
ACRE: Agent Conversation Reasoning Engine
David Lillis

School of Computer Science and Informatics

University College Dublin

Email: david.lillis@ucd.ie

Rem W. Collier

School of Computer Science and Informatics

University College Dublin

Email: rem.collier@ucd.ie

Abstract—Within Multi Agent Systems, communication by
means of Agent Communication Languages has a key role to
play in the co-operation, co-ordination and knowledge-sharing
between agents. Despite this, complex reasoning about agent
messaging and specifically about conversations between agents,
tends not to have widespread support amongst general-purpose
agent programming languages.

ACRE (Agent Communication Reasoning Engine) aims to
complement the existing logical reasoning capabilities of agent
programming languages with the capability of reasoning about
complex interaction protocols in order to facilitate conversations
between agents. This paper outlines the aims of the ACRE project
and gives details of the functioning of a prototype implementation
within the AFAPL2 agent programming language.

I. INTRODUCTION

Communication is a vital part of a Multi Agent System

(MAS). Agents make use of communication in order to aid

mutual cooperation towards the achievement of their individual

or shared objectives. The sharing of knowledge, objectives

and ideas amongst agents is facilitated by the use of Agent

Communication Languages (ACLs). The importance of ACLs

is reflected by the widespread support for them in agent

programming languages and toolkits, many of which have

ACL support built-in as core features.

In many MASs, communication takes place by way of

individual messages without formal links between them. An

alternative approach is to group related messages into con-

versations: “task-oriented, shared sequences of messages that

they observe, in order to accomplish specific tasks, such as a

negotiation or an auction” [1].

This paper presents the Agent Conversation Reasoning

Engine (ACRE). The principal aim of the ACRE project is

to integrate interaction protocols into the core of existing

agent programming languages. This is done by augmenting

their existing reasoning capabilities and support for inter-

agent communication by adding the ability to track and

reason about conversations. Currently at the stage of an initial

prototype, ACRE has been integrated with the AFAPL2 Agent

Programming Language [2], which runs on the Agent Factory

platform [3]. The longer-term goals of ACRE include its use

within other mainstream programming languages.

The principal aim of this paper is to outline the goals of the

ACRE project and to present the integration of the prototype

system into AFAPL2.

This paper is laid out as follows: Section II outlines some

related work on agent interaction. Section III then provides

an overview of the aims and scope of the ACRE project.

Following this, details of the integration of ACRE into the

Agent Factory framework are given in Section IV. The re-

lationships between message performatives and agent goals

are discussed in Section V, followed by an example of a

simple one-shot auction implemented via ACRE in Section VI.

Finally, Section VII outlines some conclusions along with

ideas for future work.

II. RELATED WORK

In the context of Agent Communication Languages, two

standards have found widespread adoption. The Knowledge

Query and Manipulation Language (KQML) was the firstly

widely-adopted format for agent communication [4]. An alter-

native agent communication standard was later developed by

the Foundation for Intelligent Physical Agents (FIPA). FIPA

ACL utilises what it considers to be a minimal set of English

verbs that are necessary for agent communication. These are

used to define a set of performatives that can be used in ACL

messages [5]. These performatives, along with their associated

semantics, are defined in [6].

Recognising that one-off messages are limited in their power

to be used in more complex interactions, FIPA also defined a

set of interaction protocols [7]. These are designed to cover

a set of common interactions such as one agent requesting

information from another, an agent informing others of some

event and auction protocols.

Support for either KQML or FIPA ACL communication is

frequently included as a core feature in many agent tookits

and frameworks, native support for interaction protocols is less

common. The JADE toolkit provides specific implementations

of a number of the FIPA interaction protocols [8]. It also

provides a Finite State Machine (FSM) behaviour to allow

interaction protocols to be defined. Jason includes native sup-

port for communicative acts, but does not provide specific tools

for the development of agent conversations using interaction

protocols. This is left to the agent programmer [9, p. 130]. A

similar level of support is present within the Agent Factory

framework [10].

