
Towards Efficient Multi-Agent Abduction Protocols

Gauvain Bourgne

National Institute of Informatics

Tokyo, Japan

Email: bourgne@nii.ac.jp

Katsumi Inoue

National Institute of Informatics

Tokyo, Japan

Email: ki@nii.ac.jp

Nicolas Maudet

LAMSADE,

Paris Dauphine University, France

Email: nicolas.maudet@lamsade.dauphine.fr

Abstract—What happens when distributed sources of informa-
tion (agents) hold and acquire information locally, and have to
communicate with neighbouring agents in order to refine their
hypothesis regarding the actual global state of this environment?
This question occurs when it is not be possible (e. g. for practical
or privacy concerns) to collect observations and knowledge,
and centrally compute the resulting theory. In this paper, we
assume that agents are equipped with full clausal theories
and individually face abductive tasks, in a globally consistent
environment. We adopt a learner/critic approach. We present
the Multi-agent Abductive Reasoning System (MARS), a protocol
guaranteeing convergence to a situation “sufficiently” satisfying
as far as consistency of the system is concerned. Abduction in
a full clausal theory has however already a high computational
cost in centralized settings, which can become much worse with
arbitrary distributions. We thus discuss ways to use knowledge
about each agent’s theory language to improve efficiency. We
then present some first experimental results to assess the impact
of those refinements.

I. INTRODUCTION

In multi-agent systems, the inherent distribution of au-

tonomous entities, perceiving and acting locally, is the source

of many challenging questions. To overcome the limitation

of their own knowledge, usually local and incomplete, agents

are driven to form some hypotheses and share information

with other agents. Especially, abductive reasoning is a form of

hypothetical reasoning deriving the possible causes of an ob-

servation. It can be used to complete an agent’s understanding

of its environment by explaining its observations, or, more pro-

actively, for planning, as one can try to find the possible actions

that might cause the completion of a goal. However reasoning

in a sound manner with distributed knowledge rises interesting

problems, as one cannot ensure locally the consistency of an

information. Moreover, the system often comes with severe

communication restrictions, due to physical (e. g. the limited

scope of a communication device) or reasoning (e. g. the mere

impossibility to consider all the potential communications)

limitations of agents populating it. For such situations, we

presented in [1] a sound mechanism that is guaranteed to find

an abductive hypotheses with respect to distributed full clausal

theories whenever one exists. This Multi-agent Abductive

Reasoning System, MARS, is based on a consequence finding

tools named SOLAR [2], that serves as a main reasoning

engine. We are concerned in this paper with the efficiency

of this mechanism, and thus want to evaluate and improve its

average computational and communicational cost.

Distributed abduction has been considered in recent years

in the ALIAS system [3]. They distribute the abductive pro-

gramming algorithm of [4], using abductive logic program

to represent each agent’s theory. More recently, DARE [5]

addressed a similar problem, but consider possible dynamicity

of the system by allowing agents to enter or exit some

proof cluster. In none of these works however is the issue of

communication constraints explicitely raised. Another related

work is the peer-to-peer consequence finding algorithm DeCA

[6]. Based on a different method (splitting clauses), it is to

our knowledge the only other work in this domain taking

into account restrictions of communication between peers. It

is however restricted to propositional theories. The work on

partition-based logical reasoning presented [7] is of particular

interest for our present study as it investigates efficient theorem

proving in partitioned theories. It relies on communication

languages describing the common symbol in the individual

languages of pairs of agents. However, this approach and the

previous one explore all the consequences of the distributed

theories, whereas when we are only concerned with some new

consequences of the theories with respect to some knowledge

(namely the negated observations when computing a hypoth-

esis through inverse entailment, or the hypothesis itself when

ensuring its consistency). As a result, while inspirational, they

cannot be directly applied to our approach.

The rest of this paper is as follows. Section II gives the

necessary background on abduction and consequence finding.

Then, Section III describe formally a multi-agent abduction

problem, and present the MARS protocol, giving details about

the communications exchanged over its execution. Efficiency

is then discussed, and we describe two improvement on the

previous protocol. These variants are then experimentally

tested in Section IV, and we conclude in Section V.

II. ABDUCTIVE REASONING

A. Preliminaries

First, we review some notions and terminology to rep-

resent our problem in a logical setting. A literal is an

atom or the negation of an atom. A clause is a disjunction

of literals, and is often denoted by the set of literals. A

clause {A1, . . . , Am,¬B1, . . . ,¬Bn}, where Ai and ¬Bj are

respectively positive and negative atoms is also written as

A1 ∨ . . . ∨ Am ← B1 ∧ . . . ∧ Bn. Any variable in a clause

is assumed to be universally quantified at the front. A clausal

theory is a finite set of clauses which can be identified with the

34



conjunction of the clauses. Let S and T be clausal theories.

