, and Qg = 0 otherwise. For age,
following [18], Qa = 4−n, where n is the difference between
the two age classes. The overall similarity or social distance
sij is scaled to [0, 1].

The error term takes into account the location (N(0, 0.2)),

Type Degree Cluster Assort Assort Assort Assort
(degree) (threshold) (age) (gender)

Random 10.141 0.105 0.036 0.017 -0.021 -0.040
Spatial 10.141 0.509 0.531 0.009 0.069 -0.052
Social 12.040 1 1 0.0112 1 1
Soc/spa 10.505 0.491 0.264 0 0.862 0.565

TABLE I
THE PROPERTIES OF THE DIFFERENT SOCIAL NETWORKS.

each participant (N(0, 0.1)), and a personal short- (i.e., drawn
every timestep, N(0, 0.5)) and long-term (i.e., drawn at the
start of the simulation, N(0, 0.2)) error.

The model was run for 28 time periods as a warmup, and
then for a further 28 time periods to collect data.

The aim of the experiment is to validate the following
hypotheses:

H1. The network structure will affect the number of
activities.

H2. The network properties will affect the number of
activities.

H3. At the node level, the distribution of activities will
be different for different input networks and the node
attributes (degree, clustering) will affect the number
of activities.

H4. At the relationship level, the distribution of activities
will be different for different input networks and the
dyad attributes (similarity, distance) will affect the
number of activities.

H5. The interaction protocol will be sensitive to different
input networks in terms of the number of success-
fully and unsuccessfully negotiated activities.

VI. RESULTS AND DISCUSSION

All analysis was done in R, a statistical analysis pack-
age. ANOVA tests were used to measure the difference in
means of output variables for different input networks, while
Kolmogorov-Smirnov tests can indicate whether two distribu-
tions are similar. p indicates the significance of each test and r
denotes the correlation coefficient. If p is less than 0.05, then
this indicates that the result is statistically significant.

A. Hypothesis 1: The overall network structure

The effect of the overall network structure on the number
of activities was measured using an ANOVA test. The result
suggested a significant difference between the input network
types (p < 0.001).

This means that hypothesis 1 can be accepted, as the
network structure affects the number of activities.

B. Hypothesis 2: The network properties

The correlation between each network property (clustering
coefficient, assortativity on degree) and the number of activ-
ities was not significant. This indicates that these aggregate
measurements are not a good indication of the outcomes of
the processes in the system and therefore hypothesis 2 cannot
be accepted.

Personal activities (random)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

20
30

40

Fig. 5. The distribution of activities for the random network.

Personal activities (spatial)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

20
30

40

Fig. 6. The distribution of activities for the spatial network.

Personal activities (social)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

20
30

40

Fig. 7. The distribution of activities for the social network.

C. Hypothesis 3: At the node level

By averaging the number of activities across the ten runs for
each person, the distribution of the activities can be measured.

Personal activities (social/spatial)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
5

10
15

20

Fig. 8. The distribution of activities for the social/spatial network.

Using a Kolmogorov-Smirnov test can indicate whether the
distributions are similar or not.

The distributions at the node level are not significantly
dissimilar, as shown in Figures 5, 6, 7, 8.

The correlation of the number of activities per person and
their centrality or degree is significant (p < 0.001, r = 0.216).
This could be because those with more friends have more
opportunity to engage in activities. The threshold for activities
is also significant (p < 0.001, r = −0.328), meaning
that those with lower thresholds are participating in more
activities as expected. The individual clustering coefficient is
not significant, as activities are limited to only two agents. We
would expect this to become significant if larger group sizes
are modelled.

Although some individual properties are significant, as the
overall distribution of activities is not dissimilar, hypothesis 3
cannot be accepted.

D. Hypothesis 4: At the relationship level

As with the personal level, the activities across runs for
each pair were averaged. The distributions at pair level were
significant (all p < 0.01), with the exception of the random
network and the social/spatial distance network (p = 0.70).
The distributions can be seen in Figures 9, 10, 11, 12.

There was a very weak correlation between the similarity
of pairs and activities (p < 0.05, r = 0.041).

The correlation between distance between pairs and the
number of activities was stronger (p < 0.001, r = −0.347),
which shows that pairs who live closer to each other are
engaging in more activities together.

These results indicate that the relationship level attributes of
the network are more significant than the overall or the node
attributes and therefore hypothesis 4 can be accepted.

E. Hypothesis 5: Performance of the protocol

We expect that the negotiation protocol is sensitive to the
network. The protocol can fail at two points: if agents are
not available at the same time, or there is no overlap in the

Pair activities (random)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Fig. 9. The distribution of activities per pair for the random network.

Pair activities (spatial)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

10
0

15
0

Fig. 10. The distribution of activities per pair for the spatial network.

Pair activities (social)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Fig. 11. The distribution of activities per pair for the social network.

preferred activities (e.g., both agents want to do completely
different activities, or one does not like any of the options).

We have already shown that the successful activities differs

Pair activities (social/spatial)

Activities

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

40
60

80
10

0
12

0

Fig. 12. The distribution of activities per pair for the social/spatial network.

for each network. The unsuccessful activities due to time (p <
0.1) and due to activity disagreement (p < 0.01) also differs
for each network. Table II shows the average for each type.

Network Successful Unsuccessful (time) Unsuccessful (activity)
Random 868.2 834.2 437.5
Spatial 967.5 876.5 178.7
Social 882.7 834.4 405.5
Soc/spa 951.3 868.8 200.7

TABLE II
THE NUMBER OF SUCCESSFUL AND UNSUCCESSFUL NEGOTIATIONS.

The networks with some sort of spatial component per-
formed better; with these networks as a base, agents are less
likely to decline an activity based on distance.

From these results, hypothesis 5 can be accepted.

F. Summary

The experiment shows that overall, the key factor is not the
overall structure of the network, but the nature of the links
between agents.

Whether spatial or social distance is given more weight in
the utility function will also influence the outcomes. In this
experiment, they were treated equally.

VII. CONCLUSION

Multi-agent simulation is a useful method for modelling the
decision-making processes undertaken by individuals, in this
case, regarding whether they participate in a social activity
with other people or not. Current research assumes that
social networks influence social activities, therefore testing the
sensitivity of potential decision-making models to different
networks is an important step in evaluating the usefulness
of incorporating social networks in activity-travel models.
This step could also important for other domains where the
social network is influential, e.g., social support networks or
exchange networks [25].

We have described an agent-based simulation of social
activities and discussed the results of experimentation with

several input networks, differing in structure and properties.
We show that the relationship properties within the network are
more significant than individual or overall network properties
for this type of model. However, as the model is developed
further, some personal or network properties could become
important. For example, people can only maintain a certain
number of friends, so the degree becomes important.

The model was simplified to one activity type/purpose and
no network dynamics, so that the effects of the input network
could be seen. Future work involves extending the model
to include further details about activities (including different
locations, activities with more than two participants, and taking
into account time pressures/value of time), experimenting with
agents using different utility functions and/or negotiation pro-
tocols, and exploring the effects of social distance/homophily
in closer detail, in particular in the context of cultural charac-
teristics.

The results of our research will be used by city planners
to evaluate the effects on social activities and travel of both
changes in population and their characteristics (e.g., increasing
elderly population, an increase/decrease in car ownership)
and changes in infrastructure (e.g., public transport routes,
locations of new shopping facilities).

As research into the effects of social networks on travel
behaviour is in its early stages, there are little data available
and as a result most models are in early stages of development.
Research into how these models can be validated is in progress
[26]. However, this work can be seen as a step forward in the
requirements for sensitivity testing of such models.

ACKNOWLEDGEMENTS

The first author would like to thank Theo Arentze and Harry
Timmermans. The comments from the anonymous reviewers
were also appreciated.

REFERENCES

[1] M. Balmer, “Travel demand modeling for multi-agent transport simula-
tions: algorithms and systems,” Ph.D. dissertation, ETH Zürich, 2007.

[2] J. Urry, “Connections,” Environment and Planning D: Society and Space,
vol. 22, pp. 27 – 37, 2004.

[3] C.-H. Wen and F. S. Koppelman, “A conceptual and methdological
framework for the generation of activity-travel patterns,” Transportation,
vol. 27, pp. 5–23, 2000.

[4] J. Hackney and F. Marchal, “Model for coupling multi-agent social
interactions and traffic simulation,” in Proceedings of Frontiers in
Transportation 2007, 2007.

[5] K. Axhausen, “Social networks, mobility biographies and travel: The
survey challenges,” Institut für Verkehrsplanung und Transportsysteme,
Tech. Rep. 343, 2006.

[6] T. A. Arentze and H. J. Timmermans, “A learning-based transportation
oriented simulation system,” Transportation Research B, vol. 38, pp.
613—633, 2004.

[7] T. Arentze and H. Timmermans, “Social networks, social interactions
and activity-travel behavior: A framework for micro-simulation,” in TRB
2006 Annual Meeting, 2006.

[8] E. Miller, “An integrated framework for modelling short- and long-
run household decision-making,” in Progress in Activity-Based Analysis,
H. Timmermans, Ed. Oxford, England: Elsevier, 2005, pp. 175–202.

[9] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis
in the social sciences,” Science, vol. 323, pp. 892 – 895, 2009.

[10] M. E. J. Newman, “The structure and function of networks,” Computer
Physics Communications, vol. 147, pp. 40 – 45, 2002.

[11] D. J. Watts and S. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440 – 442, 1998.

[12] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509 – 512, 1999.

[13] R. A. Hanneman and M. Riddle, “Introduction to social network
methods,” 2005. [Online]. Available: http://faculty.ucr.edu/∼hanneman/
nettext/

[14] L. Hamill and N. Gilbert, “Social circles: A simple structure for
agent-based social network models,” Journal of Artificial Societies and
Social Simulation, vol. 12, no. 2, p. 3, 2009. [Online]. Available:
http://jasss.soc.surrey.ac.uk/12/2/3.html

[15] J. A. Carrasco, “Unravelling the social, urban, and time-space context of
activity-travel behaviour: Results from a social network data collection
experience,” in Proceedings of the 12th International Conference on
Travel Behaviour Research, 2009.

[16] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of
a feather: Homophily in social networks,” Annual Review of
Sociology, vol. 27, pp. 415 – 441, 2001. [Online]. Available:
http://www.jstor.org/stable/2678628

[17] J. Illenberger, G. Flötteröd, M. Kowald, and K. Nagel, “A model
for spatially embedded social networks,” in Proceedings of the 12th
International Conference on Travel Behaviour Research, 2009.

[18] T. Arentze, P. van den Berg, and H. Timmermans, “Modeling social
networks in geographic space: approach and empirical application,” in
Proceedings of the workshop on Frontiers in Transportation: Social
networks and travel, 2009.

[19] J. Hackney and F. Marchal, “A model for coupling multi-agent social
interactions and traffic simulation,” in TRB 2009 Annual Meeting, 2009.

[20] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and
simulation part 2: How to model with agents,” in Proceedings of the
2006 Winter Simulation Conference, L. F. Perrone, F. P. Wieland, J. Liu,
B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, Eds., 2006, pp. 73 –
83.

[21] M. J. Wooldridge, An introduction to multiagent systems, 2nd ed.
Chichester, England: John Wiley & Sons, 2009.

[22] S. S. Fatima, M. Wooldridge, and N. R. Jennings, “Multi-issue negotia-
tion with deadlines,” Journal of Artificial Intelligence, vol. 27, pp. 381
– 417, 2006.

[23] P. Erdős and A. Rényi, “On the evolution of random graphs,” Magyar
Tud. Akad. Mat. Kutató Int. Közl, vol. 5, pp. 17—61, 1960.

[24] NetworkX Developers, “Networkx,” 2010. [Online]. Available: http:
//networkx.lanl.gov/

[25] K. S. Cook, “Exchange and power in networks of interorganizational
relations,” The Sociological Quarterly, vol. 18, no. 1, pp. 62 – 82, 1977.

[26] N. Ronald, T. Arentze, and H. Timmermans, “Validation of complex
agent-based models of social activities and travel behaviour,” in Pro-
ceedings of the 12th World Conference on Transport Research, 2010.

Human behaviours simulation in ubiquitous
computing environments

Teresa Garcia-Valverde, Francisco Campuzano, Emilio Serrano and Juan A. Botia
University of Murcia, Spain. E-mails: {mtgarcia,fjcampuzano,emilioserra,juanbot}@um.es

Abstract—Ambient Assisted Living (AAL) systems’ main goal
is to augment live quality of elderly people, by using ICT based
systems. In this paper, we are concerned with the artificial
reproduction of a physical environment (i.e. a house) and an
elder (i.e. the attended) living in such environment. An agent
based social simulation system is used for such purpose. Such
simulator will allow the integration of ubiquitous computing
appliances, services and applications in such environment. A
realistic reproduction of human behaviour in the simulator helps,
in this context, in the validation of silent monitorisation, diagnosis
and action based applications. Proofs are given in the paper
which demonstrate the level of reality reached by comparing the
artificial behaviour with real ones.

Index Terms—Ubiquitous computing, Ambient Assisted Living,
behaviour simulation, user modelling.

I. INTRODUCTION

The main thesis presented in this paper is the following:
agent based social simulation (ABSS) [1] may help in the
engineering of Ambient Intelligence systems. ABSS is a
simulation paradigm in which the focus is put on the definition
of the separate components of the simulation in an isolated
manner. In such simulation runs, the emergence of behaviours
is the main subject under study. And the metaphor of agent is
used for specification of single components and interactions
among them. An ambient intelligence [2] system is a set of
appliances, services and applications which silently surrounds
and interact with the user in an intelligent manner. In such
kind of systems, the user is the central entity of the model.
Starting from the user, services and applications are built.

A main difficulty one may find in the development process
of an AmI system is that of testing and validation. Testing is
the process of executing a program with the intent of finding
errors in the code [3]. Such errors must be debugged [3]. Some
of the errors may be found by using a Unit approach with the
system under test (SUT). Common errors which are found
in this stage are related to common programming mistakes
(e.g. values of variables out of range, shoddy checking of
return values from methods and so on). Thus, robustness of
the program is a must here. But a more elaborated test set may
be defined in order to assess the functionality of the system
(i.e. it behaves as expected). But, if the main issue in AmI
systems is a smooth interaction with the user, an Unit based
approach is no more valid here. It is clear that the user, or
at least a model of the user, should be incorporated in the
development process in order to measure to what extent, the
SUT is behaving as expected when interacting with him. In
this paper, an approach to test and validate AmI systems in a

stage prior to deployment is presented. The main idea behind
this is that the user is modelled with a computational model
and integrated into an ABSS model which incorporates as a
simulated artifact, the environment, the hardware (i.e. mainly
sensors and interfaces with the user) and integrates the real
software (i.e. services and applications). The real software is
precisely the SUT here.

The proposal is articulated by means of a methodological
work. Such a methodology is a set of procedures which
guides the developer in the definition, creation, testing and
validation of the AmI system. It is based on a methodology
previously described by Gilbert et al. [1]. It comprises the
creation of the necessary ABSS models and how they should
be employed to find errors in AmI services. The application
of the methodology is exemplified in a real domain. The
application domain is AAL (Ambient Assisted Living). An
AAL system is an ICT based solution which is devoted to
augment quality of live for elderly people. In this case, the
interest is focused on a system called Necesity [4]. It is
based on a sensor network deployed through the house and
a central processing unit. Sensors include presence, pressure
and open-door. The system is designed to work on single
person environments (e.g. an elderly who lives alone and
independently in his house). It is in charge of monitoring
activity regime of the elderly 24x7 in a manner that when
his activity pattern is anomalous, an emergency response is
started. The rest of the paper will demonstrate that an artificial
reproduction of a house, sensors and the attended, together
integrated with the real software, helps in the fine tuning of
the activity pattern management software.

The rest of the paper is structured as follows. Section II
introduces the methodology used for the engineering of AmI
services. Section III introduces the computational models em-
ployed to artificially reproduce the behaviour of the attended.
Such behaviour is based on a probabilistic and hierarchical
automata which governs the activity and location of the
modeled elderly in each instant of time. In section IV, the
validation approach is presented. It is based on the statistical
contrast of artificial data traces obtained by simulating the
automata just mentioned with similar traces coming from real
users in similar context.

II. AVA, AN AGENT BASED METHODOLOGY FOR THE
VALIDATION OF AMI SYSTEMS

This section explains an agent based methodology for the
validation of AmI systems called AVA. This methodology

Fig. 1. AVA, An Agent based methodology for the Validation of AmI systems
expressed as a flowchart

proposes the development of ABSS in order to validate AmI
applications. AVA is an extension of the methodology pro-
mulgated by Gilbert et al. [1] for the development and use of
general ABSS. The two main innovations with regarding the
classical methodology by Giltber et al. are: (1) the existence
of a step to generate simpler simulations and (2) the con-
sideration of including real elements in the simulation to get
more realistic results. This section will show the advantages
of these innovations for the specific purpose of validating
AmI applications. The AVA methodology is expressed as a
flowchart in figure 11.

Gilbert et al. [1] defines the target of a social simulation as
some “real world” phenomenon which the researcher is inter-
ested in. The AVA methodology is proposed to validate an AmI
application including their interactions with the environment
and users. Thus, AVA starts considering an AmI target (step 1)
which includes an environment, users and an AmI application
which may be finished or at an advanced stage of development.
Typically, the use of ABSS to generate knowledge involves a
necessary familiarization with the domain in the first step. This
is required to generate models of the target in the following
steps of the methodology [1]. The main elements to be studied
in an AmI system are: the environment (step 2), users (step
3) and the AmI application (step 4). Note that while the
environment and the user are inputs, the application system is
a process. In principle, the environment and users are external
and do not support changes. On the other hand, the AmI
application can be modified. This application will be refined
along the iterations of AVA to get a realistic validation. This

1The flowchart uses standard elements of classic flowcharts [5] as flow
of control (represented as arrows), processes (represented as rectangles),
decisions (rhombus), input/output (parallelograms), start and end symbols
(ovals) and predefined processes (rectangles with vertical lines at the sides).

paper discusses the performance of these steps for an AAL
system for elderly people

The development of an AmI system model is performed
in step 5. The model design associates the real system with
a representation of this system (the model) [6]. Here, the
AmI application must be modelled but also the users and
the environment. These models are necessary to validate the
AmI application because they interact with it. Moreover, a
realistic validation of the application needs realistic models
for users and environment. Therefore, models must describe
reality before being as simple as possible [7]. Section III
explains the construction of a user model for an specific AmI
application.

Step 6 deals with the implementation of the AmI system in
a simulation language. The implementation from the concepts
of the model is not a trivial task [6]. A general programming
language or a specific one of the available frameworks for
the development of ABSS can be used for the construction of
the simulation. The second option is much more convenient
because several of the typical tasks in the construction of
ABSS have been included in this kind of software packages
[1]. Examples of these tasks are scheduling agents’ actions
or building basic environments. The web of the Open Agent
Based Modeling Consortium2 nowadays lists 22 of these
frameworks. Section III shows the use of a specific software
package for the implementation of a realistic environment
model: 3D Sweethome.

After building the simulation, this must be executed (step
7). Quick, cheap and numerous experiments can be performed
thanks to the ABSS. These executions produce large amounts
of data regarding the behaviour of users, environment and
application models. Forensic analysis, step 8, is an offline
analysis to be conducted on the data stored from the pre-
vious step. The analysis should consider whether the AmI
application functionality is correct. Furthermore, this step must
validate that the behaviour of users and environment models
is consistent with the observed reality (steps 2 and 3). Without
this validation, the theories generated from simulations have
no relation to reality (as they are based on non-descriptive
models). Therefore, the functionality of the AmI application
model is linked to the users and environment models. Section
IV deals with the validation of the users model for an AAL
system

One of the innovative points in the AVA methodology is the
use of simple simulations as a means to validate descriptive
simulations. Step 9 checks if any elements of the simulation
are too complex. In this case, complexity means that it is
difficult to assess whether the behaviour of an element is the
expected one. For example, some behaviours of users can be
so complex that they need to be evaluated in isolation. An
example of this type of behaviour would be the resolution of
collisions on the motion of a large number of agents. This
behaviour is a problem to be studied itself and its validation
would be much more complicated with additional elements in

2OpenABM Consortium website: http://www.openabm.org/

the simulation (more users’ behaviours, a realistic environment
model, a realistic model of an AmI application, etc). In these
cases, the methodology proposes to consider these complex
elements as an object of study itself (step 10) and repeat the
AVA methodology for them (step 11). The reuse of models
and code in this new iteration will be direct because a more
descriptive simulation is available as result of the previous
steps. Once the complex element is validated in a simpler
simulation, which is the final result of the methodology, the
next step for the overall simulation (step 12) can be performed.

Step 12 checks if the developer has found errors in func-
tionality. If that is the case, the AmI application of step 4 must
be modified in order to correct these errors and the process
repeated. Besides the primary objective (validating the AmI
application), is typical to find bugs of previous steps at this
point in the form of implementation failures or unrealistic
models.

The final decision, step 13, checks if actual elements of
the AmI system can be connected to the simulator. The AVA
methodology proposes to inject or connect real elements in
the simulation progressively in order to make more realistic
validations3. This process is called “reality injection” and the
basic idea is that real elements can coexist with simulated
elements. After connecting real elements, the methodology
must be repeated from step 4 to improve the application and
the models. The result is an exhaustive validation which is
as realistic as possible. The obvious question is why models
and simulations are necessary if real elements (as real users)
can be injected. The answer is that a model, by definition,
is somewhat easier to study than the modelled reality. The
purpose of including real elements in simulations is to improve
the realism of the models. Then, in subsequent iterations, the
real elements will not be included because the pure simulations
allow faster and cheaper tests.

Finally, if models are descriptive enough, the bugs found in
the functionality of the AmI application model will correspond
to failures of functionality in the real AmI application. These
failures should have been corrected in each iteration of the
AVA methodology. Therefore, the result of the methodology
(step 14) is that the AmI target is exhaustively validated.

III. REALISTIC BEHAVIOUR MODELLING

In this section, the particular models used, in the application
of the AVA methodology in the AAL domain, are introduced.
In section III.A, it is presented how the physical environment
(i.e. the house and furniture) and sensors were defined. Section
III.B refers to the production of realistic computational models
for elders living in such environment and making sensors to
react on their presence. Having such models (i.e. the house,
sensors and persons) within a simulation, and its integration
with the ubiquitous computing software, such software can be
tested.

3Notice that this not involves necessarily a Participatory Multiagent Simula-
tion. The real elements do not have to be humans playing the role of simulation
components. These elements can be software applications, hardware or even
parts of the environment.

Fig. 2. A plane model in Ubik’s editor and its 3D representation

A. Environment Modelling

For Multi-Agent Based Simulation (MABS), it is available
Ubiksim4, a simulator developed by University of Murcia
that works over MASON5. It has integrated an environment
modeling tool based on SweetHome3D6, an application con-
veniently adapted for modelling attended people and their
environment. It is possible to create houses over a 2D plane,
also it offers a 3D navigable view (figure 2). This view is used
for simulation’s visualization at real time.

In the physical environment generated by using the Ubik
editor, a simple house (see figure 2) with a kitchen, a bath-
room, a bedroom and a living room is modelled. Presence
sensors are included in every room of the house. And a sensor
for open door (it is necessary for knowing when the elder
leaves the home) is also included in the outdoor. When a
simulation is run, the person moves in the house and stimulates
sensors when he is detected by them. Such sensors, through
the ubiquitous computing software, generate events. And these
events generate log entries. Such simulated log entries are used
afterwards to check if the virtual elder behaves in a realistic
manner (see section IV).

Notice that log entries (both in the simulator and the
real setting) are generated by the same monitoring service
which continuously checks if the elder may be suffering some
problem, by using a pattern recognition approach (more details
on this may be found in [4]) on the events coming from
sensors. In the first case, the person is virtual, in the second
it is real. But the monitoring service is the same.

