
Exploiting Agent-Oriented Programming for

Building Advanced Web 2.0 Applications

Mattia Minotti

University of Bologna

Cesena, Italy

Email: mattia.minotti@studio.unibo.it

Andrea Santi

DEIS, University of Bologna

Cesena, Italy

Email: a.santi@unibo.it

Alessandro Ricci

DEIS, University of Bologna

Cesena, Italy

Email: a.ricci@unibo.it

Abstract—We believe that agent-oriented programming lan-
guages and multi-agent programming technologies provide an
effective level of abstraction for tackling the design and pro-
gramming of mainstream software applications, besides being
techniques effective for dealing with (Distributed) Artificial
Intelligence problems. In this paper we support this claim in
practice by discussing the use of a platform integrating two main
agent programming technologies – Jason agent programming
language and CArtAgO environment programming framework
– to the development of Web 2.0 applications. Following the
cloud computing perspective, these kinds of applications will
more and more replace desktop applications, exploiting the Web
infrastructure as a common distributed operating system, raising
however challenges that are not effectively tackled – we argue
– by mainstream programming paradigms, such as the object-
oriented one.

I. INTRODUCTION

The value of Agent-Oriented Programming (AOP) [21] – in-

cluding Multi-Agent Programming (MAP) – is often remarked

and evaluated in the context of Artificial Intelligence (AI)

and Distributed AI problems. This is evident, for instance, by

considering existing agent programming languages (see [6],

[7] for comprehensive surveys) – whose features are typically

demonstrated by considering AI toy problems such as block

worlds and alike. Besides this view, we argue that the level

of abstraction introduced by AOP is effective for organizing

and programming software applications in general, starting

from those programs that involve aspects related to reactivity,

asynchronous interactions, concurrency, up to those involving

different degrees of autonomy and intelligence. In that context,

an important example is given by Web 2.0 applications,

which share more and more features with desktop applications,

combining their better user experience with all the benefits

provided by the Web, such as distribution, openness and

accessibility. Applications of this kind are at the core of the

cloud computing vision.

In this paper we show this idea in practice by describing

a platform for developing Web 2.0 applications using agent

programming technologies, in particular Jason for program-

ming agents and CArtAgO for programming the environments

where agents work. We refer to the integrated use of Jason

and CArtAgO as JaCa and its application for building Web

2.0 application as JaCa-Web. Besides describing the plat-

form, our aim here is to discuss the key points that make

JaCa and – more generally – agent-oriented programming a

suitable paradigm for tackling main complexities of software

applications, advanced Web applications in this case, that

– we argue – are not properly addressed by mainstream

programming languages, such as object-oriented ones. In that,

this work extends a previous one [12] where we adopted a

Java-based framework called simpA [20] to this end, replaced

in this paper Jason so as to exploit the features provided by

the Belief-Desire-Intention (BDI) architecture.

The remainder of the paper is organised as follows. First, we

provide a brief overview of JaCa (Section II) programming

model and platform. Then, we discuss the use of JaCa for

developing Web 2.0 applications (Section III), remarking the

advantages compared to existing state-of-the art approaches.

To evaluate the approach, we describe the design and imple-

mentation of a case study (Section IV), and we conclude the

paper by discussing related and future work (Section V).

II. AGENT-ORIENTED PROGRAMMING FOR MAINSTREAM

APPLICATION DEVELOPMENT – THE JaCa APPROACH

An application in JaCa is designed and programmed as

a set of agents which work and cooperate inside a com-

mon environment. Programming the application means then

programming the agents on the one side, encapsulating the

logic of control of the tasks that must be executed, and

the environment on the other side, as first-class abstraction

providing the actions and functionalities exploited by the

agents to do their tasks. More specifically, in JaCa Jason [5]

is adopted as programming language to implement and execute

the agents and CArtAgO [18] as the framework to program

and execute the computational environments where agents are

situated.