S logically implies T , denoted as S |= T , if and only if for

every interpretation I such that S is true under I , T is also

true under I . |= is called the entailment relation. For a clausal

theory T , a consequence of T is a clause entailed by T . We

denote by Th(T ) the set of all consequences of T . Let C and

D be two clauses. C subsumes D, denoted C � D, if there

is a substitution θ such that Cθ ⊆ D. C properly subsumes

D if C � D but D 6� C. For a clausal theory T , µT denotes

the set of clauses in T not properly subsumed by any clause

in T .
We can now introduce the notion of characteristic clauses,

which represents “interesting” consequences of a given prob-

lem [8]. Each characteristic clause is constructed over a sub-

vocabulary of the representation language called a production

field, and represented as 〈L〉, where L is a set of literal

closed under instantiation. A clause C belongs to P = 〈L〉
if every literal in C belongs to L. For a clausal theory T ,
the set of consequences of T belonging to P is denoted

ThP(T ). Then, the characteristic clauses of T wrt to P are

defined as Carc(T ,P) = µThP(T ), where µ is subsumption

minimality1. When a set of new clauses S is added to a

clausal theory, some consequences are newly derived with this

additional information. The set of such clauses that belong to

the production field are called new characteristic clauses of

S wrt T and P ; they are defined as Newcarc(T , S,P) =
Carc(T ∪ S,P) \ Carc(T ,P).

B. Abductive hypothesis

The logical framework of hypothesis generation in abduc-

tion for the centralized case can be expressed as follows. Let

T be a clausal theory, which represents the background theory,

and O be a set of literals, which represents observations. Also

let A be a set of literals representing the set of abducibles,

which are candidate assumptions to be added to T for explain-

ing O. Given T , O and A, the abduction problem is to find a

hypothesis H such that:

(i) T ∪H |= O (accountability),

(ii) T ∪H 6|= ⊥ (consistency), and

(iii) H is a set of instances of literals from A (bias).

In this case, H is also called an explanation of O (with respects

to T and A). A hypothesis is minimal if no proposer subset

of H satisfies the above three conditions (which is equivalent

to subsumption minimality for ground clauses). A hypothesis

is ground if it is a set of ground literals (literals containing no

variable). This restriction is often employed in applications

whose observations are also given as ground literals. In

the following, we shall indeed assume that observations are

grounded, and that we are only searching for minimal ground

hypotheses.

C. Computation through hypothesis finding

Given the observations O, each hypothesis H of O can

be computed by the principle of inverse intailment [8], [9],

1meaning that µX represents the clauses of X that are not properly
subsumed by any other clause of X.

which converts the accountability condition (i) to T ∪{¬O} |=
¬H, where ¬O =

∨
L∈O ¬L and ¬H =

∨
L∈H ¬L. Note

that both ¬O and ¬H are clauses since O and H are sets of

literals. Similarly, consistency condition (ii) is equivalent to

T 6|= ¬H . Hence, for any hypothesis H , its negated form ¬H
is deductively obtained as a “new” theorem of T ∪{¬O} that
is not an “old” theorem of T alone. Moreover, to respect the

bias condition (iii), every literal of ¬H has to be an instance of

a literal in Ā = {¬L|L ∈ A}. Then the negation of minimal

hypotheses are the new characteristic clauses of O with respect

to T and Ā, that is, Newcarc(T , {¬O}, Ā).
SOLAR [2] is a sophisticated deductive reasoning system

based on SOL-resolution [8], which is sound and complete for

finding minimal consequences belonging to a given language

bias (a production field). Consequence-finding by SOLAR is

performed by skipping literals belonging to a production field

P instead of resolving them. Those skipped literals are then

collected at the end of a proof, which constitute a clause as a

logical consequence of the axiom set. Using SOLAR, we can

implement an abductive system that is complete for finding

minimal explanations due to the completeness of consequence-

finding. SOLAR is designed for full clausal theories contain-

ing non-Horn clauses, and is based on a connection tableau

format [10]. In this format, many redundant deductions are

avoided using various state-of-the-art pruning techniques [2],

thereby hypothesis-finding is efficiently realized.

Once possible hypotheses have been computed, a ranking

process can be applied to select a preferred hypothesis (e.g.

hypothesis ranking such as in [11]). We will not dwell on this

part here, and instead assumed that a preference relation ≥p

over the hypothesis is given as a total order between sets of

grounded literals.

III. DISTRIBUTED ABDUCTION

A. Problem setting

We propose here a new formalization of our problem as

a multi-agent abductive system, which is defined as a tuple

〈S, {Γt},A,≥p〉, where:

• S = {a0, . . . , an−1} is a set of agents. Each agent ai has

its own individual theory Ti and its own observations Oi.

It will also form its own preferred hypothesis Hi, though

it can also adopt it from other agents. In fact, in the end

of the process, all agents will share the same hypothesis.