There do exist a number of toolkits, however, that do include

support for conversations. For example, the COOrdination

7

Language (COOL) uses FSMs to represent conversations [11].

Here, a conversation is always in some state, with messages

causing transitions between conversation states. Jackal [12]

and KaOS [13] are other examples of agent systems mak-

ing use of FSMs to model communications amongst agents.

Alternative representations of Interaction Protocols include

Coloured Petri Nets [14] and Dooley Graphs [15].

III. ACRE OVERVIEW

ACRE is aimed at providing a comprehensive system for

modelling, managing and reasoning about complex interac-

tions using protocols and conversations. Here, we distinguish

between a protocols’ and conversations. A protocol is defined

as a set of rules that dictate the format and ordering of

messages that should be passed between agents that are

involved in prolonged communication (beyond the passing of a

single message). A conversation is defined as a single instance

of multiple agents following a protocol in order to engage

in communication. It is possible for two agents to engage in

multiple conversations that follow the same protocol.

Such an aim can only be realised effectively if a number of

features are already available. These include:

• Protocol definitions understandable by agents: Inter-

action protocols must be declared in a language that all

agents must be able to understand and share. This also

has the advantage that the protocol definition is separated

from its implementation in the agent, thus providing a

programmer with a greater understanding of the format

the communication is expected to take. ACRE uses an

XML representation of a finite state machine for this

purpose.

• Shared ontologies: A shared vocabulary is essential to

agents understanding each other’s communications. A

shared ontology defines concepts about which agents

need to be capable of reasoning.

• Plan repository: With the two above features in place, an

agent may reason about the sequence of messages being

exchanged, as well as the content of those messages.

This reasoning will typically result in an agent deciding

to perform some action as a consequence of receiving

certain communications. In this case, it is useful to have

available a shareable repository of plans that agents may

perform so that new capabilities may be learned from

others.

The presence of these features aid greatly in the realisation

of ACRE’s aims. The principal aims are as follows:

• External Monitoring of Interaction Protocols: At its

simplest level, conversation matching and recognition

of interaction protocols allows for a relatively simple

tool operating externally to any of the agents. This can

intercept and read messages at the middleware level and is

suitable for an open MAS in which agents communicate

via FIPA ACL. This is a useful tool for debugging pur-

poses, allowing developers to monitor communication to

ensure that agents are following protocols correctly. This

is particularly important where conversation management

has been implemented in an ad-hoc way, with incoming

and outgoing messages being treated independently and

without a strong notion of conversations.

• Internal Conversation Reasoning: On receipt of a FIPA

ACL message, it should be possible to identify the

protocol being followed by means of the protocol

parameter defined in the message (for the specification

of the parameters available in a FIPA ACL message

see [16]). Similarly, the initiator of a conversation should

also set the conversation-id parameter, which is a

unique identifier for a conversation. By referring to the

the protocol identifier, an agent can make decisions about

its response by consulting the protocol specification.

Similarly, the conversation identifier may be matched

against the stored history of ongoing conversations.

ACRE aims to use this information to analyse the status

of conversations and generate appropriate goals for the

agent to successfully continue the conversation along the

appropriate lines for the protocol that is specified. The

use of goals follows [17]. Goals represent the motivations

of the participants in a conversation. Thus the agents’

engagement in a particular conversation is decoupled

from the individual messages that are being exchanged,

allowing greater flexibility in reasoning about their reac-

tions and responses.

• Organisation of Incoming Messages: It is possible that

an agent communicating with agents in another system

may receive messages that do not specify their protocol

and/or conversation identifier. In this case, it is useful for

the agent to have access to definitions of the protocols in

which it is capable of engaging so as to match these with

incoming messages so as to categorise the messages.

• Agent Code Verification: The ultimate aim of ACRE is

to facilitate the verification of certain aspects of agent

code. In particular, given integration of conversation

reasoning into a programming language, it should be

possible to verify whether or not an agent is capable

of engaging in a conversation following a particular

protocol.

