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Abstract—In this paper we describe SIMBA, a simulator for
business administration, as a Multi-Agent platform for the design,
implementation and evaluation of virtual agents. SIMBA creates
a complex competitive environment in which intelligent agents
play the role of business decision makers. An important issue
of SIMBA architecture is that humans can interact with virtual
agents. Decision making in SIMBA is a challenge, since it requires
handling large and continuous state and action spaces. In this
paper, we propose to tackle this problem using Reinforcement
Learning (RL) and K-Nearest Neighbors (KNN) approaches. RL
requires the use of generalization techniques to be applied in large
state and action spaces. We present different combinations in the
choice of the generalization method based on Vector Quantization
(VQ) and CMAC. We demonstrate that learning agents are very
competitive, and they can outperform human expert decision
strategies from business literature.

I. INTRODUCTION

Business simulators are a promising tool for research. The

main characteristic of SIMBA (SIMulator for Business Admin-

istration) [2] is that it emulates business reality. It can be used

from a competitive point of view, since different companies

compete among themselves to improve their results. In this

paper, SIMBA is considered as a multi-agent framework where

the different agents manage their companies in different ways.

SIMBA can include several autonomous agents to play the role

of competing teams and, based on the research on decision

making patterns of human teams, further research is made to

improve the complexity and effectiveness of such intelligent

agents.

Decision making in SIMBA requires handling more than

100 continuous state variables, and more than 10 continuous

decision variables, which makes the problem hard even for

business administration experts. The motivation of this paper

is the design, implementation and evaluation of virtual agents

in SIMBA using different machine learning (ML) approaches.

The goal is that the developed agents can outperform human-

like behavior when competing against hand-coded and random

virtual agents, but also against expert humans players.

Human players have experimented the consequences of their

decisions in competition with the developed virtual agents.

But, given that the agents try to “win” in all cases, they

make the game too hard for novice players. So “pedagogical”

objectives for human players competing with our virtual

agents, are not directly included in the goal of this paper.

Designing virtual agents whose behavior challenges human

players adequately is a key issue in computer games devel-

opment [23]. Games are boring when they are too easy and

frustrating when they are too hard [8]. Difficulty of the game

is critically important for its “pedagogical” worth. The game

difficulty must be such that it is “just barely too difficult” for

the subject. If the game is too easy or too hard, “pedagogical”

worth appears to be less efficient. So most games allow human

players adjust basic difficulty (easy, medium, hard).

However, developing agents that can outperform human-like

behavior, under narrow circumstances, can do pretty well [15]

(ex: chess and Deep Blue or Othello and Logistello). Deep Blue

defeated World Chess Champion Garry Kasparov in an exhi-

bition match. Campbell and Hsu describe the architecture and

implementation of their chess machine in the paper [7]. A few

months after this chess success, Othello became the new game

to fall to computers when Michael Buro’s program Logistello

defeated the World Othello Champion Takeshi Murakami. In

the paper [3], Buro discusses the learning algorithms used in

his program. Thus, the goal of this paper is the development of

virtual “business” agents that can be able to beat hand-coded

and random virtual agents, but also human business experts.

To do so, we use two different learning approaches. The

first one is Instance Based Learning (IBL). In this paper we

propose the Adaptive KNN algorithm, a variation of KNN,

where experience tuples are stored and selected automatically

to generate new behaviors.

However, decision making for business administration is an

episodic task where decisions are sequentially taken. Therefore

we also propose to use Reinforcement Learning (RL). The

RL agents developed need to apply generalization techniques

to perform the learning process, given that both the state

and action spaces are continuous. In this paper, we propose

two different generalization methods in order to tackle the

large state and action spaces. The first one, Extended Vector

Quantization for Q-Learning, uses Vector Quantization (VQ)

to discretize both the state and action spaces, extending

previous works where VQ was used only to discretize the state

space[6]. Some tasks have been solved by coarsely discretizing

the action variables [14], but up to our knowledge, this is

the first time that VQ is used to discretize the action space.



Fig. 1. SIMBA’s Arquitecture

The second generalization approach, CMAC-VQQL, is based

on the combination of VQ to discretize the action space and

CMAC (Cerebellar Model Articulation Controller) [1], which

is motivated by CMAC’s demonstrated capability to generalize

the state space.

