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Abstract

The dynamic turn in Epistemic Logic is based on the idea that no-
tions of information should be studied together with the actions that
modify them. Dynamic epistemic logics have explored how knowl-
edge and beliefs change as consequence of, among others, acts of
observation and upgrade. Nevertheless, the omniscient nature of the
represented agents has kept finer actions outside the picture, the most
important being the action of inference.

Following proposals for representing non-omniscient agents, re-
cent works have explored how implicit and explicit knowledge change
as a consequence of acts of observation, inference, consideration and
even forgetting. The present work proposes a further step towards a
common framework for representing finer notions of information and
their dynamics. We propose a combination of existing works in order
to represent implicit and explicit beliefs. Then, after adapting defini-
tions for the actions of upgrade and retraction, we discuss the action of
inference on beliefs, analyzing its differences with respect to inference
on knowledge and proposing a rich system for its representation.

1 Introduction

Epistemic Logic [21] and its possible worlds semantics is a powerful and
compact framework for representing an agent’s information. Their dynamic
versions [14] have emerged to analyze not only information in its knowledge
and belief versions, but also the actions that modify them. Nevertheless,
agents represented in this framework are logically omniscient, that is, their
information is closed under logical consequence. This property, useful in
some applications, hides finer reasoning actions that are crucial in some
others, the most important being that of inference.

Based on the awareness approach of [17], several works have explored
dynamics of information for non-omniscient agents. In a propositional dy-
namic logic (PDL) style, some of them have explored how the act of inference
modifies an agent’s explicit knowledge [15; 22]. In a dynamic epistemic style,
some others have explored how the acts of observation, inference, consid-
eration and forgetting affect implicit and explicit knowledge [5; 18; 10; 13].
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The present work follows the previous ones, now focussing on the notion
of beliefs. We combine approaches of the existing literature, proposing a
setting for representing the notions of implicit and explicit belief (Section
2). Then we look into the dynamics of these notions; first, by adapting
existing proposals to define the actions of explicit upgrade (explicit revision)
and retraction (Section 3), and second, by discussing the action of inference
on beliefs and its differences with inference on knowledge, and by proposing a
rich system for its representation (Section 4).

2 Modelling implicit and explicit beliefs

This section recalls a framework for implicit and explicit information and
a framework for beliefs. By combining them, we will get our model for
representing implicit/explicit beliefs. But before going into their details, we
recall the framework on which all the others are based.

Epistemic Logic. The frameworks of this section are based on that of
Epistemic Logic (EL; [21]). Given a set of atomic propositions P, the EL
language extends the propositional one with formulas of the form O¢: “the
agent is informed about ¢”. Though there are several possibilities, the classical
semantic model for EL-formulas are Kripke models, tuples M = (W, R, V) with
W a non-empty set of possible worlds, V : W — (P) an atomic valuation
function indicating which atomic propositions are true at each world, and
R € (W x W) an accessibility relation indicating which worlds the agent
considers possible from each one of them.

Formulas are evaluated on pointed models (M, w) with M a Kripke model
and w € W a given evaluation point. Boolean connectives are interpreted as
usual; the key clause is the one for O ¢, indicating that the agent is informed
about @ at w iff @ is true in all the worlds the agent considers possible from w:

M,w)+oO¢ iff forallu € W, Rwuimplies (M, u) I ¢

2.1 Implicit and explicit information

Non-omniscient agents. The formulaO(¢p — ¢) —» (O¢p — OvY)is valid in
Kripke models: the agent’s information is closed under logical consequence.
This becomes obvious when we realize that each possible world stands for
amaximally consistent set of formulas. So if both O (¢ — 1) and O ¢ hold at
world w, both ¢ — 1) and ¢ are true in all worlds R-reachable from w. But
then 1 also holds in all such worlds, and therefore 01 holds at w. Usually
the discussion revolves around whether this is a reasonable assumption
for ‘real” agents. Even computational agents may not have this property,
since they may lack of resources (space and/or time) to derive all the logical
consequences of their information [1].
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One of the most influential solutions to this omniscience problem is aware-
ness logic [17]. This approach follows the idea of making a difference be-
tween implicit (potential) information, what the agent can eventually get, and
explicit information, what the agent actually has [23; 25; 24; 27]. The main ob-
servation is that, in order to have explicit information about some formula
@, besides having it as implicit information, the agent should be aware of ¢.

