
Generating Inspiration for Multi-Agent Simulation

Design by Q-Learning

Robert Junges

Modeling and Simulation Research Center

Örebro University, Sweden

Email: robert.junges@oru.se

Franziska Klügl

Modeling and Simulation Research Center

Örebro University, Sweden

Email: franziska.klugl@oru.se

Abstract—One major challenge in developing multi-agent
simulations is to find the appropriate agent design that is
able generating the intended overall phenomenon respectively
dynamics, but does not contain unnecessary details. In this paper
we suggest to use agent learning for supporting the development
of an agent model: The modeler defines the environmental model
and the agent interfaces. Using rewards capturing the intended
agent behavior, Reinforcement Learning techniques can be used
for learning the rules that are optimally governing the agent
behavior. However, for really being useful in a modeling and
simulation context, a human modeler must be able to review
and understand the outcome of the learning. We propose to
use additional forms of learning as post-processing step for
supporting the analysis of the learnt model. We test our ideas
using a simple evacuation simulation scenario.

I. MOTIVATION

Methodological questions are more and more in the focus

of research on agent-based simulation as the number of chal-

lenges in developing a good multi-agent simulation model are

numerous. The central issue hereby concerns what behaviors

the agents should exhibit so that the intended outcome is

generated. What particular detail must be included, what part

of the modeled behavior is not necessary? How to set the

parameters involved? However, if it is not fully clear from

the beginning how this local behavior should be - even if the

original agents behavior can be easily observed - the devel-

opment may result in a painful try and error procedure. The

modeler may add, respectively remove behavioral elements,

try different parameter values and test the overall outcome

again and again. Such a procedure might be feasible for an

experienced modeler who knows the critical starting points

for modifications and is capable of using complex calibration

tools for multi-agent simulation such as described in [1], but

this cannot be assumed for less experienced modelers.

In this contribution we are suggesting to solve this search for

the appropriate agent-level behavior by using agent learning.

The vision is hereby the following procedure: the modeler

starts by developing an environmental model as a part of

the overall model, then, determines what the agent might be

able to perceive and to manipulate and finally describes the

intended outcome based on a reward function that evaluates the

agents performance. The agents then use a learning mechanism

for determining a behavior program that together generates the

intended overall outcome in the given environment. This strat-

egy might be also described as a variant of an environment-

driven strategy for developing multiagent simulations [2].

A major issue in this overall procedure refers to the selection

of the particular learning agent architecture. An initial analysis

of different learning techniques applicable for this problem

has already been described in [3]. There, Learning Classifier

Systems (LCS), Feed Forward Neural Networks (FFNN) and

Reinforcement Learning (Q-Learning) have been evaluated

with regards to learning performance and resulting behavior

representation, using the same evacuation scenario problem

as in the following. In this contribution we are further in-

vestigating Reinforcement Learning for its suitability in such

a learning-driven model development process, focusing more

on the interpretability of the state-action mapping produced.

We are not focussing on mere optimization performance, but

on softer factors that define the usability of Q-Learning in the

model development setting: the completeness, the complexity

and the generalization capabilities of the behavior learnt.

In the next section we will review existing approaches

for learning agent architectures in simulation models. This is

followed by a more detailed treatment of the learning-driven

methodology and a presentation of the reinforcement learning

architecture. In section IV and V we describe the used testbed,

the experiments conducted with it and discuss the results. The

papers ends with a conclusion and an outlook to future work.

II. LEARNING AGENTS AND SIMULATION

Adaptive agents and multi-agent learning have been one

of the major focuses within distributed artificial intelligence

since its very beginning [4]. Many different forms of learning

have shown to be successful when working with agents and

multiagent systems. Obviously, we can not cover all techniques

for agent learning in this paper, the following paragraph shall

give a few general pointers and then give a short glance on

directly related work on agent learning in simulation settings.

In general our contribution is special concerning the objective

of our comparison: not mere learning performance but its

suitability for the usage in a modeling support context.