B. Behaviour Modelling

The target of the modelling activity is a typical aged person,
who lives independently and alone in his own house. As
he lives alone, the following situation may occur: he may
suffer some health problem and stay immobilised in the
floor for too much time before anybody comes and notices

4UbikSim: http://ubiksim.sourceforge.net, last access: 20 May 2010
5MASON Toolkit: http://cs.gmu.edu/∼eclab/projects/mason/, last access: 20

May 2010
6Sweet Home 3D: http://www.sweethome3d.eu/es/index.jsp, last access: 20

May 2010

that something is wrong. But it is possible to develop an
ubiquitous computing system which detects it and generates
some emergency response process [4]. By following the AVA
methodology, we may use a simulated elder within a simulated
environment to test such system before it is deployed in a real
environment for pilot testing. Such simulated elder should be
necessarily simulated along the 24 hours of the day, repeatedly
for a determined number of weeks. For this, it is assumed
that the day is divided into time slots (i.e. morning, noon,
afternoon and night). In each time slot, it is also assumed that
the simulated person behaves specifically for such slot.

The behaviour of simulated people are modelled proba-
bilistically. In this approach, behaviours are defined as sit-
uations the agent should play in each moment. Transitions
between behaviours are probabilistic. The underlying model
is a hierarchical automaton (i.e. in a higher level there is a
number of complex behaviours that the agent may play and
once it is in a concrete state, within the state there is another
automaton with more simple behaviours). So, the modelling
of each behaviour is treated separately and the modeller is
abstracted of unnecessary details. So, in the lowest level (basic
actions), each state is atomic. An agent never conducts two
behaviours of the same level simultaneously.

The behaviours used for modelling elders are of three types:
• Monotonous behaviours: the kind of behaviour the elder

manifest always approximately in the same time slot, and
on a daily basis (e.g. sleeping, having meal, medication
and so on).

• Non monotonous behaviours: the kind of behaviour the
elder usually manifest, not bounded to a concrete time
slot, and repeated within a non constant period (e.g. going
to the toilet, having a shower, cleaning the house and so
on).

• Any time behaviours: such behaviours will sometimes
interrupt others the elder is already doing, and will be
generated regardless they were already generated in a
temporal proximity (e.g. in his spare time).

A probabilistic automaton [8] is defined as the quintuple
(Q,V, P (0), F,M) where Q is a finite set of states, V is a
finite set of input symbols, P (0) is an initial state vector,
F is a set of final states and M is a matrix that represents
probabilities of transition for every state. In this definition,
transition’s probabilities depend on time. According to differ-
ent daily time slots, the agent’s behaviour acts on a different
pattern. There are time slots for eating, sleeping and taking
medication (Monotonous behaviours).

Notice that, when the elder is at any state, the necessity
of changing to another state may arise. But this is not done
immediately. Moreover, a number of different changes (i.e.
transitions) may be pending simultaneously. Thus, a list of
pending tasks (i.e. or events) is maintained. Such tasks are
ordered by a static priority (e.g. going to the toilet goes before
cleaning).

For generating transitions in real time, probability dis-
tribution functions are used according to the type of the
behaviour and its features. These distributions are member

Q = {a0 = NormalT ime, a1 = MedicationTime,
a2 = MealT ime, a3 = SleepT ime, a4 = Anomalous}

(a)

Q = {a00 = SpareT ime, a10 = MedicationTime,
a20 = MealT ime, a30 = SleepT ime, ax1 = ToiletT ime,

a02 = ShowerTime, a03 = CleanTime}
(b)

Q = {a200 = GoingToFridge, a201 = GoingToCooker,
a202 = Cooking, a203 = GoingToTable, a204 = Eating}

(c)

Fig. 3. (a) Level 0 automaton, (b) Level 1 automata, (c) Level 2 automaton
for state a20

of the exponential family [9], [10]. Section IV defines all
distribution functions used.

Notice that monotonous behaviours must be activated at
specific time hours or within specific time intervals. For
example, in the case of MedicationTime, a new necessity of
changing to such state will be generated exactly at the time to
take medicines. In the case of MealTime and SleepTime, the
necessity is generated within a time interval. The distribution
that models these transitions is bounded in this time slot. It
must be assured that agent eats and sleeps every day, because
of that, if not transition is generated into the time slot, a
transition is generated at the end time.

To provide more realism, an automata hierarchy is intro-
duced representing each state by lower level automata which
define more specialized behaviours.

As shown in figure 3(a), in level 0 the initial state

is a0 =NormalTime. For every one of the other states
{a1 =MedicationTime,a2 =MealTime,a3 =SleepTime} exist
a list of times generated by a probability function. When a
time counter arrives to one of these times, a transition to state
owner of the list is added to pending tasks list. When the action
is finished, the automaton returns to initial state if there is not
another pending task. The final state is a4 =Anomalous, if it
is reached, the execution will be stopped.

In level 1 (figure 3(b)) non monotonous behaviours are
represented. There is an initial state in every refinement where
the person does the main task of the upper level (eating,
sleeping or taking medication). The state ax1 =ToiletTime is
considered in every refinement of level 0. However, the states
a02 =ShowerTime and a03 =CleanTime only may be activated
in normal state of level 0.

In the lowest level (level 2), the new automata define some
specialized actions refining every state of level 1. These new
states do not give relevant information, but the agent gains
more realistic behaviours.

With the sequence of actions in figure 3(c) the person cooks
before eating. It refines state a20 of level 1, the agent is not
going to be static in the kitchen, because it must be going to
different places and spends some time in every state.

In figure 4 a base implementation for agent’s behaviour is
presented. First of all, all possible automata’s states are iterated
for initializing lists which contain time instants (lines 13-24).
These time instants are generated by a probability distribution
function, and they represent when a transition to its associated
state is going to be launched. After of that, the automaton
begins to run. At every time instant, if actual time is equal
than first item of a time list, a transition is added to pending
tasks list (lines 57-60). When there is one state with higher
priority than actual state in pending tasks list, a transition is
also generated. Then, if actual state is unfinished, it is stored
as a pending task and a new state is reached (lines 46-50).
When this new state is finished, leaved state may be resumed.

The configuration parameters for the whole simulation in-
volve:
• Temporal limit in every room before entering in anoma-

lous state (tmax)
• The probability distribution parameters according to the

kind of behaviour
• Time slots of routinary temporal behaviours, like eating

or sleeping (inis, ends, s ∈MealT ime, SleepT ime)

IV. VALIDATION OF THE APPROACH

From section II, it is clear that user modelling is a means for
testing AmI services and applications without a real environ-
ment. This task is performed in the third step of the AVA
methodology. Regarding to the validation, other important
steps within AVA are the steps from 5 to 8. Model validation
is needed in order to show that models are able to describe
the users’ behaviours. The rest of the section shows how the
model validation has been approached. But basically, activity
data from real users is compared (in statistical form) with the
same type of data produced by the artificial models.

1 Let pt be a list of pending tasks ordered by priority
2 Let states be a list with all posible automata’s states
3 Let times be a list of time instants when transitions
4 are going to be generated
5 Distribution Functions to model the ocurrence
6 of monotonous behaviours:
7 Let mb be the function to model monotonous behaviours
8 Let nb be the function to model non monotonous behaviours
9 Let ab be the function to model anytime behaviours
10
11 //Instants of time initialization
12
13 for all s in states do
14 if isAnytime(s) then
15 times(s)<-ab()
16 else if isMonotonous(s) then
17 //Initial and final instants of bounded time slot
18 i <- ini(s)
19 e <- end(s)
20 times(s)<-mb(i, e)
21 else if isNonMonotonous(s) then
22 times(s)<-nb()
23 endif
24 endfor
25
26 actualTime <- 0
27 //actual state is defined by 3 numbers, one per level
28 level0 <- 0
29 level1 <- 0
30 level2 <- 0
31 actualState<-newState(level0,level1,level2)
32
33 //Once initialized the times, the automata begin to move
34
35 //If an anomalous state is reached, the execution stops
36 while(level0(actualState)<>4)
37 //If actual task ends, initial state is activated
38 if timeLeft(actualState)=0 then
39 actualState <- newState(0,0,0)
40 endif
41 //If next state has higher priority than actual state,
42 //actual state becomes a pending task and it is stored
43 //in pt
44 if (size(pt))>0
45 nextState <- first(pt)
46 if priority(nextState)>priority(actualState) then
47 add(pt,actualState)
48 actualState<-nextState
49 remove(pt,nextState)
50 endif
51 endif
52 for all s in states do
53 time <- first(times(s))
54 //If actual time matches first time instant in
55 //times, the task associated with this time instant
56 //is added to pending tasks
57 if actualTime=time then
58 remove(times(s),time)
59 add(pt,s,priority(s))
60 endif
61 endfor
62 actualTime <- actualTime + 1
63 //Decrement remaining time for finishing actual task
64 time <- timeLeft(ActualState) - 1
65 setTimeLeft(actualState, time)
66 endwhile

Fig. 4. Realistic behaviour implementation

A. Data Preprocessing

Activity data from real users were obtained within a pilot
project devoted to the validation of the Necesity system.
Around 25 users, all elderly people living independently, were
used in such Pilot project. In this paper, data coming from
three users, under monitorisation during two months, were
used. Data is in the form of a Necesity log. The logs offer the

possibility to represent where the user is, at any moment, at
the house (including also if he leaves the house or he is seated
or sleeping). Thus, three different data sets, with log entries
corresponding to sensor events are available. These data sets
need further processing.

Validating the artificial models is assuring that the right
probability distribution function is used to reproduce the
transition between the different states (i.e. behaviours). Thus,
data series are obtained from log data as they were a random
number series generated by the corresponding probability
distribution. Such series are used afterwards in a goodness of
fit test. For example, in case of the non monotonous behaviours
and anytime behaviours, preprocessing the log data involves
the extraction of the time series of the moments in which each
event is produced. These time series only include values within
the typical awake period of the corresponding user. Obviously,
while the user are sleeping, his daytime routines change.

The data preprocessing for the monotonous behaviours is
slightly different. This kind of behaviour is usually produced
in a bounded time slots. For example, having dinner, having
lunch or sleeping are behaviour which occur during specific
time periods of the day. So, the preprocessing involves the
extraction of the behaviours events inside the time slots. The
time slots can be slightly different for each person, but it is
possible to define an approximation of them which will be
valid for all (see in section III the configuration parameters).
Finally, in each slot time, the time intervals between each
ocurred event are measured. The extracted time series are
composed of these time intervals.

B. Model Diagnosis

Validation is one of the most important issues in a sim-
ulation system. Validation consists in the determination that
the simulated model is an acceptable representation of the
real system, for the particular objectives of the model [11].
There are many techniques for validating simulations [11],
[12], and specially, for validating agents based on simulated
models [13].

The models which describe social processes, as the model
proposed here, are generally hard to validate. In this approach,
the behaviour is probabilistically modelled. However, some
statistic tests should be done to assume that a probabilistic
model is reasonable to explain the data. This process is called
model diagnosis. And this section is devoted to make the
diagnosis of the models presented above. The most serious
problem that one usually faces in this kind of validation is the
lack of real data [14]. However, in this work the data from the
Necesity project is available and can be used.

From these preprocessed data, some histograms for different
behaviours and people are shown in Fig. 5. The sample
density is shown with a black line. The dashed line shows
the probability density function of the theoretical distribution
that models that behaviour.

Graphs 5 (a) and (b) show two monotonous behaviours,
sleeping and having dinner (having lunch is similar). In these
kinds of behaviours the event that raises the behaviour occurs

(a)

(b)

(c)

(d)
Fig. 5. (a) Minutes between 21:00 hours and the instant the attended C goes
to bed, (b) Time between dinners for attended B, (c) Time between uses of
the toilet for attended A, (d) Time between spare time for attended A

during a time interval. The interval is usually the same for
each attended person, i.e., a person usually goes to sleep or
to have dinner at the same hours. Because of this, the curve
of the behaviour can be fitted to a gamma distribution. The
gamma distribution is usually employed as a probability model
for waiting times, in this case, the waiting time until the next
event of the behaviour. So, a gamma distribution is suitable
for modelling monotonous behaviours.

A kind of non monotonous behaviour, i.e. going to the toilet,
is shown in Fig. 5 (c). In this case, the behaviour is fitted with
an exponential distribution. Non monotonous behaviours are
also waiting time models, but they are defined in wake periods.
This is a special case of the gamma distribution which can be
modelled with an exponential distribution.

Finally, the group of anytime behaviours are behaviours
which will be often interrupted for the other behaviours.
Because of this, size of intervals in an anytime behaviour
are small due the interruptions. This causes the characteristic
curved heavy-tailed distribution, specifically, the Pareto II
distribution, also known as Lomax distribution.

Gamma, exponential and Lomax distributions are members
of the exponential family of probability distributions. Actually,
they are special cases of the beta prime distribution (also
known as beta distribution of the second kind, Beta II). The
Beta II distribution nests many important distributions as the
gamma, the exponential or the Lomax distribution. The gamma
and the Lomax distributions are special cases of Beta II. On the
other hand, the exponential distribution is a special case of the
gamma distribution Γ(α, β) when α = 1, and a special case
of the Lomax distribution with some restrictions [15], [16].
So, the Beta II distribution can be used here as a generalized
distribution for all group of behaviours: monotonous, non
monotonous and anytime behaviours. Then, each behaviour
can be specified according to its features in order to obtain a
better fitting.

Now, in the rest of the section, empirical evidences
which support using gamma, exponential and Lomax for
monotonous, non monotonous and anytime behaviours are
given.

Notice that it is possible to estimate the distance between
time series generated, as explained above, from real log
data and time series generated by simulation of theoretical
distributions. Such estimation is done by using some statistical
test, like the Kolmogorov-Smirnov (K-S) test [17]. The K-S
test is a nonparametric and distribution-free goodness-of-fit
test. This means that they do not rely on parameter estimation
or precise distributional assumptions [18]. The proposed model
in this work does not assume any concrete distribution and
does not require parameter estimation. This way, the K-S
properties are suitable for the hypothesis test.

The K-S test and the chi-square test are the most commonly
used and for large size sample both tests have the same power.
However, the chi-square test requires a sufficient sample size
in order to obtain a valid chi-square approximation [19], [20].

The K-S is a goodness-of-fit test to indicate whether it is
reasonable or not to assume that a random sample comes from

a specific distribution. It is a form of hypothesis testing where
the null hypothesis says that sample data follows the stated
distribution. The hypothesis regarding the distributional form
is rejected if the test statistic, Dn, is greater than the critical
value obtained from a table, or, which is the same, if the p-
value is lower than the significance level. The significance
level is fixed in this work at 0.05, which it is the value usually
referred in statistical literature.

Table I shows the p-values obtained from the K-S test for
each validated behaviour with the adequate distribution. The
null hypothesis is that the behaviour sample data come from
the stated distribution and it is rejected if p-value is lower than
the significance level.

Behaviour
Person Sleep Dinner Eat Toilet Spare time

A 0.404 0.311 0.361 0.111 0.086
B 0.488 0.467 0.542 0.079 0.108
C 0.337 0.489 0.575 0.137 0.103

TABLE I
P-VALUES

From these results, none of the stated null hypothesis can
be rejected. Therefore behaviour of the attended people could
be fitted by the specified distribution, as it is described above.

V. RELATED WORKS

Various approaches have been proposed to create au-
tonomous characters. For example, in [21] every character is
provided with a small KBS (Knowledge-Based System). Such
method is very flexible, but defining the knowledge base is a
complex and time-consuming task. A reasoning system is also
used in [22].

The approach to behavioural autonomy presented in section
III is based in [23], in that approach the idea is to develop
agents that act and choose in the way actual humans do. The
agents are represented using parametrized decision algorithms,
and choose and calibrate these algorithms so that the agents’
behaviour matches real human behaviour observed in the same
decision context. For this purpose, they uses a parametrized
learning automaton with a vector of actions associated that can
be weighted to choose actions along the time the way humans
would.

The decision of representing the automaton’s transitions
with probabilities instead of using a vector of strengths is
based in [24], where the behaviour sequences are modelled
through probabilistic automata (Probabilistic Finite-State Ma-
chine, PFSMs). Probabilistic personality influence implies that
one cannot fully predict how a character will react to a
stimulus.

In [25] and [26], the behavioural models described use
a hierarchical structure of finite state automata similar as
model described in section III. Each behaviour of a behaviour
sequence is called a behaviour cell. At the top of the structure
there is a behaviour entity with a finite state automaton com-
posed of at least one behaviour cell. An elementary behaviour

is situated at the bottom of the hierarchical decomposition and
encapsulates a specialized behaviour which directly controls
one or more actions. The list of prioritized events is based in
[27], where human agents have a pending task list. Priorities
give more realism to human behaviours.

VI. CONCLUSION

In this work, a general behaviour model for different people
is proposed. Adjusting the model to specific persons would
imply using the suitable configuration parameters for the
corresponding probability distributions governing transitions
between states of the probabilistic automata. This process is
part of a more general task which is testing AmI services
and applications. For such purpose, the AVA methodology
was presented. It has been applied for the validation of an
AAL system called Necesity. More specifically, this paper is
focused in producing models of humans (i.e. step 3 of AVA)
and validation of the models (steps form 5 to 8).

Such an approach requires, as a means to validate the
artificial behaviours, for all the artificial models, a method to
check if gamma, exponential and Lomax distributions are well
suited. Using the K-S test is possible to quantify the distance
between the empirical distribution functions of two samples.
Then the K-S test is used to validate the behaviours of the
artificial models, by using real data of real elders. A high
level of the p-value (higher that the significance level) means
that the behaviours are drawn from the same distribution (the
null hypothesis is not rejected). Notice that, in most cases, the
obtained p-values are higher than the significance level and
the null hypothesis is not rejected. But, it is also necessary to
remark that a good fitting of the configuration parameters will
always be required. And this is due to inevitable heterogeneity
in behaviour of people (including elders). As a conclusion, it
can be said that the proposed model is suitable for modeling
probabilistically the behaviour of simulated people, as the
work states.

Future works include a deep study of source data in order
to generate a taxonomy of elders in terms of their behaviour
within their houses, depending on mobility and habits. Such a
taxonomy would be useful for an automatic parameter tuning
of the models of elders. The user of the simulator, instead of
configuring parameters by hand, would simply choose between
a catalogue of elderly people patterns of behaviour.

REFERENCES

[1] N. Gilbert and K. G. Troitzsch, Simulation for the
Social Scientist. Open University Press, February 2005.
[Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0335216013

[2] E. Aarts and J. L. Encarnação, “True visions: Tales on the realization of
ambient intelligence,” in Into Ambient Intelligence, Chapter 1. Springer
Verlag, Berlin, Heidelberg, New York, 2005.

[3] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, The
Art of Software Testing, Second Edition. Wiley, June 2004.
[Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0471469122

[4] J. A. Botı́a, A. Villa, J. T. Palma, D. Pérez, and E. Iborra., “Detecting
domestic problems of elderly people: simple and unobstrusive sensors
to generate the context of the attended.” in First Internationa Workshop
on Ambient Assisted Living, IWAAL, Salamanca, Spain, 2009.

[5] “Flowcharting techniques,” IBM GC20-8152-1 edition, 1969.
[6] A. Drogoul, D. Vanbergue, and T. Meurisse, “Multi-agent based simu-

lation: Where are the agents?” in Proceedings of the Third International
Workshop on Multi-Agent-Based Simulation MABS 2002, Bologna, Italy,
ser. LNAI 2581, J. S. Sichman, F. Bousquet, and P. Davidsson, Eds.
Berlin Heidelberg: Springer Verlag, July 2002, pp. 1–15.

[7] B. Edmonds and S. Moss, “From kiss to kids - an ’anti-simplistic’
modelling approach,” in MABS, 2004, pp. 130–144.

[8] M. Rabin, “Probabilistic automata*,” Information and control, vol. 6,
no. 3, pp. 230–245, 1963.

[9] G. Darmois, “Sur les lois de probabilit a estimation exhaustive,” CR
Acad. Sci. Paris, vol. 260, pp. 1265–1266, 1935.

[10] B. Koopman, “On distributions admitting a sufficient statistic,” Trans-
actions of the American Mathematical Society, pp. 399–409, 1936.

[11] A. Law, W. Kelton, and W. Kelton, Simulation modeling and analysis.
McGraw-Hill New York, 1991.

[12] K. Troitzsch, “Validating simulation models,” Networked Simulations
and Simulated Networks, pp. 265–270, 2004.

[13] M. Richiardi, R. Leombruni, N. Saam, and M. Sonnessa, “A common
protocol for agent-based social simulation,” Journal of Artificial Soci-
eties and Social Simulation, vol. 9, no. 1, p. 15, 2006.

[14] F. Klügl, “A validation methodology for agent-based simulations,” in
Proceedings of the 2008 ACM symposium on Applied computing. ACM,
2008, pp. 39–43.

[15] J. B. McDonald, “Some generalized functions for the size distribution
of income,” Econometrica, vol. 52, no. 3, pp. 647–663, 1984.

[16] J. McDonald and Y. Xu, “A generalization of the beta distribution with
applications,” Journal of Econometrics, vol. 66, no. 1, pp. 133–152,
1995.

[17] H. Neave and P. Worthington, Distribution-free tests. Routledge
London, 1989.

[18] D. Sheskin, Handbook of parametric and nonparametric statistical
procedures. CRC Pr I Llc, 2004.

[19] F. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[20] F. David and N. Johnson, “The probability integral transformation when
parameters are estimated from the sample,” Biometrika, vol. 35, no. 1-2,
p. 182, 1948.

[21] G. Anastassakis, T. Panayiotopoulos, and T. Ritchings, “Virtual agent
societies with the mVITAL intelligent agent system,” in Intelligent
Virtual Agents. Springer, 2001, pp. 112–125.

[22] H. Noser and D. Thalmann, “Towards autonomous synthetic actors,”
Synthetic Worlds. TL Kunii and A. Luciani, John Wiley and Sons, Ltd,
1995.

[23] W. Arthur, “On designing economic agents that behave like human
agents,” Journal of Evolutionary Economics, vol. 3, no. 1, pp. 1–22,
1993.

[24] L. Chittaro and M. Serra, “Behavioral programming of autonomous
characters based on probabilistic automata and personality,” Computer
Animation and Virtual Worlds, vol. 15, no. 34, pp. 319–326, 2004.

[25] D. Thalmann, S. Musse, and M. Kallmann, “Virtual Humans’ Behaviour:
Individuals, Groups, and Crowds,” Proceedings of Digital Media Fu-
tures, pp. 13–15, 1999.

[26] P. Bécheiraz and D. Thalmann, “A behavioral animation system for
autonomous actors personified by emotions,” in Proceedings of the 1998
Workshop on Embodied Conversational Characters. Citeseer, 1998.

[27] L. Temime, Y. Pannet, L. Kardas, L. Opatowski, D. Guillemot, and P. Bo
”elle, “NOSOSIM: an agent-based model of pathogen circulation in a
hospital ward,” in Proceedings of the 2009 Spring Simulation Multi-
conference. Society for Computer Simulation International, 2009, pp.
1–8.

A Survey on Coordination Methodologies for
Simulated Robotic Soccer Teams

Fernando Almeida∗‡, Nuno Lau†‡, Luı́s Paulo Reis§¶
falmeida@di.estv.ipv.pt, lau@det.ua.pt, lpreis@fe.up.pt

∗DI/IPV - Department of Informatics, Polytechnic Institute of Viseu, Viseu, Portugal
†DETI/UA - Electronics, Telecommunications and Informatics Department, University of Aveiro, Aveiro, Portugal

‡IEETA - Institute of Electronics and Telematics Engineering of Aveiro, Aveiro, Portugal
§DEI/FEUP - Department of Informatics Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

¶LIACC - Artificial Intelligence and Computer Science Laboratory, University of Porto, Porto, Portugal

Abstract—Multi-agent systems (MAS) are a research topic
with ever-increasing importance. This is due to their inherently
distributed organization that copes more naturally with real-life
problems whose solution requires people to coordinate efforts.