Syntactically, awareness logic extends the EL language with formulas
of the form A ¢: “the agent is aware of ¢”. Semantically, it extends Kripke
models with a function A that assigns a set of formulas to the agent in each
possible world. The new formulas are evaluated in the following way:

Mw)rAgp iff @€ Aw)

Implicit information about ¢ is defined as O ¢, but explicit information
is defined as ¢ A A ¢. Although implicit information is still closed under
logical consequence, explicit information is not. This follows from the fact
that, different from the possible worlds, the A-sets do not need to have any
closure property; in particular, {p — 1, ¢} € A(w) does not imply ¢ € A(w).

Agents with reasoning abilities. Still, though a ‘real” agent’s information
does not need to be closed under logical consequence, it does not need to
be static. The more interesting approach for us is that in which the agent
can extend her explicit information by the adequate actions. But, which are
these actions and what does the agent needs in order to perform them?

In [15], the author proposes a framework in which the actions available
to the agent are different rules (e.g., modus ponens, conjunction elimina-
tion), each one of them represented by a relation between worlds that should
be faithful to the rule’s spirit (e.g., the modus ponens relation should connect
worlds with an implication and its antecedent with worlds augmented with
the consequent). This yields an agent that does not need to be omniscient,
but still is able to perform inferences.

In [22] the author goes one step further: a rule cannot be used by an
agent unless the rule itself is also part of her explicit information. For
example, for two worlds to be connected by the modus ponens relation, the
initial one should have not only an implication and its antecedent, but also
the modus ponens rule itself.

The combination of the mentioned ideas have produced models for
representing implicit and explicit knowledge ([5; 28; 13; 18; 10] among others).
But the notion of belief is different, as we discuss in the next subsection.

2.2 Modelling beliefs

The KD45 approach. For modelling knowledge in EL, it is usually asked
for the accessibility relation R to be at least reflexive (making O ¢ — ¢ valid:
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if the agent knows ¢, then ¢ is true), and often to be also transitive and
euclidean (giving the agent full positive and negative introspection). Beliefs
can be represented in a similar way, now asking for R to satisfy weaker
properties, the crucial one following the idea that, though beliefs do not
need to be true, we can expect them to be consistent. This is achieved by
asking for the relation to be serial, making the D axiom —-O L valid. Full
introspection is usually assumed, yielding the classical KD45 approach.

Belief as what is most plausible. But beliefs are different from knowledge.
Intuitively, we do not believe something because it is true in all possible
situations; we believe it because it is true in those we consider most likely
to be the case [19; 26]. This idea has led the development of variants of
Kripke models [12; 4; 3]. Here we recall the plausibility models of [3].

A plausibility model is a Kripke model in which the accessibility rela-
tion, denoted now by <, is interpreted as a plausibility relation ordering
possible worlds. This relation is assumed to be a preorder (a reflexive
and transitive relation). Moreover, since the idea is to define the agent’s
beliefs as what is true in the most plausible worlds from the evaluation
point, < should satisfy an important extra property: for any possible world
w, the set of worlds that are better than w among those comparable to
it should have maximal worlds. In order to state this property formally,
denote by V;, the set of worlds comparable to w (its comparability class:
Vw i=1{u| w < uoru < w})and by Max<(U) the set of <-maximal worlds of
U Max<(U) :={vel]| forallu € U, u <v}). Then, in a plausibility model,
the accessibility relation < is asked to be a locally well-preorder: a reflexive
and transitive relation such that, for each comparability class V, and for
every non-empty U C V,, Max<(U) # @. Note how the existence of maxi-
mal elements in every U C V,, implies the already required reflexivity, but
also connectedness inside V,. In particular, if two worlds w, and w3 are more
plausible than a given w; (w; < wp and w; < w3), then these two worlds
should be <-related (w; < w3 or w3 < w; or both).

Interestingly, the agent’s indistinguishability relation can be derived
from the plausibility one. If two worlds are <-related, then though the
agent considers one of them more plausible than the other, she cannot
discard one of them when the other one is given. In other words, worlds
that are < related are in fact epistemically indistinguishable.