• Γt = 〈S, Et〉 is the communicational constraint graph

at time t, an undirected unlabeled graph whose nodes

are the agents in S and whose edges Et represent the

communicational links between the agent. An agent ai

can only communicate with another agent aj at time t if

(ai, aj) ∈ Et.

• A is the common set of abducibles that represents the

langage bias of the abductive process.

• ≥p is the common preference relation, a total order over

hypotheses.

Theories and observations are considered to be certain

knowledge. As such, they are assumed to be consistent,

35



meaning that
⋃

i<n Ti∪
⋃

i<n Oi 6|= ⊥. To ensure termination,
it will also be assumed that Carc(

⋃
i<n Ti, 〈L〉) is finite, and

that both hypotheses and observations are ground (i.e. contain

no variable). Moreover, the system will be assumed to be

temporally connected, meaning that at any time t, the graph

Γt+ = 〈S,
⋃

t′≥t Et′〉 is a connected graph.
Our aim is then to ensure the formation of an abductive

explanation of
⋃

i<n Oi with respects to
⋃

i<n Ti andA. Given
a group of agents G = {ai, i ∈ J} ⊂ S, we shall say that a

hypothesis H is group-consistent with G iff it is consistent

with the union of all the individual theory of the agents of the

group, that is, iff
⋃

i∈J Ti∪H 6|= ⊥. Likewise, we shall say that
H ensures group-accountability for G iff it can explains all

observations of the agents of the group when it is associated

with the union of their theories, that is iff
⋃

i∈J Ti ∪ H |=⋃
i∈J Oi. If G = S, we shall say that the hypothesis is mas-

consistent or that it ensures mas-accountability. Finally we

shall say that a set of literals is acceptable for a group G iff it

is a set of grounded literals of A that is group-consistent with

G and ensures group-accountability for G. The objective of a

multi-agent abductive system is thus to find a hypothesis that

is acceptable for the whole system.

While consistency or accountability of a hypothesis with

respect to both (Ti, Oi) and (Tj , Oj) is not equivalent to

consistency or accountability wrt (Ti ∪ Tj , Oi ∪ Oj), we still
can ensure some relation between them in classical logic.

Specifically, group-inconsistency of H with G implies group-

inconsistency of H with any superset of G, which ensures that

hypothesis inconsistent with a sub-group of agents (possibly

a single agent) can be ruled out as a potential solution. More-

over, group-accountability of H for both G and G′ implies

group-accountability of H for G ∪ G′ (but not reciprocally),

which ensures that accountability can be checked locally.

In order for a learner agent to propose a hypothesis to a

critic, it is necessary that his agent can produce such a hypoth-

esis. However, given only a few clauses of the whole clausal

theory, it might not be able to find an explanation for the

observations using only abducibles. Therefore, we shall allow

an agent to build partial hypothesis, which contains some

non-abducible literals. Those literals might be the unexplained

observations, or preferrably some other literals of the language

that would explain it. While interacting with other agents, they

will share knowledge to expand these hypotheses in order to

progressively build a fully abducible one. Note that of course, a

hypothesis respecting the bias condition will always be favored

over one who does not.

We shall now present MARS, a mechanism for solving

multi-agent abductive problems based on SOLAR.

B. Bilateral interaction

To deal with distributed hypothesis formation in multi-

agent systems, we take a learner-critic approach, in which

learner agents aim at producing a globally adequate hypothesis

through internal computations and local interactions with other

agents acting as critics. In our abductive setting, however,

critic agent cannot ensure the consistency of the hypothesis

by itself, and needs to interact with the learner in order to

find incoherence (computing the context of a hypothesis) and

produce complete hypotheses (exchanging useful information

by justifyin partial hypotheses). The underlying mechanism

was presented and proved correct in [1]. Here, we shall

introduce the actual protocol based on that procedure, reca-

pitulating its main steps while giving an exact account of the

communications involved.

1L

2C

3L 4C

5L

6L

7C 8L

9C 10L

12C

13C→L14C→L

11L

Hypothesis selection

propose

noHyp

propose

repropose

Consistency check

checkCtx checkCtx

incons

incons

ackinc

withdraw

okCtx

okCtx

ackCtx

Accountability check

uncovered

argue

withdraw

Acceptability check

deny

hasBetterHyp

ack

accept

ack

Fig. 1. Multi-Agent Learner-Critic Abductive Protocol.

Fig. 1 illustrate this protocol. Nodes indicate states of the

agents (steps of the mechanism), with superscript L or C

indicating whether it concerns the Learner agent or the Critic

agent. Note that states 13 and 14 indicate a switching of the

roles, as the critic becomes the learner. Labeled arcs indicate

that a given message can be sent by an agent in a given

state, making the other agent go to the target state upon

reception. Dashed arcs indicate an internal change of state

without communication. This mechanism is divided in four

main steps that we shall now detail.