Reinforcement learning [5], learning automata [6], evolu-

tionary and neural forms of learning are recurrent examples of

learning techniques applied in multi-agent scenarios. Besides

that, techniques inspired by biological evolution have been

applied for agents in the area of Artificial Life [7], [8], where



evolutionary elements can be found together with multiagent

approaches. An example of a simulation of a concrete scenario

is [9], in which simulated ant agents were controlled by a

neural network that was designed by a genetic algorithm.

Another experiment, with an approach similar to a Learning

Classifier System (LCS) can be found in [10], where a rules

set was used and modified by a genetic algorithm.

Although there is a wealth of publications dealing with

the performance of particular learning techniques, especially

reinforcement learning approaches, there are not many works

focussing on the resulting behavioral model dealing with

usability. An early example can be found in [11], where an

evolutionary algorithm is applied to behavior learning of an

individual agent in multi agent robots. Another example, from

[12], describes a general approach for automatically program-

ming a behavior-based robot. Using Q-Learning algorithm,

new behaviors are learned by trial and error based on a

performance feedback function as reinforcement. In [13], also

using reinforcement learning, agents share their experiences

and most frequently simulated behaviors are adopted as a

group behavior strategy. [14] compares reinforcement learning

and neural networks as learning techniques in an exploration

scenario for mobile robots. The authors conclude that both

learning techniques are able to learn the individual behav-

iors, sometimes outperforming a hand coded program, and

behavior-based architectures speed up reinforcement learning.

III. AGENT LEARNING ARCHITECTURES FOR MODEL

DESIGN

The basic idea behind a learning-driven design methodology

consists in the transfer of the agent behavior design and test

activity from the human modeler to the simulation system.

Specially in complex models, a high number of details can be

manipulated. This could make a manual modeling, debugging

and tuning process cumbersome, especially when knowledge

about the original system or experience for implicitly bridging

the micro-macro gap is missing. Using agents that learn at least

parts or initial versions of their behavior might be a good idea

for supporting the modeler in finding an appropriate low level

behavior model. Such a learning-based approach can also be

part of something as the adoption of a Living Design [15] like

methodology for multi-agent simulation models. Nevertheless,

the first question on a way to such a learning-driven methodol-

ogy, is about the selection of the appropriate learning technique

– for this form of application, for a particular domain, or

maybe just for a particular model. In this paper we focus on the

suitability of a well know learning technique, Q-Learning, for

such a modeling approach. Before we continue with focussing

on this particular learning architecture, we discuss what we

have identified as requirements for the applicability of an

learning technique to our problem.

A. Requirements for Learning Agent Architectures

Not all agent learning architectures are equally apt for

usage in the modeling support context. There are a number

of properties that an appropriate learning technique may be

able to exhibit for indicating a successful application.

1) Feasibility: The learning mechanism should be able to

cope with the level of complexity that is required for

a valid environmental models. Thus, it should not be

necessary to simplify or even to reformulate the problem

just for being able to apply the learning mechanism;

That means the theoretical prerequisites for applying

the learning technology must be known and fulfilled by

the environmental model in combination with the reward

function. The learning architecture must be able to find

a good-enough solution;

2) Interpretability and Model Accessibility: The mechanism

should produce behavior models that can be understood

and interpreted by a human modeler. The architecture

shall not be a black box with a behavior that the human

modeler has to trust, but must be accessible for detailed

analysis of the processes involved in the overall agent

system;

3) Plausibility: The mechanism in the learning architecture

should be well-established and well-understood. The

motivation is that its usage shall not impose additional

complexity to the modeler for example in setting a

number of configuration parameter. How the learning

architecture works, shall be explainable to and by the

modeler.

There is a variety of possible learning agent architectures

that might be suitable for the aim presented here and the re-

quirements identified – as discussed in section II. We selected

Q-Learning, as a Reinforcement Learning technique, as we

describe it in the next paragraph.
1) Q-Learning: Q-Learning [16] is a well-known reinforce-

ment learning technique. It works by developing an action-

value function that gives the expected utility of taking a

specific action in a specific state. The agents keep track of the

experienced situation-action pairs by managing the so called

Q-table, that consists of situation descriptions, the actions

taken and the corresponding expected prediction, called Q-

value.