For the language we have two options.! We can extend the propositional
language with formulas of the form By, semantically interpreted as

(M,w) - Bep iff forallu € W, u € Max<(R<(w)) implies (M, u) I ¢,
where R<(w) :={u e W|w<u}.

n fact, the mentioned works, [12; 4; 3], use the notion of conditional belief as the primitive
one, rather than plain belief. We have chosen to stick with the notion of plain belief through
the present notes, leaving an analysis of the notions of implicit/explicit conditional beliefs
for further work.
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The second option is to use a standard modal language with [<] standing
for the relation <, and then define beliefs in terms of it. Given the properties
of < (in particular, reflexivity, transitivity and connectedness), it is not hard
to see that ¢ is true in the most plausible worlds from w iff w can see a better
world from which all successors are ¢ worlds. This yields the following
definition for “the agent believes ¢”:

2.3 Combining the models

Our framework for representing implicit and explicit beliefs combines the
mentioned ideas. The language has two components: formulas and rules.
Formulas are given by a propositional language extended, first, with modal-
ities (<) and (=), and second, with formulas of the form A ¢ and R p, where
@ is a formula and p a rule. Rules, on the other hand, are pairs consisting
of a set of formulas, the rule’s premises, and a single formula, the rule’s
conclusion. The formal definition of our language is as follows.

Definition 2.1 (Language £). Given a set of atomic propositions P, formulas
@ and rules p of the plausibility-access language L are given, respectively, by

pu=plA@|Rp|=@loVY|[{(=e|{He
p = ({(pl,...,gonp},tp)

where p € P. Formulas of the form A ¢ are read as “the agent has acknowl-
edged that formula ¢ is true”, and formulas of the form R p as “the agent has
acknowledged that rule p is truth-preserving”. For the modalities, (<) ¢ is read
as “there is a more plausible world where ¢ holds”, and (=) ¢ as “there is an epis-
temically indistinguishable world where ¢ holds”. Other boolean connectives
as well as the box modalities [~] and [<] are defined as usual. We denote
by Ly the set of formulas of £, and by L, its set of rules.

Though rules are usually presented as schemas, our rules are defined
as particular instantiations (e.g., the rule ({p A g},p) is different from the
rule ({g A r},g)). Since they will be applied in a generalized modus ponens
form (if the agent has all the premises, she can derive the conclusion), using
concrete formulas avoids details of instantiation, therefore facilitating the
definition. When dealing with them, the following definitions will be useful.

Definition 2.2. Given a rule p, we will denote its set of premises by pm(p), its
conclusion by cn(p), and its translation (an implication whose antecedent is
the finite conjunction of p’s premises and whose consequent is p’s conclu-
sion) by tr(p).

For the semantic model, we will extend the described plausibility mod-
els with two functions.
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Definition 2.3 (Plausibility-access model). With P the set of atomic propo-
sitions, a plausibility-access (PA) model is a tuple M = (W, <, V, A, R) where
(W, £, V) is a plausibility model over P and

o A: W — 9(Ly) is the access set function, assigning to the agent a set of
formulas of L in each possible world,

e R: W — ¢(L,) is the rule set function, assigning to the agent a set of
rules of L in each possible world.

Functions A and R can be seen as valuations with a particular range, as-
signing to the agent a set of formulas and a set of rules at each possible
world, respectively. Moreover, recall that two worlds that are < related are
epistemically indistinguishable, so we define ~ as the union of < and its
converse (~:=< U >): the agent cannot distinguish between two worlds if
she considers one of them more plausible than the other.

A pointed plausibility-access model (M, w) is a plausibility-access model
with a distinguished world w € W.

Here it is important to emphasize our interpretation of the A-sets. Dif-
ferent from [17] and [10], we do not interpret them as “the formulas the agent
is aware of at world w”, but rather as “the formulas the agent has acknowledged
as true at world w”, closer to the ideas in [15; 22; 18].

Now the semantic evaluation. The modalities (<) and (=) are inter-
preted via their correspondent relation in the usual way, and formulas of
the form A ¢ and R p are interpreted with our two new functions.

Definition 2.4 (Semantic interpretation). Let (M, w) be a pointed PA model
with M = (W, <, V, A, R). Atomic propositions and boolean operators are
interpreted as usual. For the remaining cases,

Mw)rAgp iff ¢eAw)
(M,w) -Rp iff peR(w)
(M,w) (<)@ iff thereisau € Wsuchthatw <uand (M, u) I ¢
M,w) - (=)@ iff thereisau € Wsuchthatw ~uand (M, u) - ¢