Being a concrete implementation of an extended version

of AgentSpeak(L) [16], Jason adopts a BDI (Belief-Desire-

Intention)-based computational model and architecture to de-

fine the structure and behaviour of individual agents. In that,

agents are implemented as reactive planning systems: they run

continuously, reacting to events (e.g., perceived changes in the

environment) by executing plans given by the programmer.

Plans are courses of actions that agents commit to execute

so as to achieve their goals. The pro-active behaviour of

agents is possible through the notion of goals (desired states

of the world) that are also part of the language in which plans

55



are written. Besides interacting with the environment, Jason

agents can communicate by means of speech acts.

On the environment side, CArtAgO – following the A&A

meta-model [13], [19] – adopts the notion of artifact as first-

class abstraction to define the structure and behaviour of such

computational environments and the notion of workspace as a

logical container of agents and artifacts. Artifacts explicitly

represent the resources and tools that agents may dynami-

cally instantiate, share and use, encapsulating functionalities

designed by the environment programmer. In order to be used

by the agents, each artifact provides of a usage interface

composed by a set of operations and observable properties.

Operations correspond to the actions that the artifact makes

it available to agents to interact with such a piece of the

environment; observable properties define the observable state

of the artifact, which is represented by a set of information

items whose value (and value change) can be perceived by

agents as percepts. Besides observable properties, the execu-

tion of operations can generate signals perceivable by agents as

percepts, too. As a principle of composability, artifacts can be

assembled together by a link mechanism, which allows for an

artifact to execute operations over another artifact. CArtAgO

provides a Java-based API to program the types of artifacts that

can be instantiated and used by agents at runtime, and then

an object-oriented data-model for defining the data structures

in actions, observable properties and events.

Finally, the notion of workspace is used to define the

topology of complex environments, that can be organised

as multiple sub-environments, possibly distributed over the

network. By default, each workspace contains a predefined

set of artifact created at boot time, providing basic actions to

manage the set of artifacts in the workspace – for instance,

to create, lookup, link together artifacts – to join multiple

workspaces, to print message on the console, and so on.

JaCa integrates Jason and CArtAgO so as to make the

use of artifact-based environments by Jason agents seamless.

To this purpose, first, the overall set of external actions that a

Jason agent can perform is determined by the overall set of

artifacts that are actually available in the workspaces where

the agent is working. So, the action repertoire is dynamic and

can be changed by agents themselves by creating, disposing

artifacts. Then, the overall set of percepts that a Jason

agent can observe is given by the observable properties and

observable events of the artifacts available in the workspace at

runtime. Actually an agent can explicitly select which artifacts

to observe, by means of a specific action called focus. By ob-

serving an artifact, artifacts’ observable properties are directly

mapped into beliefs in the belief-base, updated automatically

each time the observable property changes its value. So a

Jason agent can specify plans reacting to changes to beliefs

that concern observable properties or can select plan according

to the value of beliefs which refer to observable properties.

Artifacts’ signals instead are not mapped into the belief base,

but processed as non persistent percepts possibly triggering

plans—like in the case of message receipt events. Finally, the

Jason data-model – essentially based on Prolog terms – is

extended to manage also (Java) objects, so as to work with data

exchanged by performing actions and processing percepts.

A full description of Jason language/platform and

CArtAgO framework – and their integration – is out of the

scope of this paper: the interested reader can find details in

literature [18], [17] and on Jason and CArtAgO open-source

web sites12.

III. PROGRAMMING WEB 2.0 APPLICATIONS WITH JaCa

In this section, we describe how the features of JaCa can be

exploited to program complex Web 2.0 applications, providing

benefits over existing approaches. First, we sketch the main

complexities related to the design and programming of modern

and future web applications; then we describe how these are

addressed by JaCa-Web, which is a framework on top of

JaCa to develop such a kind of applications.