1) Hypothesis selection: An interaction is initiated by a

learner agent a0, in state 1L, proposing its hypothesis and

its validity context to a critic agent a1 (propose(H0)). If
learner’s information has changed since it last computed its

possible hypotheses, it will recompute them through inverse

entailment, using Ā as a production field. In case it cannot find

a hypothesis this way, it will compute a partial hypothesis

by using an extended set of abducibles (possibly the whole

language). If the proposed hypothesis h0 is a new one, the first

context Ctx0 will be computed as the new consequences of

36



h0∪T0 wrt h0, that is Newcarc(T0, h0,PL) where PL = 〈L〉.
Otherwise, the previously computed context will be used as

initial context Ctx0. Then, when receiving such proposal, a1

will start its critic, which consists of three steps: consistency

check, accountability check and admissibility check. As the in-

teraction continue, new hypotheses might have to be proposed.

If the current learner cannot propose a hypothesis (which can

only happens if it has blocked all its possible hypotheses

during preivous admissibility check), it will send noHyp to

the other agent to switch the roles (state 14). If this one has
also exhausted all its hypotheses, then it will unblock all its

hypotheses and propose again the best one (repropose). Note

that the new critic agent will also unblock all its hypotheses

when receiving such a message.

2) Consistency check: When receiving a proposed hypoth-

esis and context, the first step of the critique is to check the

group-consistency of the hypothesis with both agents involved.

A context is progressively built for a given hypothesis H

to compute the new consequences of H ∪ T0 ∪ T1 wrt to

T0 ∪T1. If the hypothesis is incoherent, then it will have ⊥ as

a consequence. The occurence of a contradiction between the

context and the agents’ theories will thus enable detection of

incoherent hypotheses. This relies on the fact that the global

theory itself is assumed to be consistent, so any inconsistency

can only arise from the hypotheses. Indeed, if T is consistent

and T ∪H is inconsistent, then Newcarc(T , U,PL) = {⊥}.
The process is as follow :

1. First, remember that during the hypothesis selection step,

learner agent a0 retrieve context Ctx0 of its hypothesis. If no

context have been memorized from previous iteraction, then a

new one is computed as Newcarc(T0, H0,PL) (note that we
should thus have H0 ∈ Ctx0).

2. When receiving H0 and Ctx0 (state 2
C), a1 first check if

it already has some context Ctx′ for this given hypothesis. If

it is the case, then it replaces Ctx0 by Ctx′0 = Ctx0 ∪Ctx′.

Context Ctx1 is then computed as Newcarc(T1, Ctx′0,PL),
and sent back to a0 with message CheckCtx(Ctx1)(unless a
contradiction is found).

3. The process continues. At each step Ctxi is

computed by agent aα as the new consequences

Newcarc(Tα, Ctxi−1,PL), where α = 0 if i is odd

(state 3L), and α = 1 otherwise (state 2C), and sent with a

checkCtx message.

4. This computation stops when either a contradiction is

found or Ctxi is included in either Ctxi−1 or Ctxi−2, in

which case all consequence have been computed.

• If an inconsistency is discovered, the part p0 of the

hypothesis responsible for it is sent to the other agents

with message incons(p0). leading eventually to state 5
L.

Both agents rule out p0 (and any hypothesis containing

it) by adding its negation to their theory. The learner

agent then move on to its next hypothesis and propose it,

trigerring a new critic phase (states 12C and 1L).

• Otherwise, the end of the computation is acknowledged

by sending okCtx. Both agents memorize the final

context Ctxf = Ctxi ∩ Ctxi−1 (where i is the final

step) of this hypothesis. Any element in respectively

Ctxi \Ctxi−1 and Ctxi−2 \ Ctxi−1 are added to T1−α

and Tα where again α = 0 is i is odd and 1 otherwise.

Indeed an element will only be removed from the context

if it is a direct consequence of one of the agent’s theory.

The critic phase move to the next step (state 7C )..

3) Accountability check: In this step, the critic agent checks

if all its observations are explained by H0 ∪ T1. If an unex-

plained observation o is found, the message uncovered(o) is
sent to the learner agent, now in state 8L. We then have two

possibilities.

• If o is not explained by H0 ∪ T0, it is a true counter-

example. The learner agent then computes a new hypoth-

esis that will also cover o, and propose it, triggering a

new critic phase (states 12C and 1L).

• If o is already explained by H0∪T0, then the learner agent
will notify the critic of this fact with argue(p0), where
p0 is the part of the hypothesis that is used in explaining

o with T0. The critic agent will add the clause {o∨¬p0}
in its theory2. This new information will ensure that the

critic agent can find the hypothesis on its own in further

steps, or build up upon it. It will then proceed to the next

unexplained observation.