For characterizing valid formulas, an important observation is that a
locally well-preorder is a locally connected and conversely well-founded pre-
order [3]. Then, by standard results on canonicity and modal correspon-
dence (Chapter 4 of [11]), the axiom system of Section 2.6 of [3] (Table 1) is
also sound and (weakly) complete for our language L with respect to ‘non-
standard’ plausibility-access models: those in which < is reflexive, transitive
and locally connected (axioms T, 4< and LC) and ~ the symmetric exten-
sion of < (axioms T~, 4~, B~ and Inc). But such models also have the finite
model property (with respect to formulas in our language), so completeness
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Prop + ¢ for ¢ a propositional tautology MP  If+ ¢ — and F ¢, thent ¢
Ko Flsle = ¢) = (=le = [<]Y) Ko r=ll@—=9) = (=le = [=]Y)

Duals +{(<)p & =[] ¢ Dual. + (=) & —[=]-¢
Necs Ift @, thent [<]g Nec. Ifr @, thent [~] ¢
T< FIlp— o T~ Fl=lp - @

4 Fi<le » [£][<]e 4. Fl=lp - [=][=]¢

B.  reo-o[={xe¢

LC (e A (=)9) = (D (@ A P) V() @ A (L) )
Inc (e - (e

Table 1: Axiom system for £ with respect to plausibility-access models.

with respect to plausibility-access models follows from the fact that every
strict preorder is conversely well-founded.

Note how the axiom system does not have axioms for formulas of the
form A ¢ and R p. This is because, as mentioned before, such formulas are
simply special atoms for the dedicated valuation functions A and R. More-
over, we have not asked for the A- and R-sets to have any special closure
property and there is no restriction in the way they interact with each other.?
Just like axiom systems for Epistemic Logic do not require special axioms
describing the behaviour of atomic propositions (unless, of course, they
have special properties, like g being true every time p is, characterized by
p — q), our system does not require special axioms for these special atoms.
More precisely, in the canonical model construction, we only need to define
access and rule sets in the proper way:

Aw):={pels|Apew R(w):={pel,|Rpecwl

Then, formulas of the form A ¢ and R p also satisfy the crucial Truth Lemma,
and completeness follows. Again, see Chapter 4 of [11] for details.

2.3.1 Implicit and explicit beliefs

It is time to define the notions of implicit and explicit beliefs. Our defini-
tions, shown in Table 2, combine ideas from [3], [18] and [10]. Note how the
agent believes the formula ¢ (the rule p) implicitly iff ¢ (tr(p)) is true in the
most plausible worlds, but in order to believe it explicitly, the agent should
also acknowledge ¢ (p) as true (truth-preserving) in these ‘best” worlds.

Explicit beliefs are implicit beliefs, witness the following validities:

BEX(P - BIm(P BEXP - BImP

2In [17], the authors explore and characterize several closure properties of A-sets.
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The agent implicitly believes formula ¢ = B = (<) [<] @
The agent explicitly believes formula @ Bexp := (<) [<] ((p NA (p)

The agent implicitly believes rule p Bimp = (<) [<]1r(p)
The agent explicitly believes rule p Bexp = () [<] (tr(p) AR p)

Table 2: Implicit and explicit beliefs about formulas and rules.

A possibly more interesting point is the following. An agentin [17; 10]
is non-omniscient due to lack of attention; she does not need to be aware
of every formula. On the other hand, our agent is aware of all formulas,
but still she is non-omniscient because she does not need to be aware that a
formula is true. This may seem a small difference, but the interpretation of
the A sets determines the reasonable operations over them. An agent can
become aware of any formula at any time, so any formula can be added
to the A-sets without further requirement [10]. On the other hand, it is a
stretch to assume that an agent can recognize as true any formula at any
moment; it is more reasonable to ask for some derivation device, which in
this work will be a rule application [15; 22; 18].

We finish this section by mentioning some properties of implicit and
explicit beliefs about formulas. (Rules behave in a similar way.) Implicit
beliefs are closed under logical consequence: if the most plausible worlds
satisfy both ¢ — 1 and ¢, then they also satisfy ¢. But explicit beliefs do
not need to have this property because the A-sets do not need to have any
closure property: having ¢ and ¢ — 1) does not guarantee to have ¢.

Though < is reflexive, neither implicit nor explicit beliefs have to be
true because the real world does not need to be among the most plausible
ones. Nevertheless, reflexivity makes implicit (and therefore explicit) beliefs
consistent. Every world has at least one <-successor, so =By, L is valid.