A. Programming Future Web Applications: Complexities

Due to network speed problems overcoming and machine

computational power increasing, the client-side of so-called

rich web applications is constantly evolving in terms of com-

plexity. Web 2.0 applications share more and more features

with desktop applications in order to combine their better

user experience with all Web benefits, such as distribution,

openness and accessibility. One of the most important features

of Web 2.0 is a new interaction model between the client

user interface of a Web browser and the server-side of the

application. Such rich Web applications allow the client to

send multiple concurrent requests in an asynchronous way,

avoiding complete page reload and keeping the user interface

live and responding. Periodic activities within the client-side

of the applications can be performed in the same fashion, with

clear advantages in terms of perceived performance, efficiency

and interactivity.

So the more complex web apps are considered, the more

the application logic put on the client side becomes richer,

eventually including asynchronous interactions – with the user,

with remote services – and possibly also concurrency – due to

the concurrent interaction with multiple remote services. This

situation is exemplified by cloud computing applications, such

as Google doc3.

The direction of decentralizing responsibilities to the client

is evident also by considering the new HTML standard 5.0,

which enriches the set of API and features that can be used

by the web application on the client side4. Among the others,

some can have a strong impact on the way an application

is designed: it is the case of the Web Worker mechanism5,

which makes it possible to spawn background workers running

scripts in parallel to their main page, allowing for thread-like

operation with message-passing as coordination mechanism.

1http://jason.sourceforge.net
2http://cartago.sourceforge.net
3http://docs.google.com
4http://dev.w3.org/html5/spec/
5http://www.whatwg.org/specs/web-workers/current-work/

56



nextNum

8

checkPrime

100maxnum

4nprimes

incPrimes

current

myPage

PrimeSearcher

PrimeSearcher

primeService1

primeService2

checkPrime

User

HTTP

RemotePrimeServicenumGen

Jason CArtAgO

Java Virtual Machine

Browser

Web tech
(JavaScript, 

LiveConnect, ...)

JaCa-Web Artifacts

prime-app-workspace

checkPrime

Fig. 1. An abstract overview of a JaCa-Web application, referring in particular to the toy example described in the paper. In evidence: (Top) the workspace
with the agents (circles) and artifacts (rounded square); among the artifacts, myPage and primeService1 enable and rule the interaction with the external
environment sources, namely the human user and the remote HTTP service; (Bottom) the layers composing the JaCa-Web platform, which includes – on
top of the Java Virtual Machine and browser/web infrastructure – Jason and CArtAgO sub-system and then a pre-defined library of artifacts (JaCa-Web
artifacts) specifically designed for the Web context.

Another one is cross-document messaging6, which defines

mechanisms for communicating between browsing contexts in

HTML documents.

Besides devising enabling mechanisms, a main issue is then

how to design and program applications of this kind [11].

A basic and standard way to realise the client side of web

app is to embed in the page scripts written in some scripting

language – such as JavaScript. Originally such scripts were

meant just to perform check on the inputs and to create

visual effects. The problem is that scripting languages – like

JavaScript – have not been designed for programming in the

large, so using them to organize, design, implements complex

programs is hard and error-prone.

To address the problems related to scripting languages,

higher-level approaches have been proposed, based on frame-

works that exploit mainstream object-oriented programming

languages. A main example is Google Web Toolkit (GWT)7,

which allows for developing client-side apps with Java. This

choice makes it possible to reuse and exploit all the strength

of mainstream programming-in-the-large languages that are

typically not provided by scripting languages—an example

is strong typing. However it does not provide significant

improvement for those aspects that are still an issue for OO

programming languages, such as concurrency, asynchronous

events and interactions, and so on.

We argue then that these aspects can be effectively cap-

tured by adopting an agent-oriented level of abstraction and

programmed by exploiting agent-oriented technologies such as

JaCa: in next section we discuss this point in detail.