One of its most prominent challenges consists on the creation
of efficient coordination methodologies to enable the harmonious
operation of teams of agents in adversarial environments. This
challenge has been promoted by the Robot World Cup (RoboCup)
international initiative every year since 1995.

RoboCup provides a pragmatic testbed based on standard-
ized platforms for the systematic evaluation of developed MAS
coordination techniques. This initiative encompasses a simulated
robotic soccer league in which 11 against 11 simulated robots play
a realistic soccer game that is particularly suited for researching
coordination methodologies.

This paper presents a comprehensive overview of the most
relevant coordination techniques proposed up till now in the
simulated robotic soccer domain.

Index Terms—Coordination methodologies, MAS, simulated
robotic soccer, RoboCup.

I. INTRODUCTION

The development of efficient methodologies (e.g. languages,
models) for MAS coordination in adversarial environments
is one of the most interesting scientific challenges promoted
by the RoboCup [33] and is mainly supported by its soccer
simulation leagues. The main goal of coordination mechanisms
in these leagues is to adequately control a team of players and
an optional coach to win matches against adversary teams.

Soccer is an inherently coordinated game in which team
fitness directly relates to how well players can synchronize to
perform tasks (e.g. passing). However, team coordination can
be complex to achieve, mostly due to the multitude of variables
(e.g. players and ball positions) players must consider to make
the best decision at each instant. Moreover, measuring its
success quantitatively is difficult as it doesn’t necessarily relate
to the final match score (e.g. a team might play better than
the opposite but still lose), thus more data must be considered
to perform an accurate assessment (e.g. ball possession).

The rest of the paper is organized as follows. Section II
describes the RoboCup initiative and its physical soccer simu-
lator. Section III presents a general definition of coordination
and its related issues in the robotic soccer domain. Sections IV,

V, VII and VI provide a discussion of developed techniques for
simulated robotic soccer organized in different perspectives.
Section VIII addresses the lessons learned from the survey.

II. ROBOCUP: A TESTBED FOR COORDINATION

RoboCup was designed to meet the requirements of han-
dling real complexities in a restricted world and provides
standard challenges in a common platform to foster Artificial
Intelligence and Intelligent Robotics research [17].

Its most pragmatic goal is to develop a team of fully au-
tonomous humanoid robot soccer players capable of winning
a soccer game against the winner of the World Cup by 2050.
This ambition although difficult to achieve, will surely drive
significant technological breakthroughs while trying [33].

The main focus of RoboCup is Robotic Soccer (RoboCup-
Soccer), although other application domains exist focusing on
different scopes like disaster rescue, robotics education for
young students and human assistance on everyday life tasks.

The RoboCupSoccer domain has 5 leagues [11]: there is a
virtual (Simulation League) and several hardware (Small-Size,
Medium-Size, Standard Platform and Humanoid) leagues.

This paper focuses on the RoboCupSoccer 2D Simula-
tion League (RoboCupSoccer2D) although other simulation
subleagues (3D, 3D Development and Mixed Reality) exist.
This league enables a virtual soccer match between 2 teams
of 11 simulated agents each with an optional online coach
using a physical soccer simulation system. Agents have an
environment-aware body and can act autonomously to perform
reactive or pro-active actions in an individual or sociable
manner, although interaction is highly constrained as described
in Section III. The environment is partially observable through
non-symbolic sensors, stochastic, sequential, dynamic and
multi-agent without centralized control [11].

This league presents 3 strategic research challenges for
multi-agent interaction [33]:

• Multi-agent learning of individuals (e.g. ball interception)
and teams (e.g. adapt player positioning to opponents);

• Teamwork to enable to real-time planning, replanning and
execution of tasks in a dynamic adversary environment;

• Agent modelling to reason about others (e.g. intentions).

TABLE I
LIST OF SOCCER SERVER CORE ACTIONS BY CATEGORY

Category Actions
Movement Dash*, Turn, Move
Ball control Kick, Catch, Tackle
Perception control Turn neck, Change view, Attention to
Communication Point to, Say
Match information Score
*Dash impacts players stamina which is continuously assessed through their energy (liveness), effort (movement
efficiency) and recovery (energy renewal rate)

Soccer Server is an open-source client/server physical soc-
cer simulation system [36][7] used in RoboCupSoccer2D. It
uses well defined protocols to enable communication between
clients (players and coaches) and itself to manage connections,
gather world perceptions and control clients actions.

Firstly, all clients connect to the server and sending intro-
ductory initialization data to which the server replies with the
current simulation settings (e.g. player characteristics). These
settings can be tweaked in order to enhance the simulation.

During the match, each team can have an online coach that
receives global error-free information about world objects and
all the messages sent from the players and the referee. All
communication is done exclusively via the server and coach-
to-players communication is highly restricted.

The simulator provides a set of players with distinguished
capabilities (heterogeneous players) from which the coach
must build a team to play a soccer match. During the match
players receive tailored multimodal sensor information (aural,
vision and body) according to their standpoint. This informa-
tion is received through messages (hear, see and sense body)
sent regularly from the simulator, that can be inaccurate (e.g.
vision accuracy varies inversely with objects distance). Based
on these perceptions, players can act upon the world to inflict
changes in it using the core actions depicted in Table I.

Also during the match, a referee (automated or human) can
make rulings that change the play mode (e.g. free-kick) and are
immediately relayed to all clients. The human referee is used
to judge situations driven by player’s intentions (e.g. player
obstruction) which are still difficult to evaluate automatically.

The simulation executes in discrete time steps (cycles).
Throughout each step players can take actions, restricted in
number and by play mode (e.g. one kick per cycle), that will
be applied to objects (players and the ball) at the end of the
step. The next step is simulated by applying only the allowed
actions to the state information (e.g. update objects positions)
and eventually by solving conflicting situations (e.g. several
players might kick the ball simultaneously).

Some of the research developed has shown that robotic
soccer [1] and consequently RoboCup [35][34] can be used
effectively to study MAS and coordination techniques in
particular. In most cases these techniques can be generalized
to other domains [6] (e.g. network routing [53]).

III. COORDINATION PROBLEMS IN SIMULATED
ROBOTIC SOCCER

Robotic Soccer is an instance of Periodic Team Synchro-
nization (PTS) domains [52] in which players have sporadic

opportunities to communicate fully in a safe offline situation
(e.g. in the locker-room) while being able to act autonomously
in real-time with little or no communication.

One of the most important tasks for players is to select
and initiate an appropriate (possibly cooperative) behavior in a
given context, using (or not) knowledge from past experiences
in order to help their team to win. Good coordination method-
ologies can help achieve this goal, although their success is
still highly dependent on players individual abilities (low-level
skills) to execute adequate competitive decisions.

The coordination difficulties enforced by the simulator are:
• Many multimodal information can be sensed at once,

making it difficult to process;
• Environment’s unpredictability makes it difficult to pre-

dict future states;
• Clients can’t rely on message reception due to commu-

nication unreliability;
• Low-bandwidth makes it difficult to convey meaningful

knowledge in messages;
• Uncertainty in perceived world information may lead to

conflicting behaviors between agents [39], due to invalid
state knowledge representations.

More specifically the simulated robotic soccer domain
presents researchers with the following types of challenges:

• Perception: Where, when and how should players use
their vision? To whom should they listen to? How to
estimate information of others?

• Communication: What, when and how should players ex-
change information? How should exchanged information
be used?

• Action: Which action should the player perform that is
best for the team? How to evaluate different types of
actions (e.g. pass vs dribble)? How to execute a given
elementary (e.g. kick) or compound action (e.g. dribble)?

• Coordination: How to structure coordination dependen-
cies between players? With whom should a player co-
ordinate his actions? How should actions be coordinated
with others? How to adapt coordination in real-time? How
can the coach be used to coordinate team players?

The answer to some of these questions and others more
specific will be discussed in the remaining sections.

IV. TECHNOLOGIES FOR COORDINATION

A. Coordination by Communication

Sharing pertinent world information can be useful to achieve
team coordination. In earlier Soccer Server versions communi-
cation constraints were relaxed and allowed the transmission of
long messages. This extremely permissive condition motivated
the development of techniques that relied on sharing lots of
meaningful information about the world’s state knowledge
among teammates to make better informed decisions.

Currently, message size is restricted to a minimum and
poses a new challenge that requires the cautious selection of
pertinent information to convey at each instant. To circum-
vent the previous constraint an Advanced Communications

framework [42] was proposed in which a player maintains
a communicated world state (separated from his perceived
world state) using only information from teammates, without
any prediction or perception information of his own. By
comparing both worlds, a player assesses the interest of items
of his perceived world state to his teammates and selects
the most useful information (e.g. objects positions) to share.
Information utility metrics were based on domain-specific
heuristics but were later extended to accommodate the current
situation and estimated teammate’s knowledge [12].

Other techniques were proposed that use little or no com-
munication by adding knowledge assumptions (e.g. Locker-
Room Agreements discussed in Section VI-A) to reason over
players intentions based on assigned roles [20] (combined
with Coordination Graphs discussed in Section VII-A), offline
learned prediction models [54] and player’s beliefs [38][16] to
adapt to their actions.

The trend in this domain will be towards little or no com-
munication due to the constraints mentioned in Section III and
also because communication introduces an overhead and delay
that can degrade the player performance. The combination of
implicit coordination with beliefs exchange yields better per-
formance with communication loss than explicit coordination
with intentions communication alone [16]. The exchange of
beliefs among teammates allows a more coherent and complete
global belief about the world. This global belief can then be
used to predict players utilities and adapt actions to players
predicted intentions to achieve the best (joint) action. As state
estimation accuracy reaches an acceptable upper bound it will
eventually replace explicit communication.

B. Coordination by Intelligent Perception

The smart usage of player sensors can be an efficient way
to leverage coordination with other players, by collecting the
most valuable information at each instant.

During the match players can assume three types of visual-
izations. These are chonse using a strategic looking mechanism
based on their internal world state information and the current
match situation [42]:

• Ball-centered: look at the ball to react quickly to its
sudden velocity changes (e.g. kick by a player);

• Active: look at the target location of a desired action (e.g.
a pass to perform);

• Strategic: look at a strategic location to improve the
world’s state accuracy (e.g. find an open space for a pass).

The usefulness of the information gathered using the previ-
ous approaches is different and can be classified based on its
intended usage scope, validity over time and motivation for
player behavior in future actions as depicted in Table II.

Ultimately, this information can be combined to enhance the
player’s world state accuracy and empower better decisions.

V. POSITIONING
A. Coordination for General Positioning

The selection of a good position to move into during the
match is a challenging task for players due to the unpredictable

TABLE II
COMPARISON OF DIFFERENT VISUALIZATION APPROACHES

Approach Usage scope Information
validity period Target behavior

Ball-centered Individual Short Reactive

Active Individual or
Collective Short to Medium Reactive or De-

liberative
Strategic Collective Medium to Long Deliberative

behavior of other players and the ball. The likelihood of
collaboration in a soccer match is directly related to the
adequacy of a player’s position (e.g. open pass lines for attack).

During a match, at most one player can carry the ball at
each instant. For this reason, players will spend most of their
time without the ball and trying to figure out where to move.

The first positioning techniques proposed allowed players to
situate themselves in an anticipated useful way for the team
in two different contexts [48]:

• Opponent marking: player moves next to a given oppo-
nent rather than staying at his default home position;

• Ball-dependent: player adjusts his location, within a given
movement range, based on the ball’s current position;

• Strategic Positioning using Attraction and Repulsion [48]
(SPAR): player tries to maximize the distance to all
players and minimize the distance to the opponent goal,
the active teammate and the ball. This algorithm enables
players to anticipate the collaborative needs of their
teammates by positioning themselves to open pass lines
for the teammate with the ball.

The previous techniques are rather reactive and demand fast
responses from players according to the target object behavior.
This leads to quickly wearing out stamina because the current
match situation ins’t adequately considered. To solve these
issues, techniques were proposed that distinguish between
active (e.g. ball possession) and strategic match situations [42]:

• Simple Active Positioning: players always assume an
active and non-strategic position (e.g. ball recovery);

• Active Positioning with Static Formation: extends the
previous so that players can return to their default home
position in the static formation, if there isn’t a good
enough active action to perform;

• Simple Strategic Positioning: uses only one situation and
one dynamic formation;

• Situation Based Strategic Positioning [44] (SBSP): de-
fines team strategy as a set of player roles (defining
their behavior) and a set of tactics composed of several
formations. Each formation is used for a different strate-
gic situation and assigns each player a default spatial
positioning and a role. Contrarily to SPAR, it allows
the team to have completely diverse but suitable shapes
(e.g. compact for defending) for different situations and
teammates to have different positional behaviors;

• Delaunay Triangulation (DT): similar in idea to SBSP, it
divides the soccer field into triangles according to training
data [2] and builds a map from a focal point (e.g. ball
position) to a desirable positioning of each player. It

also allows the use of constraints to fix topological re-
lations between different sets of training data to compose
more flexible team formations, Unsupervised Learning
Methods (e.g. Growing Neural Gas) to cope with large
or noisy datasets and Linear Interpolation methods (e.g.
Goraud Shading) to circumvent unknown inputs. Despite
its simplicity, DT has a good approximation accuracy, is
locally adjustable, fast running, scalable and can repro-
duce results for identical training data. On the other hand
it requires much memory to store all training data and
has a high cost to maintain its consistency.

Another task addressed in a soccer match is the dynamic (or
flexible) positioning of team players that consists on switching
players positions within a formation [48] to improve the team’s
performance (e.g. save player’s energy for quicker responses).
However, if misused it can increase player’s movement (e.g.
player moves across the field to occupy its new position).

The methods proposed to aid players weigh the cost/benefit
ratio for deciding to switch positions are based on:

• Role Exchange: continuously assesses the usefulness of
exchanging positions based on tactical gains [42] (e.g.
distance to a strategic position, adequacy of next versus
current position and coverage of important positions). It
extends previous work that used flexible player roles with
protocols for switching among them [52] to accommo-
date the exchange of players positions and types in the
formation and has been used in conjunction with SBSP;

• Voronoi Cells: distributes players across the field and uses
Attraction Vectors to reflect players’ tendency towards
specific objects based on the current match situation
and players’ roles [8]. It claims to have solved a few
restrictions in SBSP (e.g. obligation to use home positions
and fixed number of players for each role);

• Partial (Approximate) Dominant Regions [31]: divides
the field into regions based on the players time of arrival
(similar to a Voronoi diagram based on the distance of
arrival), each of which shows an area that players can
reach faster than others. It has been used for marked
teammates to find a good run-away position.

B. Defensive Coordination

The main goal of a defending team, without ball possession,
is to stop the opponent’s team attack and create conditions
to launch their own. In general, defensive behaviors (e.g.
marking) involve positioning decisions (e.g. move to intercept
the ball). Defensive positioning is an essential aspect of the
game, as players without the ball will spend most of their time
moving somewhere rather than trying to intercept it.

Collaborative defensive positioning has been described as
a multi-criteria assignment problem where n defenders are
assigned to m attackers, each defender must mark at most one
attacker and each attacker must be marked by no more than
one defender [23]. The Pareto Optimality principle was used to
improve the usefulness of the assignments by simultaneously
minimizing the required time to execute an action and the
threat prevented by taking care of an attacker [24]. Threats

are considered preemptive over time and are prevented using
a heuristic-criterion that considers:

• Angular size of own goal from the opponent’s location;
• Distance from the opponent’s location to own goal;
• Distance between the ball and opponent’s location.
This technique can achieve good performances while bal-

ancing gracefully the costs and rewards involved in defensive
positioning, but it doesn’t seem to deal adequately with uneven
defensive situations:

• Outnumbered defenders shouldn’t mark specific attackers
but rather position themselves in a way that difficults their
progression towards to the goal’s center;

• Outnumbered attackers: more than one defender should
mark an attacker (e.g. ball owner) pursuing a strategy to
quickly intercept the ball or compel the opponent to make
a bad decision and lose the ball.

Marking consists on guarding an opponent to prevent him
from advancing the ball towards the goal, making a pass or
getting the ball. Its goal is to seize the ball and start an attack.

The opponent to mark can be chosen by the player (e.g.
closest opponent), by the team captain following a preset
algorithm (e.g. as part of the Locker-Room Agreement [48]
discussed in Section VI-A), using matching algorithms [47]
or Fuzzy Logic [46]. Choosing the opponent to mark based
only on its proximity isn’t suitable as it disregards relevant
information (e.g. teammates nearby) and will lead to poor
decisions. Also, the use of a fixed centralized mediator (e.g.
coach) to assign opponents to teammates although faster to
compute has a negative impact in players autonomy. With the
exception of PTS periods, this approach isn’t robust enough
due to the communication constraints mentioned in Section III
and because it provides a single point of failure.

A Neural Network trained with a back-propagation algo-
rithm that uses a linear transfer function was proposed to
decide the type of marking to perform based on the distance
from the player to ball, the number of opponents and team-
mates within the player’s field of view (FoV) and the distance
from the player to his own goal [46]. The output accuracy of
this method could be improved by considering other relevant
information that lies outside the player’s FoV (e.g. nearby
opponents behind the player).

Aggressive marking behavior can also be learned using a
NeuroHassle policy [14] based on a neural network trained
with a back-propagation variant of the Resilient Propagation
(RPROP) reinforcement learning technique.

C. Offensive Coordination

To improve position selection during offensive situations
(e.g. the team owns the ball) players should find the best
reachable position to receive a pass or score a goal.

The Pareto Optimality Principle was applied to enable
systematic decision-making regarding offensive positioning
[25] based on the following set of partially conflicting criteria
for simultaneous optimization [41]:

• Players must preserve formation and open spaces;

• Attackers must be open for a direct pass, keep an open
path to the opponent’s goal and stay near the opponent’s
offside line to be able to penetrate the defense;

• Non-attackers should create chances to launch the attack.
A Simultaneous Perturbation Stochastic Approximation

(SPSA) combined with a RPROP learning technique (RSPSA)
was proposed to Overcome the Opponent’s Offside Trap
(OOOT) by coordinated passing and player movements [13].
The receiver of the OOOT pass should start running into the
correct direction at the right point in time, preferably being
positioned right before the offside line while running at its
maximal velocity when the pass is executed.

VI. TEAM COORDINATION
A. Coordination for Strategic Actions

In real soccer, team strategies are rehearsed during mundane
training of team players and applied during a match. The same
strategies are often used in matches, but for some opponents
they must be swapped to adapt to their unexpected behavior.

Strategies typically consist on a set of tactics composed by
formations that map a strategic position and a distinguished
role to each player to guide his behavior.

To deal with the challenges of PTS domains a Locker
Room Agreement (LRA), based in the definition of a flexible
team structure (consisting of roles, formations and set-plays),
can be used for players to consent on globally accessible
environmental cues as triggers for changes in strategy [48].
Team strategies are communicated with a timestamp for play-
ers to recognize changes and always keep the most recent
ones to disseminate to others. The team’s formation can be
either static or change dynamically during the match on team
synchronization opportunities (e.g. kick-in) or via triggered-
communication where one teammate (e.g. team captain) makes
a decision and broadcasts it to his teammates.

Set-plays are predefined plans for structuring a team’s
behavior depending on the situation. A high-level generic
and flexible framework that defines a language for set-play
definition, management and execution was proposed in [29]. A
set-play involves players’ references (individual or role based)
and steps (states of execution) that can have conditions to be
carried out. Each step is lead by the ball carrying player (in
charge of making the most important decisions) and can have
several transitions (possibly with conditions) for subsequent
steps. The main transition of a step defines a list of directives
consisting of actions that should (or not) be performed. The
execution of a set-play requires a tight synchronization be-
tween all participants to enable a successful cooperation. To
cope with the simulator communication restrictions, only the
lead player is allowed to send messages. This technique could
be improved to achieve implicit coordination through a kind of
belief state exchange, because the player that owns ball decides
when to start the set-play and informs the involved parties.
From that moment on and while the set-play follows its default
path, communication among players could be dropped until a
deviation is decided by the ball owner because all involved
parties know the steps.

Another method proposed for high-level coordination and
description of team strategies is Hierachical Task Network
(HTN) planning [37] which is to be embedded in each player.
It combines high level plans (making use of previous domain
knowledge to speed up the planning process) with reactive
basic operators, so that players can pursue a global strategy
while staying reactive to changes in the environment. This
method separates the expert knowledge specified as team
strategies from the player implementation making it easier to
maintain. The objective of HTN is to perform tasks which can
be either complex or primitive. Complex tasks are expanded
into subtasks until they become primitive.

B. Hierarchical Coordination

In real life soccer, natural hierarchical relations exist among
different team members and imply a leadership connotation
(e.g. a coach instructs strategy to players).

A coach and trainer are privileged agents used to advise
players during online games and offline work out (training)
situations respectively. The need of communication from coach
to players motivated the definition of coaching languages.

CLang [7] is the standard coaching language used in
RoboCup since 2001 to promote a new RoboCup competition
focused only on coaching techniques, but it lacks the ability
to specify a team’s complete behavior with sufficient detail.

Coach Unilang [43] was proposed to enable the com-
munication of behavioral changes to players during games
using different kinds of strategic information (e.g. instructions,
statistics, opponent’s information and definitions) based on
real soccer concepts. Players can ignore received messages,
interpret them as orders (must be used and will replace
knowledge) or as advices (can be used with a given trust level).

Strategy Formalization Language [32] extends CLang by
representing team behavior in a human-readable format easily
modifiable in real-time by abstracting low-level concepts.

The main coaching techniques developed make use of:
• Neural Networks (previously trained with adequate data)

to recognize opponent’s team formation and provide
appropriate counter formation to players [55];

• Matching Algorithms that continuously builds a table that
assigns a preliminary opponent to mark to each teammate
and briefs all players periodically [47].

The ability to recognize tactics and formations used by
opponent teams reveals part of their strategy and can be used
to implement counter strategies. To address this opportunity
training techniques make use of:

• Sequential Pattern Data Mining using Unsupervised Sym-
bolic Learning of Prediction Rules for situations and
behavior during matches [26];

• Triangular Planar Graphs to build topological structures
for discovering tactical behavior patterns [40].

VII. LOCAL COORDINATION
A. Coordination for Action Selection

Deciding what the player should do at a given moment
in a soccer game is critical. Player’s individual decision

should depend on the actions performed (or expected) of other
players and balance their risks and rewards. However, these
dependencies can change rapidly in dynamic environment as
a result of the continuously changing state, thus efficient and
scalable methods must be developed to solve this issue.

The action selection mechanisms proposed make use of:
• An idealized world model combined with observed

player’s state information to predict the best action [50];
• An option-evaluation architecture for different actions

with comparable probabilistic scores [49];
• Player roles and a measurement opponents interference in

the current situation using a multi-layer perceptron [18];
• Coordination Graphs (CGs) [19] where each node rep-

resents a player and its edges (possibly directed) define
dependencies between nodes that have to coordinate their
actions. This approach is based on the assumption that
in most situations only a few players (typically nearby)
need to coordinate their actions, while the remaining
are capable of acting individually. To solve coordination
dependencies in CGs algorithms like Variable Elimination
(VE) [17], Max-Plus (MP) [21] and Simulated Annealing
(SA) [9] were proposed. VE requires communication to
always find an optimal solution but only upon termination
and with a high computational cost (due to its action
enumeration behavior for neighbors). MP solves VE high
computational cost and makes the solution available at
anytime, but it can only find near optimal solutions
(except for tree-structured CGs) and restricts coordination
to pairs of players. SA improves MP being able to work
without communication and not restricting coordination
between pairs, but it can only find approximate solutions
with an associated confidence;

• Fuzzy logic and bidirectional neural networks to deter-
mine the odds and priorities of action selection based on
human knowledge [57];

• Case-Based Reasoning to explicitly distinguish between
controllable and uncontrollable indexing features, corre-
sponding to players positions [45].