IV. AGENT FACTORY

Agent Factory is an extensible, modular and open frame-

work for the development of multi agent systems [3]. The

primary agent programming language packaged with Agent

Factory is AFAPL2 [2], although it also includes support for

other agent programming languages such as ALPHA [18] and

AgentSpeak [9].

This principal aim of this paper is to outline the integration

of ACRE with AFAPL2. AFAPL2 is an agent programming

language that was initially based on the Agent0 language,

with notions of belief and commitment at its core [19]. Its

capabilities have been augmented since, however, with the

addition of such features as goal reasoning [20] and roles [10].

The existing goal-reasoning capabilities of AFAPL2 (out-

lined in [20]) required some extension in order to be usable

for the purposes of ACRE.

AFAPL2 contains two types of activities (code that allows

an agent to perform some task): actions and plans. An action is

8

a simple activity that is implemented by way of a single Java

class, known as an actuator. Actions are designed to be used

as primitive activities that can be grouped together to carry

out more complex tasks. A plan is such a grouping, making

use of plan operators (such as operators to carry out several

actions in sequence or in parallel) to combine actions. Each

activity has three components:

• A precondition that specifies the circumstances in which

the activity may be executed. This is expressed in terms

of beliefs that the agent must have when attempting to

execute the activity.

• A postcondition that indicates the anticipated mental state

on successful completion of the activity. This is expressed

in terms of beliefs the agent will expect to have once the

activity has completed.

• The body indicates how the activity can be carried out:

for actions this is a Java class name whereas for plans

this is the expression of how the actions are combined

for a more complex activity.

In the existing implementation of goal-handling, goals are

achieved by comparing them with the postconditions of the

activities that the agent is capable of performing. Figure 1

shows an example definition of a plan designed to check

whether a host (identified by an IP address contained in

the ?ip_addr variable) is responding to ping requests (the

actual code implementing the plan is omitted). The precon-

dition BELIEF(true) is always satisfied. The postcondi-

tion BELIEF(pingStatus(?ip_addr,?status)) in-

dicates that on successful execution of this plan, the agent

will expect to have a belief about the status of the IP address

that it attempted to check.

PLAN checkPingStatus(?ip_addr) {

PRECONDITION BELIEF(true);

POSTCONDITION BELIEF(pingStatus(?ip_addr,?status));

...

}

Fig. 1. AFAPL2 Plan Definition (plan body omitted)

GOAL(pingStatus(192.168.1.1,?status)) in-

dicates that the agent aims to have a belief about the status of

the host with the IP address 192.168.1.1. This interpreta-

tion of the goal would be contained in the relevant ontology.

Here, ?status is a variable (indicated by the ? sigil) that

can match against anything. Thus it is not a goal to bring about

a particular status; rather just to find out what that status is.

An agent having this goal would identify the

checkPingStatus plan to be a candidate plan for

its achievement.. This is the case for two reasons. Firstly, its

postcondition matches the goal, meaning that the agent will

anticipate its goal being achieved by a successful execution of

this plan and secondly because its precondition is satisfied by

the current belief set of the agent (since an agent will always

believe true to be true). In deciding on the appropriate

course of action, the goal reasoning engine will identify all

such candidate activities and execute one. In the event that

no candidate activities can be found, the goal is dropped as

unachievable.

A significant drawback with this method of reasoning is

that if no activity is available that can directly result in a goal

state being brought about, no further effort is made to achieve

it. However, this does not necessarily mean that the agent is

incapable of achieving its goal. In the event of an activity being

identified whose postcondition is expected to satisfy the goal

but whose precondition is not satisfied by the current state of

the agent, the modified goal reasoning engine examines other

activities to evaluate whether any are available that can satisfy

that precondition. An example of this reasoning process is

given in Section VI.