Q-Learning is able to compare the expected utility of the

available actions without requiring a model of the environ-

ment. Nevertheless, the use of the Q-Learning algorithm is

constrained to a finite number of possible states and actions.

As a reinforcement learning algorithm, it also is based on

modeling the overall problem as Markov Decision Processes.

Thus, it needs sufficient information about the current state

of the agent for being able to assign discriminating reward.

Although there are a number of extensions that improve the

convergence speed of Q-Learning [5], we include the standard

Q-Learning algorithms in our experiment due to its simplicity.

We suppose that Q-Learning meets the requirements for

the application by providing both sufficient performance (if

applicable) adaptability and also gives interpretability of the

result. This interpretability is achieved by its rule-based struc-

ture (represented by the state action mapping) with a clear

evaluation of those rules, by means of the Q-Value. The



processing of this mapping, weighted by the provided utility

value could be used as a bias for the interpretation of the rules,

as an input for the behavior modeling.

IV. TESTBED

The scenario we use for evaluating the learning architecture

approach is the same as in [17] where we already describe

the integration of XCS-based agents into the agent-based

modeling and simulation platform SeSAm. This pedestrian

evacuation scenario is a typical application domain for multia-

gent simulation (see [18] for a real-world application). Albeit

the employed scenario may be oversimplified, we expected

that the relative simplicity of the scenario will enable us to

evaluate the potentials of the learning technique as well as to

deduce the involved challenges.

A. Environmental Model

The main objective of the simulation concerned the emer-

gence of collision-free exiting behavior. Therefore, the reward

and interfaces to the environment were mainly shaped to

support this. In contrast to [17], we did not test a large variety

of configurations as it was not the goal of this research to find

an optimal one, but a more modeling-oriented evaluation of

the architecture.

The basic scenario consists of a room (40x60m) surrounded

by walls with one exit and a different number of column-

type obstacles (with a diameter of 3.5m). In this room a

number of pedestrians have to leave as fast as possible without

hurting themselves during collisions. We assume that each

pedestrian agent is represented by a circle with 50cm diameter

and moves with a speed of 1.5m/sec. One time-step in the

discrete simulation corresponds to 0.5sec. Space is continuous.

We tested this scenario using 1, 5, 10 and 20 agents, and the

number of obstacles was set to 10. At the beginning of a test-

run, all agents were located at random positions in the upper

half of the room.

All experiments alternated between explore and exploit

phases. During the explore phase, the agents randomly execute

an action. In exploitation trials, the best action was selected

in each step. Every trial consists of 100 iteration steps. Every

experiment took 1000 explore-exploit cycles.

Reward was given to the agent a immediately

after executing an action at time-step t. It was

computed in the following way: reward(a, t) =
rewardexit(a, t)+rewarddist(a, t)+feedbackcollision(a, t)+
feedbackdamage(a, t) with rewardexit(a, t) = 1000, if

agent a has reached the exit in time t, and 0 otherwise;

rewarddist(a, t) = β × (dt(exit, a) − dt−1(exit, a))
with β = 5; feedbackcollision(a, t) was set to 100 if a

collision free actual movement had been made, to 0 if no

movement happened, and to −100 if a collision occurred;

feedbackdamage(a, t) was set to −1000 if a collision with

column obstacle has occurred, and 0 otherwise. Together, the

different components of the feedback function stress goal-

directed collision-free movements. It is goal-directed because

the agents are positively rewarded every time an action

results in reaching the exit or getting to a state closer to the

exit. Complementary, it is collision-free oriented because the

agents are positively rewarded for moving without collisions

and negatively rewarded every time an action results in a

collision.

B. Agent Interfaces

As agent interfaces, the perceived situation and the set

of possible actions have to be defined. Similar to [17], the

perception of the agents is based on their basic orientation

of the agent, respectively its movement direction. The overall

perceivable area is divided into 5 sectors with a distinction

between areas in two different distances as depicted in figure

1. For every area two binary perception categories were used:

the first encoded whether the exit was perceivable in this area

and the second encoded whether an obstacle was present -

where an obstacle can be everything with which a collision

should be avoided: walls, columns or other pedestrians.