Section II describes SIMBA. Section III introduces the

learning approaches proposed, while Section IV shows how

these approaches have been used to learn the virtual agents

for decision making in SIMBA. Section V shows comparative

results of the virtual agents, when competing among them but

also when competing against expert human players. Section VI

summarizes the related work. Last, Section VII concludes.

II. SIMBA

In this section, SIMBA simulator is described in detail.

A. SIMBA’s Architecture

Figure 1 shows the architecture of the business simulator

from a Multi-Agent perspective. The architecture designed

enables multiple players to interact with the simulator, in-

cluding both software agents and human players. The main

components of the system are:

• Simulation Server: Once all decisions are taken for the

current round, it computes the values of the variables

in the marketplace for every player. Finally, it sends the

results computed to each player. The player (software of

human) uses these results to choose the best decisions in

the next round of the simulation.

• Simulation Control: It manages the software agents

and their decisions. It receives the decision taken by

the software agents and sends them to the Simulation

Server. The simulation server the results computed to

the simulation control. The simulation control sends the

results to the corresponding software agent.

• Software Agents: They represent an alternative to human

players. In every step, the software agents receive the

results computed for the Simulation Server. The software

agents use this information to take the decisions for the

next round of the simulation.

B. Business Human Strategies

Different business strategies appear in the business litera-

ture, and they all could be followed to manage the companies

in SIMBA, as will be shown in Section V. We describe some

classical ones:

1. Incremental decisions. This type of business strategy

is based on incremental decisions for all decision variables,

which typically ranges from a 10% to a 20%. This business

strategy is considered as a conservative behavior.

2. Risk decisions. It is based on strong changes in business

decisions. It has strong impacts in market reactions, and is

useful to detect gaps and market opportunities.

3. Reactive. An organization with this type of strategy

attempts to locate and maintain a secure niche in a relatively

stable product or service area [11].

4. Low cost strategy. With this strategy, managers try to

gain a competitive advantage by focusing the energy of all the

departments on driving the organization’s costs down below

the costs of its rivals [12].

5. Differentiation and specialization. A differentiation

strategy is seen when a company offers a service or product

that is perceived as unique or distinctive from its competi-

tors [12].

Which strategy management is chosen in every moment

depends on the organization’s strengths and its competitor’s

weaknesses.

C. Autonomous Decision Making in Simba

The goal of this section is to describe how a SIMBA software

agent can be implemented. To do this, we describe the state

and action spaces, the transition function to transit between

states and the variable to maximize.

State Space. The state computed in every round or simu-

lation step is composed of 174 continuous variables. Table I

shows some of the features that compose the state space.

Action Space. The players (software or humans) must ap-

proach the decisions on the different functional areas of their

companies. Each market in the competition requires the use

of 25 variables. This is an indicator of SIMBAS’s capacity to

approach the complexity of managerial decision-making. In

our experiments, we consider a subspace of the total action

space and we use only the ten variables shown in table I. This

reduction was suggested by the experts, because the discarded

variables are not very significant. All the actions that the agents

can perform are constrained by the semantic of the business

model. For instance, a company can not sell its product if it

does not have stock.

Transition function. The different players participate in a

simulation in a step by step round mode. Each simulation step

is called a period, which is equivalent to three real months.

When a round ends, the time machine is run. By doing this, the

simulator integrates the previous periods situation, the teams’

decisions, and the parameters of the general economic envi-

ronment together with those of each geographic market, and

orders the Simulators Server to generate output information

for the new period.

Variable to maximize. The agents try to maximize the result

of the exercise (profit). From a RL point of view, the objective

is to maximize the total reward received. In this case, we



TABLE I
A SUBSET OF FEATURES OF THE STATE AND ACTION SPACES.

FEATURES FEATURES

of the State Space of the Action Space

Account value Selling price

Human resources Advertising expenses

Material cost Network sales budget

Operating margin Commercial information

Financial expenses Training budget

Pre-tax income Production scheduled

Tax Material order

Training expenses Research and Development budget

Bank overdraft Loan

Economic productivity Term loan

Advertising prediction

Effort sales network

define the immediate reward as the result of the exercise in

a period or step. Therefore, there is no delayed reward and,

like in other classical domains like Keepaway [17], immediate

rewards received in every simulation step are relevant.