V. MAPPING PERFORMATIVES TO GOALS AND BELIEFS

In AFAPL2, the existing method of handing message re-

ceipts is simply to adopt a belief that the message has

been received, leaving it as an exercise to the application

programmer to deal with this event. One reason behind this

method is that there is currently no support for messages to be

linked into conversations. In contrast, ACRE can analyse the

conversations and protocols about which the agent is aware

and generate more appropriate goals and beliefs whenever

messages are received and sent.

The goals or beliefs that are generated depend on the context

within which a message is sent. For example, a propose

message is used to indicate that the sender proposes to perform

some action under certain conditions. There are, however,

more than one reason why an agent may receive such a

message. In one situation, the proposal is unsolicited (for

example to initiate a FIPA Propose Interaction Protocol [21]).

In this case, the message has no prior context and is unrelated

to any previous experience of the recipient. By its nature, a

propose message requires a response and so the recipient

agent must evaluate the proposal and communicate whether or

not it is willing to accept the proposal. As such, this situation

will result in the adoption of a goal indicating that this type

of evaluation should take place.

In contrast, a proposal may have been solicited by the recip-

ient. The message may be matched to an existing conversation,

either by means of an explicit conversation ID or by matching

its content against that expected by the relevant protocol. By

analysing this conversation, the agent can identify whether or

not a call for proposals was previously sent out. In sending

such a call, the agent will have been pursuing some other goal

and so the adoption of an additional goal to handle the proposal

is not desirable. Instead, a belief is adopted to indicate that the

proposal has been received.

This approach also allows the agent to engage in separate

but related conversations with different agents concurrently, as

is shown in the example in Section VI.

Another example of the run-time conversation reasoning is

on the receipt of an accept-proposal message. In this

case, the treatment is different because of the future messages

that the relevant protocol may or may not require to be sent

in response. Under some protocols, an accept-proposal

message is the final message in the conversation (e.g. the

FIPA Propose Interaction Protocol [21] or the Vickrey Auction

shown in Section VI). Here, a goal should be adopted merely

9

to perform the task that has been proposed and accepted. No

further communication is required.

In other cases, such as within a FIPA Contract Net Interac-

tion Protocol [22], the recipient of the accept-proposal

message is required to communicate the result of performing

the stated action back to the sender. In this case, the goal to

be satisfied is twofold: firstly to perform the action and then

communicate the result of this action to the sender. In reality,

only one goal is necessary, as it is impossible to communicate

the result of an action that has not been committed. This

should be reflected in the preconditions of any activity that

communicates the result of an action.

In the case of the sender of a message, it is not necessary

to generate these goals. Here, the message is sent by the agent

as a result of it having a goal that must be satisfied.

VI. EXAMPLE: VICKREY AUCTION

In order to demonstrate how the ACRE system works, we

use a Vickrey Auction Interaction Protocol. Figure 2 illustrates

the protocol using Agent UML [23].

A Vickrey auction is a non-iterated auction, in that each

bidder submits only a single bid, which is either accepted

or rejected. It is also a sealed-bid auction, in that bids are

communicated only to the auctioneer. In a Vickrey Auction,

the winner of the auction is the bidder who submits the highest

bid, though the ultimate price paid is equal to the second-

highest bid.

In this example, one agent is assumed to desire that a task

be performed by another agent and requests other agents to

submit proposals for the performance of this task. This agent is

referred to as the “Auctioneer”. The auction is initiated by the

Auctioneer sending a cfp message to a number of potential

“Bidder” agents. Each bidder considers the call for proposals

and decides whether or not to participate in the auction. Having

done so, it indicates its decision to the Auctioneer either by

submitting a bid (via a propose message) or by explicitly

declining to do so (using a refuse message).

After receiving all of these responses, the Auctioneer must

decide which is the winner of the auction and communicate

its decision to each of the Bidders. This is done by sending a

accept-proposal message to the successful bidder and a

reject-proposal message to those that are unsuccessful.

A. ACRE Implementation Example

As noted in the above section, a Vickrey auction is typically

initiated by an agent that wishes to have some task performed

by another agent. This will generally be indicated by the agent

adopting a goal to have the task performed.