B. Coordination for Behavior Acquisition

Teams often use flexible (to some extent) predefined strate-
gies set on the LRA. However they can prove fruitless, when
playing against opponents that exhibit incompatible behaviors.
Modelling the opponent’s behavior thus becomes a necessity
to allow convenient adaptation. However, as most players’ are
unseen for quite some time this task becomes a challenge.

With adequate models of players behavior, a player can
improve his world model accuracy and consequently make
better decisions by anticipating collaborative needs of team-
mates (e.g. open a line of pass).

Machine learning techniques have been proposed to address
the issue of player adaptation to unforeseen situations [3][1].

Layered learning [48] has been proposed to enable learning
low-level skills and ultimately use them to train higher-level
skills that can involve coordination. The highest layer of the
previous approach uses a Team-Partitioned Opaque-Transition

Reinforcement Learning (TPOT-RL) technique to allow team
players to learn effective policies and thus cooperate to achieve
a specific goal. This technique divides the learning task among
teammates, using coarse action-dependent features and gathers
rewards directly from environmental observations. It is particu-
larly suitable for this domain which presents huge state spaces
(most of them hidden) and limited training opportunities.

Policy gradient RL was proposed to coordinate decision
making between a kicker and a receiver in free-kicks [30][15].

Two other important subtasks of a soccer game, Keepaway
and Breakaway, have been used to study specific behavioral
coordination issues. Keepaway is a game situation where one
team (the keepers), tries to maintain ball possession within a
limited region, while the opposing team (the takers) attempt to
gain possession. Breakaway is another game situation with the
purpose of the attackers trying to score goals against defenders.
RL techniques have proven its their usefulness to improve
decision-making in these tasks [28][51]. The recognition of
the potential for RL techniques, lead to the proposal of the
following methods to accelerate them:

• Preference Knowledge-Based Kernel Regression (KBKR)
to give advice about preferred actions [28];

• Heuristic Accelerated Reinforcement Learning (HARL):
using predefined heuristic information based on
Minimax-Q [4] and Q-Learning [6];

• Case Based-HARL: heuristics are derived from a case
base using Q-Learning [5].

C. Ball Passing Coordination

Passing is a crucial skill in soccer and it reflects the
cooperative nature of the game. Without sophisticated passing
skills, it will be difficult for a team to win a match. The number
of passing possibilities for the ball carrying player can be
overwhelming and thus efficient methods must be employed
for real-time decision-making.

The main criteria used to decide where to pass the ball are:
• Tactical value of the pass destination;
• Chance of opponent intercepting the pass;
• Confidence on the receiver’s position and interception;
• Location and orientation upon ball reception;
• Situations originated if the ball is intercepted;
• Passing travel distance;
• Initial and final player congestion on pass execution;
• Chance of providing a shoot opportunity.
Instead of relying on the previous predefined criteria that

embeds the passing strategy, this strategy can be learned using
Q-Learning [27].

To balance the implicit risks and gains of the previous
criteria with the costs and real-time constraints of adequate
decision-making developed techniques apply a weighted sum
based on the player’s type [42], Fuzzy logic [46] and the Pareto
Optimality Principle [22].

To improve the efficiency of the previous position searching
methods, a Rational Passing Decision based on Regions [56]
classification (e.g. tactical, dominant, passable and falling)
was proposed. Each region captures qualitative knowledge of

passing in a natural and efficient way. This technique has a
low computational complexity, allows the player to decide
rationally without precise information and balances success
and reward of passing. However, these pros depend highly on
the regions characteristics, specifically their dimension.

Voronoi Diagrams [10] were proposed to limit the number
of possible meaningful passes, but are unable to find (or learn)
the selection of an optimal pass.

VIII. CONCLUSION

Since the start of the RoboCup initiative, several coor-
dination techniques were proposed that tackle core MAS
coordination issues in simulated robotic soccer.

The majority of these techniques has dealt with the problem
of adequate player positioning, due to its impact on the
successful execution of other actions (e.g. passing) during a
match. Also many of presented techniques are interdependent
(e.g. CG and VE) and rely heavily on coordination technolo-
gies. In general, positioning techniques have evolved from
reactive to more deliberative approaches, meaning that players
now put the team’s goals in front of his own because it
is the only way for successful coordination to be achieved.
Due to its complexity, this problem as been studied in more
narrower scopes (e.g. defensive and offensive situations like
opponent marking and ball passing respectively) with good
results. However, situations where the number of teammates
and opponents is uneven still don’t seem to be adequately
addressed by any of these.

Besides positioning, other techniques were proposed to cope
with the remaining player’s actions (e.g. marking).

Coordination technologies have evolved a lot since the
start of RoboCup mostly due to added functionalities and
constraints in the latest simulator releases. Although the use of
communication and intelligent perception can assist team co-
ordination through the sharing of pertinent world information
and enhance the player’s world state accuracy respectively, the
simulator constraints discourage relying solely on them.

Team strategies are usually very complex and are typically
embedded into players knowledge prior to a game (e.g. using
LRA). The strategic approaches have also evolve from fixed
policies to more flexible and dynamic policies that are based
on real-time match information and previous opponent knowl-
edge. Coaching was used to tweak team strategy mostly by
giving advices to players and allow a quicker adaptation to
opponent’s behavior. Training methods have been used as a
foundation to build into team members effective knowledge
that can accelerate team coordination during real-time match
situations (e.g. learning opponent behavior).

Action selection and behavior acquisition must rely on a
good understanding of what can be achieved by intelligent
perception and communication techniques.

Machine learning techniques (e.g. Q-Learning) were suc-
cessfully used for behavior acquisition and adaptive coordi-
nation when faced with unpredicted constraints or situations.
Due to their high computational cost and thus unfeasibility
for real-time decision making, acceleration techniques must

be used to increase their efficiency and make them adequate
for online usage (e.g. HARL, KBKR). It can be argued that
machine learning techniques can be more accurate than hand-
coding rule-based (possibly conditional) techniques.

In order to succeed, a good coordination methodology
should always consider the following aspects:

• Incorporate past knowledge (e.g. using LRA) to acceler-
ate initial decisions for usual situations, driven from direct
human expertise or by offline learned prediction models.
This knowledge can be tailored for specific opponents;

• Knowledge should be adaptable according to opponent
behavior in real-time;

• Use alternative techniques to complement and replace
technologies based on communication and perception.

ACKNOWLEDGMENT

This work was financially supported by Polythecnic Institute
of Viseu under a PROFAD scholarship.

REFERENCES

[1] A. Agah and K. Tanie, ‘Robots Playing to Win: Evolutionary Soccer
Strategies’, in IEEE ICRA, volume 1, pp. 632–637, Albuquerque, NM,
USA, (1997). IEEE.

[2] H. Akiyama and I. Noda, ‘Multi-Agent Positioning Mechanism in the
Dynamic Environment’, in RoboCup 2007: Robot Soccer World Cup XI,
eds., U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, volume 5001 of
LNAI, 377–384, Springer, Berlin, (2008).

[3] T. Andou, ‘Refinement of Soccer Agents’ Positions using Reinforcement
Learning’, in RoboCup-97: Robot Soccer World Cup I, ed., H. Kitano,
volume 1395 of LNAI, 373–388, Springer-Verlag, Berlin, (1998).

[4] R. Bianchi, C. Ribeiro, and A. Costa, ‘Heuristic Selection of Actions
in Multiagent Reinforcement Learning’, in IJCAI-07, pp. 690–696,
Hyderabad, India, (2007). Morgan Kaufmann Publishers Inc.

[5] R. Bianchi, R. Ros, and R. Mantaras, ‘Improving Reinforcement Learn-
ing by Using Case Based Heuristics’, in Case-Based Reasoning Research
and Development, eds., L. McGinty and D. Wilson, volume 5650 of
LNAI, 75–89, Springer, Seattle, WA, (2009).

[6] L. Celiberto and J. Matsuura, Robotic Soccer: The Gateway for Powerful
Robotic Applications, volume 2 of Proceedings of ICINCO-2006, IST,
IC&C, Setubal, 2008.

[7] M. Cheny, K. Dorer, E. Foroughi, F. Heintz, Z. Huangy, S. Kapetanakis,
K. Kostiadis, J. Kummeneje, J. Murray, I. Noda, O. Obst, P. Riley,
T. Stevens, Y. Wangy, and X. Yiny, RoboCup Soccer Server Users
Manual, For Soccer Server Version 7.07 and later, The RoboCup
Federation, 2003.

[8] H. Dashti, N. Aghaeepour, S. Asadi, M. Bastani, Z. Delafkar, F. Disfani,
S. Ghaderi, S. Kamali, S. Pashami, and A. Siahpirani. Dynamic
Positioning based on Voronoi Cells (DPVC), July 2005 2005.

[9] J. Dawei and W. Shiyuan, ‘Using the Simulated Annealing Algorithm for
Multiagent Decision Making’, in RoboCup 2006: Robot Soccer World
Cup X, eds., G. Lakemeyer, E. Sklar, D. Sorrenti, and T. Takahashi,
volume 4434 of LNAI, 110–121, Springer, Berlin, (2007).

[10] H. Endert, T. Karbe, J. Krahmann, and F. Trollmann. Dainamite - Team
Description, 2009.

[11] RoboCup Federation. RoboCup: Overview, 01-10-2010 2010.
[12] R. Ferreira, L. Reis, and N. Lau, ‘Situation Based Communication

for Coordination of Agents’, in Scientific Meeting of the Portuguese
Robotics Open, eds., L. Reis, A. Moreira, E. Costa, P. Silva, and
J. Almeida, pp. 39–44, Porto, (2004). FEUP Ediçőes.

[13] T. Gabel and M. Riedmiller. Brainstormers 2D - Team Description,
2009.

[14] T. Gabel, M. Riedmiller, and F. Trost, ‘A Case Study on Improving
Defense Behavior in Soccer Simulation 2D: The Neurohassle Approach’,
in RoboCup 2008: Robot Soccer World Cup XII, eds., L. Iocchi,
H. Matsubara, A. Weitzenfeld, and C. Zhou, volume 5399 of LNCS,
61–72, Springer, Berlin, (2009).

[15] H. Igarashi, K. Nakamura, and S. Ishihara, ‘Learning of Soccer Player
Agents using a Policy Gradient Method: Coordination between Kicker
and Receiver during Free Kicks’, in IJCNN, ed., X. He, H.and Xu, pp.
46–52, Hong Kong, (2008). IEEE.

[16] M. Isik, F. Stulp, G. Mayer, and H. Utz, ‘Coordination without Nego-
tiation in Teams of Heterogeneous Robots’, in RoboCup 2006: Robot
Soccer World Cup X, eds., G. Lakemeyer, E. Sklar, D. Sorrenti, and
T. Takahashi, volume 4434 of LNAI, 355–362, Springer, Berlin, (2007).

[17] W. Jin, W. Tong, W. Xiao, and M. Xiangping, ‘Multi-Robot Decision
Making based on Coordination Graphs’, in ICMA, pp. 2393–2398,
(2009).

[18] H. Kim, H. Shim, M. Jung, and J. Kim. Action Selection Mechanism
for Soccer Robot, 1997.

[19] J. Kok, M. Spaan, and N. Vlassis, ‘Multi-Robot Decision Making using
Coordination Graphs’, in 11th ICAR, eds., A. Almeida and U. Nunes,
pp. 1124–1129, Coimbra, Portugal, (2003).

[20] J. Kok, M. Spaan, and N. Vlassis, ‘Non-Communicative Multi-Robot
Coordination in Dynamic Environments’, Robotics and Autonomous
Systems, 50(2-3), 99–114, (2005).

[21] J. Kok and N. Vlassis, ‘Using the Max-Plus Algorithm for Multiagent
Decision Making in Coordination Graphs’, in RoboCup 2005: Robot
Soccer World Cup IX, eds., A. Bredenfeld, A. Jacoff, I. Noda, and
Y. Takahashi, volume 4020 of LNAI, 359–360, Springer, Berlin, (2005).

[22] V. Kyrylov, ‘Balancing Gains, Risks, Costs, and Real-Time Constraints
in the Ball Passing Algorithm for the Robotic Soccer’, in RoboCup 2006:
Robot Soccer World Cup X, eds., G. Lakemeyer, E. Sklar, D. Sorenti, and
T. Takahashi, volume 4434 of LNAI, 304–313, Springer, Berlin, (2007).

[23] V. Kyrylov and E. Hou, ‘While the Ball in the Digital Soccer is Rolling,
where the Non-Player Characters should go in a Defensive Situation?’,
in Future Play, eds., B. Kapralos, M. Katchabaw, and J. Rajnovich, pp.
90–96, Toronto, Canada, (2007). ACM.

[24] V. Kyrylov and Eddie Hou, ‘Pareto-Optimal Collaborative Defensive
Player Positioning in Simulated Soccer’, in RoboCup 2009: Robot
Soccer World Cup XIII, eds., J. Baltes, M. Lagoudakis, T. Naruse, and
S. Shiry, volume 5949 of LNAI, Springer, Berlin, (2010).

[25] V. Kyrylov and S. Razykov, ‘Pareto-Optimal Offensive Player Position-
ing in Simulated Soccer’, in RoboCup 2007: Robot Soccer World Cup
XI, eds., U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, volume 5001
of LNAI, 228–237, Springer, Berlin, (2008).

[26] A. Lattner, A. Miene, U. Visser, and O. Herzog, ‘Sequential Pattern
Mining for Situation and Behavior Prediction in Simulated Robotic
Soccer’, in 9th RoboCup International Symposium, eds., A. Lattner,
A. Miene, U. Visser, and O. Herzog, Osaka, Japan, (2005).

[27] X. Li, W. Chen, J. Guo, Z. Zhai, and Z. Huang, ‘A New Passing Strategy
based on Q-Learning Algorithm in RoboCup’, in ICCSSE, volume 1, pp.
524–527. IEEE, (2008).

[28] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild, ‘Giving Advice
about Preferred Actions to Reinforcement Learners via Knowledge-
Based Kernel Regression’, in AAAI-05 and IAAI-05, eds., M. Veloso
and S. Kambhampati, pp. 819–824, Pittsburgh, Pennsylvania, (2005).
AAAI Press / The MIT Press.

[29] L. Mota and L. Reis, ‘Setplays: Achieving Coordination by the Ap-
propriate use of Arbitrary Pre-Defined Flexible Plans and Inter-Robot
Communication’, in ROBOCOMM-2007, pp. 1–7, Athens, (2007). IEEE
Press.

[30] K. Nakamura and H. Igarashi, ‘Learning of Decision Making at Free
Kicks using Policy Gradient Methods’, in Robotics and Mechatronics,
(2005).

[31] R. Nakanishi, K. Murakami, and T. Naruse, ‘Dynamic Positioning
Method Based on Dominant Region Diagram to Realize Successful
Cooperative Play’, in RoboCup 2007: Robot Soccer World Cup XI, eds.,
U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, volume 5001 of LNAI,
488–495, Springer, Berlin, (2008).

[32] A. Nie, A. Hönemann, A. Pegam, C. Rogowski, L. Hennig, M. Diedrich,
P. Hügelmeyer, S. Buttinger, and T. Steffens, ‘ORCA - Osnabrueck
RoboCup Agents Project’, Technical report, Institute of Cognitive Sci-
ence, (2004).

[33] I. Noda, M. Asada, H. Matsubara, M. Veloso, and H. Kitano, ‘RoboCup
as a Strategic Initiative to Advance Technologies’, in IEEE ICSMC,
volume 6, pp. 692–697, Tokyo, Japan, (1999). IEEE Press.

[34] I. Noda, H. Matsubara, K. Hiraki, and I. Frank, ‘Soccer Server: A Tool
for Research on Multi-Agent Systems’, Applied Artificial Intelligence,
12(2-3), 233–250, (1998).

[35] I. Noda and P. Stone, ‘The RoboCup Soccer Server and CMUnited
Clients: Implemented Infrastructure for MAS research’, Autonomous
Agents and Multi-Agent Systems, 7(1-2), 101–120, (2003).

[36] I. Noda, S. Suzuki, H. Matsubara, M. Asada, and H. Kitano. Overview
of RoboCup-97, 1998.

[37] O. Obst and J. Boedecker, ‘Flexible Coordination of Multiagent Team
Behavior using HTN Planning’, in RoboCup 2005: Robot Soccer World
Cup IX, eds., I. Noda, A. Jacoff, A. Bredenfeld, and Y. Takahashi, 521–
528, Springer, Berlin, (2006).

[38] E. Pagello, A. D’Angelo, F. Montesello, F. Garelli, and C. Ferrari,
‘Cooperative Behaviors in Multi-Robot Systems through Implicit Com-
munication’, Robotics and Autonomous Systems, 29(1), 65–77, (1999).

[39] J. Penders, ‘Conflict-based Behaviour Emergence in Robot Teams’,
in Conflicting Agents: Conflict Management in Multi-Agent Systems,
Multiagent Systems, Artificial Societies, and Simulated Organizations:
International Book Series, 169–202, Kluwer Academic Publishers, Nor-
well, (2001).

[40] F. Ramos and H. Ayanegui, ‘Discovering Tactical Behavior Patterns
supported by Topological Structures in Soccer Agent Domains’, in
AAMAS-2008, eds., L. Padgham, D. Parkes, J. Müller, and S. Parsons,
volume 3, pp. 1421–1424, Estoril, Portugal, (2008). IFAAMAS.

[41] S. Razykov and V. Kyrylov, ‘While the Ball in the Digital Soccer is
Rolling, where the Non-Player Characters should go if the Team is
Attacking?’, in Future Play, Ontario, Canada, (2006). ACM.

[42] L. Reis, Coordination in Multi-Agent Systems: Applications in University
Management and Robotic Soccer, Phd, 2003.

[43] L. Reis and N. Lau, ‘Coach UNILANG - A Standard Language for
Coaching a (Robo)Soccer Team’, in RoboCup 2001: Robot Soccer World
Cup V, eds., A. Birk, S. Coradeschi, and S. Tadokoro, volume 2377 of
LNAI, 183–192, Springer, Berlin, (2002).

[44] L Reis, N. Lau, and E. Oliveira. Situation Based Strategic Positioning
for Coordinating a Team of Homogeneous Agents, 2001.

[45] R. Ros, J. Arcos, R. de Mantaras, and M. Veloso, ‘A Case-based
Approach for Coordinated Action Selection in Robot Soccer’, Artificial
Intelligence, 173(9-10), 1014–1039, (2009).

[46] M. Simőes, B. Silva, A. Cerqueira, and L. Silva. Bahia2D - Team
Description, 2009.

[47] F. Stolzenburg, J. Murray, and K. Sturm, ‘Multiagent Matching Algo-
rithms with and without Coach’, Decision Systems, 15(2-3), 215–240,
(2006).

[48] P. Stone, Layered Learning in Multi-Agent Systems, Phd, 1998.
[49] P. Stone and D. McAllester, ‘An Architecture for Action Selection

in Robotic Soccer’, in AAMAS-06, pp. 316–323, Montreal, Quebec,
Canada, (2001). ACM.

[50] P. Stone, P. Riley, and M. Veloso, ‘Defining and using Ideal Teammate
and Opponent Agent Models’, in IAAI-00, (2000).

[51] P. Stone, R. Sutton, and G. Kuhlmann, ‘Reinforcement Learning
for RoboCup Soccer Keepaway’, Adaptive Behavior, 13(3), 165–188,
(2005).

[52] P. Stone and M. Veloso, ‘Task Decomposition, Dynamic Role As-
signment, and Low-Bandwidth Communication for Real-Time Strategic
Teamwork’, Artificial Intelligence, 110(2), 241–273, (1999).

[53] P. Stone and M. Veloso. Team-Partitioned, Opaque-Transition Rein-
forcement Learning, 1999.

[54] F. Stulp, M. Isik, and M. Beetz, ‘Implicit Coordination in Robotic Teams
using Learned Prediction Models’, in ICRA, IEEE ICRA, 1330–1335,
IEEE, New York, (2006).

[55] U. Visser, C. Drucker, S. Hubner, E. Schmidt, and H. Weland, ‘Recog-
nizing Formations in Opponent Teams’, in RoboCup 2000: Robot Soccer
World Cup IV, eds., P. Stone, T. Balch, and G. Kraetzschmar, volume
2019 of LNAI, 391–396, Springer-Verlag, Berlin, (2001).

[56] X. Yuan and T. Yingzi, ‘Rational Passing Decision Based on Region for
the Robotic Soccer’, in RoboCup 2007: Robot Soccer World Cup XI,
eds., U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, volume 5001 of
LNAI, 238–245, Springer, Berlin, (2008).

[57] R. Zafarani and M. Yazdchi, ‘A Novel Action Selection Architecture
in Soccer Simulation Environment using Neuro-Fuzzy and Bidirectional
Neural Networks’, International Journal of Advanced Robotic Systems,
4(1), 93–101, (2007).

ELDAMeth: A Methodology For Simulation-based
Prototyping of Distributed Agent Systems

Giancarlo Fortino and Wilma Russo
Department of Electronics, Informatics and Systems (DEIS)

University of Calabria
Via P. Bucci, cubo 41C, I-87036 Rende (CS), Italy

{g.fortino, w.russo}@unical.it

Abstract—In application domains, such as distributed
information retrieval, content management and distribution, e-
Commerce, the agent-based computing paradigm has been
demonstrated to be effective for the analysis, design and
implementation of distributed software systems. In particular,
several agent-oriented methodologies, incorporating suitable
agent models, frameworks and tools, have been to date defined to
support the development lifecycle of distributed agent systems
(DAS). However, few of them provide effective methods for
dynamic validation to analyze design objects at different degrees
of refinement before their actual implementation and
deployment. In this paper, ELDAMeth, a simulation-based
methodology for DAS that enables rapid prototyping based on
visual programming, automatic code generation and dynamic
validation, is presented. ELDAMeth can be used both stand-
alone for the modeling and evaluation of DAS and coupled with
other agent-oriented methodologies for enhancing them with
simulation-based validation. In particular, the proposed
methodology is based on the ELDA (Event-driven Lightweight
Distilled StateCharts-based Agents) agent model, and provides
key programming abstractions (event-driven computation, multi-
coordination, and coarse-grained strong mobility) very suitable
for highly dynamic distributed computing and on a CASE tool-
driven iterative process fully supporting the modeling,
simulation, and implementation phases of DAS. A simple yet
effective case study in the distributed information retrieval
domain is used to illustrate the proposed methodology.

Keywords – agent oriented software engineering; simulation;
CASE tools; mobile agents; multi-coordination; statecharts

I. INTRODUCTION
The ubiquitous diffusion and usage of the Internet have

promoted the development of new kinds of distributed
applications characterized by a huge number of participants,
high decentralization of software components and code
mobility, which are typical of application domains such as
distributed information retrieval, content management and
distribution, and e-Commerce. In these application domains,
the agent-based computing paradigm [19] has been
demonstrated to be effective for the analysis, design and
implementation of distributed software systems. In particular,
in the context of the agent-oriented software engineering
(AOSE), several agent-oriented methodologies based on
suitable agent models, frameworks and tools, have been
defined to support the development lifecycle of distributed

agent systems (DAS). The key elements, identified through an
in-depth analysis of such methodologies, for the provision of
an effective development of distributed agent systems are the
agent model, the development methodology and the supporting
CASE tool.

