
JaCa-Android: An Agent-based Platform for

Building Smart Mobile Applications

Andrea Santi

University of Bologna

Cesena, Italy

Email: a.santi@unibo.it

Marco Guidi

University of Bologna

Cesena, Italy

Email: marco.guidi7@studio.unibo.it

Alessandro Ricci

DEIS, University of Bologna

Cesena, Italy

Email: a.ricci@unibo.it

Abstract—Agent-Oriented Programming (AOP) provides an
effective level of abstraction for tackling the programming
of mainstream software applications, in particular those that
involve complexities related to concurrency, asynchronous events
management and context-sensitive behaviour. In this paper we
support this claim in practice by discussing the application of
AOP technologies – Jason and CArtAgO in particular – for the
development of smart mobile applications based on the Google
Android platform.

I. INTRODUCTION

The value of Agent-Oriented Programming (AOP) [20] – in-

cluding Multi-Agent Programming (MAP) – is often remarked

and evaluated in the context of Artificial Intelligence (AI)

and Distributed AI problems. This is evident, for instance,

by considering existing agent programming languages (see

[4], [6] for comprehensive surveys) – whose features are

typically demonstrated by considering toy problems such as

block worlds and alike.

Besides this view, we argue that the level of abstraction in-

troduced by AOP is effective for organizing and programming

software applications in general, starting from those programs

that involve aspects related to reactivity, asynchronous inter-

actions, concurrency, up to those involving different degrees

of autonomy and intelligence. Following this view, one of

our current research lines investigates the adoption and the

evaluation of existing agent-based programming languages and

technologies for the development of applications in some of

the most modern and relevant application domains. In this

context, a relevant one is represented by next generation

mobile applications. Applications of this kind are getting a

strong momentum given the diffusion of mobile devices which

are more and more powerful, in terms of computing power,

memory, connectivity, sensors and so on. Main examples are

smart-phones such as the iPhone and Android-based devices.

On the one side, smart mobile applications share more and

more features with desktop applications, and eventually ex-

tending such features with capabilities related to context-

awareness, reactivity, usability, and so on, all aspects that are

important in the context of Internet of Things and Ubiquitous

Computing scenarios. All this increases – on the other side

– the complexity required for their design and programming,

introducing aspects that – we argue – are not suitably tackled

by mainstream programming languages such as the object-

oriented ones.

So, in this paper we discuss the application of an agent-

oriented programming platform called JaCa for the develop-

ment of smart mobile applications. Actually JaCa is not a

new platform, but simply the integration of two existing agent

programming technologies: Jason [5] agent programming

language and platform, and CArtAgO [17] framework, for

programming and running the environments where agents

work. JaCa is meant to be a general-purpose programming

platform, so useful for developing software applications in

general. In order to apply JaCa to mobile computing, we

developed a porting of the platform on top of Google Android,

which we refer as JaCa-Android. Google Android is an open-

source software stack for mobile devices provided by Google

that includes an operating system (Linux-based), middleware,

SDK and key applications.

Other works in literature discuss the use of agent-based

technology on mobile devices—examples include AgentFac-

tory [13], 3APL [10], JADE [3]. Differently from these works,

here we do not consider the issue of porting agent technologies

on limited capability devices, but we focus on the advantages

brought by the adoption of agent-oriented programming level

of abstraction for the development of complex mobile appli-

cations.

The remainder of the paper is organised as follows: in

Section II we provide a brief overview of the JaCa platform

– which we consider part of the background of this paper;

then, in Section III we introduce and discuss the application

of JaCa for the development of smart mobile applications on

top of Android, and in Section IV we describe two practical

application samples useful to evaluate the approach. Finally,

in Section V we briefly discuss some open issues related

to JaCa-Android and, more generally, to the use of current

agent-oriented programming technologies for developing ap-

plications and related future works.

II. AGENT-ORIENTED PROGRAMMING FOR MAINSTREAM

APPLICATION DEVELOPMENT – THE JACA APPROACH

An application in JaCa is designed and programmed as

a set of agents which work and cooperate inside a com-

mon environment. Programming the application means then

programming the agents on the one side, encapsulating the

48



logic of control of the tasks that must be executed, and the

environment on the other side, as a first-class abstraction

providing the actions and functionalities exploited by the

agents to do their tasks. It is worth remarking that this is an

endogenous notion of environment, i.e. the environment here

is part of the software system to be developed [18].