III. PROPOSED ALGORITHMS FOR LEARNING VIRTUAL

AGENTS

In this section we describe the new learning algorithms

proposed, based on KNN and RL.

A. Adaptive KNN

In this paper, we propose a variant of KNN called Adaptive

KNN (Table II). In this variant, we can distinguish two phases.

In the first one, a data set C is obtained during an interaction

between the agent and the environment. This data set C is

composed by tuples in the form < s, a, r > where s ∈ S,

a ∈ A and r ∈ ℜ is the immediate reward. In the second one,

the set C obtained in the previous phase is improved during

a new interaction between the agent and the environment. In

each step of this second phase, the simulator returns the current

state s where the agent is. The algorithm selects the K nearest

neighbors to the state s in C. Among these K neighbors, it

selects the tuple with the best reward obtained in the phase

one. Then modify slightly the actions of this tuple and execute

it. If the new reward obtained is better than the worst reward

in K, it replaces the worst tuple in K with the new experience

generated. Thus, the algorithm adapts the initial set C obtained

in the phase one, to get increasingly better results in the second

phase.

B. RL Approaches

Among many different RL algorithms, Q-learning has been

widely used in the literature [20].In Q-Learning, the update

function is performed following equation 1, where α is a

learning parameter, and γ is a discount factor that reduces

the relevance of future decisions.

Q(st, at)→ Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (1)

Except in very small environments it is impossible to enu-

merate the state and action spaces. In this section we explain

two new approaches for state and action space generalization

problem.

TABLE II
ADAPTIVE KNN ALGORITHM

Adaptive KNN

1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s, a, r > from an

interaction of the agent in the environment, where s ∈ S, a ∈ A and r ∈ ℜ

is the immediate reward.

2. During a new interaction between the agent and the environment

2.1 Get state s from simulator

2.2 Select the K nearest neighbors of s in the set C

2.2.1 For each tuple ci ∈ C, where ci =< si, a, r >, calculate d(s, si)

2.2.2 Order d(s, si) from lowest to highest

2.2.3 Select first K tuples, CK

2.3. Select the tuple cb with the best r, where cb =< sb, ab, rb > and cb ∈ CK

2.4. Modify ab from cb, am = ab ± random∆

2.5. Execute action am obtaining reward r′ ∈ ℜ

2.6. Update set C using the new experience

2.6.1. Select the tuple cw ∈ CK with the worst reward rw
2.6.2. if r′ > rw then replace the tuple cw =< sw, a, rw > with the tuple

< s, am, r
′ >

3. Return C

TABLE III
EXTENDED VQQL ALGORITHM

Extended VQQL

1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s1, a, s2, r > from

an interaction of the agent in the environment, where s1, s2 ∈ S, a ∈ A and

r ∈ ℜ is the immediate reward.

2. Reduce the dimension of the state space

2.1. Let Cs the set of states in C

2.2. Apply a feature selection approach using Cs to reduce the number of

features in the state space. The resulting feature selection process is defined

as a projection Γ : S → S′

2.3. Set C′

s
= Γ(Cs)

3. Discretize the state space

3.1. Use GLA to obtain a state space discretization, Ds′ = s′1, s
′

2, ..., s
′

n
,

s′
i
∈ S′, from C′

s
.

3.2. Let V QS
′

: S′
→ Ds′ the function that given any state in S′ returns the

discretized value in Ds.

4. Discretize the action space

4.1. Let Ca the set of actions in C

4.2. Use GLA to obtain an action space discretization, Da = a1, a2, ..., am,

ai ∈ A, from Ca

4.3. Let V QA : A→ Da the function that given any state in A returns the

discretized value in Da

5. Learn the Q-Table

5.1. Map the set C of experience tuples to a set C′. For each tuple

< s1, a, s2, r > in C, introduce in C′ the tuple

< VQS
′

(Γ(s1)), V Q
A(a), V QS

′

(Γ(s2)), r >

5.2. Apply the Q-Learning update function defined in equation 1 to learn a Q

table Q: Ds′ ×Da → ℜ, using the set of experience tuples C′

6. Return Q, Γ, V QS
′

, and V QA

1) Extended VQQL for state and action space generaliza-

tion: Applying VQ techniques permits to find a more compact

representation of the state and action space [6]. A vector

quantizer Q of dimension K and a size N is a mapping from a

vector (state or action) in the K-dimensional Euclidean space,

Rk, into a finite set C containing N states, Q : Rk → C where

C = {y1, y2, ..., yN}, yi ∈ R
k. In this way, given C, and a

state x ∈ Rk, V Q(x) assigns x to the closest state from C,

V Q(x) = arg miny∈C{dist(x, y)}.