6http://dev.w3.org/html5/postmsg/
7http://code.google.com/webtoolkit/

B. An Agent-Oriented Programming Approach based on JaCa

By exploiting JaCa, we directly program the Web 2.0

application as a normal JaCa agent program, composed by

a workspace with one or multiple agents working within an

artifact-based environment including a set of pre-defined type

of artifacts specifically designed for the Web context domain

(see Fig. 1). Generally speaking, agents are used to encapsulate

the logic of control and execution of the tasks that characterise

the Web 2.0 app, while artifacts are used to implement the

environment needed for executing the tasks, including those

coordination artifacts that can ease the coordination of the

agents’ work. As soon as the page is downloaded by the

browser, the application is launched – creating the workspace,

the initial set of agents and artifacts.

Among the pre-defined types of artifact available in the

workspace, two main ones are the Page artifact and the

HTTPService artifact. Page provides a twofold functionality to

agents: (i) to access and change the web page, internally ex-

ploiting specific low-level technology to work with the DOM

(Document Object Model) object, allowing for dynamically

updating its content, structure, and visualisation style; (ii) to

make events related to user’s actions on the page observable to

agents as percepts. An application may either exploit directly

Page or define its own extension with specific operations and

observable properties linked to the specific content of the

page. HTTPService provides basic functionalities to interact

with a remote HTTP service, exploiting and hiding the use of

sockets and low-level mechanisms. Analogously to Page, this

kind of artifact can be used as it is – providing actions to do

HTTP requests – or can be extended providing an higher-level

application specific usage interface hiding the HTTP level.

To exemplify the description of these elements and of JaCa-

57



Web programming in the overall, in the following we consider

a toy example of Web 2.0 app, in which two agents are used

to search for prime numbers up to a maximum value which

can specified and dynamically changed by the user through the

web page. As soon as an agent finds a new prime number, a

field on the the web page reporting the total number of values

is updated.

The environment (shown in Fig. 1) includes – besides

the artifact representing the page, called here myPage – an

artifact called numGen, functioning as a number generator,

shared and used by agents to get the numbers to verify,

and two artifacts, primeService1 and primeService2,

providing the (same) functionality that is verifying if a number

is prime.

myPage is an instance of MyPage extending the basic Page

artifact so as to be application specific, by: (i) defining an

observable property maxnum whose value is directly linked to

the related input field on the web page; (ii) generating start

and stop signals as soon as the page button controls start

and stop are pressed; (ii) defining an operation incPrimes

that updates the output field of the page reporting the actual

number of prime numbers found.

numGen is an instance of the NumGen artifact (see Fig. 3),

which provides an action getNextNum to generate a new

number – retrieved as output (i.e. action feedback) parameter.

The two prime number service artifacts provide the

same usage interface, composed by a checkPrime(num:

integer) action, which generates an observable event

is_prime(num: integer) if the number is found

to be prime. One artifact does the computation locally

(LocalPrimeService); the other one, instead – which is

an instance of RemotePrimeService, extending the pre-

defined HTTPService artifact – provides the functionality by

interacting with a remote HTTP service.

Fig. 2 shows the source code of one of the two agents.

After having set up the tools needed to work, the agent waits

to perceive a start event generated by the page. Then, it

starts working, repeatedly getting a new number to check –

by executing a getNextNum – until the maximum number is

achieved. The agent knows such a maximum value by means

of the maxnum page observable property—which is mapped

onto the related agent belief. The agent checks the number

by performing the action checkPrime and then reacting

to is_prime(Num: integer) event, updating the page

by performing incPrimes. If a stop event is perceived –

which means that the user pressed the stop button on the Web

page – the agent promptly reacts and stops working, dropping

its main intention.

A final note about implementation: Java applet technology

is used to run the full application stack (including Jason

and CArtAgO) in the browser, using signed applets so to

avoid limitations imposed by the sandbox model. LiveConnect

technology8 is exploited to enable a bi-direction interaction

between the applet and the web page resources (DOM, scripts).

8https://jdk6.dev.java.net/plugin2/liveconnect/

00 !setup.

01

02 +!setup

03 <- focusByName("MyPage");

04 makeArtifact("primeService1",

"RemotePrimeService");

05 makeArtifact("numGen","NumGen").