More specifically, in JaCa Jason [5] is adopted as pro-

gramming language to implement and execute the agents and

CArtAgO [17] as the framework to program and execute the

environments.

Being a concrete implementation of an extended version

of AgentSpeak(L) [15], Jason adopts a BDI (Belief-Desire-

Intention)-based computational model and architecture to de-

fine the structure and behaviour of individual agents. In that,

agents are implemented as reactive planning systems: they run

continuously, reacting to events (e.g., perceived changes in the

environment) by executing plans given by the programmer.

Plans are courses of actions that agents commit to execute

so as to achieve their goals. The pro-active behaviour of

agents is possible through the notion of goals (desired states

of the world) that are also part of the language in which plans

are written. Besides interacting with the environment, Jason

agents can communicate by means of speech acts.

On the environment side, CArtAgO – following the A&A

meta-model [14], [19] – adopts the notion of artifact as first-

class abstraction to define the structure and behaviour of

environments and the notion of workspace as a logical con-

tainer of agents and artifacts. Artifacts explicitly represent the

environment resources and tools that agents may dynamically

instantiate, share and use, encapsulating functionalities de-

signed by the environment programmer. In order to be used by

the agents, each artifact provides a usage interface composed

by a set of operations and observable properties. Operations

correspond to the actions that the artifact makes it available

to agents to interact with such a piece of the environment;

observable properties define the observable state of the artifact,

which is represented by a set of information items whose value

(and value change) can be perceived by agents as percepts.

Besides observable properties, the execution of operations

can generate signals perceivable by agents as percepts, too.

As a principle of composability, artifacts can be assembled

together by a link mechanism, which allows for an artifact to

execute operations over another artifact. CArtAgO provides a

Java-based API to program the types of artifacts that can be

instantiated and used by agents at runtime, and then an object-

oriented data-model for defining the data structures used in

actions, observable properties and events.

The notion of workspace is used to define the topology

of complex environments, that can be organised as multiple

sub-environments, possibly distributed over the network. By

default, each workspace contains a predefined set of artifacts

created at boot time, providing basic actions to manage the

overall set of artifacts (for instance, to create, lookup, link to-

gether artifacts), to join multiple workspaces, to print messages

on the console, and so on.

JaCa integrates Jason and CArtAgO so as to make the

use of artifact-based environments by Jason agents seamless.

To this purpose, first, the overall set of external actions that a

Jason agent can perform is determined by the overall set of

artifacts that are actually available in the workspaces where

the agent is working. So, the action repertoire is dynamic and

can be changed by agents themselves by creating, disposing

artifacts. Then, the overall set of percepts that a Jason

agent can observe is given by the observable properties and

observable events of the artifacts available in the workspace

at runtime. Actually an agent can explicitly select which

artifacts to observe, by means of a specific action called

focus. By observing an artifact, artifacts’ observable properties

are directly mapped into beliefs in the belief-base, updated

automatically each time the observable properties change their

value. So a Jason agent can specify plans reacting to changes

to beliefs that concern observable properties or can select plans

according to the value of beliefs which refer to observable

properties. Artifacts’ signals instead are not mapped into the

belief-base, but processed as non persistent percepts possibly

triggering plans—like in the case of message receipt events.

Finally, the Jason data-model – essentially based on Prolog

terms – is extended to manage also (Java) objects, so as

to work with data exchanged by performing actions and

processing percepts.

A full description of Jason language/platform and

CArtAgO framework – and their integration – is out of the

scope of this paper: the interested reader can find details in

literature [17], [16] and on Jason and CArtAgO open-source

web sites12.

III. PROGRAMMING SMART MOBILE APPLICATIONS WITH

JACA

In this section we describe how JaCa’s features can be

effectively exploited to program smart mobile applications,

providing benefits over existing non-agent approaches. First,

we briefly sketch some of the complexities related to the

design and programming of such a kind of applications; then,

we describe how these are addressed in JaCa-Android—

which is the porting of JaCa on Android, extended with a

predefined set of artifacts specifically designed for exploiting

Android functionalities.