To design the vector quantizer we use the Generalized Lloyd

Algorithm (GLA). The Extended VQQL algorithm is shown

in Table III.



It uses VQ to generalize the state and action spaces. In

Extended VQQL algorithm, two vector quantizers are designed

for each agent. The first one is used to generalize the state

space and the second one is used to generalize the action

space. The vector quantizers are designed from the input data

C obtained during an interaction between the agent and the

environment. The data set C is composed by tuples in the

form < s1, a, s2, r > where s1 and s2 is in the state space S,

a is in the action space A and r is the immediate reward. In

many problems, s is composed by a large number of features.

In these cases, we suggest to apply feature selection to reduce

the number of features in the state space. Feature selection is a

technique of selecting a subset of relevant features for building

a new subset. So feature selection is used to select the relevant

features of S to obtain a subset S′. This feature selection

process is defined as Γ : S → S′. The set of states s′ ∈ S′,
C ′s, are used as input for the Generalized Lloyd Algorithm to

obtain the first vector quantizer. The vector quantizer V Qs
′

is a mapping from a vector s′ → S′ into a vector s′ ∈ Ds′ ,
where Ds′ is the state space discretization Ds′ = s′1, s

′
2, ..., s

′
n

for s′i ∈ S
′. The set of actions a ∈ A, Ca, are used as input

for the GLA to obtain the second vector quantizer.

The vector quantizer V QA is a mapping from a vector

a ∈ A into a vector a ∈ Da, where Da is the action space

discretization Da = a1, a2, ..., am for ai ∈ A. In the last

part of the algorithm, the Q-table is learned from the obtained

discretizations using the set C ′ of experience tuples. To obtain

the set C ′ from C, each tuple in C is mapped to the new

representation. Therefore, every state in C is firstly projected

to the space S′ and then discretized, i.e. V QS
′

(Γ(S)); every

action a ∈ A in C is also discretized V QA(a).

2) CMAC-VQQL for state and action space generalization:

CMAC is a form of coarse coding [20]. In CMAC the features

are grouped into partitions of input state space. Each of such

partition is called a tiling and each element of a partition is

called a tile. Each tile is a binary feature. The tilings were

overlaids, each offset from the others. In each tiling, the state is

in one tile. The approximate value function, Qa, is represented

not as a table, but as a parameterized form with parameter

vector "θt. This means that the approximate value function Qa
depends totally on "θt. In CMAC, each tile has associated a

weight. The set of all these weights is what makes up the

vector "θ. The approximate value function, Qa(s) is calculated

in the equation 2.

Qa(s) = 'θ
T 'φ =

n∑

i=0

θ(i)φ(i) (2)

The CMAC-VQQL algorithm, described in Table IV, com-

bines two generalization techniques. It uses CMAC to gener-

alize the state space and VQ to generalize the action space.

In this case, a data set C is obtained during an interaction

between the agent and the environment. This data set C is

composed by tuples in the form < s1, a, s2, r > where s1 and

s2 is in the state space S, a is in the action space A and r is

the immediate reward. In the same way that previously, s is

TABLE IV
CMAC-VQQL ALGORITHM

CMAC-VQQL

1. Gather experience tuples

1.1. Generate the set C of experience tuples of the type < s1, a, s2, r > from

an interaction of the agent in the environment, where s1, s2 ∈ S, a ∈ A and

r ∈ ℜ is the immediate reward.

