
A Construction of Logic-Constrained Functions
with Respect to Awareness

Susumu Yamasaki

Department of Computer Science, Okayama University, Japan
email: yamasaki@momo.cs.okayama-u.ac.jp

Abstract

A logic-constrained function is motivated by modelling the be-
haviour of the electronic device (like a mobile phone) with respect
to evocation caused by awareness. This paper presents an analysis
to develop a logic-constrained function system. We firstly have the
contradiction removal procedure for a proof system which is expected
with negation as failure rule (as denoting unawareness) to derive the
constraint (supposedly as awareness) with reference to the (abstract)
functions like λ-terms. Though the system deriving constraints can be
the logic programming system (Alferes,J.J. et al.) of coherence prin-
ciple, a limited reasoning (with negation as failure) is treated in this
paper to cope with inconsistency (contradiction) caused by classical
negation, in terms of contradiction removal facility. We then have a
description of the logic-constrained function. As a logic-constrained
function, we have an outlook on a literal-constrained term, an ex-
tended λ-term, where the literal may be derivable from a proof sys-
tem. The term conversions are defined such that a system originating
from awareness may have abstract function applications, based on the
literal-constrained term.

1 Introduction

As a ubiquitous system, we can assume the electronic device (like a mobile
phone) in place of the PC in distributed environments through internets or
wireless communications. (i) The device is expected to hold functional and
objective knowledge abstractly. (ii) The device as a resource is bounded to
be left alone until it is evoked and of use. The evocation of the device can
be supported by constraint awareness of (a set of) states (as in [11]) which
some predicate (with or without classical negation) may denote. That is,
the evocation may be interpreted to be realized by an awareness of states
(i.e., of a predicate). (iii) As long as we are concerned with awareness of a
predicate for such a set of states, it is implementable as derivability from
a proof system. (iv) In a proof system, negation as failure is applicable
to unawareness, owing to derivability of the designated predicate. (Note

1

84

that the closed world assumption is broader than negation as failure with
reference to unawareness.)

Therefore we have an illustrative structure on logical awareness as in
Table 1.

Derivability basis Evocation Device

A proof system ⇒ Awareness ⇒ Function construction

Table 1: Logical awareness

We then have technical problems: (1) Function constructions constrained
by predicates (constructions of logic-constrained function) are to be mod-
elled for the mobile phone evoked by awareness of a state set. (2) If we
regard awareness as caused by derivability from a proof system, paracon-
sistency should be denied. If a complementary pair of predicates with and
without negation is derivable, one of them must be removed.

Regarding the problems, abstract functions have been deeply studied in
the λ-calculus such that there were many compact textbooks among which
we can see the one ([9]). From knowledge views on function applications,
an analysis of the function (application) constrained by logic concerning
awareness is also a problem. For the function to conceive logical awareness,
the logic-constrained function may be constructed, where the logical formula
(which constrains functions) is often interpreted as: procedure or process
([12]) and state set ([11]) possibly inducing space and/or time notions, such
that the logical formula can be concerned with awareness of some agent. In
this paper, the notion of the state set is adopted. The denotation of a state
set is described by a predicate (with or without classical negation) which
may be derived (deduced) from a proof system. As regards derivability,
negation as failure in computational logic ([12]), the inference rule “�� p ⇒
∼ p (or denoted as not p)” has been well studied. Unawareness may be
defined in terms of negation as failure.

Motivated by the above problems, this paper is to analyze the logic-
constrained function construction, where: (a) the logic programming system
derives the literals with and without classical negation, by means of reason-
ing containing negation as failure, and (b) a logic-constrained function is
defined by means of a combination of λ-terms with the logical formulae.