06

07 +start

08 <- focusByName("primeService1");

09 focusByName("numGen");

10 !!checkPrimes.

11

12 +!checkPrimes

13 <- nextNum(Num);

14 !checkNum(Num).

15

16 +!checkNum(Num): maxnum(Max) & Num <= Max

18 <- checkPrime(Num);

18 !checkPrimes.

19

20 +!checkNum(Num) <- maxnum(Max) & Num > Max.

21

22 +is_prime(Num) <- incPrimes.

23

24 +stop <- .drop_intention(checkPrimes).

Fig. 2. Jason source code of a prime searcher agent.

public class MyPage extends PageArtifact {

protected void setup() {

defineObsProperty("maxnum",getMaxValue());

//Operation for event propagation

linkEventToOp("start","click","startClicked");

linkEventToOp("stop","click","stopClicked");

linkEventToOp("maxnum","change","maxnumChange");

}

@OPERATION void incPrimes(){

Elem el = getElementById("primes_found");

el.setValue(el.intValue()+1);

}

@INTERNAL_OPERATION private void startClicked(){

signal("start");

}

@INTERNAL_OPERATION private void stopClicked(){

signal("stop");

}

@INTERNAL_OPERATION private void maxnumChange(){

updateObsProperty("maxnum",getMaxValue());

}

private int getMaxValue(){

return getElementById("maxnum").intValue();

}

}

public class RemotePrimeService extends HTTPService {

@OPERATION void checkPrime(double n){

HTTPResponse res =

doHTTPRequest(serverAddr,"isPrime",n);

if (res.getElem("is_prime").equals("true")){

signal("is_prime",n);

}

}

}

public class NumGen extends Artifact {

void init(){ defineObsProperty("current",0); }

@OPERATION void nextNum(OpFeedbackParam<Integer> res){

int v = getObsProperty("current").intValue();

updateObsProperty("current",++v);

res.set(v);

}

}

Fig. 3. Artifacts’ definition in CArtAgO: MyPage and
RemotePrimeService extending respectively PageArtifact

and HTTPService artifact types which are available by default in
JaCa-Web workspaces, and NumGen to coordinate number generation and
sharing.

58



C. Key points

We have identified three key points that, in our opinion,

represent main benefits of adopting agent-oriented program-

ming and, in particular, the JaCa-Web programming model,

for developing applications of this kind.

First, agents are first-class abstractions for mapping possibly

concurrent tasks identified at the design level, so reducing

the gap from design to implementation. The approach allows

for choosing the more appropriate concurrent architecture,

allocating more tasks to the same kind of agent or defining

multiple kind of agents working concurrently. This allows

for easily programming Web 2.0 concurrent applications, that

are able to exploit parallel hardware on the client side (such

as multi-core architectures). In the example, two agents are

used to fairly divide the overall job and work concurrently,

exploiting the number generator artifact as a coordination tool

to share the sequence of numbers. Actually, changing the

solution by using a single agent or more than two agents would

not require any substantial change in the code.

A second key point provided by the agent control architec-

ture is the capability of defining task-oriented computational

behaviours that straightforwardly integrate the management of

asynchronous events generated by the environment – such as

the input of the user or the responses retrieved from remote

services – and the management of workflows of possibly

articulated activities, which can be organized and structured

in plans and sub-plans. This makes it possible to avoid the

typical problems produced by the use of callbacks – that can

be referred as asynchronous spaghetti code – to manage events

within programs that need – at the same time – to have one

or multiple threads of control.

In the prime searcher agent shown in the example, for

instance, on the one hand we use a plan handling the

checkPrimes goal to pro-actively search for prime num-

bers. The plan is structured then into a subgoal checkNum to

process the number retrieved by interacting with the number

generator. Then, the plan executed to handle this subgoal

depends on the dynamic condition of the system: if the number

to process is greater than the current value of the maxnum

page observable property (i.e. of its related agent belief), then

no checks are done and the goal is achieved; otherwise, the

number is checked by exploiting a prime service available

in the environment and the a new checkPrimes goal is

issued to go on exploring the rest of the numbers. The user

can dynamically change the value of the maximum number to

explore, and this is promptly perceived by the agents which

can change then their course of actions accordingly. On the

other hand, reactive plans are used to process asynchronous

events from the environment, in particular to process incoming

results from prime services (line 22) and user input to stop the

research (line 24).