In this example, we consider a MAS consisting of agents

that are situated in a virtual grid world that contains items that

the agents are required to collect. We begin the case study in a

situation where one agent (which will become the Auctioneer

agent) has discovered the location of an item and wishes to

have it collected. This is reflected by the adoption of a goal,

which is shown in Figure 4.

The addition of this goal to the agent’s mental state will

cause the goal reasoning engine to evaluate the options open

Fig. 2. AUML Diagram for a Vickrey-style auction

GOAL(performedTask(collected(item(20,25))))

Fig. 4. Initial goal to trigger a Vickery Auction

to it to satisfy this goal. One option may be to execute a plan

such as that defined in Figure 5. This is a plan that allows

the agent to carry out the task (i.e. collect the referenced

item) itself, without the need for engaging in conversation

with other agents. However, it may alternatively be the case

that the agent is not capable of performing the collection itself

(if, for example, it is a coordinator of other agents). In such a

scenario, it may be necessary to engage with other agents in

order to find another that will be capable of (and willing to)

carry out the task instead. The holding of an auction is one

common way of solving such a problem.

PLAN collectItem(?x,?y) {

PRECONDITION BELIEF(true);

POSTCONDITION

BELIEF(performedTask(collected(item(?x,?y))));

...

}

Fig. 5. Plan Definition to allow an agent collect items (plan body omitted)

Sample code to implement an Auctioneer agent is presented

in Figure 3. This include two plans used in the implementation

of a Vickrey Auction. In addition to the two plans, the

agent also includes an AuctionModule, which contains the

code to reason about the bids that have been received and

decide upon a winner. Two actuators are also present: one

(addBid) to add a received bid to the AuctionModule and

the other (endAuction) to trigger the ending of the auction

and cause a winner to be decided upon. Finally, a perceptor

is also present (auctionPerceptor) that monitors the state of

the AuctionModule and adopts beliefs based thereon. These

include beliefs about who the winners and losers of the auction

are, following the end of the auction.

As outlined in Section IV, the goal reasoning engine firstly

seeks an activity (either an action or a plan) whose postcon-

10

IMPORT com.agentfactory.afapl2.core.agent.FIPACore;

IMPORT agent.ACREAgent;

PLAN cfpTaskSolver(?task) {

PRECONDITION BELIEF(haveProposal(bidfor(?task,?bid),?agentID,?cid));

POSTCONDITION BELIEF(performedTask(?task));

BODY

SEQ (

FOREACH (haveProposal(bidfor(?task,?amount),?agentID,?cid),

addBid(?task,?agentID,?amount,?cid),

),

endAuction,

FOREACH (BELIEF(status(?task,?agentID,winner)),

accept-proposal(?agentID,?task)

),

FOREACH (BELIEF(status(?task,?agentID,loser)),

reject-proposal(?agentID,?task)

),

ADOPT(performedTask(?task))

);

}

PLAN solicitProposals(?task) {

PRECONDITION BELIEF(neighbour(agentID(?aname,?aaddr)));

POSTCONDITION BELIEF(haveProposal(bidfor(?task,?bid),agentID(?aname,?aaddr),?cid));

BODY

FOREACH (BELIEF(neighbour(?agentID)),

SEQ (

cfp(?agentID,bidfor(?task)),

OR (

AWAIT(BELIEF(haveProposal(?bid,agentID(?aname,?aaddr),?cid))),

AWAIT(BELIEF(haveRefusal(?task,agentID(?aname,?aaddr),?cid))),

SEQ(DELAY(20), ADOPT(BELIEF(timeout(?agentID))))

)

)

);

}

LOAD_MODULE AuctionModule module.AuctionModule;

PERCEPTOR auctionPerceptor {

CLASS perceptor.AuctionPerceptor;

}

ACTION endAuction {

CLASS actuator.EndAuctionActuator;

}

ACTION addBid(?task, ?agentID, ?amount, ?cid) {

actuator.AddBidActuator;

}

Fig. 3. AFAPL2 Auctioneer Agent

dition satisfies the goal. In this example, the postcondition

of the cfpTaskSolver plan will match the goal. This

postcondition contains the variable ?task, which is matched

against the goal. This has the effect that the plan will be

invoked with collected(item(20,25)) set as the value

for the ?task variable.