The agent models aim at providing abstractions for the
modelling of the agent behavior and interactions. Basically
they can be classified in two large groups: (i) models based on
intelligent agent architectures [19, 21] ranging from reactive
agents (e.g. Brook’s subsumption architecture) to deliberative
agents (e.g. BDI agents); (ii) models based on the mobile active
object concept encompassing mobile agent architectures [4].
Models of the first group are mainly oriented to problem-
solving, planning and reasoning systems whereas models of the
second group are more oriented to distributed computation in
open and dynamic environments like the Internet. In the
context of Internet computing, agent models and related
frameworks based on lightweight architectures, asynchronous
messages/events and state-based programming such as JADE
[2], Bond [3], and Actors [1], have demonstrated great
effectiveness for modeling and programming agent-based
distributed applications. In particular, such models define
suitable abstractions for the modelling of reactiveness and
proactiveness of agent behaviors and interactions. However,
they mainly consider messages (and related message-based
protocols and infrastructures) as a means of interaction among
agents and mobility as an auxiliary feature of agents. The
exploitation of coordination models and infrastructures based
not only on messages but also on events, tuples, blackboards
and other coordination abstractions [6] can provide more
effectiveness in designing complex agent interactions and more
efficiency in their actual implementation. Moreover, mobility,
which can provide a powerful means for dynamic organization
of distributed components modeled as mobile agents, also
enables and demands for new non-message-based coordination
models.

The agent-oriented development methodologies aim at
supporting the development lifecycle of agent-based systems
from analysis to deployment and maintenance. They can be
classified into general-purpose and domain-specific
methodologies. The general-purpose methodologies such as
Gaia [27], PASSI [7], Tropos [5], Ingenias [23] are suitable for
the development of multi-agent systems in different application
domains whereas the domain-specific methodologies can be

more effectively exploited in a given, very specific application
domain. Apart from their context of use, they are all based on a
meta-model of multi-agent system, which loosely or tightly
depends on a reference agent model, and on a phase-based
iterative development process. Agent oriented methodologies
for Internet-based distributed agent systems should incorporate
not only a MAS meta-model and its related agent model
suitable for distributed computation but also effective
prototyping methods able to validate the design models before
their implementation and deployment in a large-scale
distributed testbed. In particular, dynamic validation based on
simulation is emerging as a powerful means for functional and
non functional validation of designed agent systems in a large-
scale controlled environment. To date a few agent-oriented,
simulation-based development methodologies have been
proposed in the literature, such as Electronic Institutions [26],
DynDEVS/James [17], CaseLP [20], GAIA/MASSIMO [12],
PASSIM [8], TuCSon/pi [16], Joint Measure [25],
Ingenias/Repast [24]. They incorporate simulation to support
the design phase of the MAS development lifecycle with the
main focus on the validation and performance evaluation of the
designed MAS model. Moreover, the importance of two
additional features of agent-oriented methodologies, high
degree of integration with other methodologies and availability
of a CASE tool supporting the process phases, has become
relevant in the AOSE community. The former feature would
allow for an easy integration with other methodologies for the
purpose of enriching already existing methodologies or
creating new and more effective ones. The latter would allow
for automating the development process phases and their
transitions so providing more robust development and rapid
prototyping.

In this paper we propose a novel methodology, named
ELDAMeth, which provides all the aforementioned important
features for the development of DAS: effective agent model for
distributed computing systems, simulation-based agent-
oriented methodology, integration with other methodologies,
and CASE tool support. In particular, ELDAMeth relies on the
ELDA (Event-driven Lightweight Distilled Statecharts Agents)
agent model and related frameworks and tools, and on an
iterative development process seamlessly covering the
modeling, simulation and implementation phases of DAS and
supported by a visual CASE tool. ELDAMeth can be used both
stand-alone and in conjunction/integration with other agent-
oriented methodologies which provide support to the analysis,
(high-level) design, and implementation phases. ELDAMeth is
exemplified through a case study concerning distributed
information retrieval based on mobile agents.

The rest of the paper is organized as follows. Section II
presents ELDAMeth, providing an overview of the modeling
abstractions and tools, whereas the simulation phase of
ELDAMeth is detailed in section III. In section IV the case
study is described from modeling to simulation. Finally
conclusions are drawn and future work anticipated.

II. ELDAMETH: A SIMULATION-BASED PROTOTYPING
METHODOLOGY FOR DAS

ELDAMeth is a methodology specifically designed for the
simulation-based prototyping of DAS. It is based on the

ELDA (Event-driven Lightweight Distilled StateCharts Agent)
agent model and related frameworks and tools, and on an
iterative development process covering modeling, simulation
and implementation phases of DAS. ELDAMeth can be used
both stand-alone and in conjunction/integration with other
agent-oriented methodologies which support the analysis and
(high-level) design phases. In Figure 1, the development
process of ELDAMeth is represented which consists of the
following three phases:
- The Modeling phase produces an ELDA-based MAS

design object that is a specification of a MAS fully
compliant with the ELDA MAS meta-model. The design
object can be produced either by (i) the ELDA-based
modeler which uses the ELDA MAS meta-model and the
ELDATool [11, 9], a CASE tool supporting the
development phases of ELDA-based MAS, or by (ii)
translation and refinement of design objects produced by
other agent-oriented methodologies such as PASSI [7, 8],
GAIA [27, 12], MCP [14], and others [23, 5, 19]. In
particular, while the translation process centers on (semi)
automatic model transformations based on the MAS
meta-model of the employed methodology and the ELDA
MAS meta-model, the refinement process is usually
carried out manually by the ELDA-based Modeler by
using the ELDATool. The defined design objects can be
automatically translated, through the ELDATool, into
ELDA-based MAS code objects according to the
ELDAFramework, which is a set of Java classes
formalizing all the modeling abstractions of the ELDA
MAS meta-model. The code objects are then used in the
Simulation phase.

- The Simulation phase produces the Simulation Results in
terms of MAS execution traces and performance indices
that must be carefully evaluated with respect to the
identified functional and non-functional requirements.
Such evaluation can lead to a further iteration step which
starts from a new (re)modeling activity. In particular, the
Simulation Results come from the execution of the
ELDA-based MAS simulation object carried out through
ELDASim, a Java-based event-driven simulation
framework for ELDA agents. The simulation object is
obtained by synthesizing the ELDA-based MAS code
object with the simulation parameters and performance
indices, defined on the basis of the requirements, by
means of ELDASim.

- The Implementation & Deployment phase produces code
for the JADE framework which can be then deployed and
executed on a distributed JADE platform. Starting from
the ELDA-based MAS design object, the code production
is supported by the JADE-based
DistilledStateChartBehaviour framework [15], the JADE
framework and the ELDATool. Of course, the execution
results can be evaluated against the functional and non
functional requirements and, possibly, trigger a new
iteration.

Figure 1. The ELDAMeth iterative development process.

In the following subsection a description of the ELDA-based
modeling abstractions and tools is given (more details can be
found in [13]) and the simulation phase is .

A. Modeling ELDA-based MAS
The modeling of agent-based systems based on the ELDA
model is carried out through the ELDA MAS meta-model
(ELDA MMM) which was specifically defined to provide
design abstractions particularly suitable for DAS and
specifically concerning agent lightweightness, multi-
coordination and mobility. However, as agent-system domains
could require specific design abstractions which haven’t been

originally included within the ELDA MMM, the structure of
the ELDA MMM was designed to be extensible; in fact,
ELDA MMM makes it possible to introduce new design
abstractions (such as new services providers or new
coordination spaces) which characterize a specific execution
environment. In particular, the ELDA MMM is structured
according to the view-based schema reported in Figure 2:
- Agent View, which represents the structure of an ELDA

agent and its relationships with the coordination and
system spaces. ELDA agents are event-driven lightweight
agents that are a single-threaded autonomous entity
interacting through asynchronous events, executing upon
reaction, and capable of migration [13].

- Event View, which represents the structure of events.
Events formalize both self-triggering events (Internal
events) and requests to or notifications from the local
agent server (Management, Coordination and Exception
events). Events are further classified into OUT-events
which are generated by the agent and always target the
local agent server and IN-events which are generated by
the local agent server and delivered to target agents.

- SystemSpace View, which represents the structure of the
system space. The System Space provides system services
for the management of agent lifecycles, timers and
resources (e.g. consoles, databases, files, sensors). Agents
interact with the System Space through Management
events.

- CoordinationSpace View, which represents the hierarchy
of the coordination spaces. The Coordination Space
represents a local or global coordination structure based
on a given coordination model through which agents
interact. Several coordination spaces are currently defined
such as message-based, local tuple space,
publish/subscribe. Agents interact with the Coordination
Space through Coordination events.

- DSC View, which represents the structure of a DSC,
basically a hierarchical state machine with history
pseudostates [13].

- FIPATemplate View, which represents the structure of the
FIPA agent template [10] of the ELDA agent behavior.

Figure 2. The ELDA MMM schema.

Models designed through the ELDA MMM can be coded
through the ELDAFramework that is an object-oriented
framework enabling developers to implement an ELDA-based
application as it offers the implementation abstractions

representing the modeling concepts offered by the ELDA
MMM.
To facilitate the use of ELDAMeth, an integrated development
environment, named ELDATool [9, 11], is offered. It aims to
support developers during the modelling, simulation, and
implementation phases. In particular, ELDATool provides in
an integrated fashion:
- a visual editor which allows to model behavior,

interaction and mobility aspects of an agent-system
according to the ELDA model;

- an automatic translator which implements the translation
rules from ELDA meta-model to ELDAFramework;

- a visual editor to configure simulation parameters used to
generate a simulation program based on ELDASim
framework (see next sub section);

- an automatic translator which implements the translation
rules from hybrid JADE and ELDA meta-models to the
JADE DistilledStateChartsBehaviour.

The graphical design models are serialized into XML-like
files. The tool also offers the functionality of automatic code
generation by translating the XML-like files produced after
the Modelling phase into Java code based on the
ELDAFramework for simulation purposes or on the JADE
framework for real execution.
Finally, to support the Simulation phase ELDATool offers a
visual editor to configure simulation parameters which are
used to generate the simulation program according to the
ELDASim framework (see next subsection).
Currently, the ELDATool is implemented in Java as a
collection of Eclipse plug-in to exploit several frameworks
which fully support the development of visual editors;
moreover, the high diffusion of Eclipse in the research
community makes the tool immediately available to the
Eclipse users and the learning process of the tool is therefore
quicker.

B. Simulation of ELDA-based MAS
The development process of ELDAMeth includes a simulation
phase (Figure 3) which consists of the following three
activities:
1. Performance Indices Definition, which, on the basis of

functional and non functional requirements, produces the
definition of the performance indices which will be
evaluated during the simulation;

2. Simulation Implementation, which aims at the realization
of a simulation program which takes into account the
previously identified indices, the definition of the
controlled environment and the ELDAFramework-based
DAS implementation. In particular, such program uses
abstractions provided by the ELDASim (see below) to
define:
- the controlled execution environment (both features

characterizing the computational nodes and the
network) which mirrors the real execution
environment;

- the initial DAS configuration (agents and related
locations);

3. Simulation Execution, which consists of the DAS
execution within the controlled execution environment and
of the collection of the defined performance indices which
allow the analysis and the validation of the DAS under-
development.

The simulation phase can be iteratively executed to modify,
according to obtained simulation results, the modelling
choices taken in former iterations. Simulation execution is
supported by the ELDA simulation environment (ELDASim)
which is a Java-based execution environment for ELDA
agents that aims to validate and evaluate through simulation an
ELDA model based solutions with respect to efficacy and
efficiency aspects. To accomplish this, ELDASim is equipped
with:
- The basics mechanisms of the distributed architectures

supporting ELDA agents. In particular, agent servers, the
network interconnecting agent servers, and several kinds
of coordination infrastructures (asynchronous message-
based, publish/subscribe, and tuple spaces) for fully
supporting the distinctive multi-coordination feature of
the ELDA model.

- The simulation of accomplishment time of time-
consuming operations such as agent actions, agent
management operations, coordination acts, and agent
migrations.

- The capture of the traces of interactions (among agents
and between agents and agent servers) in terms of
exchanged events, filtered in an application-specific
fashion.

Figure 3. Schema of the Simulation phase.

III. A CASE STUDY: MOBILE AGENT-BASED DISTRIBUTED
INFORMATION RETRIEVAL

In this section, a simple yet effective case study concerning
with a distributed information retrieval task in a distributed
computing system is proposed to exemplify ELDAMeth. In
particular, the task consists in searching for specific
information located exactly in one location within a network of
federated information locations. The defined high-level
solution is based on a coordinated set (or task force) of mobile
agents which carry out the information searching task. A user
(represented by an owner agent) starts searching by creating
and launching a task force of mobile agents (called searcher
agents) onto different random locations. As soon as the task
force finds the desired information, the owner agent is notified

with the found information. A high-level design of such
prototypical solution, which is to be properly translated and
refined, is provided by the Multi-Coordination Process (MCP)
[14]. In the following subsections the case study is described
starting from the high-level modeling provided by MCP and
then proceeding with the modeling, simulation and
implementation phases.

1) MCP-based high-level modeling
The Multi-Coordination based Process (MCP) [14] is iterative
and consists of the two phases (Modeling and Evaluation). The
Modeling phase, on the basis of a coordination statement (CS)
which derives from a preliminary analysis and includes a
description of the agents along with their interactions
(coordination requirements - CRs), and a set of coordination
properties (CPs), provides alternative coordination solutions
which fulfill the CS. In the Evaluation phase, a specific
solution is chosen among such alternative coordination
solutions which are evaluated through simulation and then
compared on the basis of ad-hoc defined performance indices
(e.g. time and resource consumption).

With reference to the case study, the proposed solutions for
the coordination of the task force during its information
retrieval task is based on the following CRs:

- CR1: every time a searcher agent visits a location not
yet searched by other agents of the same task force, it notifies
the other agents that such location has already been searched so

avoiding unnecessary and resource-consuming duplicate
searches;

- CR2: as soon as a searcher agent finds the desired
information on a given location, it reports the found
information to the owner agent;

- CR3: when a searcher agent finds the desired
information on a given location, it signals such event to all the
other searcher agents to stop them;

and on the following CPs:
- CPa: the task force is constituted by at least two

searcher agents;
- CPb: the agents of the task force may or may not know

each other whereas they know the identity of the owner agent
and vice-versa;

- CPc: the interactions among all the agents (searcher
and owner) are always asynchronous.
- CPd: the interactions required by CR1 may be local or
remote, that required by CR2 and CR3 are remote.

The defined solutions are reported in Figure 4. For each
solution, the three coordination requirements are addressed by
suitable interaction patterns (IPs) and related coordination
models (CMs).

(A) (B)

(C) (D)

Figure 4. The result of the high-level MCP-based modeling: solutions A, B, C, D.

The IPs are selected from a repository containing some of
the most used agent-oriented interaction patterns and
specifically characterized (through the tuple [number of
participants, participant identity, locus, temporality]) according
to the coordination requirements and properties. In particular,
the characterized IPs are:
- Location-based notification (LBN), which involves agents

passing through a given location to be notified about
events occurring/occurred in such location.

- Report to owner (R2O), which involves a child agent
reporting to its owner agent when its task is completed.

- Group-based notification (GBN), which involves an agent
notifying all agents of its group when a given event occurs.

The CMs used to implement the IPs are:

- Local Linda-like tuple space (LTS), which supports a high
number of participants, allows temporal decoupling but
only offers local interaction [22].

- Topic-based publish/subscribe (TPS), which supports a
high number of participants, allows for distributed

interactions and does not require temporal coupling
between participants [18].

- Queue–based unicast asynchronous message passing
(QAMP), which supports a variable number of
participants, allows for both local and remote interactions,
does not require temporal coupling, but requires spatial
coupling among participants [28].

2) ELDA-based Modeling
The four solutions have been modeled according to the

ELDA MMM and integrated into an ELDASim-based
simulator program. In Figure 5 the SearcherAgent behavior of
the solution A (see Fig.4A) is shown; such solution is
representative of the message-based solution, whereas the
fully multi-coordinated solution can be found in [13].

Figure 5. SearcherAgent behavior of solution A

Every time a Searcher Agent (SA) visits a new location, it

checks for the presence of a marker agent by using the
whitepage service made available by the agent server (action

ac0) and behaves as follows:
1. If no marker agent is present, the SA creates the marker

agent (action ac1), submits the query to the servant agent

(action ac2), and waits for the query result to analyze it
(action ac3). If no info is found the SA moves to a new
location (if available); otherwise the SA goes into a
pseudo-termination state (BLOCKING). If the info is
found, the SA notifies the user agent and the other
members of the task force through asynchronous
messages (action ac4); then, it goes into the BLOCKING
state. The user agent will thus receive a Report event
whereas the taskforce members the
StopSearchNotification event. Upon reception of a
StopSearchNotification event, a SA stops its activity and
goes into the BLOCKING state if it has previously
created marker agents; otherwise, it terminates. In both
cases, such SA will notify the other taskforce members of
its state change (actions ac8 and ac9). Going into the
BLOCKING state, the SA notifies its state change to the
other taskforce members (action 6) so that each member
knows the active agents in the taskforce. The notification
is based on the BlockedSearcherNotification event that,
once received, allows updating the list of active agents
(action ac10). Moving from BLOCKING to
TERMINATED the SA requests to cease its activity and
also sends to all the marker agents it has previously
created a termination request (action ac7).

2. If the marker agent is present and other locations are
available, the SA migrates to a new location (action ac5).

3. If the marker agent is present and no other locations are
available but the SA has created at least one marker agent
in previously visited locations, it goes into the
BLOCKING state (action ac6) to enforce the termination
of such marker agents (see point 1 for the management of
marker agent termination).

4. If a marker agent is present, no other locations are
available and no marker agents have been previously
created by the SA, the SA terminates (action ac8).

3) Simulation and performance evaluation

To evaluate the four solutions shown in Figure 4, in the
Performance Indices Definition activity, the performance
indices reported in Table 1 have been defined. The Simulation
Execution activity relies on two simulation parameters (the
number of locations and the number of searcher agents) and
on the following settings of the network topology and
information distribution:
- Locations are connected through a fully connected logical

network composed of FIFO channels. In particular,
channels are characterized by the same delay and
bandwidth parameters modeled as uniform random
variables.

- The information to be found is contained exactly at one
location and the locations keep references (randomly
generated) to other locations at information level to be all
reachable.

Simulation runs are carried out with the number of locations
equals to 100 and the number of searcher agents in the range

[2..20]. Moreover, for each simulation run, all four solutions
are executed on the same network topology and information
distribution. In Figures 6-10 the simulation results are
reported; the obtained values of the performance indices are
averaged over 50 simulation runs.

TABLE I. PERFORMANCE INDICES

The TTC performance index, which measures the speed with

which the information search task is carried out, decreases as
the number of searcher agents increases (see Figure 6). In fact,
the use of more searcher agents augments the degree of
parallelism which, consequently, increases the probability to
find the searched information with a smaller number of
migrations which are time-consuming. The performances of
all the solutions are almost the same.

Figure 6: The Task Completion Time

The NM parameter (see Figure 7), which measures the
network load, is significantly better in the A and C solutions
thus saving network resources with respect to the other
solutions. In fact, as CR1 is modeled according to the LBL
interaction patterns in solutions A and C whereas the GBN
interaction pattern is used in solutions B and D the number of
coordination messages increases due to the GBN interaction
pattern is adopted by B and D. The TN performance index
measures how fast all the searcher agents are notified after
finding the information: the shorter TN, the fewer are the
resources consumed throughout the agent platform. The A and

C solutions outperform the other solutions (see Figure 8) as
the network load is lighter than the ones of the B and D
solutions. The NV and NS parameters are measures of the
consumption of resources after the information is found. The
values of such parameters should be kept as low as possible.
As shown in Figures 9 and 10, the A and C solutions
outperform the other solutions also for such indices. In
particular, although the TTC values of the A and C solutions

are similar to the solutions B and D, the other performance
indices values are significantly better. It is worth noting that
solution A not only is less straightforward than solution D but
also requires the cloning of a marker agent for each visited
location but such operation may not be allowed according to
security policies of the locations..

Figure 7: The Number of coordination messages

Figure 8: The Notification Time

Figure 9: The Number of visits after finding information

Figure 10: The Number of searches after finding information

IV. CONCLUSION
This paper has proposed ELDAMeth, a novel agent-

oriented methodology supported by a CASE tool for the
simulation-based prototyping of Internet-based distributed
agents systems (DAS). In particular, the distinctive
characteristics of ELDAMeth are: effective agent model for
distributed computing systems, simulation-based agent-
oriented methodology for design validation before
implementation and deployment, integration with other
methodologies to exploit their well-defined method fragments,
and CASE tool support for supporting all development phases
from modeling to simulation and implementation. Such
distinctive characteristics make ELDAMeth very effective for

prototyping Internet-oriented DAS. ELDAMeth has been
applied to prototype several kinds of DAS such as mobile e-
Marketplaces, content delivery infrastructures, and information
retrieval systems. In this paper we have shown a case study in
the information retrieval domain which has demonstrated the
suitability and great effectiveness of ELDAMeth for the rapid
prototyping of Internet-based DAS. As future work we aim at
providing full support to multi-coordination in the
implementation phase: this would allow to translate multi-
coordinated ELDA specifications into a real target platform
represented by JADE and coordination infrastructures such as
TucSon for tuple spaces and Elvin for publish/subscribe
systems.

ACKNOWLEDGMENT
Authors wish to thank A. Garro, S. Mascillaro, G.

Mazzitelli, and F. Rango for useful ideas, discussions and
implementation efforts supporting the ELDAMeth project.

REFERENCES
[1] Astley, M., and Agha, G. A., Customization and Composition of

Distributed Objects: Middleware Abstractions for Policy Management,
ACM SIGSOFT 6th International Symposium on Foundations of
Software Engineering (FSE), 1998.

[2] Bellifemine, F., Poggi, and A., Rimassa, G. 2001. Developing multi
agent systems with a FIPA-compliant agent framework. Software
Practice And Experience 31, 103-128.

[3] Boloni, L., and Marinescu, D. C., A multi-plane state machine agent
model, Fourth International Conference on Autonomous Agents,
Barcelona, Spain, pp. 80-81, ACM Press, 2000.

[4] Braun, P. and Rossak, W., Mobile Agents: basic concepts, mobility
models, & the tracy toolkit, Heildelberg, Germany, Morgan Kaufmann
Publisher, 2005.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
Tropos: An Agent- Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi- Agent Systems. Kluwer
Academic Publishers Volume 8, Issue 3, Pages 203 - 236, May 2004.

[6] Cabri, G., Leonardi, L.., and Zambonelli, F., Mobile-agent coordination
models for internet applications, IEEE Computer, 33, 2, pp 82-89, 2000.

[7] Cossentino, M., From Requirements to Code with the PASSI
Methodology, Agent-Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini (eds). Idea Group Inc., Hershey, PA, USA, 2005.

[8] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S. and Russo, W.
2008. PASSIM: a simulation-based process for the development of
multi-agent systems. Int. J. Agent-Oriented Software Engineering 2(2),
132-170.

[9] ELDATool documentation and software,
http://lisdip.deis.unical.it/software/eldatool.

[10] FIPA Agent Management Specification, Management for agents on
FIPA agent platforms,
http://www.fipa.org/specs/fipa00023/SC00023K.html.

[11] Fortino, G., Garro A., Mascillaro S., and Russo W. 2007. ELDATool: A
Statecharts-based Tool for Prototyping Multi-Agent Systems. In
Proceedings of Workshop on Objects and Agents (WOA'07, Genova, IT,
Sept. 24-25, 2007), pp. 14-19.

[12] Fortino, G., Garro, A., and Russo, W. 2005. An Integrated Approach for
the Development and Validation of Multi Agent Systems. Computer
Systems Science & Engineering 20, 4, 94-107.

[13] G. Fortino, A. Garro, S. Mascillaro, W. Russo, “Using Event-driven
Lightweight DSC-based Agents for MAS Modeling,” in the special issue
“Best of From Agent Theory to Agent Implementation 6 (AT2AI-6)”,
International Journal on Agent Oriented Software Engineering
(Inderscience publisher), 4(2), 2010.

[14] G. Fortino, A. Garro, S. Mascillaro, W. Russo, “A Multi-Coordination
based Process for the Design of Mobile Agent Interactions,” In
Proceedings of IEEE Symposium on Intelligent Agents (IEEE
Symposium Series on Computational Intelligence), Nashville (TN),
USA, March 30-April 2, 2009.