2. Reduce the dimension of the state space

2.1. Let Cs the set of states in C

2.2. Apply a feature selection approach using Cs to reduce the number of

features in the state space. The resulting feature selection process is defined

as a projection Γ : S → S′

2.3. Set C′

s
= Γ(Cs)

3. Discretize the action space

3.1. Let Ca the set of actions in C

3.2. Use GLA to obtain an action space discretization, Da = a1, a2, ..., am,

ai ∈ A, from Ca

3.3. Let V QA : A→ Da the function that given any state in A returns the

discretized value in Da

4. Design CMAC

4.1. Design a CMAC function approximator from C′

s
taking into account the

obtained action space Da.

5. Approximate the Q function

5.1. Map the set C of experience tuples to a set C. For each

tuple < s1, a, s2, r >∈ C, introduce in C’ the tuple

< Φ(Γ(s1)), V QA(Ca),Φ(Γ(s2)), r >

where Φ is the binary vector of features

5.2. Update the vector weights θ for the action V QA(Ca) using Φ(Γ(s1)),

Φ(Γ(s2)) and r.

5.3. Apply the approximate value function defined in equation 2 to approximate

the Q function for the action V QA(Ca) using θ and Φ(Γ(Cs)).

6. Return Q, Γ, θ, and V QA

composed by a large number of features. Feature selection is

used to select a subset S′ of the relevant features of S.

The set of actions a ∈ A, Ca, are used as input for

the GLA to obtain the second vector quantizer. The vector

quantizer V QA is a mapping from a vector a ∈ A into a

vector a ∈ Da, where Da is the action space discretization

Da = a1, a2, ..., am for ai ∈ A. Later, the CMAC is built

from C ′s taking into account the obtained action space Da.

For each state variable x′i in s′ ∈ S′ the tile width and the

number of tiles per tiling are selected taking into account their

ranges. In our work, a separate value function for each of the

discrete actions is used. In CMAC, each tile has associated a

weight. The set of these weights is what makes up the vector θ.

In the last part, the Q function is approximated by the equation

2.

IV. VIRTUAL AGENTS IN SIMBA

In the following evaluation performed, we assume that 6

companies are controlled by agents of different types. These

agents are: Random Agents, that assign to each decision

variable a random value following an uniform distribution;

Hand-Coded Agents, that modify their decision variables by

increasing their values using the Consumer Price Index (CPI);

RL Agents, using the Extended VQQL and CMAC-VQQL

algorithms described in Section III-B; and Adaptive KNN

Agents, using the algorithm described in section III-A.

3) Executing the Extended VQQL Algorithm: Executing the

Extended VQQL algorithm to learn the VQ Agents requires

performing the 5 steps of the algorithm:



Step 1: Gather experience tuples. To gather experience, we

perform an exploration in the domain by using hand-coded

agents. Specifically, we obtain the experiences generated by

a hand-coded agent managing company 1 against five hand-

coded agents managing companies 2, 3, 4, 5 and 6 respectively.

Step 2: Reduce the dimension of the state space. The goal

of this step is to select, from among all features in the state

space, those features most related to the reward (the result

of the exercise). To perform this phase, we use the data-

mining tool, WEKA [22] using the attribute selection method

CfsSubsetEval. This method evaluates the worth of a subset

of attributes by considering the individual predictive ability

of each feature along with the degree of redundancy between

them. The resulting description of the state space after the

attribute selection process is shown in Table I.

Step 3: State space discretization. Now, we use the GLA to

discretize the state space.

Step 4: Discretize the action space. Again, we use GLA to

discretize the action space. The action space is composed of

the features shown in Table I.

Step 5: Learn the Q table. Once both the state and action

spaces are discretized, the Q function is learned using the

mapped experience tuples and the Q-Learning update function.

The Q table is generated, composed of n rows (where n is the

number of discretized states) and m columns (where m is the

number of discretized actions).

4) Executing CMAC-VQQL Algorithm: Executing the

CMAC-VQQL algorithm to learn the CMAC Agents requires

performing the 5 steps of the algorithm as described in

Table IV. Steps 1 and 2 of CMAC-VQQL are the same as

steps 1 and 2 of Extended VQQL (gather experience and

the reduction of the dimension of the state space). Step 3 of

CMAC-VQQL (action space discretization) is also the same

as step 4 of Extended-VQQL. Step 4 is the design of the

CMAC function approximator. In our experiments we use

single-dimensional tilings. For each state variable, 32 tilings

were overlaid, each offset from the others by 1/32 of the tile

width. For each state variable, we specified the width of the

tiles based on the width of the generalization that we desired.