A. Programming Mobile Applications: Complexities

Mobile systems and mobile applications have gained a lot

of importance and magnitude both in research and industry

over the last years. This is mainly due to the introduction

of mobile devices such as the iPhone3 and the most modern

Android4-based devices that changed radically the concept

of smart-phone thanks to: (i) hardware specifications that

allow to compare these devices to miniaturised computers,

situated – thanks to the use of practically every kind of known

connectivity (GPS, WiFi, bluetooth, etc.) – in a computational

1http://jason.sourceforge.net
2http://cartago.sourceforge.net
3http://www.apple.com/it/iphone/
4http://www.android.com/

49



network which is becoming more and more similar to the

vision presented by both the Internet of Things and ubiquitous

computing, and (ii) the evolution of both the smart-phone O.S.

(Apple iOS, Android, Meego5) and their related SDK.

These innovations produce a twofold effect: on the one

side, they open new perspectives, opportunities and application

scenarios for these new mobile devices; on the other side,

they introduce new challenges related to the development

of the mobile applications, that are continuously increasing

their complexity [1], [11]. These applications – due to the

introduction of new usage scenarios – must be able to address

issues such as concurrency, asynchronous interactions with dif-

ferent kinds of services (Web sites/Services, social-networks,

messaging/mail clients, etc.) and must also expose a user-

centric behaviour governed by specific context information

(geographical position of the device, presence/absence of

different kinds of connectivity, events notification such as the

reception of an e-mail, etc.).

To cope with these new requirements, Google has developed

the Android SDK6, which is an object-oriented Java-based

framework meant to provide a set of useful abstractions for en-

gineering mobile applications on top of Android-enable mobile

devices. Among the main coarse-grain components introduced

by the framework to ease the application development we

mention here:

• Activities: an activity provides a GUI for one focused

endeavor the user can undertake. For example, an activity

might present a list of menu items users can choose, list

of contacts to send messages to, etc.

• Services: a service does not have a GUI and runs in the

background for an indefinite period of time. For example,

a service might play background music as the user attends

to other matters.

• Broadcast Receiver: a broadcast receiver is a component

that does nothing but receive and react to broadcast

announcements. Many broadcasts originate in system

code - for example, announcements that the timezone has

changed, that the battery is low, etc.

• Content providers: a content provider makes a specific set

of the application’s data available to other applications.

The data can be stored in the file system, in an SQLite

database, etc.

In Android, interactions among components are managed

using a messaging facility based on the concepts of Intent

and IntentFilter. An application can request the execution of

a particular operation – that could be offered by another

application or component – simply providing to the O.S. an

Intent properly characterised with the information related to

that operation. So, for example, if an application needs to

display a particular Web page, it expresses this need creating

a proper Intent instance, and then sending this instance to the

Android operating system. The O.S. will handle this request

locating a proper component – e.g. a browser – able to manage

5http://meego.com
6http://developer.android.com/sdk/index.html

that particular Intent. The set of Intents manageable by a

component are defined by specifying, for that component, a

proper set of IntentFilters.

Generally speaking, these components and the Intent-based

interaction model are useful – indeed – to organise and

structure applications; however – being the framework fully

based on an object-oriented virtual machine and language such

as Java – they do not shield programmers from using callbacks,

threads, and low-level synchronisation mechanisms as soon as

applications with complex reactive behaviour are considered.

For instance, in classic Android applications asynchronous

interactions with external resources are still managed using

polling loops or some sort of mailbox; context-dependent

behaviour must be realised staining the source code with

a multitude of if statements; concurrency issues must be

addressed using Java low-level synchronisation mechanisms.

So, more generally, we run into the problems that typically

arise in mainstream programming languages when integrating

one or multiple threads of control with the management of

asynchronous events, typically done by callbacks.

In the next section we discuss how agent-oriented program-

ming and, in particular, the JaCa programming model, are

effective to tackle these issues at a higher-level of abstraction,

making it possible to create more clear, terse and extensible

programs.