Implicit beliefs are positively and negatively introspective. This is the
case because the notion of ‘most plausible worlds’ is global inside the same
comparability class. For positive introspection, if the set of maximal worlds
contains only ¢-worlds (B ), so does the maximal from the maximal ones
(BimBm@). And for negative introspection, if there is a =¢-world u in the
maximal worlds, (=B @), then u is also in those maximal from the maximal
ones (Bim—Bim@). But this does not extend to explicit beliefs, again because
the A-sets do not need to have any closure property. Having ¢ does not
guarantee to have Bgx@ (so Bex@ — BexBex@ is not valid), and not having ¢
does not guarantee to have —Bgyx¢ (so ~Bgx¢ — Bpx—Bgx@ is not valid).
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3 Dynamics part one: upgrade and retraction

We have a framework for representing implicit and explicit beliefs. We now
look at their dynamics by introducing two actions that modify them.

3.1 Explicit upgrade

The x-upgrade operation [4; 3] modifies the plausibility relation < to put
the y-worlds at the top, therefore revising the agent’s beliefs. Here we have
two possibilities, depending on whether it also adds x to the A-sets (explicit
upgrade) or not (implicit upgrade). Here is the definition of the first case.

Definition 3.1 (Explicit upgrade). Let M = (W, <, V, A, R) be a PA model and
X a formula in £. The PA model M+ = (W, <’, V,A’, R) differs from M in
the plausibility relation and in the access set function:

< = (AU S U R = x7?)
A (w) == A(w) U {x} for every w € W

Note how the upgrade operation is functional: for every model M it returns
one and only one model M 4.

The new plausibility relation is given in a PDL style: we have w <" u iff
(1) w < uand u is a y-world, or (2) w is a = y-world and w < u, or (3) w ~ u,
wis a ~y-world and u is a y-world. There are other possible definitions for
<’ [4; 3], and the chosen one, so-called radical upgrade, is just an example of
what can be defined.

The operation preserves models in the intended class.

Proposition 1. If M is a PA model, then so is M,q+.

We extend the language to express the effect of an explicit upgrade;
formulas of the form (x I") ¢ are read as “it is possible to perform an explicit
X-upgrade after which ¢ holds”. There is no precondition for this action (the
agent can perform an explicit upgrade whenever she wants), so the semantic
interpretation is as follows.

Definition 3.2. Let (M, w) be a pointed PA model:
M,w) - {x ) iff (Mg, w) Ik

Note how the operation puts on top those worlds that are y-worlds in
the original model, but they do not need to be x-ones after the upgrade. The
plausibility relation changes, therefore changing the truth-value of formulas
containing the modalities for < and/or ~ and, in particular, changing the
agent’s beliefs. This is not strange at all, and in fact it corresponds to the

9
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well-known Moore-like sentences (“p is the case and you do not know it”) in
Public Announcement Logic that become false after being announced, and
therefore cannot be known.

Nevertheless, the operation behaves as expected for propositional for-
mulas. The operation does not change valuations, so if x is purely proposi-
tional, the operation will put current y-worlds on top, and they will still be
X-worlds after the operation so the agent will believe x.

The validities in our new language can be axiomatized by using reduction
axioms, valid formulas that indicate how to translate a formula with the
new modality (x 1*) into a provably equivalent one without them. Then,
completeness follows from the completeness of the basic system. We refer
to [8] for an extensive explanation of this technique.

Theorem 1. The axiom system of Table 1 together with axioms and rules of Table
3 (with T the always true formula) provide a sound and (weakly) complete axiom
system for formulas in the language L plus the explicit upgrade modality with
respect to plausibility-access models.

FX0Hp o p FQIHAY © T

FQM e o (e FRMHAp © Ap fore+#x
XM @VY) o (e vahy)  FQIHRp o Rp

FOIHD e o (D (X A )V (sx A Q) @) V (~a A=) (e A (e )
O e o (e

From + @ infer - (x 1) ¢

Table 3: Axioms and rules for explicit upgrade formulas.

The reduction axioms simply indicate how each kind of formula is af-
fected by the explicit upgrade operation. For example, (x 1*)p < p states
that atomic propositions are not affected, and both (x I")Ax < T and
(XM Agp < Ag for ¢ # x together state that y and only y is added to the
A-sets. The interesting axiom is the one for the plausibility modality (<) . It
is obtained with techniques from [9], and simply translates the three-cases
PDL definition of the new plausibility relation: after an upgrade with x
there is a <-reachable world where ¢ holds iff before the operation (1) there
is a <-reachable y-world that will become ¢ after the upgrade, or (2) the
current is a ~y-world that can <-reach another that will turn into a ¢-one
after the operation, or (3) the current is a = y-world that can ~-reach another
that is x and will become ¢ after the upgrade. Similar reduction axioms
have been presented in [9] in the context of preference upgrade.