If there is no unexplained observation, the critic proceeds

to the next step (state 9C ).

4) Acceptability check: Any hypothesis that reaches this

step is consistent and accounts for the observations, but it

might include some non-abducible literals, or unnecessary

parts. This step ensures that alternative hypotheses are ex-

plored if needed.

1. If the critic has a hypothesis Hc that is prefered to H0

(according to ≥p), it will reverse roles (hasBetterHyp) and

submit it. This will finally either result in the acceptation of

a better hypothesis, or cause the former critic agent to learn

why its hypothesis cannot be used.

2. Otherwise, if the hypothesis contains non-abducibles

(partial hypothesis), the critic agent will temporarily block it,

and ask the other agent to do the same (deny). I will then

also switch roles (state 13C→L). This ensures that all partial

hypotheses that could provoke information exchange leading

to building an abducible hypothesis are explored if needed.

3. If the hypothesis is acceptable, or if a partial hypothesis

has been reproposed (meaning the exploration is complete),

then the critic send an accept message. The final outcome of

the interaction is thus chosen. Hypotheses that were temporar-

ily blocked are unblocked, and the best hypothesis is chosen

as the final hypothesis. It is adopted and memorized by both

agents, ending the interaction.

C. Group of agents

Each interaction allows the participants to refine their hy-

potheses and augment their knowledge concerning their con-

sequences. The protocol described before is enough to allow

two agents to form a hypothesis that is group-consistent and

2Note that since p is a conjonction of literals, ¬p0 is indeed a clause.

37



ensures group-accountability for the pair of agents. When more

agents are involved, it is possible to chain such interactions

to converge towards a consistent state of the system. To take

into account possibly variable communication constraints in

the system, we propose a rumor-like approach, ensuring the

local behaviour and interactions of the agents make the system

converges to a state in which all agents have a mas-consistent

hypothesis ensuring mas-accountability.

An agent is motivated by the will to ensure it has an

explanation with respect to its neighours. As such, it will

attempt to have local interactions with them whenever needed

to ensure that, memorizing the result of their last interaction

with each of their neighbours. In practice, an agent ai will

engage in a local interaction with a neighbour aj whenever its

hypothesis and context (hi, Ctxi) differ from those obtained

during its last interaction with aj .

In [1], this process was proved to be sound, and to guarantee

that a solution is found if there is one.

D. Improving efficiency

The main computational cost of our mechanism lies in

the multiple calls to a consequence-finding tools, which is

used in the various steps to conduct the logical reasoning,

especially for computing possible hypotheses through inverse

entailment, computing the context of these hypotheses, and

checking their accountability. To improve efficiency, it is thus

crucial to reduce as much as possible the computational cost

of each of these calls, as well as to reduce their number.

The tools we are using in our implementation, SOLAR,

is based on tableaux methods. We assess the computational

cost of a call by counting the number of inferences per-

formed during it. Without entering in the details of the

procedure, we will discuss here the factors that influence the

cost of the computation of Newcarc(F, T ,PL). The number
of inferences is directly related to the number of clauses

used in the procedure. Used claused are clauses which can

resolved with one of the top clauses (elements of F ), or

with a consequence of them. Thus, reducing the number of

clauses in T and more importantly in F can both help to

reduce the computations steps. Note that Carc(T ,PL) is in
practice computed as Newcarc(T , ∅,PL), so computing new
consequences rather than all consequences is already a good

step to ensure better efficiency. Reducing the number of literals

of the top clauses also helps as it limits the number of clauses

they can be resolved with. Then, another factor that can affect

the computations is the size of the production field. A small

production field limits the number of options to be explored

and as a results, the number of inferences to be done.

With respects to our mechanism, these considerations means

that we should keep each agent’s individual theory as small

as possible, which is ensured by adding single clauses with

just the necessary parts of the hypothesis to memorize incon-

sistencies (when sending or receiving incons.(p0) or account-
ability arguments (when sending argue(o∨¬p0) in state 8

L).

Moreover, during consistency check, we should minimize the

computations for the context. We shall see in next subsection

how to reduce size of top clauses during this step by doing

incremental computations. Then, we should also find ways to

minimize the number of consequences computed during this

consistency step by focusing on consequences that could lead

to a contradiction, and even more importantly, to limit the

number of partial hypotheses computed by focusing on those

partial hypotheses that could trigger information exchanges

leading to the formation of an acceptable hypothesis (as it

would also reduce the number of applications of SOLAR).

E. Incremental consistency check

During consistency check, context is progressively com-

puted until it does not evolve anymore, but sending the

whole context at each step of the computation and using

it as top clause for computing the next step. To avoid re-

dundant communications and computations, we propose to

communicate only the new consequences of the context,

pruning consequence discovered in previous step. It does not

change the computation and sending of Ctx0 and Ctx1, but

after computing Ctx1, the learner agent will only send back

ctxStep1 = Ctx1 \Ctx0 (note that we use the original Ctx0

here, and not Ctx′0).