However, this plan by itself will not be capable of bringing

about successful achievement of the goal. This is because it

also has a precondition that indicates that in order for the plan

to succeed, the agent must already believe that it has received

at least one other proposal from another agent to perform the

task. As this is not the case, the goal reasoner must identify

another activity that will bring about that precondition.

The solicitProposals plan has a postcondition that

satisfies the precondition of cfpTaskSolver and is ex-

ecutable if the agent is aware of at least one neighbour-

ing agent that it can invite to the auction. Thus the strat-

egy the Auctioneer will employ will be to firstly execute

11

IMPORT agent.ACREAgent;

PLAN cfpProposal(?task, ?initiator, ?cid) {

PRECONDITION BELIEF(canBid(?task, ?amount, ?cid));

POSTCONDITION BELIEF(respondedToCfp(bidfor(?task), ?initiator, ?cid));

BODY

propose(?initiator,bid(?task,?amount));

}

PLAN cfpRefusal(?task,?initiator,?cid) {

PRECONDITION BELIEF(noBid(?task,?cid));

POSTCONDITION BELIEF(respondedToCfp(bidfor(?task),?initiator,?cid));

BODY

refuse(?initiator,bid(?task));

}

ACTION generateBid(?task, ?cid) {

PRECONDITION BELIEF(conversation(?cid,acre-vickrey));

POSTCONDITION BELIEF(canBid(?task,?amount,?cid));

CLASS is.lill.acre.actuator.GenerateBidActuator;

}

Fig. 6. AFAPL2 Bidder Agent

solicitProposals and then cfpTaskSolver in the

expectation that the goal will be satisfied afterwards (by

another agent performing the task).

The body of solicitProposals firstly considers

all of the agents it has knowledge of (the FOREACH

plan operator will execute the following code in paral-

lel for every belief in the agent’s belief set that matches

BELIEF(neighbour(?agentID)), where ?agentID

can is bound in turn to the contents of each belief). For each

of these agents it firstly sends a message to initiate the auction

(the cfp action is part of the standard FIPACore agent that

is imported at the top of the file). It then either waits until

one of the following events has occurred: a) it believes it has

received a proposal from the bidder, b) it believes that it has

received a rejection from the bidder or c) some timeout period

elapses, following which it adopts a belief to that effect. Once

one of these things has occurred, the plan has completed.

It is important to note at this stage that the postcondition of

solicitProposals may not be satisfied by its execution.

The postcondition is designed to indicate the intended result of

the plan, rather than enumerating all of its possible outcomes.

In this case, the purpose of the plan is to solicit bids from

other agents as part of an auction. Although it is possible that

all agents could refuse to participate or fail to respond, it is not

logical for an agent to issue a call for proposals in the hope

that this will occur. From a goal-reasoning point of view, if no

bids are received then the precondition of cfpTaskSolver

is not satisfied and the goal is considered to be unsolvable.

This is a logical outcome since the agent has no capability of

performing the task itself and has failed to find another agent

that is willing to do so on its behalf.

The beliefs about the receipt of a proposal or refusal are

generated by ACRE reasoning about the conversations. This

is an example of the situation presented in Section V where

ACRE is aware that the proposal or refusal are in response to

a call for proposals that was issued by the Auctioneer and so

generates a belief rather than a goal.

If at least one bid is received then the precondition of

cfpTaskSolver is satisfied and that plan may be executed.

In this plan, the Auctioneer evaluates each of the proposals

it has received and adds it to the AuctionModule that takes

care of the decision-making with regard to the winner of the

auction. Once all of the bids have been added, the auction

can be ended. The auction perceptor will cause a set of

beliefs about the auction to be adopted. These are used

to send accept-proposal messages to the winner and

reject-proposal messages to each of the losers of the

auction.