Finally, the third aspect concerns the strong separation of

concerns which is obtained by exploiting the environment as

first class abstraction. Jason agents, on the one side, encap-

sulates solely the logic and control of tasks execution; on the

other side, basic low-level mechanisms to interact and exploit

the Web infrastructure are wrapped inside artifacts, whose

functionalities are seamlessly exploited by agents in terms of

actions (operations) and percepts (observable properties and

events). Also, application specific artifacts – such as NumGen

– can be designed to both encapsulate shared data structures

useful for agents’ work and regulate their access by agents,

functioning as a coordination mechanism.

IV. A CASE STUDY

To stress the features of agent-oriented programming and

test-drive the capabilities of the JaCa-Web framework, we

developed a real-world Web application – with features that

go beyond the ones that are typically found in current Web

2.0 app. The application is about searching products and

comparing prices from multiple services, a “classic” problem

ton the Web.

We imagine the existence of N services that offer product

lists with features and prices, codified in some standard

machine-readable format. The client-side in the Web applica-

tion needs to search all services for a product that satisfies a set

of user-defined parameters and has a price inferior to a certain

user-defined threshold. The client also needs to periodically

monitor services so as to search for new offerings of the

same product. A new offering satisfying the constraints should

be visualised only when its price is more convenient than

the currently best price. The client may finish its search and

monitoring activities when some user-defined conditions are

met—a certain amount of time is elapsed, a product with

a price less than a specified threshold is find, or the user

interrupts the search with a click on a proper button in the

page displayed by the browser. Finally, if such an interruption

took place, by pressing another button it must be possible to

let the search continue from the point where it was blocked.

Typically applications of this kind are realised by im-

plementing all the features on the server side, without –

however – any support for long-term searching and monitoring

capabilities. In the following, we describe a solution based on

JaCa-Web, in which responsibilities related to the long-term

search and comparison are decentralised into the client side of

the application, improving then the scalability and quality of

service for the users.

A. Application Design

The solution includes two kinds of agents (see Fig. 4): a

UserAssistant agent – which is responsible of setting up the

application environment and manage interaction with the user

– and multiple ProductFinder agents, which are responsible to

periodically interact with remote product services to find the

products satisfying the user-defined parameters. To aggregate

data retrieved from services and coordinate the activities of

the UserAssistant and ProductFinder we introduce a Product-

Directory artifact, while a MyPage page artifact and multiple

instances of ProductService artifacts are used respectively by

the UserAssistant and ProductFinder to interact with the user

and with remote product services.

59



Fig. 4. The architecture of the client-side Web application sample in terms of agent, artifacts, and their interactions. UA is the UserAgent, PFs are the
ProductFinder agents, PD is the ProductDirectory artifact and finally Services are the ProductService artifacts

More in detail, the UserAssistant agent is the first agent

booted on the client side, and it setups the application environ-

ment by creating the ProductDirectory artifact and spawning

a number of ProductFinder agents, one for each service to

monitor. Then, by observing the MyPage artifact, the agent

monitors user’s actions and inputs. In particular, the web

page provides controls to start, stop the searching process and

to specify and change dynamically the keywords related to

the product to search, along with the conditions to possibly

terminate the process. Page events are mapped onto start

and stop observable events generated by MyPage, while

specific observable properties – keywords and termination

conditions – are used to make it observable the input infor-

mation specified by the user.