[15] G. Fortino, F. Rango, W. Russo, “Statecharts-based JADE agents and
tools for engineering Multi-Agent Systems”, in Proc of 14th
International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES2010), Cardiff, 2010.

[16] L. Gardelli, M. Viroli, M. Casadei, A. Omicini, “Designing Self-
Organising Environments with Agents and Artifacts: A Simulation-
Driven Approach”, International Journal of Agent-Oriented Software
Engineering (IJAOSE). Volume 2(2). Page 171--195. 2008.

[17] Himmelspach J, Röhl M & Uhrmacher AM (2008): Component based
models and simulation experiments for multi-agent systems in James II.
In the Proc. of the 6th Int'l Workshop "From Agent Theory to Agent
Implementation" (AT2AI) jointly held with AAMAS", Estoril, Portugal,
13 May, 2008.

[18] Loke, S. W., Padovitz, A., Zaslavsky, A., and Tosic, M., Agent
Communication Using Publish-Subscribe Genre: Architecture, Mobility,
Scalability and Applications, Annals of Mathematics, Computing &
Teleinformatics, 1, 2, pp 35-50, 2004.

[19] Luck, M., McBurney, P., and Preist, C. 2004. A manifesto for agent
technology: towards next generation computing. Autonomous Agents
and Multi-Agent Systems 9, 3, 2004, 203-252.

[20] Martelli M., Mascardi, V. and Zini, F., Specification and Simulation of
Multi-Agent Systems in CaseLP, Appia-Gulp-Prode Joint Conf. on
Declarative Programming, L'Aquila, Italy. pp. 13-28, 1999.

[21] Nwana, H.S., Software Agents: an overview, Knowledge Engineering
Review, 11, 3, pp 205–244, 1996.

[22] A. Omicini, F. Zambonelli, “Tuple Centres for the Coordination of
Internet Agents,” ACM Symposium on Applied Computing (SAC'99),
28 February - 2 March 1999.

[23] Pavón, J., Gómez-Sanz, J.J. and Fuentes, R. (2005) 'The INGENIAS
methodology and tools', in B. Henderson-Sellers and P. Giorgini (Eds.)
Agent-Oriented Methodologies, Idea Group Publishing, pp. 236-276.

[24] Pavon, J., Sansores, C., and Gomez-Sanz, J. J. 2008. Modelling and
simulation of social systems with INGENIAS. Int. J. Agent-Oriented
Softw. Eng. 2, 2 (Feb. 2008), 196-221.

[25] Sarjoughian, H.S., Zeigler, B.P. and Hall. S.B., A Layered Modeling and
Simulation Architecture for Agent-based System Development, IEEE,
89, 2, pp. 201-213, 2001.

[26] Sierra, C., Rodríguez-Aguilar, J. A., Noriega, P., Esteva, M. and Arcos,
J.L., Engineering Multi-agent Systems as Electronic Institutions,
Novática, 170, 2004.

[27] Wooldridge, M., Jennings, N. R., and Kinny, D., The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems, 3, 3, pp 285–312, 2000.

[28] Zhou, X.Y., Arnason, N., and Ehikioya, S.A., A proxy-based
communication protocol for mobile agents: protocols and performance,
IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp 53-
58, 1-3, Dec. 2004.

Design and Simulation of a Wave-like Self-
Organization Strategy for Resource-Flow Systems

Jan Sudeikat,
Wolfgang Renz, Thomas Preisler and Peter Salchow

Multimedia Systems Laboratory (MMLab),
Faculty of Engineering and Computer Science,

Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Email: {jan.sudeikat, wolfgang.renz,
thomas.preisler, peter.salchow}@haw-hamburg.de

Jan-Philipp Steghöfer, Hella Seebach
and Wolfgang Reif

Institute for Software and Systems Engineering,
Augsburg University,

Universitätsstrasse 6a, 86135 Augsburg, Germany
Email: {steghoefer, seebach,

reif}@informatik.uni-augsburg.de

Abstract—In resource-flow systems, e.g. production lines,
agents are processing resources by applying capabilities to them
in a given order. Such systems profit from self-organization as
they become easier to manage and more robust against failures.
This paper proposes a decentralized coordination process that
restores a system’s functionality after a failure by propagating
information about the error through the system until a fitting
agent is found that is able to perform the required function. The
mechanism has been designed by combining a top-down design
approach for self-organizing resource-flow system and a systemic
modeling approach for the design of decentralized, distributed
coordination mechanisms. The systematic conception of the inter-
agent process is demonstrated. Evaluations of convergence as well
as performance are performed by simulations.

I. INTRODUCTION

A key driver in the development of autonomous and auto-
nomic systems is the handling of complexity in large appli-
cations that consist of a great number of interacting entities.
Traditional management and failure-handling approaches are
no longer applicable as they do not scale well with the size
of the systems and the communication required by a central
management becomes prohibitive, even with modern high-
speed networks. Therefore, engineers and computer scientists
turn to self-organization as a means to deal with large complex
systems and to keep up with the growth of such applications.

In this paper, we present a self-organizing process for the
class of self-organizing resource-flow systems. This class can
be applied to a great variety of domains such as production
automation and logistics and systems in it can be modeled
with the Organic Design Pattern (ODP) [1]. The decentralized
process proposed here is analyzed and modeled with the
tools provided by the SodekoVS project [2]. Changes in the
configurations of agents propagate through the system like
a wave until the system in its entirety has restored a stable
state. During reconfiguration, parts of the system that are not
affected by the process or have already been reconfigured are
still able to resume their normal work. Evaluations show the
quick convergence to stable states and the reconfigurations
only affect system partitions.

This paper also shows how to pragmatically combine a top-
down approach for the design of agent-based systems with a
bottom-up approach for the design of inter-agent coordination.
While the exact interplay of the two concepts is not fully
elaborated here, it already becomes clear that both approaches
are not necessarily orthogonal but that it is beneficial to
combine both views.

This paper is structured as follows: in the following section,
the ODP, as a conceptual model for self-organizing resource-
flow systems, is discussed and a prominent application sce-
nario, i.e. production automation, is introduced. In Section
III, a programming model for self-organization is introduced.
Subsequently, the intended coordination dynamics of self-
organizing resource-flow systems are presented (see Section
IV) and the realization of a decentralized role allocation
strategy is discussed and evaluated (Section V). Finally, we
conclude and give prospects for future work.

II. DESIGN OF SELF-ORGANIZING RESOURCE-FLOW
SYSTEMS

In production automation systems, resources are transported
between machines to subject these work peaces to a specific
sequence of work steps. The sequence of machines is typically
static. The machines that process the resources are highly
specialized and only have one particular capability, i.e. an
individual operation, they can apply to the resources. The
transport of resources is fixed as well, e.g. by a static layout of
conveyor belts. This rigid structure simplifies the management
but has far-reaching implications, since reconfigurations are
obstructed. The complete system has to be halted when
internal errors make a single system component inoperable.
Adjustments of the production process have to be carried out
by stopping the system and retooling machines.

A visionary alternative are flexible, agent-based production
lines that enable failure tolerance. Machines can autonomously
reconfigure and transports of resources are carried out by au-
tonomous guided vehicles (AGVs). Such a scenario is depicted
in Fig. 1 where robots process a car body which is transported
between the processing stations by autonomous carts.

Fig. 1. Robots with different capabilities (icons to the right of the robot)
process a car by applying one of their capabilities each (highlighted icon).

There are other domains where similar resource-flows occur,
e.g., logistic scenarios or web service orchestration, we call
this class of systems Self-Organizing Resource-Flow Systems.
Their basic structure can be described with the ODP [3]
which defines the elements that constitute the system and
their relationship as shown in Fig. 2. Task define the required
processing of resources. Processing steps are carried out by
agents. The states of resources are modified by applying
capabilities. Agents have a set of capability available and
exchange resources, based on the shop layout (inputs and
outputs). Which capability an agent applies and with which
agents it exchanges resources is determined by a role1. Roles
have a precondition that describes where the resource is
coming from, which state it has, and which task has to be
performed on it. They also have a postcondition that describes
to which agent the resource has to be given and which state and
task it has after the agent has processed it. Most importantly,
the role defines the capabilitiesToApply, i.e., what an agent is
supposed to do with the resource.

To fulfill the tasks for a resource (i.e., to apply the correct
capabilities in the correct order), a resource-flow is established
by the allocation of roles to agents that determines how the
resource is moved through the system and processed on the
way. This means the combination of the roles of the agents by
their pre- and postconditions respectively, is a connected chain
of agents along which resources in the system are forwarded
and processed. There is usually one such chain or resource-
flow for each task that has to be fulfilled in a system. Each
agent, however, can participate in more than one resource-flow
and thus be involved in several tasks at the same time.

The interactions between the agents to handle resources are
also defined on the abstract system class level and can be
inherited by applications based on the ODP. They describe,
amongst other things, the handover of resources and the
detection of agent failures with a heartbeat mechanism. This
way, both a formal analysis of the system class [3], generalized
mechanisms to deal with problems in the system class such
as deadlocks [4] as well as a generic runtime environment [5]
become feasible.

The ODP also contains an Observer/Controller (O/C). This
element of the system structure is the abstract extension
point for the self-organization or reconfiguration mechanism.
Correct system behavior is defined by invariants that have to

1Please note that some of the terminology used in ODP has a slightly
different semantics than the same terms in agent-oriented software engineering
due to the historic roots of ODP.

Fig. 2. The elements of the ODP for Resource-Flow Systems.

hold during the entire runtime of the system. Whenever the
invariants are violated, the system has to be reconfigured to
fulfill the invariants again (Restore Invariant Approach [3]).
The individual agents are able to monitor local invariants and
thus implement the observation part of the O/C. The controller
part of the O/C is then responsible to calculate a new allocation
of roles that restore the resource-flow and ensure that each
agent has a role that fits its capabilities and its input/output
relationship with other agents. How this calculation is done,
however, is not specified at this point.

III. SYSTEMIC PROGRAMMING OF SELF-ORGANIZATION

In the research project ”Selbstorganisation durch Dezentrale
Koordination in Verteilten Systemen”2 (SodekoVS) [2], a
programming technique is developed that allows to equip
software systems with self-organizing features. The self-
organizing inter-agent process is described by discrete design
elements [6]. This enforces a conceptual separation of the
agent functioning and the coordination, i.e. the correlation of
agent activities.

First, a modeling level for the description of inter-agent
self-organization is provided. This modeling level supplements
agent-oriented software engineering practices with an orthog-
onal description level that concerns the dynamic properties of
agent-based software systems [6]. The driving force of self-
organizing dynamics are distributed feedback loops among
system elements [7]. These result from the mutual influences
among system elements and control how fluctuations in the
system context are disseminated and collectively responded to.
The systemic modeling level addresses the description of these
networks of influences and it has been found that the visual-
ization of the mutual interdependencies of system elements
is useful for the anticipation of the dynamics that software
systems are able to exhibit [8], [6]. Using a graph-based
modeling approach, System Dynamics [9] modeling concepts
are specialized for describing Multi-agent systems (MAS).

2Self-Organisation by Decentralized Coordination in Distributed Systems

These models are given as an Agent Causal Behavior Graph
(ACBG) [10]. The nodes in this graph-based modeling level
represent system variables that characterize the macroscopic
state of a MAS. These describe the number of agents that show
a specific behavior, e.g. play a role. In addition, the current
value of an interaction rate can be denoted with a specific
node type. The links among these variables denote mutual
influences and interdependencies. In this respect, influences
denote additive or subtractive contributions to node values,
e.g. when the activity of an agent increases or decreases
the stock of a warehouse. Interdependencies describe causal
relations where the activities of agents are mutually linked,
e.g. the number of hypothetical service requesters in a system
is expected to be positively linked to the number of activations
of service providers. When the number of requesters increases,
the number of activations increases as well and vice versa.

Secondly, a programming model that allows the enactment
of ACBG-based prescriptions of self-organization processes
[11], [10] facilitates application development. The key element
is a distributed architecture for the enactment of decentralized
inter-agent processes (cf. Fig. 3) [11]. This architecture serves
as a reference model for the integration of ACBG-based
processes in MAS. It provides a conceptual framework for
fitting in different self-organization mechanisms and follows
a layered structure. The topmost layer (Application Layer)
contains the realization of an agent-based application. The
contained agents are understood as self-contained providers
of functionalities (Application Functionality). The contained
agents individually control their activities and an underlying
Coordination Layer enables the purposeful affecting of agents
to concert the localized activities and establish collective
behaviors.

The Coordination Layer describes an event-based dis-
tributed system [12], which allows to realize mutual influ-
ences among system elements. These influences correspond
to relations in ACBG-based models of inter-agent processes,
thus the layer is a means to enact the described processes in
MAS. The establishment of inter-agent influences, particularly
for the construction of self-organizing systems, is based on
two types of mechanisms [13], i.e. techniques for the infor-
mation exchange among agents (e.g. reviewed in [14]) and
mechanisms for the (adaptive) adjustments of agents (among
others classified in [15]), due to the perceived information
(see Section VI). The Coordination Layer contains two types
of functional elements for the encapsulation of these aspects.
Coordination Media are conceptual containers of so-related
interaction infrastructures. Specific interaction modes, e.g. the
mediation by an environment [16] or Linda-like tuple spaces,
are encapsulated and reused by a generic interface [11]. Coor-
dination Endpoints interact on behalf of agents via these media
and are able to influence the agent execution. These elements
are used to encapsulate and automate the coordination-related
activities. These activities concern the interactions vie Media,
i.e. the invitation and participation of interactions, as well as
the affectation of modifications in the agent models.

The ACBG-based modeling of dynamics of inter-agent

Fig. 3. The SodekoVS-Architecture for the embedding of decentralized
coordination in MAS [17].

coordination is exemplified in the Sections IV and V. A
configuration language [10] allows to map ACBGs to agent-
based software systems. These mappings describe the realiza-
tion of influences among agents, i.e. the coordination-related
logic that controls the initiation, participation, and reaction to
interactions as well as the media that mediate interactions. The
detailing of these models, as a systematic programming effort,
is not discussed in this article but details on the configuration
of process enactments can be found in [17].

IV. SYSTEMIC MODEL OF ADAPTATION DYNAMICS

In [18], the systematic integration of decentralized coordi-
nation strategies in MAS has been discussed. The conception
of the appropriate coordination is approached by modeling the
problematic, unintended behavior of applications. Based on the
identification of the Problematic Dynamic, a corresponding
Solution Dynamic is derived that supplements the application
behavior with additional interdependencies and inter-element
feedbacks to correct the system behavior and alleviate unin-
tended effects.

The Problem Dynamic of an ODP-based resource-flow
systems is illustrated in Fig. 4 (right). Initially, agents are
running and one or several roles are allocated to them which
are executed in order to process resources. Random errors
make it impossible for the agent to apply one or more of
its roles. The adoption of roles that can not be applied is
controlled by a fluctuating rate (RF interrupt) that is positively
influenced by the availability of running, thus breakable,
agents and the changing number of error events (Error). This
rate describes the resource-flows (RF) that are interrupted, due
to the breaking of agents. These failures within individual
agents limit the number of running agents (negative link), thus
the problematic system behavior is dominated by a negative
feedback loop (α).

If not handled, this dynamic causes the number of agents
that are not running to increase over time. The design of
an appropriate Solution Dynamic concerns the derivation of
agent behaviors that counteract this unintended effect. A very
general structure is given on the left hand side of Fig. 4.
Agents that have roles they can no longer apply are Waiting
for Reconfiguration. The rate of interrupts positively influences
the increase of this variable. The system is equipped with
a reconfiguration mechanism, and for each of the waiting

Fig. 4. The Problem and Solution Dynamic of the ODP.

agents a new configuration is determined. Thus the system
shows a causal relation. In absence of waiting agents, no
reconfigurations take place. Occurrences of waiting agents
enforce subsequent reconfigurations (Reconfigure) to restore a
set of executable roles. The reconfigurations thus increase the
number of Running agents by complementing a counteracting
feedback loop (β).

This Solution Dynamic deliberately omits the concrete
mechanism with which new role allocations are determined.
Also the locally applied techniques to the enactment of recon-
figurations are abstracted. A method to express the problem of
finding a fitting role allocation as a constraint-solving problem
has been presented in [19] and solved with a centralized
approach. Whenever an agent can no longer apply one of
its roles or whenever an agent breaks, the resource-flow is
interrupted. When the interruption is detected, the system
reconfigures in order to restore the flow. During the course of
the reconfiguration process, a new allocation of roles to agents
is calculated and the roles are communicated to the agents
which then apply them again. The next section describes
an alternative reconfiguration mechanisms in which new role
allocations are found in a decentralized fashion by propagating
the demand for local reconfigurations through the system.

V. WAVE-LIKE DECENTRALIZED RECONFIGURATION

A completely decentralized reconfiguration approach is
based on the idea that a wave of role re-allocation runs through
the system in order to re-establish the resource-flow. Assuming
that each agent is capable to exhibit a set of capabilities (see
Section II), a correct resource flow can be (re-)established by
the appropriate swapping of roles. Failing agents adopt actable
roles and in return other agents help out by providing the
unactable roles. The failing agent emits a wave of reallocations
by sending requests for assistance along the resource flow.
Each recipient has to decide locally if it is capable and will
swap roles. Generally, a single swap of roles is not enough to
reestablish the full sequence of activities and transitive changes
of roles are required.

The operating principle is exemplified in Fig. 5 for a simple
scenario that requires a transitive swap of roles. Three Robots
are connected in series (1). For each agent the set of actable
capabilities are listed and the topmost capability is used in
the currently active role, e.g. Robot 1 is currently configured

to play a role that involves Cap. 1 but may also apply Cap.
3. Two types of Cart agents represent the initial provision
(Producer) and the final collection of the processed workpieces
(Consumer). Due to an error Robot1 can no longer apply Cap.
1 and sends a request for assistance (2). This request is routed
along the resource flow till it reaches an agent that is capable
to execute the needed capability, here Robot 2 which replies
to the request (3). The reply is routed to the requesting Robot
as well as the Carts that are connected to the swapping robots.
Consequently, the Robots and Carts reconfigure their local
roles. The robots update their roles and the resource flow
is reestablished by adjusting the ports in the pre- and post-
conditions of the roles of the connected Carts to ensure that
workpieces reach the robots in the intended sequence. In the
best case, the originating and the receiving agents can just
switch their roles, thus restoring the resource-flow.

In Fig. 5, Robot 2 is able to provide capability Cap. 1 but
Robot 1 is not able to replace Robot 2 as it is missing the
currently utilized Cap. 2 (3). Thus after the swap, Robot 1
remains in a problematic state and requests assistance (4).
This request is propagated again till it reaches a robot with
the required capability (Robot 3) and the swap proceeds as
above (5). Since Robot 1 is able to replace the currently active
capability of Robot 3, i.e. Cap. 3, the correct sequence of ca-
pabilities is finally reestablished (6). Here, the reconfiguration
logic has been described for agents that only play on role at a
time and the subsequent simulations concerns this simplified
scenario. In principle, agents can be part of several resource-
flows and in that case, the agents only reconfigure for roles that
include the broken capability and keep processing resources
of other tasks. Consequently, the informed Carts change only
the ports of the affected roles accordingly.

A detailed ACBG of the outlined reconfiguration algorithm
is illustrated in Fig. 6. This description refines the previously
given Solution Dynamic (cf. Fig. 4) as it illustrates how the
decentralized strategy relates to the dynamics of ODP. In
addition, it indicates the system-level effects of the decentral-
ized reconfiguration that are examined in Section V-A. When
agents are Waiting for Reconfiguration due to error events,
they show two behaviors. First, they are Deficient as one or
more roles, which are required for the processing of resources,
are inoperable. These roles are distinguished by the reason for
deficiency. Agents can be rendered deficient by error events
(By Break) or they deliberately decided to abandon a role in
order to adopt another role on behalf of another agent (By
Change). In the former case, the agents are rendered inefficient
and in the latter case agents assist other agents. Secondly,
these agents are considered to be Non-Active, i.e. they have
the capacity to play another role. Agents can concurrently play
several roles, therefore, the non-activity only denotes that the
agent is underutilized, i.e. is capable to exhibit another role.
This means that in agents that can play several roles, the
Running and Non-Active roles do not exclude each other, but
an agent can be associated to an active role (Running) and
still have the capacities to play additional roles (Non-Active).

Agents are equipped with the ability to autonomously

Fig. 5. Exemplification of the decentralized reconfiguration.

Fig. 6. ACBG for the Solution Dynamic of the wave-like, decentralized
reconfiguration algorithm

change their allocation (Change Role). Deficient robots in-
dicate their shortcoming to other agents (communicate de-
ficiency) via a Coordination Medium (cf. Section III). The
medium controls the sequential reception of the request along
the flow of resources in the production line. Recipients de-
cide locally whether to change their role-allocation or not,
based on their individual abilities. The changing behavior is
distinguished by the receiving agent that adjusts the local
configuration. Non-Active agents Resume the executions since
these become operational. Running agents that adjust their role
Assist the requesting agent. These roles have different effects
on the agent population. All changes remove deficiencies and
the annotation source.targetRole == destination.Role indicates
that only those deficiencies are removed (destination) that

changing agents (source) commit to. Another commonality
is that the adjustment of a role entails the restoring of the
flow of resources among the agents (Restore RF). When
an agent has adjusted its role, those agents that received
resources from it or gave resources to it need to adapt as
well. This activity is separated from the role change as the
agents do not deliberately decide about these changes. These
are reconfigurations within connected agents that are enforced
as they are consequences of the deliberate changes. These
reconfigurations may as well by transmitted via Coordination
Media (see Section III).

Assisting another agent introduces new deficiencies, as the
assisting agent is giving up one role that needs to be played
by another agent (Deficient by Change). Thus the net amount
of Non-Active agents is unaffected. However, these changes
may be necessary in settings where agents can not swap
roles directly and transitive changes of roles are required (as
exemplified in Fig. 5). When Non-Active agents Resume to
adopt a role, the number of Non-Active agents is reduced.
Still, this requires the availability of Non-Active agents.

The changing activities of agents control the overall negative
feedback (β) that increases the number of operational agents
and reduces the number of deficient agents. Three auxiliary
feedbacks influence the exhibited system dynamics (δ,γ,ε).
First, agents that assist others create a reinforcing feedback
loop (δ), which originates from the fact that an assisting agent
adds additional deficiencies to the system. If an agent resumes
its activities, deficiencies and non-active agents are removed
instead, thus instituting a balancing feedback (γ). The ability
to resume is limited by the amount of Non-Active agents,
leading to a third balancing feedback (ε).

A. Estimating the Effects of Adaptation Dynamics

The outlined Solution Dynamic (cf. Fig. 4) denotes an inter-
agent process that can be implemented with the systemic pro-
gramming model (see Section III). Prior to the detailed design
and embedding of this process, the effected system behavior
is anticipated. One approach to estimate the dynamics of
self-organizing MAS is their simulation in stochastic process

algebra models [20]. It is important to note that the resulting
stochastic models abstract from the agent implementations and
their internal reasoning. Instead, stochastic terms are used
to describe the dynamics with which specific behaviors are
adopted or left. The number of currently active process terms
resembles the number of agents that show specific behavior,
i.e. the variable-values of an ACBG-based process description.

Fig. 7 illustrates the simulation model used to anticipate
the Solution Dynamic. The model is given in stochastic π-
calculus [21] and simulated with the Stochastic Pi Machine3

(SPIM). Details on the simulation language and graphical
notation can be found in [22]. Agents are modeled as processes
that communicate/interact via channels. The stochastics of
interactions are given by annotating processes with delays
(τ) and assigning interaction rates to channels [21], [22]. The
notation x denotes the sending of data on the channel x and
x denotes the reception of data via the channel x.

Fig. 7. Simulation Model of the Solution Dynamic in Stochastic π-Calculus.