Then, when receiving checkContext(ctxStepi), agent aα

first computes NCi+1 = NewCarc(ctxStepi, Tα ∪ Ctxi−1).
It can then use it to compute the current context Ctxi+1 =
Ctxi−1∪NCi+1, and send the update ctxStepi+1 = NCi+1\
ctxStepi. If there is a clause c than is in ctxStepi that is

not subsumed by any clause of NCi+1, it means that it is a

consequence of Tα. It should then be sent to the other agent

(with message inform(c)) to ensure that both agents will have
the same final context. This replaces the theory adjustment

with Ctxi \ Ctxi−1 and Ctxi−2 \ Ctxi−1 that were made

before. Note that the termination condition becomes much

simpler, as the context can be confirmed as soon as ctxStepi

is empty.

F. Language focus

1) Languages: Given a clausal theory T, we denote by

L(T ) the set of non-logical symbols that occur in T , and

by L(T ) the language formed upon them. Each agent has

its own theory Ti, from which we can define its individual

language L(Ti). We can then compute for each pair of agent

ai, aj (i 6= j), in the manner of [7], the communications

language Li,j = L(Ti) ∩ L(Tj). It can be used to direct the

focus of bilateral communications. If it is empty, ai and aj

do not need to communicate together. However, it may be

the case that ai and aj are never connected while Li,j is not

empty. For the sake of simplicity we will assume that the

communicational links are static 3. We shall then adapt the

communications languages by choosing a minimal path for

all such pair of unconnected agents (ai,aj), and add the Li,j

to the communication language of each pair of agent in this

path. In the following, when referring to the communication

3otherwise, since the system is assumed to be temporally connected, it is
possible to find a connected subgraph that is included in Γ

t+
for all t and

use it as a guaranteed basis.

38



language Li,j , we will assume that this modification has been

done. Then the restricted individual language of an agent

ai is defined as Li =
⋃

j∈Ni
Li,j , where Ni is the set of

the indexes of the neighbours of ai. At last, the common

language is the language C =
⋃

i<n Li, that is the union of

all restricted individual languages (which is also .the union of

all the communication languages).

2) Context narrowing: When computing context, we want

to ensure that any new consequence of the hypothesis that can

be derived from the union of the agent’s theories is indeed

found. It means a0 need to send any consequence of H wrt T0
that could resolved with a clause of T1. In pratice, a0 compute

its context using its restricted individual language as a produc-

tion field, and then retain in Ctx0 only the one that contains at

least a literal of the concerned communication language (here

L0,1). Upon receiving it, a1 will then temporarily add L(Ctx0)
to L0,1, and if it already has a context Ctx′, a1 will use the

same pruning before adding it to get Ctx′0 and compute Ctx1

(with his restricted individual language as a production field).

The pruning (with updated language) is applied to Ctx1 (or

ctxStep1) before sending it, and the process continue. Each

time, contexts are pruned to exclude any clauses that do not

have literals in the current communication language before

being sent to the other agent. Note that since we compute only

new consequences, we cannot directly use the communication

language as a production field,as shown by the following

example:

Example 1: Let’s take T0 = {¬h∨a∨b,¬h∨o}, T1 = {¬a}
and T2 = {¬b}, all agents being connected. We have L0,1 =
L({a}), and L0,2 = L({b}), so L0 = L({a, b}). We assume

a0 has observation o and wants to check hypothesis h with a1.

If Ctx0 was computed with L0,1, it would be empty, and no

contradiction would be found when a0 checks later with a2.

However, using L0 as a production field, we get consequence

a ∨ b that contains literal a ∈ L0,1. It is thus sent to a1 that

will give in return b. When proposing this context to a2 later

on, a0 will thus be able to derive a contradiction.

3) Choice of partial hypotheses: For computing partial

hypotheses, and deciding whether to propose a given one to

a neighbour or not, the same principles can be used. When

no admissible hypothesis can be found, inverse entailment is

performed again with an extended set of abducibles. To ensure

that at least one solution can be found, the manifestations are

added to the abducibles, enabling trivial explanations for some

part of the hypothesis. Then, the idea is to use literals that can

act as links between the theories. In practice, it means that we

should include in the extended abducibles the literals in the

restricted individual language of the agent. This should also

be augmented with literals obtained through the arguments of

other agents (when receiving argue(o∨ p0) in state 7
C). This

allow us to compute all potentially useful partial hypothesis.

For a given exchange, however, it is sufficient to propose

those partial hypotheses that contains at least one literal of

the communication language of the interacting agents.