Fig. 1. Agent perception sectors

The action set is shaped for supporting the collision-

avoidance behavior. We assume that the agents are per de-

fault oriented towards the exit. Thus, the action set con-

sists of A = {MoveLeft, MoveSlightlyLeft, MoveStraight,

MoveSlightlyRight, MoveRight, Noop, Stepback}. For any

of these actions, the agent turns by the given direction (e.g.

+36 degrees for MoveSlightlyRight), makes an atomic step

and orients itself towards the exit again. The combination of

this action set and the perceptions of the agents represents

an intentional simplification of the problem, as we implicitly

represent the orientation task in the actions, in order to have

a MDP. This simplification allows concentrating the learning

on the collision avoidance, facilitating the learning process.

C. Architecture Configuration

The testbed was implemented in the visual modeling

and simulation platform SeSAm (www.simsesam.de). The Q-

Learning could be implemented by means of the standard high-

level behavior language in SeSAm.

It was not our objective to find the optimal configuration

for the tested architecture in the given scenario, we will not

give a discussion of the effects of different parameter settings

on the learning outcome should not be necessary. Clearly,

we tested a number of configuration for finding a reasonable

configuration. This is also true for the the appropriate overall

configuration including different numbers of obstacles, sizes

of scenarios or the particular numbers of the reward function.



In the context of this paper, we assume an initial Q-value of

0 for all untested state-action pairs. We set the learning rate

to 0.5 and the discount factor to 0. It means that the agents’

actions are selected based on recent experiences and not taking

into consideration the future rewards (only the best action

for the current state), respectively. This is another intentional

simplification for the problem, as the agents don’t need to

maximize future rewards.

V. EXPERIMENTS AND RESULTS

In this section we analyze the results of the simulations, first

with respect to learning performance showing that the learning

technique is actually applicable to the test scenario, but then

we focus on the analysis of what the agents actually did learn.

A. Performance Evaluation

The metric used for evaluating learning performance is

the number of collisions. The time to reach the exit does

not vary significantly, as a collision is not influencing the

behavior directly, but indirectly via the reward the agent got.

The collisions, with other pedestrians or obstacles, do not

impose any effect on future movement. They only count as

negative rewards. Obviously in the early stages, the agents

don’t have enough experience to learn from, and therefore a

higher number of collisions is expected.

Table I presents the mean number of collisions for each

tested situation. The values are aggregated only after the first

50 explore-exploit cycles for avoiding the inclusion of any

warm-up data. The mean and deviation over the results of the

different exploit cycles are given. Despite of having the runs

repeated, we did not give means and standard deviations over

different runs as currently the number of repetitions is too low.

Clearly the number of collisions increases with the number of

agents and obstacles.

TABLE I
MEAN NUMBER OF COLLISIONS PER RUN - ROWS REPRESENT THE

NUMBER OF AGENTS AND COLUMN THE NUMBER OF OBSTACLES.

10

1 0.01 ±0.23

5 1.39 ±1.78

10 6.66 ±3.88

20 25.17 ±8.77

Figure 2 illustrates the adaptation speed by depicting the

number of collisions over time for an exemplary run with

5 agents and 10 obstacles. We can see that the number

of collisions decreases fast in the beginning, but then the

behavioral knowledge converges quite fast. After 50 cycles,

there is no further improvement.

To have a better illustration of the learning process, we

show in figure 3 the trajectories of the agents in exploit phases

after a) 10, b) 100, c) 500 and d) 1000 exploit trials. In this

figure we consider the situation with 5 agents and 10 obstacles.

We can see the progress of adaptation with more and more

collision-free and goal-directed movement. Experience hereby

does not just mean positive reinforcement. Even if the agents

Fig. 2. Development of the number of collisions for an exemplary run with
5 agents and 10 obstacles

don’t know what is the best action, they know which one to

avoid by checking the negative rewarded actions.

Fig. 3. Exemplary trajectories during exploit trials, for 5 agents and 10
obstacles

Alternating between explore and exploit trials plays an

important role in the performance outcome. The agents must

explore the possible actions set in order to maximize their

experience in terms of the route to be chosen. At the end we

can see the emergence of a collision-avoidance behavior.