B. An Agent-oriented Approach based on JaCa

By adopting the JaCa programming model, a mobile An-

droid application can be realised as a workspace in which

Jason agents are used to encapsulate the logic and the control

of tasks involved by the mobile application, and artifacts are

used as tools for agents to seamlessly exploit available Android

device/platform components and services.

From a conceptual viewpoint, this approach makes it pos-

sible to keep the same level of abstraction – based on agent-

oriented concepts – both when designing the application and

when concretely implementing it using Jason and CArtAgO.

In this way we are able to provide developers a uniform

guideline – without conceptual gaps between the abstractions

used in the analysis and implementation phases – that drives

the whole engineering process of a mobile application.

From a programming point of view, the agent paradigm

makes it possible to tackle quite straightforwardly some of

the main challenges mentioned in previous sections, in partic-

ular: (i) task and activity oriented behaviours can be directly

mapped onto agents, possibly choosing different kinds of

concurrent architectures according to the needs—either using

multiple agents to concurrently execute tasks, or using a single

agent to manage the interleaved execution of multiple tasks;

(ii) agents’ capability of adapting the behaviour on the basis of

the current context information can be effectively exploited to

realise context-sensitive and context-dependent applications;

(iii) asynchronous interactions can be managed by properly

specifying the agents’ reactive behaviour in relation to the

reception of particular percepts (e.g. the reception of a new

e-mail).

50



JaCa 

(Jason+CArtAgO)

Android Framework

(Dalvik Virtual Machine + Libraries)

Linux kernel

JaCa Android artifacts

JaCa-services 
shared workspace

JaCa-Android app

SMSManager

Calendar

GPSArtifact

ActivityGUI
MyArtifact

Fig. 1. Abstract representation of the JaCa-Android platform – with in
evidence the different agent technologies on which the platform is based –
and of generic applications running on top of it.

To see this in practice, we developed a porting of JaCa

on top of Android – referred as JaCa-Android – available as

open-source project7. Fig. 1 shows an abstract representation

of the levels characterising the JaCa-Android platform and

of a generic applications running on top of it.

The platform includes a set of predefined types of artifacts

(BroadcastReceiverArtifact, ActivityArtifact,

ContentProviderArtifact, ServiceArtifact)

specifically designed to build compliant Android components.

So, standard Android components become fully-fledged

artifacts that agents and agent developers can exploit without

worrying and knowing about infrastructural issues related to

the Android SDK. This makes it possible for developers to

conceive and realise mobile applications that are seamlessly

integrated with the Android SDK, possibly interacting/re-

using every component and application developed using the

standard SDK. This integration is fundamental in order to

guarantee to developers the re-use of existing legacy – i.e.

the standard Android components and applications – and for

avoiding the development of the entire set of functionalities

required by an application from scratch.

Besides, the platform also provides a set of artifacts that

encapsulate some of the most common functionalities used

in the context of smart mobile applications. In detail these

artifacts are:

• SMSManager/MailManager, managing sms/mail-

related functionalities (send and receive sms/mail,

retrieve stored sms/mail, etc.).

• GPSManager, managing gps-related functionalities (e.g.

geolocalisation of the device).

• CallManager, providing functionalities for handling –

answer/reject – phone calls.

• ConnectivityManager, managing the access to the

different kinds of connectivity supported by the mobile

device.

7http://jaca-android.sourceforge.net

• CalendarArtifact, providing functionalities for man-

aging the built-in Google calendar.

These artifacts, being general purpose, are situated in a

workspace called jaca-services (see Fig. 1) which is shared

by all the JaCa-Android applications—being stored and

executed into a proper Android service installed with the

JaCa-Android platform. More generally, any JaCa-Android

workspace can be shared among different applications—

promoting, then, the modularisation and the reuse of the

functionalities provided by JaCa-Android applications.

In next section we discuss more in detail the benefits of

the JaCa programming model for implementing smart mobile

applications by considering two application samples that have

been developed on top of JaCa-Android.

IV. EVALUATION THROUGH PRACTICAL EXAMPLES

The first example aims at showing how the approach al-

lows for easily realising context-sensitive mobile applications.