10

74



3.2 Retraction

But there are also situations in which the agent simply retracts some explicit
belief, thatis, she does not acknowledge it as true anymore. This is achieved
simply by removing the formula from the A-sets.

Definition 3.3 (Retraction). Let M = (W, <, V, A, R) be a PA model and x a
formula in £. The PA model M_, = (W, <, V, A’, R) differs from M just in the
access set function, given for every w € W as

A (w) := Aw) \ {x}

Again, the retraction operation is functional. Moreover, it does not mod-
ify <, so it preserves plausibility models.

This operation is represented in the language by formulas of the form
(=Xx) @, read as “it is possible to retract x and after it ¢ holds”. Just like an
upgrade, no precondition is needed.

Definition 3.4. Let (M, w) be a pointed PA model:
Mw) F (-0 i (Mp,w) kg

Our definition behaves as we intend, witness the validity of (—x) =Bgxx:
after retracting x, the agent will not believe it explicitly.

For an axiom system, we can use reduction axioms again. In this case
the axioms are simpler since only A-sets are affected.

Theorem 2. The axiom system of Table 1 together with axioms and rules of Table
4 (with L the always false formula) provide a sound and (weakly) complete axiom
system for formulas in the language L plus the retraction modality with respect to
plausibility-access models.

F-xp < p F-X)Ax o L

FX—p o ~(-x)¢ F(-x)Ap & Agp forp+yx
FHEO@VY) o (((0ev0Y)  FORp © Rp
FE(S e « (S0e

FE0 (e o (9-0e

From + ¢ infer + (—x) ¢

Table 4: Axioms and rules for retraction formulas.

Here the key axioms are (—x) Ay < Land (=x) Ap & Ag for ¢ # y,
stating that y and only x is removed from the A-sets. Similar reduction
axioms have been presented in [10] in the context of dynamics of awareness.

11
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4 Dynamics part two: inference on beliefs

We now turn into the main part of our work. In this section we analyze
rule-based inference on beliefs. We start by recalling the case of rule-based
inference on knowledge [18].

The definition of implicit and explicit knowledge are simpler than those
for beliefs since they depend directly on all the worlds the agent considers
possible. The agent knows ¢ implicitly when it holds in all the worlds she
considers possible, and she knows ¢ explicitly when she also recognizes it
as true in all such worlds. The definitions of explicit knowledge about a
rule p is given in a similar way.

Kimg := [~] @ Kexp := [=] (@ A A )
Kimp = [=]tr(p) Kgxp = [=] (tr(p) AR p)

The action of inference on knowledge with rule o is defined as an operation
that adds o’s conclusion to the A-set of those worlds where the agent knows
explicitly o and its premises (Kgxo A Kgxpm(o)). More precisely, if M is a
plausibility-access model with access set function A, then the operation of
o-inference on knowledge produces the model M.k, differing from M just
in the access set function A’, which is given by ’

, { A@) U {en(@)}  if (M, w) - Kgxo A Kepm (o)
A(w) :=

A(w) otherwise

A new modality (—X) is introduced to express the effects of this oper-
ation, and its semantic definition is given by

(M, w) Ik {(=Kyp iff (M, w) F Kgxo A Kgxpm(o) and (M,_>é<,w) - ¢

But take a closer look at the inference on knowledge operation. What
it actually does is to discard all worlds where Kgxo A Kgxpm(o) holds, and
replace them with copies that are almost identical, the only difference being
their A-sets that, after the operation, will have cn(c). And this is reason-
able because, under the assumption that knowledge is true information,
inference based on a known (therefore truth-preserving) rule with known
(therefore true) premises is simply deductive reasoning: the premises are
true and the rule preserves the truth, so the conclusion should be true. In
fact, inference based on a known rule with known premises is the act of
recognizing two things. First, since the applied rule is truth-preserving and
its premises are true, its conclusion must be true; and second, situations
where the premises are true but the conclusion is not are not possible.

12
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The case of beliefs is different, as suggested in [6]. An inference on
beliefs is based on a rule that is believed to be truth-preserving, but that it
is not necessarily so. Even though it is reasonable to consider a situation in
which the premises and the conclusion hold, the agent should not discard
a situation where the premises hold but the conclusion does not.

Our proposal is the following. An inference on beliefs should create
two copies of each world where the rule and the premises are believed:
an exact copy of the original one, and another extending it by adding the
rule’s conclusion to it. But not only that. The agent believes that the rule is
truth-preserving and the premises are true, so the extended world should
be more plausible than the ‘conclusionless’ one.