B. Behavior Learning Outcome

In this section we are interested in analyzing the rules

learned by the Q-Learning process in terms of the complexity

of the resulting rule structure and potential use as source of

inspiration in a modeling process.

In the following analysis we will examine two simulation

scenarios: 1 agent and 10 obstacles; and 5 agent and 10



obstacles. In both cases we consider the outcome of one agent

from an exemplary simulation.

1) Raw Q-Learning Rules: The rules generated by the

learning process can be determined by taking for every sit-

uation the action with the highest q-value as it is done in the

exploit phases. Depending on the situation, there might be no

action with a positive q-value. The rules with a Q-Value of

zero represent situation-action pairs that have not been tested

during the simulation. Figure 4 depicts two out of 12 rules

with the highest Q-value on the 1-agent scenarios.

Fig. 4. Two out of 12 rules with the highest Q-value for the agent in the
1-agent scenario.

Figures 5 and 6 show the distribution of the reward predic-

tion, i.e. the Q-value, for the complete rules set for the single

agent, respectively a randomly selected exemplary agent from

a simulation with 5 agents. One can see that there are only a

few rules with a high Q-value.

It is obvious that the Q-value alone cannot be a selection

criteria for rules forming a behavior model as the ones with the

highest Q-value naturally contain situations where the agent

directly perceives the exit. It is also possible to see that the

agent in this case has a majority of rules with Q-Value 0,

which means that a lot of state-action mappings have not been

tested. This is not case for the simulation with 1 agent and

10 obstacles, as seen in figure 5, where the majority of rules

have been tested. The agent has explored more, resulting in a

more elaborated representation of the behavior. This difference

is caused by the fact that the simulation with only 1 agent

presented a smaller set of possible states to be tackled due to

the simplicity of the interactions just with static obstacles.

Another important aspect about the agents’ experience is

that, since the agents are randomly positioned in the scenario

at the beginning of each trial, the rules are not biased by a

fixed position, so the rules set is more elaborated than it would

be if they had to know only one best way to get to the exit.

The agent from the simulation with only one agent has a

positive rules set – consisting of rules with positive, non-zero

q-values – of 229 rules, while the agent from the simulation

Fig. 5. Q-Learning value distribution for an exemplary agent from a
simulation with 1 agents and 10 obstacles

Fig. 6. Q-Learning value distribution for an exemplary agent from a
simulation with 5 agents and 10 obstacles

with 5 agents has a number of 1507 true positive rules. This

can be seen as an effect of the interaction with other agents,

generating different situation to be visited, specially when it

gets closer to the exit, the situation becomes more dense and

the agents must avoid the collisions, and get to the exit.

Figures 7 and 8 show the distribution of these final rules

over the possible actions, for the cases with 1 and 5 agents

respectively. We can see the effect of the initial random

positioning in each trial. We have a balanced distribution for

the rules determining going to the left or right, which makes

sense, since the agent must learn to find its way out of the

scenario no matter where it has started. The majority of the

rules indicate the MoveStraight action. This comes from the

fact that the agent is reoriented towards the exit after the

execution of any action. Unless the agent needs to avoid a

collision, MoveStraight is the best action to choose.

We can identify the collision-avoidance behavior focussing

on an exemplary element of the perceptions of the agent (1

agent scenario in this case). Considering action MoveRight

and perception ObstacleImmediatelyRight, we see that there

is a larger number of rules indicating false in this perception

in all rules with the MoveRight action, see figure 9.



Fig. 7. Rules distribution over the actions for an exemplary agent from a
simulation with 1 agent and 10 obstacles

Fig. 8. Rules distribution over the actions for an exemplary agent from a
simulation with 5 agents and 10 obstacles

2) Processing the rules: As the set of rules with truly

positive Q-value in all scenarios is far too large to be trans-

parently presented to a human expert, we suggest to use a

post-processing step for improving the analysis of the rule set

on a detailed level. As there are a number of candidates that

may be suitable for generalizing the rule set in a way that all

learnt rules are captured in a compact form.