In the simulation model, the number of agent behaviors that
are exhibited are expressed by the number of active processes.
Processes communicate via two channels. The channel reqb is
used to communicate requests for a role-switch, due to an
internal error, i.e. the internal breaking of the requester. When
roles are requested to be switched in order to assist an agent,
these requests are send via the channel reqc. Operative agents
are denoted by the running process. Internal errors occur with
a fixed rate, as defined by the delay τb. Inoperative robots
are represented the concurrent execution of the deficientb
and non-active processes. Deficient processes end when a
request for re-assignment of the affected role is processed by a
recipient. The non-active processes become resume processes
when they receive any request for re-allocation. The time delay
τrc resembles the time needed to reconfigure. Afterwards, the
agent is in operation, i.e. exhibits the running process. When
running agents receive a request to switch roles, they convert
to the concurrent execution of the assist and deficientc
processes. The assistance transforms back to the running
process, delayed by the time to reconfigure the agent (τrc). The
deficientc processes describe the search for another agent that
is able to play the role that an assisting agent possessed before

3http://research.microsoft.com/en-us/projects/spim/

the assisting adjustment. Deficiency ends when another agent
processes the request for a role change, communicated via the
channel reqc. This simulation model abstracts from the agents
that participate in the system. The time needed to restore the
resource flow (cf. Fig. 6), i.e. the adjustments of the roles of
the directly connected agents to reestablish the correct flow of
resources among machines, is part of the time delay τrc. We
assume that the rerouting of resource transportations is always
possible.

Simulations indicate that, at a high enough level of redun-
dancy, the system reliably recovers due to the decentralized
switching of agent roles. This process describes a structure
formation as the system maintains the operational system
configuration. The fraction of recovering situations is predicted
by this simulation to depend on the redundancy level in a
similar way as is shown in the results section below.

B. Agent-based Realization

After the anticipation of the affected system behavior, this
reconfiguration strategy has been integrated in a MAS by using
systemic programming model (see Section III). The system
implementation (Application Layer, see Figure 3) makes use
of the freely available Jadex4 agent framework. The Robots
and Carts within production lines are represented by Jadex-
agents and the exchanged workpieces are mimicked by objects
that are exchanged via FIPA Agent Communication Language
(ACL) messages. A realization of the Coordination Layer (see
Fig. 3) for this agent platform is utilized [11].

For this application scenario a tailored Medium realization
is utilized that routes request and reply messages along the
resource flow. Conceptually though, agents are aligned in
a circle thus all agents can be reached independent of the
location of the incapacitated agent. Endpoints encapsulate the
logic to coordinate the reconfiguration process and interact
via the Medium. Endpoints observe the agent-operation and
initiate the reconfiguration process by sending a help request
if an agent becomes deficient. The help request is forwarded
through the medium. Each endpoint along the message path
decides whether to adopt the deficient agent’s role or continues
forwarding the help request. If the endpoint decides to adopt
the role, a reply is sent. The reply is sent in both directions
through the medium to inform all agents which are affected
(robots and connected carts) by the reconfiguration process.
Again, each endpoint receiving the reply decides to change the
agent configuration. The reply is sent backward through the
medium until all affected agents are informed. If an endpoint
receives multiple coordination messages these messages are
queued and processed in the order of their arrival.

C. Implementation Test Results

The example system illustrated in Fig. 5 has been imple-
mented and tested for measuring the handling of breaking
capabilities. When the robot is rendered incapacitated by such
an event, the associated endpoint notices this and initiates

4http://jadex-agents.informatik.uni-hamburg.de/

an interaction via the Coordination Medium that triggers the
swapping of roles. The first swap involves the incapacitated
agent that is Deficient by Break. In this system configuration,
a second swap is required that resolves a transient Deficient
by Change agent behavior.

In addition, we examine the relation of the redundancy
within agents with the effectiveness of the reconfigurations.
The effectiveness of the reconfiguration procedure is in-
fluenced by the number of alternative capabilities that are
available to the individual agents. This level of redundancy
is measured by the ratio of the number of individual ca-
pabilities (Ci), to the absolute number of capabilities (C)
that are required for the processing of a workpiece (Ci

C).
In the following, we assume a homogeneous setting, where
the robots are equipped with an equal number of redundant
capabilities. The composition of these capabilities is normally
distributed. In Fig. 8, measuring results for a simple scenario
with 10 different capabilities and agents are shown. Each
single run processes of a fixed number of workpieces while,
at two fixed instances of time, a randomly selected agent
is incapacitated. A first estimate of the effectiveness of the
reconfigurations is the number of exchanged messages (see
Fig. 8). The number of messages increases quickly when the
number of redundancies decreases. This measurement can be
analytically fitted with (c1∗(1−x))2+c2.5. A complementary
measurement is the number of hops that requests for assistance
travel before a swapping agents is found. This describes the
logical distance between the swapping agents. The results for
this measurement have shown the same characteristics like the
message count and can be fitted with the same function (but
different constants). Thus the decentralized reconfiguration
strategy is particularly suited for production lines where the
capability types are often available.

Fig. 8. Measurement results. The averaged number of messages are plotted
over the redundancy of capabilities.

VI. RELATED WORK

Ant Colony Optimization has been used for decentralised
control in production systems. [23] uses the mechanism to
control autonomous vehicles, similar to our carts. The distri-
bution of jobs to production machines has not been a concern
there. The more complex problem of scheduling jobs to run
on certain machines has, e.g., been tackled in [24] and [25].

5c1, c2 are application dependent constants. In this case, these are 10 and
12 respectively.

However, these papers from operations research focus on
optimization of a shop floor and do not take into account
robustness and reconfiguration that happens at run-time. Also,
only partial problems are investigated, either focusing on the
routing of carts or the scheduling of production machines.

The work presented here concerns the run-time reconfig-
uration by self-organization. The maintained structure is a
correct sequence of agents that are perturbed by individual
failures that incapacitate agents. Prominent alternatives to the
process presented here are centralized/distributed constraint
solving techniques and market-based mechanisms. The correct
configuration is described with constraints and an approach
to use centralized constraint solving to restore functionality
after a failure has already been published [19]. Consequently,
distributed constraint solving techniques [26] can be used as
well, e.g. as studied in [27]. An example for market-based
mechanisms is given in [28]. A manufacturing line is provided
with a flexible transport mechanism and work pieces and
machine agents negotiate for the execution of working steps.
In a way, the algorithm proposed in this paper is an optimistic
and minimalistic version of a distributed constraint solver. By
exchanging roles, the agents collectively restore the invariants
of the system. The strategy is minimalistic since the number
of required messages and the amount of shared information is
reduced. It is optimistic because the assisting role changed are
carried out before the complete solution is calculated. Its main
advantage over traditional distributed constraint solvers is the
minimal amount of calculation that is involved at the agents.
They can therefore be very small with only minimal CPU
power and RAM, making them cheap and easily replaceable.

Here, these design alternatives are qualitatively character-
ized by a subset of criteria from [29]. Their quantitative com-
parison is left for future work. A first aspect is the necessary
communication. The presented process minimizes the message
content and only the information that immediately necessary
to resolve a local failure is communicated. The number of
messages ranges from a single role swap (best case) to the
successive swapping of roles by all agents (worst case). The
dependence of this measure on structural properties is shown
in Figure 8. The communications are only carried out when
failures are present. Alternatives involve that coordination-
related messages have to be exchanged during the normal
system operation, e.g. as workpieces constantly negotiate their
further processing [28]. Also the amount of computations and
the considered/exchanged knowledge about the system state
is minimized. The participation in the process involves only
the local consideration whether an agent is capable to play a
required role. Now further information about the global system
state is processed. Centralized constraint solvers require the
full knowledge about the system and decentralized solvers
require the information from neighboring agents. In addition,
the adaptations are carried out concurrently to the system
operation. Unaffected partitions of the production line continue
to work. Finally, the accuracy of the quality of the found
solution, i.e. stable configuration, varies. The process follows
the heuristic that role swaps of nearby agents are favored over

the swaps of (logically) distant agents. The explicitly treatment
of the underlying constraint problem allows in principle to
prepare the optimization of the found solutions.

VII. CONCLUSIONS

In this paper, we have described a decentralized recon-
figuration process to restore valid system configurations in
self-organizing resource-flow systems. The reconfiguration al-
gorithm works by exchanging roles with neighboring agents
and by propagating change requests in a wave-like manner
until all of them could be satisfied. The mechanism has
been developed by combining a top-down process for the
description of resource-flow systems and a bottom-up process
for the design of agent coordination. Its performance has been
demonstrated with a number of simulations.

The most interesting feature of the decentralized process
proposed here is that reconfigurations are organized locally in
the production line, i.e. the rest of the system is not impaired
by a failure. Thus, parts of the system that are not involved into
a local reconfiguration can continue to run normally. The way
the reconfiguration propagates also ensures that only a small
amount of agents is in a state of non-processing resources
at an instance of time. This feature will be prominent also
when using the wave-like algorithm in non-linear production
situations, which is a straight-forward generalization instance.
Local heuristics taking into account exchange–success rates
could be predefined or evolved using learning algorithms.
Future work includes a more detailed study on the combination
of bottom-up design of coordination methods as proposed in
SodekoVS and of top-down design methodologies as promoted
with the ODP. This will also include a comparison of their
respective advantages and problems that occur when both
worlds are combined.

ACKNOWLEDGMENT

This research is partly sponsored by the German research
foundation (DFG) in the project SodekoVS and in the DFG
special priority program “Organic Computing” (SPP 1183) in
the project SAVE ORCA.

REFERENCES

[1] H. Seebach, F. Ortmeier, and W. Reif, “Design and Construction of
Organic Computing Systems,” IEEE Congress on Evolutionary Compu-
tation, 2007, pp. 4215–4221, Sept. 2007.

[2] J. Sudeikat, L. Braubach, A. Pokahr, W. Renz, and W. Lamersdorf,
“Systematically engineering selforganizing systems: The sodekovs ap-
proach,” Electronic Communications of the EASST, vol. 17, 2009.

[3] M. Güdemann, F. Nafz, F. Ortmeier, H. Seebach, and W. Reif, “A spec-
ification and construction paradigm for Organic Computing systems,”
in Proceedings of the Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, 2008, pp. 233–242.

[4] J.-P. Steghöfer, P. Mandrekar, F. Nafz, H. Seebach, and W. Reif, “On
Deadlocks and Fairness in Self-organizing Resource-Flow Systems,” in
Proceedings of the 30th International Conference on Architecture of
Computing Systems (ARCS), LNCS 5974. Springer, 2010, pp. 97–100.

[5] F. Nafz, F. Ortmeier, H. Seebach, J.-P. Steghöfer, and W. Reif, “A generic
software framework for role-based Organic Computing systems,” in
SEAMS 2009: ICSE 2009 Workshop Software Engineering for Adaptive
and Self-Managing Systems, 2009.

[6] J. Sudeikat and W. Renz, “Qualitative modeling of mas dynamics -
using systemic modeling to examine the intended and unintended con-
sequences of agent coaction,” in Agent-Oriented Software Engineering
X. Springer, 2009, to be published.

[7] Y. Brun, G. di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, Software Engineering
for Self-Adaptive Systems. Springer-Verlag, 2009, ch. Engineering Self-
Adaptive Systems through Feedback Loops, pp. 48–70.

[8] W. Renz and J. Sudeikat, “Modeling feedback within mas: A systemic
approach to organizational dynamics,” in Organised Adaptation in Multi-
Agent Systems, 2008, pp. 72–89.

[9] J. D. Sterman, Business Dynamics – Systems Thinking and Modeling for
a Complex World. McGraw-Hill, 2000.

[10] J. Sudeikat and W. Renz, “MASDynamics: Toward systemic modeling
of decentralized agent coordination,” in Kommunikation in Verteilten
Systemen, ser. Informatik aktuell, 2009, pp. 79–90.

[11] ——, “Decomas: An architecture for supplementing mas with systemic
models of decentralized agent coordination,” in Proc. of the 2009
IEEE/WIC/ACM Int. Conf. on Intel. Agent Tech., 2009, pp. 104–107.

[12] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Springer-Verlag New York, Inc., 2006.

[13] J. Sudeikat and W. Renz, Applications of Complex Adaptive Systems.
IGI Global, 2008, ch. Building Complex Adaptive Systems: On Engi-
neering Self–Organizing Multi–Agent Systems, pp. 229–256.

[14] T. DeWolf and T. Holvoet, “Decentralised coordination mechanisms as
design patterns for self-organising emergent systems,” in Engineering
Self-Organising Systems, vol. 4335/2007, 2007, pp. 28–49.

[15] G. D. M. Serugendo, M. P. Gleizes, and A. Karageorgos, “Self-
organisation and emergence in mas: An overview,” in Informatica,
vol. 30, 2006, pp. 45–54.

[16] H. V. D. Parunak and S. Brueckner, “Engineering swarming systems,” in
Methodologies and Software Engineering for Agent Systems. Kluwer,
2004, pp. 341–376.

[17] J. Sudeikat and W. Renz, “Programming adaptivity by complementing
agent function with agent coordination: A systemic programming model
and development methodology integration,” Communications of SIWN,
vol. 7, pp. 91–102, may 2009, iSSN 1757-4439.

[18] ——, “On the modeling, refinement and integration of decentralized
agent coordination – a case study on dissemination processes in net-
works,” in Self-Organizing Architectures, 2010, pp. 251–274.

[19] F. Nafz, F. Ortmeier, H. Seebach, J.-P. Steghöfer, and W. Reif, “A
universal self-organization mechanism for role-based Organic Comput-
ing systems,” in Proceedings of the Sixth International Conference on
Autonomic and Trusted Computing (ATC-09), 2009.

[20] M. Casadei, L. Gardelli, and M. Viroli, “Simulating Emergent Properties
of Coordination in Maude: the Collective Sorting Case,” in 5th Int.
Workshop on the Foundations of Coordination Languages and Software
Architectures (FOCLASA), 2006.

[21] C. Priami, “Stochastic π–calculus,” Computer Journal, vol. 6, pp. 578–
589, 1995.

[22] A. Phillips, Symbolic Systems Biology: Theory and Methods. Jones and
Bartlett Publishers, 2010, ch. A Visual Process Calculus for Biology.

[23] V. A. Cicirello and S. F. Smith, “Ant colony control for autonomous
decentralized shop floor routing,” in International Symposium on Au-
tonomous Decentralized Systems, 2001.

[24] N. Liouane, I. Saad, S. Hammadi, and P. Borne, “Ant systems & local
search optimization for flexible job shop scheduling production,” Int.
Journal of Comp., Comm. & Control, vol. 2, no. 2, pp. 174–184, 2007.

[25] C. Gagné, M. Gravel, and W. L. Price, “Solving real car sequencing
problems with ant colony optimization,” European Journal of Opera-
tional Research, vol. 174, no. 3, pp. 1427 – 1448, 2006.

[26] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara, “The distributed
constraint satisfaction problem: Formalization and algorithms,” IEEE
Transactions on Knowledge and Data Engineering, vol. 10, no. 5, pp.
673–685, 1998.

[27] G. Clair, E. Kaddoum, M.-P. Gleizes, and G. Picard, “Self-regulation in
self-organising multi-agent systems for adaptive and intelligent manu-
facturing control,” in SASO ’08: Proc. of the 2008 Sec. IEEE Int. Conf.
on Self-Adaptive and Self-Organizing Systems, 2008, pp. 107–116.

[28] N. R. Jennings and S. Bussmann, “Agent-based control systems,” IEEE
Control Systems, vol. 23, no. 3, pp. 61–74, 2003.

[29] E. Kaddoum, M.-P. Gleizes, J.-P. Georgé, and G. Picard, “Characterizing
and evaluating problem solving self-* systems,” in COMPUTATION-
WORLD ’09: Proc. of the 2009 Computation World, 2009, pp. 137–145.

Generating Inspiration for Multi-Agent Simulation
Design by Q-Learning

Robert Junges
Modeling and Simulation Research Center

Örebro University, Sweden
Email: robert.junges@oru.se

Franziska Klügl
Modeling and Simulation Research Center

Örebro University, Sweden
Email: franziska.klugl@oru.se

Abstract—One major challenge in developing multi-agent
simulations is to find the appropriate agent design that is
able generating the intended overall phenomenon respectively
dynamics, but does not contain unnecessary details. In this paper
we suggest to use agent learning for supporting the development
of an agent model: The modeler defines the environmental model
and the agent interfaces. Using rewards capturing the intended
agent behavior, Reinforcement Learning techniques can be used
for learning the rules that are optimally governing the agent
behavior. However, for really being useful in a modeling and
simulation context, a human modeler must be able to review
and understand the outcome of the learning. We propose to
use additional forms of learning as post-processing step for
supporting the analysis of the learnt model. We test our ideas
using a simple evacuation simulation scenario.

I. MOTIVATION

Methodological questions are more and more in the focus
of research on agent-based simulation as the number of chal-
lenges in developing a good multi-agent simulation model are
numerous. The central issue hereby concerns what behaviors
the agents should exhibit so that the intended outcome is
generated. What particular detail must be included, what part
of the modeled behavior is not necessary? How to set the
parameters involved? However, if it is not fully clear from
the beginning how this local behavior should be - even if the
original agents behavior can be easily observed - the devel-
opment may result in a painful try and error procedure. The
modeler may add, respectively remove behavioral elements,
try different parameter values and test the overall outcome
again and again. Such a procedure might be feasible for an
experienced modeler who knows the critical starting points
for modifications and is capable of using complex calibration
tools for multi-agent simulation such as described in [1], but
this cannot be assumed for less experienced modelers.

In this contribution we are suggesting to solve this search for
the appropriate agent-level behavior by using agent learning.
The vision is hereby the following procedure: the modeler
starts by developing an environmental model as a part of
the overall model, then, determines what the agent might be
able to perceive and to manipulate and finally describes the
intended outcome based on a reward function that evaluates the
agents performance. The agents then use a learning mechanism
for determining a behavior program that together generates the
intended overall outcome in the given environment. This strat-

egy might be also described as a variant of an environment-
driven strategy for developing multiagent simulations [2].

A major issue in this overall procedure refers to the selection
of the particular learning agent architecture. An initial analysis
of different learning techniques applicable for this problem
has already been described in [3]. There, Learning Classifier
Systems (LCS), Feed Forward Neural Networks (FFNN) and
Reinforcement Learning (Q-Learning) have been evaluated
with regards to learning performance and resulting behavior
representation, using the same evacuation scenario problem
as in the following. In this contribution we are further in-
vestigating Reinforcement Learning for its suitability in such
a learning-driven model development process, focusing more
on the interpretability of the state-action mapping produced.
We are not focussing on mere optimization performance, but
on softer factors that define the usability of Q-Learning in the
model development setting: the completeness, the complexity
and the generalization capabilities of the behavior learnt.

In the next section we will review existing approaches
for learning agent architectures in simulation models. This is
followed by a more detailed treatment of the learning-driven
methodology and a presentation of the reinforcement learning
architecture. In section IV and V we describe the used testbed,
the experiments conducted with it and discuss the results. The
papers ends with a conclusion and an outlook to future work.

II. LEARNING AGENTS AND SIMULATION

Adaptive agents and multi-agent learning have been one
of the major focuses within distributed artificial intelligence
since its very beginning [4]. Many different forms of learning
have shown to be successful when working with agents and
multiagent systems. Obviously, we can not cover all techniques
for agent learning in this paper, the following paragraph shall
give a few general pointers and then give a short glance on
directly related work on agent learning in simulation settings.
In general our contribution is special concerning the objective
of our comparison: not mere learning performance but its
suitability for the usage in a modeling support context.

Reinforcement learning [5], learning automata [6], evolu-
tionary and neural forms of learning are recurrent examples of
learning techniques applied in multi-agent scenarios. Besides
that, techniques inspired by biological evolution have been
applied for agents in the area of Artificial Life [7], [8], where

evolutionary elements can be found together with multiagent
approaches. An example of a simulation of a concrete scenario
is [9], in which simulated ant agents were controlled by a
neural network that was designed by a genetic algorithm.
Another experiment, with an approach similar to a Learning
Classifier System (LCS) can be found in [10], where a rules
set was used and modified by a genetic algorithm.

Although there is a wealth of publications dealing with
the performance of particular learning techniques, especially
reinforcement learning approaches, there are not many works
focussing on the resulting behavioral model dealing with
usability. An early example can be found in [11], where an
evolutionary algorithm is applied to behavior learning of an
individual agent in multi agent robots. Another example, from
[12], describes a general approach for automatically program-
ming a behavior-based robot. Using Q-Learning algorithm,
new behaviors are learned by trial and error based on a
performance feedback function as reinforcement. In [13], also
using reinforcement learning, agents share their experiences
and most frequently simulated behaviors are adopted as a
group behavior strategy. [14] compares reinforcement learning
and neural networks as learning techniques in an exploration
scenario for mobile robots. The authors conclude that both
learning techniques are able to learn the individual behav-
iors, sometimes outperforming a hand coded program, and
behavior-based architectures speed up reinforcement learning.

III. AGENT LEARNING ARCHITECTURES FOR MODEL
DESIGN

The basic idea behind a learning-driven design methodology
consists in the transfer of the agent behavior design and test
activity from the human modeler to the simulation system.
Specially in complex models, a high number of details can be
manipulated. This could make a manual modeling, debugging
and tuning process cumbersome, especially when knowledge
about the original system or experience for implicitly bridging
the micro-macro gap is missing. Using agents that learn at least
parts or initial versions of their behavior might be a good idea
for supporting the modeler in finding an appropriate low level
behavior model. Such a learning-based approach can also be
part of something as the adoption of a Living Design [15] like
methodology for multi-agent simulation models. Nevertheless,
the first question on a way to such a learning-driven methodol-
ogy, is about the selection of the appropriate learning technique
– for this form of application, for a particular domain, or
maybe just for a particular model. In this paper we focus on the
suitability of a well know learning technique, Q-Learning, for
such a modeling approach. Before we continue with focussing
on this particular learning architecture, we discuss what we
have identified as requirements for the applicability of an
learning technique to our problem.

A. Requirements for Learning Agent Architectures

Not all agent learning architectures are equally apt for
usage in the modeling support context. There are a number

of properties that an appropriate learning technique may be
able to exhibit for indicating a successful application.

1) Feasibility: The learning mechanism should be able to
cope with the level of complexity that is required for
a valid environmental models. Thus, it should not be
necessary to simplify or even to reformulate the problem
just for being able to apply the learning mechanism;
That means the theoretical prerequisites for applying
the learning technology must be known and fulfilled by
the environmental model in combination with the reward
function. The learning architecture must be able to find
a good-enough solution;

2) Interpretability and Model Accessibility: The mechanism
should produce behavior models that can be understood
and interpreted by a human modeler. The architecture
shall not be a black box with a behavior that the human
modeler has to trust, but must be accessible for detailed
analysis of the processes involved in the overall agent
system;

3) Plausibility: The mechanism in the learning architecture
should be well-established and well-understood. The
motivation is that its usage shall not impose additional
complexity to the modeler for example in setting a
number of configuration parameter. How the learning
architecture works, shall be explainable to and by the
modeler.

There is a variety of possible learning agent architectures
that might be suitable for the aim presented here and the re-
quirements identified – as discussed in section II. We selected
Q-Learning, as a Reinforcement Learning technique, as we
describe it in the next paragraph.

1) Q-Learning: Q-Learning [16] is a well-known reinforce-
ment learning technique. It works by developing an action-
value function that gives the expected utility of taking a
specific action in a specific state. The agents keep track of the
experienced situation-action pairs by managing the so called
Q-table, that consists of situation descriptions, the actions
taken and the corresponding expected prediction, called Q-
value.