In the context of the auctioneer, one advantage of this

approach is that these plans are not limited to use within a

Vickrey Auction. For example, a Contract Net Protocol [22]

is also initiated by sending a cfp message and awaiting a

response by means of either a propose or refuse message.

Figure 6 contains the AFAPL2 code for the Bidder agents.

These agents must respond to the cfp message sent by the

Auctioneer to initiate the auction. This is done by means of

ACRE posting an appropriate goal for the agent’s goal reasoner

to solve. In this example, the goal is satisfied by the identi-

cal postconditions of the cfpProposal and cfpRefusal

plans. However, there is no activity available with a postcon-

dition that matches the precondition of cfpRefusal. On the

other hand, cfpProposal’s precondition can be satisfied

by executing the generateBid action (providing that its

precondition that the conversation, represented by the variable

?cid is of the type “acre-vickrey”). This is executed, followed

by cfpProposal, assuming a belief that the agent is in a

position to bid has been created.

The generateBid action may, however, cause the agent

12

to decline to make a bid (indicated by adopting a belief of the

type noBid). This would mean that the precondition for the

cfpProposal plan has not been satisfied and so it cannot

be executed to satisfy the goal. At this point, the goal reasoner

will re-evaluate the goal against the current belief set of the

agent and, on finding the belief that the agent will not make a

bid, now sees that the precondition of cfpRefusal is already

satisfied by the current mental state of the agent. Thus this plan

is called instead, causing a refuse message to be sent to the

Auctioneer.

This example demonstrates one drawback of the use of

postconditions in AFAPL2 to indicate the desired outcomes of

activities. In this case, planning would be better facilitated by

the express inclusion of noBid as a belief that will be adopted

as an alternative outcome of the generateBid plan. As no

express support is available for the enumeration of byproducts

of activites (or the beliefs associated with a plan failing in its

purpose).

No particular code is required to handle the response

from the Auctioneer. In the event of the receipt of a

accept-proposal message, this indicates that the Bidder

is required to carry out some task that it has proposed

to do, and so ACRE will adopt a goal to that effect. A

reject-proposal, on the other hand, does not require any

further action from the Bidder, so ACRE will merely adopt a

belief to that effect that can be reasoned about by the agent.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype of the ACRE conversation

reasoning system and specifically its integration into the

AFAPL2 agent programming language. Although currently

limited to AFAPL2, it is intended that ACRE will be used in

conjunction with several other agent programming languages.

Although full integration with several languages is desirable,

it may be necessary to adapt ACRE’s workings to the specific

needs and capabilities of particular languages. For example,

not all languages support the use of preconditions and postcon-

ditions of activities to facilitate reasoning about them. On the

other hand, support for ACL standards is widespread and so

the grouping of messages into conversations is part of ACRE

that is likely to be more widely applicable in its current form.

The availability of cross-platform communication tools such

as ACRE, together with shared ontologies and protocol def-

initions can only aid interoperability between distinct agent

platforms, toolkits and programming languages.

REFERENCES

[1] Y. Labrou, “Standardizing agent communication,” Multi-

Agents Systems and Applications (Advanced Course on

Artificial Intelligence), pp. 74–97, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=567252

[2] C. Muldoon, G. OHare, R. W. Collier, and M. OGrady,
Towards Pervasive Intelligence: Reflections on the Evolution

of the Agent Factory Framework. Boston, MA: Springer
US, 2009, ch. 6, pp. 187–212. [Online]. Available:
http://www.springerlink.com/content/g813865gq77731p1

[3] R. Collier, G. O’Hare, T. Lowen, and C. Rooney, “Beyond Prototyping
in the Factory of Agents,” in Multi-Agent Systems and Application III:

3rd International Central and Eastern European Conference on Multi-

Agent Systems (CEEMAS 2003), Prague, Czech Republic, 2003.