Regarding the logic programming system, the negative literals are as
significant as positive ones, with reference to the closed world assumption,
the default and/or negation as failure rules ([2, 17]). As an analysis, we
need the negation as failure to denote unawareness with a contradiction-free
reasoning. As before pointed out for the second problem, a complementary

2

85

pair of literals with and without classical negation causes a contradiction
even with respect to awareness. That is, the contradiction is not allowed for
logic-constrained function: the contradiction is to be removed from aware-
ness view such that reasoning to remove contradiction must be restricted.
Concerning the logic-constrained function, the established λ-calculus is fun-
damental and may be extended to the one where the (λ-)term constrained by
logical formulae is definable. This paper focuses on the definable terms gen-
erally denoting the logic-constrained functions, where the logic-constrained
function is a λ-term with respect to awareness expressed by a logical formula.
The awareness is regarded as caused by derivability from a proof system,
while negation as failure for derivability supposedly denotes unawareness.

The paper of the analysis for logic-constrained functions is organized
for the problem as motivations described here. In Section 2, the logic pro-
gramming system is reviewed from the propositional logic version, where an
idea of the contradiction removal is presented. Section 3 presents a con-
tradiction removal procedure and its soundness is shown. In Section 4, we
have an outlook on an extended λ-term with the literal (possibly containing
classical negation) and its conversions. Section 5 gives comments regarding
logic-constraints on the λ-term.

2 Logical Expressions

We now review the terminologies in propositional logic programming, as a
proof system to possibly derive literals with and without classical negation.
Negation as failure is to denote an unawareness, while contradiction caused
by a pair of derivable literals (awareness) with and without classical negation
must be removed by a limited reasoning.

(1) A set of symbols to stand for propositions is assumed.

(2) Two kinds of negation sign are taken: the classical negation “¬” and
the negation as failure “∼”.

(3) A literal l is either an atom a, or a classical negation ¬a of an atom a.
An atom is an expression consisting of a symbol to denote a proposi-
tion.

Classical negation vs. negation as failure

3

86

The class of extended logic programs in the propositional logic is treated,
where two kinds of negation may be contained. As a theory for the literal-
constrained term which would be mentioned later, an extended logic program
(ELP, for short) is a set of clauses of the form

l ← l1, . . . , lm,∼ lm+1, . . . ,∼ ln (0 ≤ m ≤ n),

where l and li are literals, and “∼” stands for the negation as failure (NAF,
for short). The literal ∼ l is called a negation-as-failure literal. The literal
l of the clause is said to be its head, and the literal sequence l1, . . . , lm,
∼ lm+1, . . . ,∼ ln is its body. The classical negation ¬l means

(i) ¬a if l = a, and

(ii) a if l = ¬a,

for an atom a. The pair of literals a and ¬a is said to be complementary.
The expressions L, L1, . . . , Lm, . . . , M , M1, . . . , Mn, . . . are reserved

to denote literals or negation-as-failure literals. The expressions α, α1, . . . ,
αm, . . . , β, β1, . . . , βn, . . . are reserved to denote sequences of literals or
negation-as-failure literals.

A goal is an expression of the form ← l1, . . . , lm,∼ lm+1, . . . ,∼ ln (0 ≤
m ≤ n), where li are literals. The goal of the form← ∼m1, . . . ,∼mq (q ≥ 0)
is said to be a negative goal. The negative goal is the empty clause, denoted
by �, if it contains no literal. For the ELPs, we must note a well established
paraconsistent reasoning (which is regarded as a proof procedure to possibly
derive literals) equipped with coherence principle ([1]):

“For any objective literal ¬l, if ¬l is entailed by the semantics,
then ∼ l is also entailed.”

In the paper, a proof procedure with coherence principle is given, while some
condition for the program to be consistent is shown.

We have an outlook on SLD resolution and negation as failure, where we
can see [12, 17] among so many papers.

SLD resolution applied to goals is a rule to derive

← L1, . . . , Li−1,M1, . . . ,Mn, Li+1, . . . , Lm

from a goal ← L1, . . . , Li−1, l, Li+1, . . . , Lm and a clause l ←M1, . . . ,Mn in
the given ELP. That is, a literal l of a goal may be replaced by the body
M1, . . . ,Mn of a clause l ←M1, . . . ,Mn, whose head is just the literal l.