Q-Learning is able to compare the expected utility of the
available actions without requiring a model of the environ-
ment. Nevertheless, the use of the Q-Learning algorithm is
constrained to a finite number of possible states and actions.
As a reinforcement learning algorithm, it also is based on
modeling the overall problem as Markov Decision Processes.
Thus, it needs sufficient information about the current state
of the agent for being able to assign discriminating reward.
Although there are a number of extensions that improve the
convergence speed of Q-Learning [5], we include the standard
Q-Learning algorithms in our experiment due to its simplicity.

We suppose that Q-Learning meets the requirements for
the application by providing both sufficient performance (if
applicable) adaptability and also gives interpretability of the
result. This interpretability is achieved by its rule-based struc-
ture (represented by the state action mapping) with a clear
evaluation of those rules, by means of the Q-Value. The

processing of this mapping, weighted by the provided utility
value could be used as a bias for the interpretation of the rules,
as an input for the behavior modeling.

IV. TESTBED

The scenario we use for evaluating the learning architecture
approach is the same as in [17] where we already describe
the integration of XCS-based agents into the agent-based
modeling and simulation platform SeSAm. This pedestrian
evacuation scenario is a typical application domain for multia-
gent simulation (see [18] for a real-world application). Albeit
the employed scenario may be oversimplified, we expected
that the relative simplicity of the scenario will enable us to
evaluate the potentials of the learning technique as well as to
deduce the involved challenges.

A. Environmental Model

The main objective of the simulation concerned the emer-
gence of collision-free exiting behavior. Therefore, the reward
and interfaces to the environment were mainly shaped to
support this. In contrast to [17], we did not test a large variety
of configurations as it was not the goal of this research to find
an optimal one, but a more modeling-oriented evaluation of
the architecture.

The basic scenario consists of a room (40x60m) surrounded
by walls with one exit and a different number of column-
type obstacles (with a diameter of 3.5m). In this room a
number of pedestrians have to leave as fast as possible without
hurting themselves during collisions. We assume that each
pedestrian agent is represented by a circle with 50cm diameter
and moves with a speed of 1.5m/sec. One time-step in the
discrete simulation corresponds to 0.5sec. Space is continuous.
We tested this scenario using 1, 5, 10 and 20 agents, and the
number of obstacles was set to 10. At the beginning of a test-
run, all agents were located at random positions in the upper
half of the room.

All experiments alternated between explore and exploit
phases. During the explore phase, the agents randomly execute
an action. In exploitation trials, the best action was selected
in each step. Every trial consists of 100 iteration steps. Every
experiment took 1000 explore-exploit cycles.

Reward was given to the agent a immediately
after executing an action at time-step t. It was
computed in the following way: reward(a, t) =
rewardexit(a, t)+rewarddist(a, t)+feedbackcollision(a, t)+
feedbackdamage(a, t) with rewardexit(a, t) = 1000, if
agent a has reached the exit in time t, and 0 otherwise;
rewarddist(a, t) = β × (dt(exit, a) − dt−1(exit, a))
with β = 5; feedbackcollision(a, t) was set to 100 if a
collision free actual movement had been made, to 0 if no
movement happened, and to −100 if a collision occurred;
feedbackdamage(a, t) was set to −1000 if a collision with
column obstacle has occurred, and 0 otherwise. Together, the
different components of the feedback function stress goal-
directed collision-free movements. It is goal-directed because
the agents are positively rewarded every time an action

results in reaching the exit or getting to a state closer to the
exit. Complementary, it is collision-free oriented because the
agents are positively rewarded for moving without collisions
and negatively rewarded every time an action results in a
collision.

B. Agent Interfaces

As agent interfaces, the perceived situation and the set
of possible actions have to be defined. Similar to [17], the
perception of the agents is based on their basic orientation
of the agent, respectively its movement direction. The overall
perceivable area is divided into 5 sectors with a distinction
between areas in two different distances as depicted in figure
1. For every area two binary perception categories were used:
the first encoded whether the exit was perceivable in this area
and the second encoded whether an obstacle was present -
where an obstacle can be everything with which a collision
should be avoided: walls, columns or other pedestrians.

Fig. 1. Agent perception sectors

The action set is shaped for supporting the collision-
avoidance behavior. We assume that the agents are per de-
fault oriented towards the exit. Thus, the action set con-
sists of A = {MoveLeft, MoveSlightlyLeft, MoveStraight,
MoveSlightlyRight, MoveRight, Noop, Stepback}. For any
of these actions, the agent turns by the given direction (e.g.
+36 degrees for MoveSlightlyRight), makes an atomic step
and orients itself towards the exit again. The combination of
this action set and the perceptions of the agents represents
an intentional simplification of the problem, as we implicitly
represent the orientation task in the actions, in order to have
a MDP. This simplification allows concentrating the learning
on the collision avoidance, facilitating the learning process.

C. Architecture Configuration

The testbed was implemented in the visual modeling
and simulation platform SeSAm (www.simsesam.de). The Q-
Learning could be implemented by means of the standard high-
level behavior language in SeSAm.

It was not our objective to find the optimal configuration
for the tested architecture in the given scenario, we will not
give a discussion of the effects of different parameter settings
on the learning outcome should not be necessary. Clearly,
we tested a number of configuration for finding a reasonable
configuration. This is also true for the the appropriate overall
configuration including different numbers of obstacles, sizes
of scenarios or the particular numbers of the reward function.

In the context of this paper, we assume an initial Q-value of
0 for all untested state-action pairs. We set the learning rate
to 0.5 and the discount factor to 0. It means that the agents’
actions are selected based on recent experiences and not taking
into consideration the future rewards (only the best action
for the current state), respectively. This is another intentional
simplification for the problem, as the agents don’t need to
maximize future rewards.

V. EXPERIMENTS AND RESULTS

In this section we analyze the results of the simulations, first
with respect to learning performance showing that the learning
technique is actually applicable to the test scenario, but then
we focus on the analysis of what the agents actually did learn.

A. Performance Evaluation

The metric used for evaluating learning performance is
the number of collisions. The time to reach the exit does
not vary significantly, as a collision is not influencing the
behavior directly, but indirectly via the reward the agent got.
The collisions, with other pedestrians or obstacles, do not
impose any effect on future movement. They only count as
negative rewards. Obviously in the early stages, the agents
don’t have enough experience to learn from, and therefore a
higher number of collisions is expected.

Table I presents the mean number of collisions for each
tested situation. The values are aggregated only after the first
50 explore-exploit cycles for avoiding the inclusion of any
warm-up data. The mean and deviation over the results of the
different exploit cycles are given. Despite of having the runs
repeated, we did not give means and standard deviations over
different runs as currently the number of repetitions is too low.
Clearly the number of collisions increases with the number of
agents and obstacles.

TABLE I
MEAN NUMBER OF COLLISIONS PER RUN - ROWS REPRESENT THE
NUMBER OF AGENTS AND COLUMN THE NUMBER OF OBSTACLES.

10
1 0.01 ±0.23
5 1.39 ±1.78

10 6.66 ±3.88
20 25.17 ±8.77

Figure 2 illustrates the adaptation speed by depicting the
number of collisions over time for an exemplary run with
5 agents and 10 obstacles. We can see that the number
of collisions decreases fast in the beginning, but then the
behavioral knowledge converges quite fast. After 50 cycles,
there is no further improvement.

To have a better illustration of the learning process, we
show in figure 3 the trajectories of the agents in exploit phases
after a) 10, b) 100, c) 500 and d) 1000 exploit trials. In this
figure we consider the situation with 5 agents and 10 obstacles.
We can see the progress of adaptation with more and more
collision-free and goal-directed movement. Experience hereby
does not just mean positive reinforcement. Even if the agents

Fig. 2. Development of the number of collisions for an exemplary run with
5 agents and 10 obstacles

don’t know what is the best action, they know which one to
avoid by checking the negative rewarded actions.

Fig. 3. Exemplary trajectories during exploit trials, for 5 agents and 10
obstacles

Alternating between explore and exploit trials plays an
important role in the performance outcome. The agents must
explore the possible actions set in order to maximize their
experience in terms of the route to be chosen. At the end we
can see the emergence of a collision-avoidance behavior.

B. Behavior Learning Outcome

In this section we are interested in analyzing the rules
learned by the Q-Learning process in terms of the complexity
of the resulting rule structure and potential use as source of
inspiration in a modeling process.

In the following analysis we will examine two simulation
scenarios: 1 agent and 10 obstacles; and 5 agent and 10

obstacles. In both cases we consider the outcome of one agent
from an exemplary simulation.

1) Raw Q-Learning Rules: The rules generated by the
learning process can be determined by taking for every sit-
uation the action with the highest q-value as it is done in the
exploit phases. Depending on the situation, there might be no
action with a positive q-value. The rules with a Q-Value of
zero represent situation-action pairs that have not been tested
during the simulation. Figure 4 depicts two out of 12 rules
with the highest Q-value on the 1-agent scenarios.

Fig. 4. Two out of 12 rules with the highest Q-value for the agent in the
1-agent scenario.

Figures 5 and 6 show the distribution of the reward predic-
tion, i.e. the Q-value, for the complete rules set for the single
agent, respectively a randomly selected exemplary agent from
a simulation with 5 agents. One can see that there are only a
few rules with a high Q-value.

It is obvious that the Q-value alone cannot be a selection
criteria for rules forming a behavior model as the ones with the
highest Q-value naturally contain situations where the agent
directly perceives the exit. It is also possible to see that the
agent in this case has a majority of rules with Q-Value 0,
which means that a lot of state-action mappings have not been
tested. This is not case for the simulation with 1 agent and
10 obstacles, as seen in figure 5, where the majority of rules
have been tested. The agent has explored more, resulting in a
more elaborated representation of the behavior. This difference
is caused by the fact that the simulation with only 1 agent
presented a smaller set of possible states to be tackled due to
the simplicity of the interactions just with static obstacles.

Another important aspect about the agents’ experience is
that, since the agents are randomly positioned in the scenario
at the beginning of each trial, the rules are not biased by a
fixed position, so the rules set is more elaborated than it would
be if they had to know only one best way to get to the exit.

The agent from the simulation with only one agent has a
positive rules set – consisting of rules with positive, non-zero
q-values – of 229 rules, while the agent from the simulation

Fig. 5. Q-Learning value distribution for an exemplary agent from a
simulation with 1 agents and 10 obstacles

Fig. 6. Q-Learning value distribution for an exemplary agent from a
simulation with 5 agents and 10 obstacles

with 5 agents has a number of 1507 true positive rules. This
can be seen as an effect of the interaction with other agents,
generating different situation to be visited, specially when it
gets closer to the exit, the situation becomes more dense and
the agents must avoid the collisions, and get to the exit.

Figures 7 and 8 show the distribution of these final rules
over the possible actions, for the cases with 1 and 5 agents
respectively. We can see the effect of the initial random
positioning in each trial. We have a balanced distribution for
the rules determining going to the left or right, which makes
sense, since the agent must learn to find its way out of the
scenario no matter where it has started. The majority of the
rules indicate the MoveStraight action. This comes from the
fact that the agent is reoriented towards the exit after the
execution of any action. Unless the agent needs to avoid a
collision, MoveStraight is the best action to choose.

We can identify the collision-avoidance behavior focussing
on an exemplary element of the perceptions of the agent (1
agent scenario in this case). Considering action MoveRight

and perception ObstacleImmediatelyRight, we see that there
is a larger number of rules indicating false in this perception
in all rules with the MoveRight action, see figure 9.

Fig. 7. Rules distribution over the actions for an exemplary agent from a
simulation with 1 agent and 10 obstacles

Fig. 8. Rules distribution over the actions for an exemplary agent from a
simulation with 5 agents and 10 obstacles

2) Processing the rules: As the set of rules with truly
positive Q-value in all scenarios is far too large to be trans-
parently presented to a human expert, we suggest to use a
post-processing step for improving the analysis of the rule set
on a detailed level. As there are a number of candidates that
may be suitable for generalizing the rule set in a way that all
learnt rules are captured in a compact form.

For this aim, we tested three different machine learning
algorithms – mainly classification learners – using all rules
with non-zero, positive Q-Value: K Nearest Neighbors (KNN)
[19], CART Decision Trees [20] and the CN2 rule inductor
[21]. The K-Nearest Neighbors is arguably one of the simplest
machine learning algorithms, while Decision Trees and CN2
are of particular interest to this work because of the inter-
pretability provided by their resulting representation of the
knowledge captured in the training set. We used KNN with a
K value of 5 for the experiments. The Decision Tree is a simple
CART with Gini’s index of impurity for node splitting. CN2
algorithm uses the Laplace method for rule quality estimation.

As mentioned above, the results of this post-processing
step have to be evaluated with two criteria: How well they
capture the given rule set and how good they are able to
generalize the rule set for bringing the rules. The first can
be measured in terms of classification accuracy, the second is
the generalization and compactness of the resulting behavior
description.

a) Classification Accuracy: Table II shows the classifica-
tion accuracy for the above mentioned algorithms, both in the 1
agent and 5 agents experiments, using 10 fold cross validation
in the training set. Table III shows the average classification
accuracy, when model built from one agent’s experience is
tested with another agent’s experience: We can see that the
classification accuracy for the case with 1 agent outperformed
the case with 5 agents. This is clearly an effect of the exploit-

Fig. 9. Frequency of rules with perception ObstacleImmediatelyRight as
false (left bar) and true (right bar) for action MoveRight

explore tradeoff. The agent from the 1 agent simulation has a
lower number of states to visit during the simulation, and this
reflects on the accuracy of the rules as they are tested more
times and converge faster to the optimal solution (state-action
mapping). The agents from the 5 agents scenario have a larger
set of states that potentially may occur, reflected also in the
number of rules. This requires more cycles to converge to an
optimal solution.

TABLE II
CLASSIFICATION ACCURACY - 10 FOLD CROSS VALIDATION

KNN Decision Tree CN2
1 agent 0.6593 0.6375 0.6334
5 agents 0.2907 0.2654 0.2980

TABLE III
CLASSIFICATION ACCURACY - VALIDATION AMONG DIFFERENT AGENTS

KNN Decision Tree CN2
1 agent 0.6724 0.6983 0.6897
5 agents 0.3098 0.3230 0.3316

While they are all good models – as providing a solution
to the problem (as seen in section V-A) – they can not be
generalized to other good solutions (other agents’ experi-
ences). The convergence of the solution, which determines its
generalization to the problem is therefore a function of the
configuration of the learning, and more important, a function
of the explore-exploit distribution, the number of agents and
the set of perceptions and actions, that determine the size of
the state-action mapping.

Figure 10 shows the confusion matrix for the decision
tree learnt from the simulation with 1 agent, testing with
cross-validation: Rows represent the expected class (action)
from the classification model, as presented in the Q-Learning
mapping and columns represent the classification determined
by the decision tree. We highlight the number of correctly
classified instances. The majority of misclassified instances

falls on cases where different actions could result in similar,
good rewards. For instance, there is a common misclassifica-
tion among the actions MoveStraight, MoveSlightlyRight and
MoveSlightlyLeft. This comes from the fact that when the
agent is facing the exit, all these three actions will maximize
the reward (represented by reaching the exit).

Fig. 10. Confusion matrix for the decision tree in the simulation with 1
agent and 10 obstacles

b) Compactness and Readability of the Learnt Behavior
Representation: The second dimension is to be analyzed, with
regards to the improving the representation of the behavior for
a human modeler. We assumed that the best result could be
produced by the decision tree learner. However, the CART de-
cision tree learner was not able to produce an understandable,
compact model in this problem. In the case of 1 agent the tree
has 117 nodes and 59 leaves. For the case with 5 agents the
tree has 1637 nodes and 819 leaves. For illustration, figure
11 outlines a part of the tree generated from the experience
of the agent in the case of 1 agent and 10 obstacles. In this
figure, the codes represented in the rule stand for different
agent perceptions. For instance EIA means Exit Immediately
Ahead.

Fig. 11. A branch of the decision tree for the case with 1 agent and 10
obstacles

The post-processing result provided by the CN2 algorithm
is better than the decision tree learner: For example, figure
12 shows the best 3 (from a total of 29) rules created by
the CN2 algorithm, from the training set of non-zero, positive
rules in the case of 1 agent. CN2 was able to reduce the rules
representation from 229 to 29 rules. The rules can be evaluated
by their quality, size and coverage. Here, as for the decision
trees, the perceptions are represented by codes. The rules are
clear and concise. Because of that, CN2 can be seen as a step
further towards interpretability.

Fig. 12. CN2 best three rules for the simulation with 1 agent and 10 obstacles

In principle, a set of rules for the agents’ producing a
solution to the evacuation problem could be learnt – using a
technique that results in human-readable rules. However, from
these rules that were found by the Q-Learning, we could not
construct a behavior representation that fully resembles the
knowledge coded in the rule set, nor derive a representation
of the rules that a human modeler could easily oversee. On
the other side, the scenario is so simple, that it is possible
to directly program a set of about 10 rules exhibiting almost
optimal behavior.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented our investigation towards a
learning-driven methodology by evaluating Reinforcement
Learning as an agent learning architecture. The main moti-
vation for this work is investigate the possibilities of creating
a learning-based methodology for the design of a multiagent
simulation model avoiding a time consuming trial and error
process when determining the details of agent behavior.

In a small evacuation scenario, we showed that the em-
ployed learning technique can produce plausible behavior in
an agent-based simulation. However, the interface between
the learning technique and the agent environment is by no
means trivial. The environmental model, feedback function,
perception, and action sets are critical. There are also ideas
on the analysis of the different architecture that may improve
the usability of the learned behavior model.

Using a learning technique transfers the basic problem from
direct behavior modeling to designing the agent interface and
environment reward computation. To do so successfully, a
general understanding of scenario difficulties and the avail-
able machine learning techniques is necessary. An example
is the fundamental requirement of the Markov property in
reinforcement-based approaches [5] – in our case Q-learning.
Provided perceptions need to contain sufficient information
to be able to learn the expectation of immediate and future
possible reward accurately.

The standard implementation of Q-Learning, used in this
paper, offers us only the estimated reward for each possible
condition-action pair. For more intelligent interpretation of
the rule set – that is in its raw state without any form of
generalization – we decide to use three different machine

learning algorithms: K-Nearest Neighbors, Decision Trees and
CN2 rule inductor. The resulting, full behavior model for the
Q-Learning is only partially helpful as a guidance for modeling
in this case. Generalization still needs to be improved, as a part
of the learning process or as a post-processing step. This could
be achieved by using more flexible classification techniques,
such as multi label classification, since in this process we have
to deal with multiple good solutions. Another important aspect
to be considered here is the tradeoff between explore and
exploit, and how this scales to the complexity of the problem,
in terms of the number of agents and the size of the state-
action mapping in a multiagent simulation. This is a relation
yet to be analyzed in detail level.

There are admittedly many more challenging application
scenarios than an evacuation scenario where all agents have
the same goal, the behavior repertoire is quite restricted, and
there is no direct communication between agents. In such
advanced environments, the learning and environment design
will certainly pose additional challenges.

Our next steps include testing other learning techniques to
investigate their performance, outcome and appropriateness
for this methodology. A short analysis of Learning Classifier
Systems and Neural Networks can be found in [3]. We plan
to also test approaches such as evolutionary programming
support vector machines, and other forms of reinforcement
learning, respectively learning automata. An alternative for
the post-processing step worth testing could be multi label
classification [22], where we could gather the experience from
different agents and find different best actions for a given
situation, increasing generalization.

Besides that, we will pursue further self-modeling agent
experiments. We are considering the application of the learning
technique in other, more complex scenarios, such as an evac-
uation of a train with about 500 agents, complex geometry
with exit signs and time pressure. We are also interested in
a scenario where cooperation / collaboration is required, in
order to investigate the possible emergence of the cooperation
in the agent model, through the learning process. This exper-
imentation should consider situations with and without direct
communication between the agents.

REFERENCES

[1] M. Fehler, Kl’́ugl, and F. Puppe, “Approaches for resolving the dilemma
between model structure refinement and parameter calibration in agent-
based simulations,” in AAMAS ’06: Proceedings of the 5th international
joint conference on Autonomous agents and multiagent systems. ACM
Press, 2006, pp. 120–122.

[2] F. Klügl, “Multiagent simulation model design strategies,” in MAS&
S Workshop at MALLOW 2009, Turin, Italy, Sept. 2009, ser. CEUR
Workshop Proceedings, vol. 494. CEUR-WS.org, 2009.

[3] R. Junges and F. Klügl, “Agent architectures for a learning-driven
modeling methodology in multiagent simulation,” in MATES 2010:
Proceedings of the 8th German Conference on Multiagent System
Technologies (to appear), 2010.

[4] G. Weiß, “Adaptation and learning in multi-agent systems: Some re-
marks and a bibliography,” in IJCAI ’95: Proceedings of the Workshop
on Adaption and Learning in Multi-Agent Systems. London, UK:
Springer-Verlag, 1996, pp. 1–21.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[6] A. Nowe, K. Verbeeck, and M. Peeters, “Learning automata as a basis
for multi agent reinforcement learning,” pp. 71–85, 2006.

[7] C. Adami, Introduction to artificial life. New York, NY, USA: Springer-
Verlag New York, Inc., 1998.

[8] J. Grefenstette, “The evolution of strategies for multi-agent environ-
ments,” Adaptive Behavior, vol. 1, pp. 65–90, 1987.

[9] R. J. Collins and D. R. Jefferson, “Antfarm: Towards simulated evolu-
tion,” in Artificial Life II. Addison-Wesley, 1991, pp. 579–601.

[10] J. Denzinger and M. Fuchs, “Experiments in learning prototypical
situations for variants of the pursuit game,” in In Proceedings on the
International Conference on Multi-Agent Systems (ICMAS-1996. MIT
Press, 1995, pp. 48–55.

[11] Y. Maeda, “Simulation for behavior learning of multi-agent robot,”
Journal of Intelligent and Fuzzy Systems, pp. 53–64, 1998.

[12] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial Intelligence,
vol. 55, no. 2-3, pp. 311 – 365, 1992.

[13] M. R. Lee and E.-K. Kang, “Learning enabled cooperative agent behav-
ior in an evolutionary and competitive environment,” Neural Computing
& Applications, vol. 15, pp. 124–135, 2006.

[14] R. Neruda, S. Slusny, and P. Vidnerova, “Performance comparison of
relational reinforcement learning and rbf neural networks for small
mobile robots,” in FGCNS ’08: Proceedings of the 2008 Second
International Conference on Future Generation Communication and
Networking Symposia. Washington, DC, USA: IEEE Computer Society,
2008, pp. 29–32.

[15] J.-P. Georg, G. Picard, M.-P. Gleizes, and P. Glize, “Living Design for
Open Computational Systems,” in International Workshop on Theory
And Practice of Open Computational Systems (TAPOCS) at 12th IEEE
International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE’03), M. Fredriksson, A. Ricci,
R. Gustavsson, and A. Omicini, Eds. Linz, Austria: IEEE Computer
Society, June 2003, pp. 389–394.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[17] F. Klügl, R. Hatko, and M. V. Butz, “Agent learning instead of
behavior implementation for simulations - a case study using classifier
systems,” in MATES 2008: Proceedings of the 6th German Conference
on Multiagent System Technologies. Springer Berlin / Heidelberg, 2008,
pp. 111–122.

[18] F. Klügl, G. Klubertanz, and G. Rindsfüser, “Agent-based pedestrian
simulation of train evacuation integrating environmental data,” in KI
2009: Advances in Artificial Intelligence, 32nd Annual German Confer-
ence on AI, Paderborn, Germany, September 15-18, 2009. Proceedings,
ser. Lecture Notes in Computer Science, vol. 5803. Springer, 2009, pp.
631–638.

[19] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[20] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and Regression Trees, 1st ed. Chapman and Hall/CRC, January 1984.
[21] P. Clark and T. Niblett, “The cn2 induction algorithm,” MACHINE

LEARNING, vol. 3, no. 4, pp. 261–283, 1989.
[22] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”

Int J Data Warehousing and Mining, vol. 2007, pp. 1–13, 2007.