For this purpose, we consider a JaCa-Android application

inspired to Locale8, one of the most famous Android ap-

plications and also one of the winners of the first Android

Developer Contest9. This application (JaCa-Locale) can be

considered as a sort of intelligent smart-phone manager re-

alised using a simple Jason agent. The agent during its

execution uses some of the built-in JaCa-Android artifacts

described in Section III and two application-specific artifacts:

a PhoneSettingsManager artifact used for managing the

device ringtone/vibration and the ContactManager used for

managing the list of contacts stored into the smart-phone

(this list is an observable property of the artifact, so directly

mapped into agents beliefs). The agent manages the smart-

phone behaviour discriminating the execution of its plans on

the basis of a comparison among its actual context information

and a set of user preferences that are specified into the agent’s

plans contexts. TABLE I reports a snipped of the Jason

agent used in JaCa-Locale, in particular the plans shown in

TABLE I are the ones responsible of the context-dependent

management of the incoming phone calls.

The behaviour of the agent, once completed the initialisation

phase (lines 00-07), is governed by a set of reactive plans. The

first two plans (lines 9-15) are used for regulating the ringtone

level and the vibration for the incoming calls on the basis of

the notifications provided by the CalandarArtifact about

the start or the end of an event stored into the user calendar.

Instead, the behaviour related to the handling of the incoming

calls is managed by the two reactive plans incoming_call

(lines 17-28). The first one (lines 17-19) is applicable when

a new incoming call arrives and the phone owner is not

busy, or when the incoming call is considered critical. In

this case the agent normally handles the incoming call – the

ringtone/vibration settings have already been regulated by the

plans at lines 9-15 – using the handle_call operation pro-

vided by the CallManager artifact. The second plan instead

8http://www.twofortyfouram.com/
9http://code.google.com/intl/it-IT/android/adc/

51



00 !init.

01

02 +!init

03 <- focus("SMSManager"); focus("MailManager");

04 focus("CallManager"); focus("ContactManager");

05 focus("CalendarArtifact");

06 focus("PhoneSettingsManager");

07 focus("ConnectivityManager").

08

09 +cal_event_start(EventInfo) : true

10 <- set_ringtone_volume(0);

11 set_vibration(on).

12

13 +cal_event_end(EventInfo) : true

14 <- set_ringtone_volume(100);

15 set_vibration(off).

16

17 +incoming_call(Contact, TimeStamp)

18 : not busy(TimeStamp) | is_call_critical(Contact)

19 <- handle_call.

20

21 +incoming_call(Contact, TimeStamp)

22 : busy(TimeStamp) & not is_call_critical(Contact)

23 <- get_event_description(TimeStamp,EventDescription);

24 drop_call;

25 .concat("Sorry, I’m busy due

26 to", EventDescription, "I will call you back

27 as soon as possible.", OutStr);

28 !handle_auto_reply(OutStr).

29

30 +!handle_auto_reply(Reason) : wifi_status(on)

31 <- send_mail("Auto-reply", Reason).

32

33 +!handle_auto_reply(Reason): wifi_status(off)

34 <- send_sms(Reason).

TABLE I
SOURCE CODE SNIPPET OF THE JACA-LOCALE Jason AGENT

(lines 21-28) is applicable when the user is busy and the call

does not come from a relevant contact. In this case the phone

call is automatically rejected using the drop_call operation

of the CallManager artifact (line 24), and an auto-reply mes-

sage containing the motivation of the user unavailability is sent

back to the contact that performed the call. This notification is

sent – using one of the handle_auto_reply plans (lines 30-

34) – via sms or via mail (using respectively the SMSManager

or the MailManager) depending on the current availability

of the WiFi connection on the mobile device (availability

checked using the wifi_status observable property of the

ConnectivityManager). It is worth remarking that busy

and is_call_critical refer to rules – not reported in the

source code – used for checking respectively: (i) if the phone

owner is busy – by checking the belief related to one of the

CalendarArtifact observable properties (current_app) –

or (ii) if the call is critical – by checking if the call comes from

one of the contact in the ContactManager list considered

critical: e.g. the user boss/wife.