For this aim, we tested three different machine learning

algorithms – mainly classification learners – using all rules

with non-zero, positive Q-Value: K Nearest Neighbors (KNN)

[19], CART Decision Trees [20] and the CN2 rule inductor

[21]. The K-Nearest Neighbors is arguably one of the simplest

machine learning algorithms, while Decision Trees and CN2

are of particular interest to this work because of the inter-

pretability provided by their resulting representation of the

knowledge captured in the training set. We used KNN with a

K value of 5 for the experiments. The Decision Tree is a simple

CART with Gini’s index of impurity for node splitting. CN2

algorithm uses the Laplace method for rule quality estimation.

As mentioned above, the results of this post-processing

step have to be evaluated with two criteria: How well they

capture the given rule set and how good they are able to

generalize the rule set for bringing the rules. The first can

be measured in terms of classification accuracy, the second is

the generalization and compactness of the resulting behavior

description.

a) Classification Accuracy: Table II shows the classifica-

tion accuracy for the above mentioned algorithms, both in the 1

agent and 5 agents experiments, using 10 fold cross validation

in the training set. Table III shows the average classification

accuracy, when model built from one agent’s experience is

tested with another agent’s experience: We can see that the

classification accuracy for the case with 1 agent outperformed

the case with 5 agents. This is clearly an effect of the exploit-

Fig. 9. Frequency of rules with perception ObstacleImmediatelyRight as
false (left bar) and true (right bar) for action MoveRight

explore tradeoff. The agent from the 1 agent simulation has a

lower number of states to visit during the simulation, and this

reflects on the accuracy of the rules as they are tested more

times and converge faster to the optimal solution (state-action

mapping). The agents from the 5 agents scenario have a larger

set of states that potentially may occur, reflected also in the

number of rules. This requires more cycles to converge to an

optimal solution.

TABLE II
CLASSIFICATION ACCURACY - 10 FOLD CROSS VALIDATION

KNN Decision Tree CN2

1 agent 0.6593 0.6375 0.6334

5 agents 0.2907 0.2654 0.2980

TABLE III
CLASSIFICATION ACCURACY - VALIDATION AMONG DIFFERENT AGENTS

KNN Decision Tree CN2

1 agent 0.6724 0.6983 0.6897

5 agents 0.3098 0.3230 0.3316

While they are all good models – as providing a solution

to the problem (as seen in section V-A) – they can not be

generalized to other good solutions (other agents’ experi-

ences). The convergence of the solution, which determines its

generalization to the problem is therefore a function of the

configuration of the learning, and more important, a function

of the explore-exploit distribution, the number of agents and

the set of perceptions and actions, that determine the size of

the state-action mapping.

Figure 10 shows the confusion matrix for the decision

tree learnt from the simulation with 1 agent, testing with

cross-validation: Rows represent the expected class (action)

from the classification model, as presented in the Q-Learning

mapping and columns represent the classification determined

by the decision tree. We highlight the number of correctly

classified instances. The majority of misclassified instances



falls on cases where different actions could result in similar,

good rewards. For instance, there is a common misclassifica-

tion among the actions MoveStraight, MoveSlightlyRight and

MoveSlightlyLeft. This comes from the fact that when the

agent is facing the exit, all these three actions will maximize

the reward (represented by reaching the exit).

Fig. 10. Confusion matrix for the decision tree in the simulation with 1
agent and 10 obstacles

b) Compactness and Readability of the Learnt Behavior

Representation: The second dimension is to be analyzed, with

regards to the improving the representation of the behavior for

a human modeler. We assumed that the best result could be

produced by the decision tree learner. However, the CART de-

cision tree learner was not able to produce an understandable,

compact model in this problem. In the case of 1 agent the tree

has 117 nodes and 59 leaves. For the case with 5 agents the

tree has 1637 nodes and 819 leaves. For illustration, figure

11 outlines a part of the tree generated from the experience

of the agent in the case of 1 agent and 10 obstacles. In this

figure, the codes represented in the rule stand for different

agent perceptions. For instance EIA means Exit Immediately

Ahead.