4

87

Negation as failure is a rule to infer a negation-as-failure literal ∼ l, when
the literal l is not derived by some proof procedure. We refine negation as
failure in relation to SLD resolution such that the succeeding and failing
(derivations) of a goal (with reference to a given ELP) are defined recursively
as follows:

(i) The goal← l succeeds if← l is reduced to � by applying finitely many
SLD resolutions.

(ii) The goal ← l fails if one of following conditions holds:

(a) there is no clause whose head is the literal l.

(b) there are goals ← α1, L1, β1, . . . , ← αn, Ln, βn (n ≥ 1), derived
by SLD resolutions for the goal← l such that all the goals← L1,
. . . , ← Ln fail.

(c) the goal ← ¬l succeeds.

(iii) The goal ← ∼ l succeeds if the goal ← l fails.

(iv) The goal ← ∼ l fails if the goal ← l succeeds.

Note the sense that if the goal← l may succeed, then we may be aware of l.

Contradiction removal

Compared with the method of [1] involving the coherence principle, we
have a different method of removing contradictory succeeding derivations
of both the goal ← a and the goal ← ¬a. If both goals may succeed,
contradictory awareness of a and ¬a is made, which should be escaped.

Now assume a propositional ELP

Q = {r ← q,¬q; q ← ∼ p; p← ∼ q;¬q ←}.

For the goal ← r, we have the derivation by SLD resolution: A goal ← r is
reduced to a goal ← q,¬q, as illustrated below.

← r

| (with a clause r ← q,¬q)
← q,¬q

The goal ← ¬q can succeed with the clause ¬q ←, where it is reduced to
the goal � as shown below.

5

88

← ¬q
| (with a clause ¬q ←)
�

It follows that the goal ← q,¬q is reduced to the goal ← q, while the goal
← q cannot succeed, for contradiction removal, after the success of the goal
← ¬q.

Alternatively, if we have a derivation of the goal← q to �, whose details
is omitted, the goal ← q,¬q is reduced to the goal ← ¬q, which is to be
suspended. Here we can see that the goal ← r cannot succeed. Finally the
following requirements are implemented.

(i) At most one of goals ← q and ← ¬q is permitted to succeed. (By
means of some memory for the succeeding derivation to eliminate con-
tradictions, the contradiction-free derivation is automated.)

(ii) If the goal ← q succeeds, then the goal ← ¬q can be regarded as
failing.

3 Reasoning Procedure

For reasoning to be apart from paraconsistency, we have two sets to be kept,
which are to be transformed through succeeding and failing derivations:

(i) the set of literals to remove contradictory succeeding derivations

(ii) the set of negation-as-failure literals

The former set (i) is expressed by Σ, Σ1, . . . , and the second one (ii) is by Δ,
Δ1, Given an ELP P , the predicate sucP (G; Σ1; Δ1; Σ2; Δ2) is derived,
when a goal G succeeds with the assumed sets Σ1 and Δ1, to acquire the
sets Σ2 and Δ2. The predicate failP (G; Σ1; Δ1; Σ2; Δ2) is derived, when a
goal G fails with the assumed sets Σ1 and Δ1, to acquire the sets Σ2 and
Δ2. Following the derivations as above, we have the rules. Intuitively the
succeeding derivation expresses some awareness, while the failing derivation
detects unawareness, in relation to negation-as-failure rules.

We assume an ELP P and have the relational representations of succeed-
ing and failing derivations, where the relations sucP and failP are defined
simultaneously by recursion to be the least set satisfying the following clo-
sure. Because the relations demonstrate the implementation as procedural
methods for the given ELP, they can be regarded as providing behaviours

6

89

such that the abstraction of the representation is more general than those
in [19]. The subscript P for the ELP P may be omitted if it is clear in the
context.

(0) sucP (�; Σ;Δ;Σ;Δ) for any Σ and Δ.