But, how to create copies of a possible world? We can use the action
models and product update of the so-called BMS approach [2].

4.1 Plausibility-access action models

The main idea behind action models [2] is that actions can be represented
with a model similar to that used for representing the static situation. In
other words, just as the agent can be uncertain about which one is the real
world, she can also be uncertain about which action has taken place. Then,
the uncertainty of the agent after an action is a combination of her uncertainty
about the situation before the action and her uncertainty about the action itself.
This idea has been extended in two different directions: in order to
deal with plausibility models [3] and in order to deal with non-omniscient
multi-agent situations [10]. Our proposal combines and extends these two
ideas, now with the aim of dealing with single-agent inference on beliefs.
We start by defining the structures that will represent this kind of actions.

Definition 4.1 (Plausibility-access action model). A plausibility-access action
model is a tuple A = (S, <, Pre, Posp, Posr) where

e (5,%,Pre) is a plausibility action model [3] with S a finite non-empty
set of events, < a plausibility relation on S (with the same requirements
as those for a plausibility-access model) and Pre : S — L a precondi-
tion function indicating the requirement for each event to be executed.

e Posa : (S X 9(Lf)) = 9(Ly) is the new access set function, which will
allow us to define the access set of the agent in the model that will
result from applying this action.

e Posg : (S X p(Ly) — p(L,) is the new rule set function, which will
allow us to define the rule set of the agent in the model that will result
from applying this action.

Just as before, the plausibility relation < defines an equivalence relation by
putting it together with its converse: ~:=< U >. A pointed plausibility-ac-
cess action model (4, s) has a distinguished event s € S.
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Examples of plausibility-access action models will be shown in Section
4.2. But first we will define the plausibility-access model that results from
an action model application as well as the formula that will represent this
operation and its semantic interpretation.

Definition 4.2 (Product update). Let M = (W, <, V, A, R) be a PA model and
A = (§,<,Pre,Posp, Posg) be a PA action model. The PA model M® A =
(W', <, vV',A’,R’) is given by

o W :={(w,s) e (WxS)|(M,w) E Pre(s)}

o (wq,51) < (wy,sp) iff (51 < sy and wy =~ wz) or (51 ~ spand wy < wz)
o V'(w,s) = V(w)

o A’'(w,s) := Posa(s, A(w))

e A’'(w,s) := Posg(s, R(w))

Note how the set of worlds of the new plausibility-access model is given
by the restricted cartesian product of W and S; a pair (w, s) will be a world in
the new model iff event s can be executed at world w. The new plausibility
order follows the so-called ‘Action-priority” rule [3], making (wy,s2) more
plausible than (wq,s1) iff either s, is strictly more plausible than s; and
w1, wy are indistinguishable, or else si,s; are indistinguishable and w; is
more plausible than w;.

Now, for the valuations of the new worlds. First, a new world inherits
the atomic valuation of its static component, that is, an atom p holds at (w, s)
iff p holds at w. The cases for access sets gives us full generality: the access
set of world (w, s) is given by the function Posg with the event s and the
access set of w as parameters [10]. The case for rule sets is similar.

It is not hard to verify that the product update operation preserves plau-
sibility-access models.

Proposition 2. If M is a plausibility-access model and A a plausibility-access
action model, then M ® A is a plausibility-access model.

In order to express how product updates affect the agents’ information,
we extend our language with modalities for each pointed plausibility-ac-
cess action model (4, s), allowing us to build formulas of the form (A, s)¢,
whose semantic interpretation is given below.

Definition 4.3. Let (M, w) be a pointed PA model and let (4, s) be a pointed
PA action model with Pre its precondition function.

M,w) - (A,s)yp iff (M,w)I-Pre(s) and M®A, (w,s)) I ¢
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4.2 Plausibility-access action models for basic inference

The action of inference on knowledge can be represented with plausibility-
access action models.

Definition 4.4 (Inference on knowledge). Let o be a rule. The action of
inference on knowledge is given by the pointed PA action model (A, s)
whose definition (left) and relevant diagram (right) are given by

o S:={s} e <:={(s,s)} e Pre(s):=Kgxo A Kgxpm(o) Q

s XUf{cn(o)}
e Posa(s, X) := XU{cn(o)} e Posg(s,Y):=Y

But now we can represent more. Following our previous discussion,
here is the action model for basic inference on beliefs.