Fig. 11. A branch of the decision tree for the case with 1 agent and 10
obstacles

The post-processing result provided by the CN2 algorithm

is better than the decision tree learner: For example, figure

12 shows the best 3 (from a total of 29) rules created by

the CN2 algorithm, from the training set of non-zero, positive

rules in the case of 1 agent. CN2 was able to reduce the rules

representation from 229 to 29 rules. The rules can be evaluated

by their quality, size and coverage. Here, as for the decision

trees, the perceptions are represented by codes. The rules are

clear and concise. Because of that, CN2 can be seen as a step

further towards interpretability.

Fig. 12. CN2 best three rules for the simulation with 1 agent and 10 obstacles

In principle, a set of rules for the agents’ producing a

solution to the evacuation problem could be learnt – using a

technique that results in human-readable rules. However, from

these rules that were found by the Q-Learning, we could not

construct a behavior representation that fully resembles the

knowledge coded in the rule set, nor derive a representation

of the rules that a human modeler could easily oversee. On

the other side, the scenario is so simple, that it is possible

to directly program a set of about 10 rules exhibiting almost

optimal behavior.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented our investigation towards a

learning-driven methodology by evaluating Reinforcement

Learning as an agent learning architecture. The main moti-

vation for this work is investigate the possibilities of creating

a learning-based methodology for the design of a multiagent

simulation model avoiding a time consuming trial and error

process when determining the details of agent behavior.

In a small evacuation scenario, we showed that the em-

ployed learning technique can produce plausible behavior in

an agent-based simulation. However, the interface between

the learning technique and the agent environment is by no

means trivial. The environmental model, feedback function,

perception, and action sets are critical. There are also ideas

on the analysis of the different architecture that may improve

the usability of the learned behavior model.

Using a learning technique transfers the basic problem from

direct behavior modeling to designing the agent interface and

environment reward computation. To do so successfully, a

general understanding of scenario difficulties and the avail-

able machine learning techniques is necessary. An example

is the fundamental requirement of the Markov property in

reinforcement-based approaches [5] – in our case Q-learning.

Provided perceptions need to contain sufficient information

to be able to learn the expectation of immediate and future

possible reward accurately.

The standard implementation of Q-Learning, used in this

paper, offers us only the estimated reward for each possible

condition-action pair. For more intelligent interpretation of

the rule set – that is in its raw state without any form of

generalization – we decide to use three different machine



learning algorithms: K-Nearest Neighbors, Decision Trees and

CN2 rule inductor. The resulting, full behavior model for the

Q-Learning is only partially helpful as a guidance for modeling

in this case. Generalization still needs to be improved, as a part

of the learning process or as a post-processing step. This could

be achieved by using more flexible classification techniques,

such as multi label classification, since in this process we have

to deal with multiple good solutions. Another important aspect

to be considered here is the tradeoff between explore and

exploit, and how this scales to the complexity of the problem,

in terms of the number of agents and the size of the state-

action mapping in a multiagent simulation. This is a relation

yet to be analyzed in detail level.

There are admittedly many more challenging application

scenarios than an evacuation scenario where all agents have

the same goal, the behavior repertoire is quite restricted, and

there is no direct communication between agents. In such

advanced environments, the learning and environment design

will certainly pose additional challenges.

Our next steps include testing other learning techniques to

investigate their performance, outcome and appropriateness

for this methodology. A short analysis of Learning Classifier

Systems and Neural Networks can be found in [3]. We plan

to also test approaches such as evolutionary programming

support vector machines, and other forms of reinforcement

learning, respectively learning automata. An alternative for

the post-processing step worth testing could be multi label

classification [22], where we could gather the experience from

different agents and find different best actions for a given

situation, increasing generalization.

Besides that, we will pursue further self-modeling agent

experiments. We are considering the application of the learning

technique in other, more complex scenarios, such as an evac-

uation of a train with about 500 agents, complex geometry

with exit signs and time pressure. We are also interested in

a scenario where cooperation / collaboration is required, in

order to investigate the possible emergence of the cooperation

in the agent model, through the learning process. This exper-

imentation should consider situations with and without direct

communication between the agents.

REFERENCES

[1] M. Fehler, Kl’́ugl, and F. Puppe, “Approaches for resolving the dilemma
between model structure refinement and parameter calibration in agent-
based simulations,” in AAMAS ’06: Proceedings of the 5th international

joint conference on Autonomous agents and multiagent systems. ACM
Press, 2006, pp. 120–122.