Generalising the example, context-sensitive applications can

be designed and programmed in terms of one or more agents

with proper plans that are executed only when the specific

context conditions hold.

The example is useful also for highlighting the benefits

introduced by artifact-based endogenous environments: (i) it

makes it possible to represent and exploit platform/device

functionalities at an agent level of abstractions – so in terms

of actions and perceptions, modularised into artifacts; (ii) it

provides a strong separation of concerns, in that developers

Fig. 2. Screenshot of the SmartNavigator application that integrate in its
GUI some of the Google Maps components for showing: (i) the user current
position, (ii) the road directions, and (iii) the route to the designed destination.

can fully separate the code that defines the control logic of

the application (into agents) from the reusable functionalities

(embedded into artifacts) that are need by the application,

making agents’ source code more dry.

The second application sample – called SmartNavigator

(see Fig. 2 for a screenshot) – aims at showing the effective-

ness of the approach in managing asynchronous interactions

with external resources, such as – for example – Web Services.

This application is a sort of smart navigator able to assist

the user during his trips in an intelligent way, taking into the

account the current traffic conditions.

The application is realised using a single Jason agent

and four different artifacts: (i) the GPSManager used for the

smart-phone geolocalisation, (ii) the GoogleMapsArtifact,

an artifact specifically developed for this application, used for

encapsulating the functionalities provided by Google Maps

(e.g. calculate a route, show points of interest on a map,

etc.), (iii) the SmartNavigatorGUI, an artifact developed on

the basis of the ActivityArtifact and some other Google

Maps components, used for realizing the GUI of the appli-

cation and (iv) an artifact, TrafficConditionsNotifier,

used for managing the interactions with a Web site10 that

10http://www.stradeanas.it/traffico/

52



provides real-time traffic information.

TABLE II shows a snippet of the agent source code.

The agent main goal assist_user_trips is managed by

a set of reactive plans that are structured in a hierarchy

of sub-goals – handled by a set of proper sub-plans. The

agent has a set of initial beliefs (lines 00-01) and an initial

plan (lines 5-9) that manages the initialisation of the arti-

facts that will be used by the agent during its execution.

The first plan, reported at lines 11-12, is executed after

the reception of an event related to the modification of

the SmartNavigatorGUI route observable property – a

property that contains both the starting and arriving locations

provided in input by the user. The handling of this event is

managed by the handle_navigation plan that: (i) retrieves

(line 15) and updates the appropriate agent beliefs (line 16

and 19), (ii) computes the route using an operation provided

by the GoogleMapsArtifact (calculate_route lines 17-

18), (iii) makes the subscription – for the route of interest

– to the Web site that provides the traffic information using

the TrafficConditionsNotifier (lines 20-21), and finally

(iv) updates the map showed by the application (using the

SmartNavigatorGUI operations set_current_position

and update_map, lines 22-23) with both the current position

of the mobile device (provided by the observable property

current_position of the GPSManager) and the new route.

In the case that no meaningful changes occur in the traf-

fic conditions and the user strictly follows the indications

provided by the SmartNavigator, the map displayed in

the application GUI will be updated, until arriving to the

designed destination, simply moving the current position of

the mobile device using the plan reported at lines 34-38.

This plan, activated by a change of the observable property

current_position, simply considers (using the sub-plan

check_position_consistency instantiated at line 36, not

reported for simplicity) if the new device position is consistent

with the current route (retrieved from the agent beliefs at

line 35) before updating the map with the new geolocation

information (line 37-38). In the case in which the new position

is not consistent – i.e. the user chose the wrong direction – the

sub-plan check_position_consistency fails. This fail is

handled by a proper Jason failure handling plan (lines 40-42)

that simply re-instantiate the handle_navigation plan for

computing a new route able to bring the user to the desired

destination from his current position (that was not considered

in the previous route).

Finally, the new_traffic_info plan (lines 25-32) is worth

of particular attention. This is the reactive plan that manages

the reception of the updates related to the traffic conditions.