Definition 4.5 (Basic inference on beliefs). Let ¢ be a rule. The action of
basic inference on belief is given by the pointed PA action model (A, 1)
whose definition is

Posa(sy, X) := X
Posa(sz, X) := X U {cn(o)}
Posg(s1,Y) =Y
Posgr(sy, Y) =Y

e S:={s1,5) .

o X := {(51,51), (51/ 52)/ (SZ/ SZ)} ®

Pre(sq) := Prep,
[ ]
Pl’e(Sz) := Prep,

The precondition is that the agent believes explicitly

the rule and its premises, that is, C Sy Xuf{en(o)
PreBg = BEXG A BEXpm(G) c S1 X

The relevant diagram appears on the right.

4.3 Extended inference: an exploration

Plausibility-access action models allow us to represent more than what
we have discussed. As observed in [3], a plausibility relation generates a
Grove’s system-of-spheres, that is, several layers of possible events ordered
according to their plausibility. The presented action models for basic in-
ference on beliefs are just those models with two layers, each one of them
having just one event, and with the most plausible one being the extended
one. But we do not have to restrict ourselves to such kind of inferences.
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Action models with more than two layers allow

. : 53 XUfeni(o),en (o)}
us to represent inference based on rules with 1
more than one conclusion. The action model
on the right has three layers, each one contain-
ing one event. Event s; preserves access sets, T

C Sy XUuiem(o)

s, extends them with the first conclusion and s3 Cs1ox
extends them with both conclusions.
X U {cny(o)}
N
52 And we can do more by using layers
N N y g lay
1 /( )\) Sy with more than one world, like the action
\ 53 / model on the left that allows the agent to
X Y Xui{em(o),cma(0)}  have cny (o) without having cny (o).
X U{cnz(o)}

So far our examples have one characteristic in common. The new access
set function is monotone, reflecting the optimism of the agent with respect
to the conclusion: events that extend A-sets are always more plausible.

Definition 4.6 (Plausibility-access action models for optimistic inference).
Plausibility-access action models in which, for every event sy, s,

s1 < sy implies Posa(si, X) € Posa(sz, X)
are called action models for optimistic inference.

But then we can also consider the opposite case. Models with an anti-
monotone new access set function reflect the pessimism of the agent with
respect to the conclusion: events that extend A-sets are always less plausible.

Definition 4.7 (Plausibility-access action models for pessimistic inference).
Plausibility-access action models in which, for every event sy, s,

s1 <sy implies Posa(s1, X) 2 Posa(sz, X)
are called action models for pessimistic inference.

Of course these two classes do not cover all possibilities. Plausibili-
ty-access action models allow us to represent many different and complex
inferences whose detailed study has to be left for further work.
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4.4 Brief discussion on completeness

The reduction axioms of [3] are inherited by our system. In particular, the
following one states the way the plausibility relation changes:

As) e o (Pre) A (\/ (24,59 v \/(2)(A,5")9))

s’ sxs’

But when looking for reduction axioms for access and rule set formulas,
Posa and Posg pose a problem. The reason is that they allow the new
access and rule sets to be arbitrary sets. Compare this with other product
update definitions. The one of [7] can change the atomic valuation, but
the set of worlds in which a given atomic proposition will be true should
be given by a formula of the language; the one of [16] can change the
relation in a point-wise way, but the new relation is given in terms of the
previous ones by using only regular operations. Our current efforts focus on
particular definitions expressive enough to describe our desired inferences
and restricted enough to get the needed reduction axioms.

5 Conclusions and further work

We have presented a framework for representing implicit and explicit be-
liefs. We have also provided representations of three actions that modify
them, starting with those of explicit upgrade and retraction but, more im-
portant, discussing intuitive ideas and proposing a rich framework for
representing the action of inference on beliefs.

There are parts of this work that deserve further exploration, the most
appealing being the study of the different kind of inferences that we can
represent with plausibility-access action models. We have defined those
for inference on knowledge and basic inference on beliefs, and we have
briefly explored some others, but our structures can represent much more.
Another interesting extension is to look at dynamics of rules, that is, to
look for reasonable actions that extend not only the rules the agent knows
[28], but also the rules she believes. These two studies will not be complete
without the appropriate axiom system for our product update definition.
Finally we mention a third direction: the study of a multi-agent setting,
including not only the addition of more agents to the picture, but also the
analysis of implicit/explicit versions of multi-agent notions, like common
knowledge and common beliefs.
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