The UserAssistant reacts to these observable events and

to changes to observable properties, and interacts with Pro-

ductFinder agents to coordinate the searching process. The

interaction is mediated by the ProductDirectory artifact,

which is used and observed by both the UserAssistant

and ProductFinders. In particular, this artifact provides a

usage interface with operations to: (i) dynamically update

the state and modality of the searching process – in par-

ticular startSearch and stopSearch to change the

value of a searchState observable property – useful

to coordinate agents’ work – and changeBasePrice,

changeKeywords to change the value of the base price

and the keywords describing the product, which are stored in a

keyword observable property; (ii) aggregate product informa-

tion found by ProductFinders – in particular addProducts,

removeProducts, clearAllProducts to respectively

add and remove a product, and remove all products found so

far. Besides searchState and keywords, the artifact has

further observable properties, bestProduct, to store and

make it observable the best product found so far.

Finally, each ProductFinders periodically interact with a

// ProductFinder agent

...

+searchState("start")

<- focus("service1");

!!search.

+!search: keywords(Keywords)

<- requestProducts(Keywords,ProductList);

!processProducts(ProductList,

ProductsToAdd,

ProductsToRemove);

addProducts(ProductsToAdd);

removeProducts(ProductsToRemove);

.wait({+keywords(_)},5000,_);

!search.

+searchState("stop")

<-.drop_intention(search).

Fig. 5. A snippet of ProductFinder agent’s plans.

remote product service by means of a private ProductService

artifact, which extends a HTTPService artifact providing an

operation (requestProducts) to directly perform high-

level product-oriented requests, hiding the HTTP level.

B. Implementation

The source code of the application can be consulted on

the JaCa-Web web site9, where the interested reader can

find also the address of a running instance that can be used

for tests. Here we just report a snippet of the ProductFinder

agents’ source code (Fig. 5), with in evidence (i) the plans

used by the agent to react to changes to the search state

property perceived from the ProductDirectory artifact - adding

and removing a new search goal, and (ii) the plan used

to achieve that goal, first getting the product list by means

of the requestProducts operation and then updating the

9http://jacaweb.sourceforge.net

60



ProductDirectory accordingly by adding new products and

removing products no more available. It is worth noting the

use of the keywords belief – related to the keywords

observable property of the ProductDirectory artifact – in the

context condition of the plan to automatically retrieve and

exploit updated information about the product to search.

V. RELATED WORKS AND CONCLUSION

To conclude, we believe that agent-oriented programming –

including multi-agent programming – would provide a suitable

level of abstraction for tackling the development of com-

plex software applications, extending traditional programming

paradigms such as the Object-Oriented to deal with aspects

such as concurrency, reactiveness, asynchronous interaction

managements, dynamism and so on. In this paper, in particular,

we discussed the advantages of applying such an approach to

the development of Web 2.0 advanced applications, exploiting

the JaCa integrated platform.

Concerning the specific application domain, several frame-

works and bridges have been developed to exploit agent tech-

nologies for the development of Web applications. Main exam-

ples are the Jadex Webbridge [14], JACK WebBot [2] and the

JADE Gateway Agent [1]. The Webbridge Framework enables

a seamless integration of the Jadex BDI agent framework [15]

with JSP technology, combining the strength of agent-based

computing with Web interactions. In particular, the framework

extends the the Model 2 architecture – which brings the

Model-View-Controller (MVC) pattern in the context of Web

application development – to include also agents, replacing

the controller with a bridge to an agent application, where

agents react to user requests. JACK WebBot is a framework

on top of the JACK BDI agent platform which supports the

mapping of HTTP requests to JACK event handlers, and the

generation of responses in the form of HTML pages. Using

WebBot, you can implement a web application which makes

use of JACK agents to dynamically generate web pages in

response to user input. Finally, the JADE Gateway Agent is

a simple interface to connect any Java non-agent application

– including Web Applications based on Servlets and JSP – to

an agent application running on the JADE platform [3].