(1) sucP (← L1, . . . , Li−1,M1, . . . ,Mm, Li+1, . . . , Ln; Σ1 ∪ {l}; Δ1; Σ2; Δ2)
for ¬l �∈ Σ1 and (l ←M1, . . . ,Mm) ∈ P ⇒
sucP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2).

(2) sucP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2) and ∼ l ∈ Δ1 ⇒
sucP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2).

(3) sucP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ
�

2; Δ
�

2; Σ2; Δ2) and
failP (← l; Σ1; Δ1 ∪ {∼ l}; Σ�

2; Δ
�

2) for ∼ l �∈ Δ1 ⇒
sucP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2).

(4) There is no clause in P , which contains l in the head ⇒
failP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ;Δ;Σ;Δ) for any Σ and Δ.

(5) For any clause l ← M
j
1 , . . . ,M

j
nj
∈ P (1 ≤ j ≤ k) of all the clauses

which contain l in the head,
failP (← L1, . . . , Li−1, M

j
1 , . . . , M

j
nj
, Li+1, . . . , Ln; Σj ; Δj ; Σj+1;

Δj+1) ⇒ failP (← L1, . . . , Li−1, l, Li+1, . . . , Ln; Σ1; Δ1; Σk+1; Δk+1).

(6) sucP (← ¬l; Σ1; Δ1; Σ2; Δ2) ⇒ failP (← l; Σ1; Δ1; Σ2; Δ2).

(7) failP (← L1, . . . , Li−1, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2) and ∼ l ∈ Δ1 ⇒
failP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2).

(8) sucP (← l; Σ1; Δ1; Σ2; Δ2) for ∼ l �∈ Δ1 ⇒
failP (← L1, . . . , Li−1,∼ l, Li+1, . . . , Ln; Σ1; Δ1; Σ2; Δ2).

We can see the characteristics of the relational representations:

(a) If we have the relation sucP (G; ∅; ∅; Σ;Δ) for a goal G, the whole
interpreter for the logic program can detect corresponding derivations.
The literals of the goal G in the relation sucP are regarded as made
aware of, while if the goal G is included in the relation failP then the
literals of the goal is concerned with unawareness.

(b) In the relation sucP (G; ∅; ∅; Σ;Δ), the set Δ contains the extraction
of negation-as-failure literals.

7

90

(c) By the set Σ of the relation sucP (G; ∅; ∅; Σ;Δ), we can trace the literals
used for SLD resolution.

We see an illustration.

Example. Take a simple ELP P = {p←,¬p←}.

(i) Clearly we have the empty clause � from a goal ← p with a given
clause p← such that

sucP (← p; ∅; ∅; {p}; ∅).

(ii) Similarly we have sucP (← ¬p; ∅; ∅; {¬p}; ∅). However, we cannot have

sucP (← ¬p; {p}; ∅; {¬p}; ∅),

after that we have got sucP (← p; ∅; ∅; {p}; ∅), as in the case of (i).

(iii) After we have got sucP (← p; ∅; ∅; {p}; ∅) which is concerned with
awareness of the literal p, the inference rule gives

failP (← ¬p; ∅; ∅; {p}; ∅),

which detects unawareness of the literal ¬p.

In the following sense, the relation sucP , which may involve the effect of
the relation failP , is sound. This is paraphrased to the sense of consistency
that if a goal← l succeeds, then∼ l cannot be included in the set of negation-
s-failure literals. It also contains an interpretation that awareness reasoned
by the relation sucP is consistent with unawareness detected by the relation
failP . The proof is made. Here we see its outline.

Definition 3.1 For a set Σ, we define the set Σ̃ to be {∼¬l | l ∈ Σ}.

Theorem 3.2 Assume that sucP (← l; Σ1; Δ1; Σ2; Δ2) such that Σ1 = Δ1

= ∅. Then ∼ l �∈ Δ2 ∪ Σ̃2.