IV. EXPERIMENTS

We describe here preliminary experimental results on a

small set of problems4, testing our two improvements of the

MARS protocol (namely, incremental context computation and

restriction of the languages). Though it might be useful to

assert the validity of our conclusions on a broader number of

problems, we believe that the small problems used for eval-

uation highlight the main difficulties that can be encountered

in a distributed abduction system.

The first problem, pb-1, is taken from [1], where it was

used as a running example. It contains 10 clauses, distributed

among 2 or 3 agents. With 3 agents, we tested two commu-

nicational constraint topologies: a line (a0 ↔ a1 ↔ a2) and a

completely connected system. This problem was designed to

illustrated the MARS protocol, and thus make it go throught

all the possible states during its enfolding. The second prob-

lem, pb-fvar, is a toy problem with two observations that

contains some clauses with unlinked variables. We pruned

out hypotheses that contains variables in the resolution to

respect our language bias. It is distributed among 3 agents,

and here again, we tested it with line and completely con-

nected graph topologies. The third problem, chain_n is a

propositional problem designed to show a kind of worst case

for distribution. It consists of three chains of implications

linking respectively h1 to o1 (through kn−2, . . . , k0), h1 to o2

(through mn−2, . . . , m0) and h2 to o1 (through ln−2, . . . , l0).

Moreover, one agent (agent an/2) has a constraint ¬o1 ∨¬o2,
which makes h1 inconsistent. The aim is then to explain o1

with abducibles {h1, h2}. Each agent knows 3 rules, one from
each chains, and agent a0 initially has observation o1. This

chain was tested with n = 8, with either a line topology

(from a0 to a7) or a circuit topology (as the line, with an

additional link between a0 and a7). To check the influence

of the number of agent, we also used a version of this

problem with 4 agents, chain_8.4, in which a0, a1, a2,

a3 are merged with respectively a4, a5, a6 and a7, and a

version with 2 agents, chain_8.2, in which a0 are merged

with respectviley even and odd indexed agents. At last, we

used a more practical problem, schedulevar, which is an

adaption from a scheduling problem presented in [5], with

8 agents. scheduledir is a direct translation of the same

problem from its original formalization as an abductive logic

program (negation by default is dealt with by using additional

abducibles).

Tables I gives the results for the four variants of our

mechanism. Computational cost is given by the total number

of operations performed by the consequence finding tool over

the course of the protocol, whereas communicational cost

is expressed as the total number of bits exchanged by the

agents during the process. From these results, it is obvious that

using individual communication languages does indeed greatly

reduce both costs. It is especially true for the most complex

problems, and the gain ratio is more important when there

4Complete description of all these problems can be found at
http://rjcia09.fr/MARS.

39



TABLE I
EXPERIMENTAL RESULTS

Language focus no no yes yes

Incremental ctx comp. no yes no yes

Computational cost

Pb-1 2 ag. 711 666 711 666

Pb-1 (line) 3 ag. 1 602 1 454 1 548 1 390
Pb-1 (clique) 3 ag. 2 216 2 003 1 713 1 673

Pb-fvar (line) 3 ag. 11 890 11 818 8 019 7 959
Pb-fvar (clique) 3 ag. 13 680 14 126 6 457 6 415
Chain 8.2 2 ag. 31 171 21 330 12 438 8 675

Chain 8.4 (line) 4 ag. 57 406 45 803 29 844 24 285
Chain 8.4 (circ.) 4 ag. 81 998 70 168 23 999 21 075

Chain 8 (line) 8 ag. 133 696 103 219 22 450 18 600
Chain 8 (circ.) 8 ag. 92 986 75 146 9 015 8 639
Schedulevar 8 ag. 53 607 50 571 39 391 39 725

Scheduledir 8 ag. 381 992 372 998 95 909 94 963

Communicational cost

Pb-1 2 ag. 617 552 617 552

Pb-1 (line) 3 ag. 1 832 1 700 1 624 1 511
Pb-1 (clique) 3 ag. 2 540 2 373 2 115 2 064

Pb-fvar (line) 3 ag. 3 177 3 080 2 659 2 622
Pb-fvar (clique) 3 ag. 3 568 3 494 2 139 2 106
Chain 8.2 2 ag. 12 230 8 924 5 746 4 238

Chain 8.4 (line) 4 ag. 25 606 14 312 22 278 12 620
Chain 8.4 (circ.) 4 ag. 35 072 12 576 35 531 11 883

Chain 8 (line) 8 ag. 65 582 57 305 14 625 13 383
Chain 8 (circ.) 8 ag. 50 749 47 317 6 509 6 627
Schedulevar 8 ag. 28 774 27 171 20 448 20 752

Scheduledir 8 ag. 219 335 209 398 77 638 76 238

are a greater number of communicational links. Incremental

computation of context is however less convincing, as it

only helps when there are several context computations step,

which is not such a common occurence, unless theories are

really mixed (it is the case for pb-1 and all chain_8

problems, which do benefit from this improvement). In the

end, this improvement is useful, but only marginally so in

most situations. While more experiment would be required to

say anything more definite, the present results give us some

hint about the influence of topology and “encoding”. Having

a topology with cycle can lead to redundant computations, but

can also provide easier exchange of information by avoiding

the extra cost of bringing back a crucial fact or rule (as

demonstrated by the addition of the link a0-a7 in chain_8).