[2] F. Klügl, “Multiagent simulation model design strategies,” in MAS&

S Workshop at MALLOW 2009, Turin, Italy, Sept. 2009, ser. CEUR
Workshop Proceedings, vol. 494. CEUR-WS.org, 2009.

[3] R. Junges and F. Klügl, “Agent architectures for a learning-driven
modeling methodology in multiagent simulation,” in MATES 2010:

Proceedings of the 8th German Conference on Multiagent System

Technologies (to appear), 2010.

[4] G. Weiß, “Adaptation and learning in multi-agent systems: Some re-
marks and a bibliography,” in IJCAI ’95: Proceedings of the Workshop

on Adaption and Learning in Multi-Agent Systems. London, UK:
Springer-Verlag, 1996, pp. 1–21.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[6] A. Nowe, K. Verbeeck, and M. Peeters, “Learning automata as a basis
for multi agent reinforcement learning,” pp. 71–85, 2006.

[7] C. Adami, Introduction to artificial life. New York, NY, USA: Springer-
Verlag New York, Inc., 1998.

[8] J. Grefenstette, “The evolution of strategies for multi-agent environ-
ments,” Adaptive Behavior, vol. 1, pp. 65–90, 1987.

[9] R. J. Collins and D. R. Jefferson, “Antfarm: Towards simulated evolu-
tion,” in Artificial Life II. Addison-Wesley, 1991, pp. 579–601.

[10] J. Denzinger and M. Fuchs, “Experiments in learning prototypical
situations for variants of the pursuit game,” in In Proceedings on the

International Conference on Multi-Agent Systems (ICMAS-1996. MIT
Press, 1995, pp. 48–55.

[11] Y. Maeda, “Simulation for behavior learning of multi-agent robot,”
Journal of Intelligent and Fuzzy Systems, pp. 53–64, 1998.

[12] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial Intelligence,
vol. 55, no. 2-3, pp. 311 – 365, 1992.

[13] M. R. Lee and E.-K. Kang, “Learning enabled cooperative agent behav-
ior in an evolutionary and competitive environment,” Neural Computing

& Applications, vol. 15, pp. 124–135, 2006.
[14] R. Neruda, S. Slusny, and P. Vidnerova, “Performance comparison of

relational reinforcement learning and rbf neural networks for small
mobile robots,” in FGCNS ’08: Proceedings of the 2008 Second

International Conference on Future Generation Communication and

Networking Symposia. Washington, DC, USA: IEEE Computer Society,
2008, pp. 29–32.

[15] J.-P. Georg, G. Picard, M.-P. Gleizes, and P. Glize, “Living Design for
Open Computational Systems,” in International Workshop on Theory

And Practice of Open Computational Systems (TAPOCS) at 12th IEEE

International Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE’03), M. Fredriksson, A. Ricci,
R. Gustavsson, and A. Omicini, Eds. Linz, Austria: IEEE Computer
Society, June 2003, pp. 389–394.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[17] F. Klügl, R. Hatko, and M. V. Butz, “Agent learning instead of
behavior implementation for simulations - a case study using classifier
systems,” in MATES 2008: Proceedings of the 6th German Conference

on Multiagent System Technologies. Springer Berlin / Heidelberg, 2008,
pp. 111–122.

[18] F. Klügl, G. Klubertanz, and G. Rindsfüser, “Agent-based pedestrian
simulation of train evacuation integrating environmental data,” in KI

2009: Advances in Artificial Intelligence, 32nd Annual German Confer-

ence on AI, Paderborn, Germany, September 15-18, 2009. Proceedings,
ser. Lecture Notes in Computer Science, vol. 5803. Springer, 2009, pp.
631–638.

[19] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[20] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and Regression Trees, 1st ed. Chapman and Hall/CRC, January 1984.
[21] P. Clark and T. Niblett, “The cn2 induction algorithm,” MACHINE

LEARNING, vol. 3, no. 4, pp. 261–283, 1989.
[22] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”

Int J Data Warehousing and Mining, vol. 2007, pp. 1–13, 2007.