If the new information are considered relevant with respect

to the user preferences (sub-plan check_info_relevance

instantiated at line 28 and not shown) then, on the basis of

this information, the current route (sub-plan update_route

instantiated at lines 29-30), the Web site subscription (sub-plan

update_subscription instantiated at line 31), and finally

the map displayed on the GUI (line 32) are updated.

So, this example shows how it is possible to integrate the

00 preferences([...]).

01 relevance_range(10).

02

03 !assist_user_trips.

04

05 +!assist_user_trips

06 <- focus("GPSManager");

07 focus("GoogleMapsArtifact");

08 focus("SmartNavigatorGUI");

09 focus("TrafficConditionsNotifier").

10

11 +route(StartLocation, EndLocation)

12 <- !handle_navigation(StartLocation, EndLocation).

13

14 +!handle_navigation(StartLocation, EndLocation)

15 <- ?relevance_range(Range); ?current_position(Pos);

16 -+leaving(StartLocation);-+arriving(EndLocation);

17 calculate_route(StartLocation,

18 EndLocation, OutputRoute);

19 -+route(OutputRoute);

20 subscribe_for_traffic_condition(OutputRoute,

21 Range);

22 set_current_position(Pos);

23 update_map.

24

25 +new_traffic_info(TrafficInfo)

26 <- ?preferences(Preferences);

27 ?leaving(StartLocation); ?arriving(EndLocation);

28 !check_info_relevance(TraffincInfo,Preferences);

29 !update_route(StartLocation, EndLocation,

30 TrafficInfo, NewRoute);

31 !update_subscription(NewRoute);

32 update_map.

33

34 +current_position(Pos)

35 <- ?route(Route);

36 !check_position_consistency(Pos, Route);

37 set_current_position(Pos);

38 update_map.

39

40 -!check_position_consistency(Pos, Route)

41 : arriving(EndLocation)

42 <- !handle_navigation(Pos, EndLocation).

TABLE II
SOURCE CODE SNIPPET OF THE SMARTNAVIGATOR JASON AGENT

reactive behaviour of a JaCa-Android application – in this

example the asynchronous reception of information from a

certain source – with its pro-active behaviour — assisting the

user during his trips. This integration allows to easily modify

and adapt the pro-active behaviour of an application after the

reception of new events that can be handled by proper reactive

plans: in this example, the reception of the traffic updates can

lead the SmartNavigator to consider a new route for the

trip on the basis of the new information.

V. OPEN ISSUES AND FUTURE WORK

Besides the advantages described in previous section, the

application of current agent programming technologies to the

development of concrete software systems such as mobile

applications have been useful to focus some main weaknesses

that these technologies currently have to this end. Here we

have identified three general issues that will be subject of

future work:

(i) Devising of a notion of type for agents and artifacts

— current agent programming languages and technologies

lack of a notion of type as the one found in mainstream

programming languages and this makes the development of

large system hard and error-prone. This would make it possible

to detect many errors at compile time, allowing for strongly

reducing the development time and enhancing the safety of

53



the developed system. In JaCa we have a notion of type just

for artifacts: however it is based on the lower OO layer and

so not expressive enough to characterise at a proper level of

abstraction the features of environment programming.

(ii) Improving modularity in agent definition — this is a

main issue already recognised in the literature [7], [8], [9],

where constructs such as capabilities have been proposed

to this end. Jason still lacks of a construct to properly

modularise and structure the set of plans defining an agent’s

behaviour —a recent proposal is described here [12].

(iii) Improving the integration with the OO layer — To

represent data structures, Jason – as well as the majority of

agent programming languages – adopts Prolog terms, which

are very effective to support mechanisms such as unification,

but quite weak – from an abstraction and expressiveness

point of view – to deal with complex data structures. Main

agent frameworks (not languages) in Agent-Oriented Software

Engineering contexts – such as Jade [2] or JACK11 – adopt

object-oriented data models, typically exploiting the one of

existing OO languages (such as Java). By integrating Jason

with CArtAgO, we introduced a first support to work with an

object-oriented data model, in particular to access and create

objects that are exchanged as parameters in actions/percepts.

However, it is just a first integration level and some important

aspects – such as the use of unification with object-oriented

data structures – are still not tackled.