Proof (Outline) (1) By the definition of the relation sucP , ¬l �∈ Σ2. It follows
that ∼ l �∈ Σ̃2.
(2) On the contrary to the assumption that ∼ l �∈ Δ2, suppose that ∼ l ∈ Δ2.
Then, by the construction of the set Δ2, it follows that

failP (← l; Σ�

1; Δ
�

1; Σ
�

2; Δ
�

2)

for some sets Σ�

1,Δ
�

1,Σ
�

2,Δ
�

2 such that l ∈ Δ�

1 ⊆ Δ�

2 ⊆ Δ2. There are the
following cases to support this relation failP .

8

91

(i) In case that sucP (← ¬l; Σ�

1; Δ
�

1; Σ
�

2; Δ
�

2), this contradicts the first as-
sumption that sucP (← l; Σ1; Δ1; Σ2; Δ2).

(ii) In case that there is no clause whose head is l for the relation failP ,
this contradicts the first assumption that sucP (← l; Σ1; Δ1; Σ2; Δ2)
such that there is some clause whose head is l.

(iii) In case that failP (← ∼m1, . . . ,∼mn; Σ
��

1; Δ
��

1; Σ
��

2; Δ
��

2) for some sets
Σ��

1,Δ
��

1, Σ
��

2,Δ
��

2, which may be caused for some negative goal

← ∼m1, . . . ,∼mn

derivable from the goal← l, it is concluded that n �= 0. Otherwise, the
negative goal ← ∼m1, . . . ,∼mn is � and it contradicts the relation
failP . For the negative goal

← ∼m1, . . . ,∼mn,

there is some literalmi �∈Δ��

1 (1 ≤ i ≤ n) such that sucP (← mi; Σ
��

1; Δ
��

1;
Σ��

2; Δ
��

2), because of the relation failP . On the assumption that ∼mi

∈ Δ2, we repeat the same discussion. We finally reach the case that:

failP (← ∼m
f
1 , . . . ,∼mf

n; Σ
f
1 ; Δ

f
1 ; Σ

f
2 ; Δ

f
2)

for some sets Σf
1 ,Δ

f
2 ,Σ

f
2 ,Δ

f
2 , but there is no literal ∼m

f
i such that

∼m
f
i �∈ Δf

1 . This causes the case that ← ∼m
f
1 , . . . ,∼mf

n = �, which

contradicts that failP (← ∼m
f
1 , . . . ,∼mf

n; Σ
f
1 ; Δ

f
2 ; Σ

f
2 ; Δ

f
2). This con-

cludes the proof.

Q.E.D.

4 Literal-Constrained Term

We here have the form: a constrained literal followed by a (function) term,
where

(a) the literal is derivable from some proof system like the logic program-
ming system such that the literal may be interpreted as awareness (of
an agent), and

(b) the function term is held (by an agent) under the awareness of the
literal,

9

92

such that the form may be regarded as denoting a behaviour of an agent.

Syntax

An extended term from the original is shown below, where a logic-
constraint may be made by a literal. If we prefer to the ELP, which derives
literals, then the derivable literals may be constraints.

Definition 4.1 On the assumption of a proof system (say, Γ), a literal-
constrained term (term, for short) is recursively defined as follows:

(i) If x is a variable, then x is a term.

(ii) If M , N are terms, then (M N) is a term.

(iii) If x is a variable and M a term, then (λx.M) is a term.

(iv) If p is a literal and M a term, then p < M > is a term.

Semantics

By the term p < M > with some system Γ (which may possibly be the
ELP in the previous section), we mean that:

• If p is derivable from Γ, then the term M is supported.

• Unless p is derivable from Γ, then the term M is not supported.

When the ELP may be taken as a proof system Γ, the contradiction
removal procedure is significant, because p < M > and ¬p < M > cannot
be coherent.

Illustration

Assume the following functional program.