All these approaches explore the use of agent technologies

on the server side of Web Applications, while in our work

we focus on the client side, which is what characterises Web

2.0 applications. So – roughly speaking – our agents are

running not on a Web server, but inside the Web browser,

so in a fully decentralized fashion. Indeed, these two views

can be combined together so as to frame an agent-based way

to conceive next generation Web applications, with agents

running on both the client and server side.

Finally, the use of agents to represent concurrent and

interoperable computational entities already sets the stage for

a possible evolution of Web 2.0 applications into Semantic

Web applications [4]. From the very beginning [9], research

activity on the Semantic Web has always dealt with intelligent

agents capable of reasoning on machine-readable descriptions

of Web resources, adapting their plans to the open Internet

environment in order to reach a user-defined goal, and nego-

tiating, collaborating, and interacting with each other during

their activities. So, a main future work accounts for extending

the JaCa-Web platform with Semantic Web technologies: to

this purpose, existing works such as JASDL [10] and the NUIN

project [8] will be main references.

REFERENCES

[1] JADE gateway agent (JADE 4.0 api) – http://jade.tilab.com/doc/api/jade/
wrapper/gateway/jadegateway.html.

[2] Agent Oriented Software Pty. JACK intelligent agents webbot man-
ual – http://www.aosgrp.com/documentation/jack/webbot manual web/
index.html#thejackwebbotarchitecture.

[3] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent

Systems with JADE. Wiley, 2007.
[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 2001.
[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent

Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.
[6] R. e. a. Bordini, editor. Multi-Agent Programming: Languages, Plat-

forms and Applications (vol. 1). Springer, 2005.
[7] R. e. a. Bordini, editor. Multi-Agent Programming: Languages, Plat-

forms and Applications (vol. 2). Springer Berlin / Heidelberg, 2009.
[8] I. Dickinson. BDI Agents and the Semantic Web: Developing User-

Facing Autonomous Applications. PhD thesis, University of Liverpool,
September 2006.

[9] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems,
16(2):30–37, 2001.

[10] T. Klapiscak and R. H. Bordini. JASDL: A practical programming ap-
proach combining agent and semantic web technologies. In Declarative

Agent Languages and Technologies VI, volume 5397/2009 of LNCS,
pages 91–110, Berlin, Heidelberg, 2009. Springer-Verlag.

[11] T. Mikkonen and A. Taivalsaari. Web applications: spaghetti code for
the 21st century. Technical report, Mountain View, CA, USA, 2007.

[12] M. Minotti, G. Piancastelli, and A. Ricci. An agent-based program-
ming model for developing client-side concurrent web 2.0 applications.
In J. Filipe and J. Cordeiro, editors, Web Information Systems and

Technologies, volume 45 of Lecture Notes in Business Information

Processing. Springer Berlin Heidelberg, 2010.
[13] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model

for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3), Dec. 2008.

[14] A. Pokahr and L. Braubach. The webbridge framework for building
web-based agent applications. pages 173–190, 2008.

[15] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. In R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni,
editors, Multi-Agent Programming. Kluwer, 2005.

[16] A. S. Rao. Agentspeak(l): BDI agents speak out in a logical computable
language. In MAAMAW ’96: Proceedings of the 7th European workshop

on Modelling autonomous agents in a multi-agent world, pages 42–55.
Springer-Verlag New York, Inc., 1996.

[17] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hübner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference

on Agents and Multi Agents Systems (AAMAS08), 2008.
[18] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment pro-

gramming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Lan-

guages, Platforms and Applications, Vol. 2, pages 259–288. Springer,
2009.

[19] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Das-
tani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–
109. Springer Berlin / Heidelberg, 2007.

[20] A. Ricci, M. Virolil, and G. Piancastelli. simpA: A simple agent-oriented
Java extension for developing concurrent applications. In M. Dastani,
A. E. F. Seghrouchni, J. Leite, and P. Torroni, editors, Languages,

Methodologies and Development Tools for Multi-Agent Systems, volume
5118 of LNAI, pages 176–191, Durham, UK, 2007. Springer-Verlag.

[21] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

61