Finally, concerning the specific mobile application context,

JaCa-Android is just a prototype and indeed needs further

development for stressing more in depth the benefits provided

by agent-oriented programming compared to mainstream non-

agent platforms. Therefore, in future works we aim at improv-

ing JaCa-Android in order to tackle some other important fea-

tures of modern mobile applications such as the smart use of

the battery and the efficient management of the computational

workload of the device.

VI. CONCLUSION

To conclude, we believe that agent-oriented programming –

including multi-agent programming – would provide a suitable

level of abstraction for tackling the development of com-

plex software applications, extending traditional programming

paradigms such as the Object-Oriented to deal with aspects

such as concurrency, reactiveness, asynchronous interaction

managements, dynamism and so on. In this paper, in particular,

we showed the advantages of applying such an approach to

the development of smart mobile applications on the Google

Android platform, exploiting the JaCa integrated platform.

However, we argue that in order to stress and investigate

the full value of the agent-oriented approach to this end,

further work is need to extend current agent languages and

technologies – or to devise new ones – tackling main aspects

that have not been considered so far, being not related to AI

but to the principles of software development. This is the core

of our current and future work.

11http://www.agent-software.com

REFERENCES

[1] A. Battestini, C. Del Rosso, A. Flanagan, and M. Miettinen. Creating
next generation applications and services for mobile devices: Challenges
and opportunities. In EEE 18th Int. Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC), 2007, pages 1 –4, 3-7 2007.
[2] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent

Systems with JADE. Wiley, 2007.
[3] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and M. Schlichte.

Porting distributed agent-middleware to small mobile devices. In
AAMAS Workshop on Ubiquitous Agents on Embedded, Wearable and

Mobile Devices.
[4] R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, editors. Multi-

Agent Programming: Languages, Platforms and Applications (vol. 1).
Springer, 2005.

[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent

Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.
[6] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.

Multi-Agent Programming: Languages, Platforms and Applications (vol.

2). Springer Berlin / Heidelberg, 2009.
[7] L. Braubach, A. Pokahr, and W. Lamersdorf. Extending the capability

concept for flexible BDI agent modularization. In Programming Multi-

Agent Systems, volume 3862 of LNAI, pages 139–155. Springer, 2005.
[8] M. Dastani, C. Mol, and B. Steunebrink. Modularity in agent program-

ming languages: An illustration in extended 2APL. In Proceedings of

the 11th Pacific Rim Int. Conference on Multi-Agent Systems (PRIMA

2008), volume 5357 of LNCS, pages 139–152. Springer, 2008.
[9] K. Hindriks. Modules as policy-based intentions: Modular agent

programming in GOAL. In Programming Multi-Agent Systems, volume
5357 of LNCS, pages 156–171. Springer, 2008.

[10] F. Koch, J.-J. C. Meyer, F. Dignum, and I. Rahwan. Programming
deliberative agents for mobile services: The 3apl-m platform. In
PROMAS, pages 222–235, 2005.

[11] B. König-Ries. Challenges in mobile application development. it -

Information Technology, 51(2):69–71, 2009.
[12] N. Madden and B. Logan. Modularity and compositionality in Jason.

In Proceedings of Int. Workshop Programming Multi-Agent Systems

(ProMAS 2009). 2009.
[13] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady. Agent

factory micro edition: A framework for ambient applications. In Int.

Conference on Computational Science (3), pages 727–734, 2006.
[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model

for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[15] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable
language. In MAAMAW ’96: Proceedings of the 7th European workshop

on Modelling autonomous agents in a multi-agent world : agents

breaking away, pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag
New York, Inc.

[16] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference

on Agents and Multi Agents Systems (AAMAS08), 2008.
[17] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-

gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-

guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[18] A. Ricci, A. Santi, and M. Piunti. Action and perception in multi-agent
programming languages: From exogenous to endogenous environments.
In Proceedings of the Int. Workshop on Programming Multi-Agent

Systems (ProMAS’10), Toronto, Canada, 2010.
[19] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &

technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer Berlin / Heidelberg, 2007.

[20] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

54