Even(x) = if x = 0 then true

else if x = 1 then false

else Odd(x− 1)

Odd(x) = if x = 0 then false

10

93

else if x = 1 then true

else Even(x− 1)

As a standard way, by means of a fixed point operator:

Let Y = λf.(λx.f(x x))(λx.f(x x)),

Let evenfn = λg.λn.(if n = 0 then true

else if n = 1 then false

else g (− n 1))
Let oddfn = λf.λm.(if m = 0 then false

else if m = 1 then true

else f (− m 1))
Let even = Y (evenfn oddfn)
Let odd = Y (oddfn evenfn)

The terms “evenfn” and “oddfn” may be included in the expressions
such as:

p < evenfn > and q < oddfn >,

where the literals may denote awareness, which acknowledges the application
of p < evenfn > to q < oddfn > for the usual term (evenfn oddfn) to even,
and vice versa for the term (oddfn evenfn) to odd.

Condition and conversion

By the expression p −→ q, we mean that if p is derivable from Γ, then q

is derivable from Γ.
In addition to the standard α, β, and η conversions, the following two

conversions are to be presented:

(γ1)
(p < M > q < N >) p −→ q

q < (M N) >

(γ2)
(λx.p < M >)
p < λx.M >

11

94

Assume the program.

f(x) = if x = 0 then 1 else x× f(x− 1)

Let factorial = Y factorialfn,

Let factorialfn = λf.λx.(((iszero x) 1) (times x (f (−x 1)))),

where the λ-term ((B X1) X2) can denote the conditional sentence if B

then X1 else X2. If we have the fixed point operator p < Y >, the if-part
q < (iszero 0) 1 >, and the else-part

r < Times x (f (− x 1)) >

such that p −→ q and q −→ r, then

r < Y factorialfn > = r < factorial >.

The relation ⇒∗ denotes a reflexive and transitive closure based on α,
β, η, γ1 and γ2 conversions.

Church-Rosser theorem

Because

(a) the calculus for terms constructed by using only (i), (ii) and (iii) con-
ceives the Church-Rosser Theorem, and

(b) α, β and η conversions are commutative with γ1 and γ2 conversion
applications,

we may see that the term constructed by Definition 4.1 is transformed to a
normal form (which any conversion except α cannot be applied to) uniquely
up to α conversion, with respect to the relation ⇒∗, if the term has one. It
is stated as:

Theorem 4.2 If the term M has a normal form, it is unique up to α con-

version.

Proof (Outline) Applications of γ1 and γ2 may be sound with respect to
the transformation to the normal form by the following senses:

Assume two terms M and N whose normal forms are Mnormal and
Nnormal, respectively. For any terms M1 and N1 such that

M ⇒∗ M1 ⇒
∗ Mnormal, and

N ⇒∗ N1 ⇒
∗ Nnormal,

12

95

we have:

p < M >⇒∗ p < M1 > q < N >⇒∗ q < N1 >
(p < M1 > q < N1 >) p −→ q

q < (M1 N1) >
q < Mnormal Nnormal >

with respect to γ1 conversion, and

λx.p < M > p < M >⇒∗ p < M1 >
λx.p < M1 >
p < λx.M1 >

p < λx.Mnormal >

with respect to γ2 conversion such that we intuitively see the induction for
the proof. Q.E.D.

If we adopt the ELP P as a formal system (Γ as above), whether

p −→ q

can be determined by reasoning that on condition that we have sucP (←
p; ∅; ∅; Σ;Δ), we then have sucP (← q; Σ;Δ;Σ�; Δ�) for Δ ⊆ Δ� and Σ ⊆ Σ�.

5 Concluding Remarks

The problem of treatments for the logic-constrained function is related to
the backgrounds: (i) Logic and database views are fundamental to ana-
lyze knowledge structure ([14, 17]), to understand dynamic structure with
reference to knowledge ([15, 16]). (ii) Process algebra deals with sequence
structure of communications (evaluations) ([10, 13]) even for distributed
systems ([5]). (iii) The logic programming system (in computational logic)
contains the notion of negatives such that both classical negation (in the
literal regarding awareness) and negation as failure (regarding unawareness)
are combined for more powerful representations ([1]).

For a literal-constrained term, the literal should be derivable from an
indicated proof system. If derivability is concerned with awareness, the term
(as a function application) is regarded as originating from awareness with
constraint. In this paper, the logic programming system with a contradiction
removal procedure is presented, not allowed to be paraconsistent.