Overall, using individual communication language allows us

to reduce the cost of redundant computations, so that we can

take more benefit from situations where additional links are

helpful. Moreover, reducing the number of agents can be either

detrimental (in chain_8) or benificial (in pb-1): the size

of the communication languages seem to be a more relevant

factor. At last, the huge difference between schedulevar

and scheduledir seems to indicate that our protocol is much

more efficient for finding whether an abducible hypothesis is

consistent than it is for finding an abducible hypothesis by

exploring all partial hypotheses. When formalizing a given

problem, it is thus more efficient to ensure one agent can

easily generate candidate hypotheses, and express rules that

constrain it.

V. CONCLUSION

We presented in this paper a formalization of a multi-

agent abduction problem, and proposed a sound mechanism

for computing an abductive explanation that is guaranteed to

find a solution whenever one exists. We then discussed way to

improve the average efficiency of this protocol, called Multi

agent Abductive Reasoning System (MARS). Two improve-

ments were proposed. The first one reduce the costs of building

a complex context by doing the computation incrementally.

It only helps when several steps are needed and was there-

fore shown to have only a limited impact on efficiency by

experimenal results. The main improvement consist of using

informations about the individual language of each agent to

focus the exchanges on what can really advance the search for

a hypothesis (or the inconsistence of a candidate hypothesis).

Contrarily to [7], we do not need the communication graph

to be made cycle-free. While our approach use a similar idea

of using communication language, we are only interested in

the new consequences of some formulas, and thus want to

avoid computing all consequences of a theory. As a result,

we showed that we needed to allow the exchanges of clauses

that belongs only partially to the communication language.

Nonetheless, it is still an important efficiency improvement

compared to the more naive approach of using only the com-

mon language for all exchanges. Experimental results showed

that it substantially reduces the number of computations as

well as the size of the communications. More improvement

should however be brought to the search of hypotheses that can

only be produced by using the theories of several agents. The

learner-critic assumption that hypothesis are produced locally

might be unadapted in such situations. It might thus be better

to design a collaborative hypothesis formation, though another

lead could be to refine the current information exchange to

ensure a better treatment of “sub-goals”.

REFERENCES

[1] G. Bourgne, K. Inoue, and N. Maudet, “Abduction of distributed theories
through local interactions,” in Proc. of the 19th European Conference
on Artificial Intelligence (ECAI 2010), August 2010.

[2] H. Nabeshima, K. Iwanuma, and K. Inoue, “Solar: A consequence
finding system for advanced reasoning,” in Autom. Reas. with Analytic
Tableaux and Rel. Meth. Springer, 2003, pp. 257–263.

[3] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni, “Coop-
eration and competition in ALIAS: a logic framework for agents that
negotiate,” Annals of Math. and AI, vol. 37, no. 1–2, pp. 65–91, 2003.

[4] A. C. Kakas and P. Mancarella, “Database updates through abduction,”
in Proc. of VLDB ’90. Morgan Kaufmann Pub., 1990, pp. 650–661.

[5] J. Ma, A. Russo, K. Broda, and K. Clark, “DARE: a system for
distributed abductive reasoning,” JAAMAS, vol. 16-3, pp. 271–297, 2008.

[6] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon,
“Distributed reasoning in a peer-to-peer setting: Application to the
semantic web,” J. Artif. Intell. Res. (JAIR), vol. 25, pp. 269–314, 2006.

[7] E. Amir and S. A. McIlraith, “Partition-based logical reasoning for first-
order and propositional theories,” AI, vol. 162, no. 1-2, pp. 49–88, 2005.

[8] K. Inoue, “Linear resolution for consequence finding,” Artif. Intell.,
vol. 56, no. 2-3, pp. 301–353, 1992.

[9] S. Muggleton, “Inverse entailment and progol,” New Generation Com-
put., vol. 13, no. 3&4, pp. 245–286, 1995.

[10] R. Letz, K. Mayr, and C. Goller, “Controlled integration of the cut rule
into connection tableau calculi,” JAR, vol. 13, pp. 297–338, 1994.

[11] K. Inoue, T. Sato, M. Ishihata, Y. Kameya, and H. Nabeshima, “Eval-
uating abductive hypotheses using an em algorithm on bdds,” in Proc.
of IJCAI’09, 2009, pp. 810–815.

40