[4] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent
Communication Language,” in Proceedings of the Third International

Conference on Information and Knowledge Management, Gaithersburg,
MD, 1994, pp. 456–463.

[5] S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS Agent Plat-
form: Open Source for Open Standards,” in Proceedings of the 5th

International Conference and Exhibition on the Practical Application

of Intelligent Agents and Multi-Agents (PAAM2000), Manchester, 2000,
p. 368.

[6] Foundation for Intelligent Physical Agents, “FIPA Commu-
nicative Act Library Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00037/

[7] ——, FIPA Interaction Protocol Library Specification, Std., 2000.
[Online]. Available: http://www.fipa.org/specs/fipa00025/

[8] F. Bellifemine, G. Caire, T. Trucco, and G. Rimass,
“Jade Programmer’s Guide,” 2007. [Online]. Available:
http://jade.tilab.com/doc/programmersguide.pdf

[9] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge,
Programming multi-agent systems in AgentSpeak using

Jason. Wiley-Interscience, 2007. [Online]. Available:
http://books.google.com/books?hl=en&lr=&id=AJHD4GkIQs0C&pgis=1

[10] R. Collier, R. Ross, and G. M. P. O’Hare, “A Role-Based Approach
to Reuse in Agent-Oriented Programming,” in AAAI Fall Symposium

on Roles, an Interdisciplinary Perspective (Roles 2005), Arlington, VA,
USA, 2005.

[11] M. Barbuceanu and M. S. Fox, “COOL: A language for describing
coordination in multi agent systems,” in Proceedings of the First

International Conference on Multi-Agent Systems (ICMAS-95), 1995,
pp. 17–24.

[12] S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield,
and A. Boughannam, “Jackal: a Java-based Tool for Agent Develop-
ment,” in Working Papers of the AAAI-98 Workshop on Software Tools

for Developing Agents. AAAI Press, 1998.

[13] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley, “KAoS:
Toward an industrial-strength open agent architecture,” Software Agents,
pp. 375–418, 1997.

[14] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng,
“Modeling agent conversations with colored petri nets,” in
In: Workshop on Specifying and Implementing Conversation

Policies, Third International Conference on Autonomous Agents

(Agents ’99), Seattle, 1999, pp. 59–66. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6521

[15] H. Parunak, “Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis,” in Proceedings of the Second

International Conference on Multi-Agent Systems (ICMAS), 1996.

[16] Foundation for Intelligent Physical Agents, “FIPA ACL
Message Structure Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00061/

[17] L. Braubach and A. Pokahr, “Goal-Oriented Interaction Protocols,” in
MATES ’07: Proceedings of the 5th German Conference on Multiagent

System Technologies, vol. 4687. Leipzig, Germany: Springer, 2007, pp.
85–97.

[18] R. Collier, R. Ross, and G. M. P. O’Hare, “Realising Reusable Agent Be-
haviours with ALPHA,” in Proceedings of the 3rd German Conference

on Multi-Agent System Technologies (MATES 05), Koblenz, Germany,
2005, pp. 210–215.

[19] Y. Shoham, “Agent0: An agent-oriented programming language and its
interpreter,” Journal of Object-Oriented Programming, vol. 8, no. 4, pp.
19–24, 1991.

[20] M. Dragone, D. Lillis, R. W. Collier, and G. M. P. O’Hare, “Practical
Development of Hybrid Intelligent Agent Systems with SoSAA,” in
Proceedings of the 20th Irish Conference on Artificial Intelligence and

Cognitive Science, Dublin, Ireland, August 2009.

[21] Foundation for Intelligent Physical Agents, “FIPA Propose
Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00036

[22] Foundation For Intelligent Physical Agents, “FIPA Contract
Net Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00029

[23] B. Bauer, J. Müller, and J. Odell, “Agent UML: A Formalism for
Specifying Multiagent Software Systems,” Int. Journal of Software

Engineering and Knowledge Engineering, vol. 11, no. 3, pp. 207–230,
2001.

13