13

96

As regards awareness in terms of derivability, we can also have the formal
systems: hybrid logic (with modality and nomination) (as in [3]), and action
logic (as in [8]).

With reference to actions like those of [15, 16], analyses of whether or
not we can apply them to the literal-constrained term are needed.

As the proof system itself, we summarize some points on specific expres-
siveness of the ELP. (1) This paper presents an abstract representation of
reasoning for its application to the reasoning of contradiction removal re-
garding derivability vs. awareness, independent of abduction reasoning as
in [4, 6]. (2) The backgrounds of soundness of succeeding and failing deriva-
tions may be closely related to model theory, following [1, 19]. (3) The
notion of exceptions for each literal to be constrained by is implementable
in the derivations we present, while we may apply weak negation to it as in
[20]. (4) There is a problem of whether or not a non-grounded version of
the literals (for awareness constraints) may be built in the proof system to
derive literals for constraints. A non-grounded version of negation as failure
is relevant to the discussions as in [17, 18].

References

[1] Alferes,J.J., Damásio,C.V. and Pereira,L.M., A logic programming sys-
tem for nonmonotonic reasoning, J. of Automated Reasoning, 14, pp.93-
147, 1995.

[2] Besnard,P., An Introduction to Default Logic, Springer-Verlag, 1989.

[3] Brauner,T., Natural deduction for hybrid logic, JLC, 14, 3, pp.329–353,
2004.

[4] Brogi,A., Lamma,P., Mancarella,P. and Mello,P., A unifying view for
logic programming with non-monotonic reasoning, Theoretical Com-
puter Science, 184, 1-2, pp.1-59, 1997.

[5] Bruns,G., Distributed Systems Analysis with CCS, Prentice-Hall, 1996.

[6] Dung,P.M., An argumentation-theoretic foundation for logic program-
ming, J. of Logic Programming, 22, pp.151–177, 1995.

[7] Gelfond,M. and Lifschitz,V., The stable model semantics for logic pro-
grams, Proc. of 5th ICLP, pp.1070–1080, 1988.

14

97

[8] Giordano,L., Martelli,A. and Schwind,C., Ramification and causality in
a modal action logic, JLC, 10, 5, pp.625–662, 2000.

[9] Gordon,M.J.C., Programming Language Theory and its Implementa-
tion, Prentice Hall, 1988.

[10] Hoare,C.A.R., Communicating Sequential Processes, Prentice-Hall,
1985.

[11] Kucera,A. and Esparza,J., A logical viewpoint on process-algebra, J. of
Logic and Computation, 13, 6, pp.863–880, 2003.

[12] Lloyd,J.W., Foundations of Logic Programming, 2nd, Extended Edi-
tion, Springer-Verlag, 1993.

[13] Milner,R., Communication and Concurrency, Prentice-Hall, 1989.

[14] Minker,J. (ed.), Foundations of Deductive Databases and Logic Pro-
gramming, Morgan Kaufmann Publishers, Inc., 1987.

[15] Mosses,P.M., Action Semantics, Cambridge University, 1992.

[16] Reiter,R., Knowledge in Action, The MIT Press, 2001.

[17] Shepherdson,J.C., Negation in Logic Programming, in: Minker,J. (ed.),
Foundations of Deductive Databases and Logic Programming, pp.19-88,
1987.

[18] Yamasaki,S. and Kurose,Y., Soundness of abductive proof procedure
with respect to constraint for non-ground abducibles, Theoretical Com-
puter Science, 206, pp.257-281, 1998.

[19] Yamasaki,S. and Kurose,Y., A sound and complete procedure for a
general logic program in non-floundering derivations with respect to
the 3-valued stable model semantics, Theoretical Computer Science,
266, pp.489–512, 2001.

[20] Yamasaki,S., Logic programming with default, weak and strict nega-
tions, Theory and Practice of Logic Programming, 6, pp.737-749, 2006.

15

98