In the experiments we use three different configurations. The

size of the primary vector θ in Configuration #1 is 754272

(x1tiles +x2tiles + +x12tiles), in Configuration #2 is 1364320,

in Configuration #3 is 2440704. In our work, we use a

separate value function for each of the generalized actions.

Last, step 5 of the algorithm, learning the Q approximations,

can be performed.

A. Adaptive KNN in SIMBA

To apply the Adaptive KNN algorithm to create a SIMBA

software agent, we use the same state space, action space, and

transition and reward functions that for the RL agent. We also

use the same experience tuples than for the RL agent, although

in the learning process, the set is updated following step 6 of

the algorithm (as described in Table II).

TABLE V
RESULTS FOR DIFFERENT CONFIGURATIONS OF EXTENDED VQQL (IN

MILLIONS OF EUROS).

Decisions 128 64 32

States Mean Std Mean Std Mean Std

128 4,3 1,73 5,43 4,2E-04 7,73 0,09

64 6,21 3,15 7,51 0,32 8,14 0,51

32 4,94 3,68 5,69 0,06 7,62 0,28

TABLE VI
RESULTS FOR DIFFERENT CONFIGURATIONS OF CMAC-VQQL (IN

MILLIONS OF EUROS).

Decisions 64 32 8

Configuration Mean Std Mean Std Mean Std

1 4,87 1,62 6,49 0,04 7,0 0,12

2 6,23 0,13 5,82 0,90 6,25 0,37

3 5,26 0,20 5,95 3,2E-04 6,24 0,96

V. RESULTS

In the experiments, the learning agent always manages

the first company of the six involved in the simulations.

Each experiment consists of 10 simulations or episodes with

20 rounds and we obtain the mean value and the standard

deviation for the result of the exercise during the 20 periods. In

this situation, a hand-coded agent that manages the company

1 against five hand-coded agents that manage companies 2,

3, 4, 5 and 6 respectively obtains a mean value of the result

of the exercise of 2,901,002.13 euros. A random agent in the

same situation obtains -2,787,382.78 euros.

In the experiments with human experts, simulations have 8

rounds.

A. RL and KNN Results

In the first set of experiments we use the Extended VQQL

algorithm to learn an agent that manages company 1 and plays

against five hand-coded agents that manage companies 2, 3, 4,

5 and 6 respectively. The results for different discretizations

size of the state (rows) and action (columns) spaces are shown

in Table V.

The best result is obtained when we use a vector quantizer

of 64 centroids (or states) to generalize the state space and a

vector quantizer of 32 centroids (or actions) to generalize the

action space.

In the second set of experiments we use the CMAC-VQQL

algorithm. The results for the different CMAC configurations

described in section IV-4 (rows) combined with the different

sizes of the action space obtained by VQ (columns) are shown

in Table VI.

The best result is obtained when we use the Configuration

#1 of CMAC to generalize the state space and a vector

quantizer of 8 centroids to generalize the action space. This

value is smaller than the obtained with Extended VQQL but,

again, all the configurations obtain better results than the hand-

coded agent.

In the next set of experiments we use the KNN algorithm

to build an agent. The results for the different KNN configu-

rations are shown in Table VII.



TABLE VII
RESULTS FOR DIFFERENT CONFIGURATIONS OF KNN (IN MILLIONS OF

EUROS).

K 5 10 15

Learning Mean Std Mean Std Mean Std

Adaptive 6,44 3,99 9,81 0,21 9,89 0,32

No adaptive 7,86 1,15 5,20 1,11 7,47 4,36

The columns of Table VII show different results for different

values of K (5, 10 and 15 respectively). The first row presents

the results of the Adaptive KNN algorithm, as it was described

in Table II. The second row shows the results of a classical

KNN approach, without the adaptation of the training set,

i.e. without executing the steps five and six of the Adaptive

KNN algorithm. The best results are obtained with the adaptive

version, for K=10 and K=15. In these cases, we obtain a mean

value for the result of the exercise of 9,8 millions of euros,

which is higher than the ones obtained with RL.

In previous experiments, the learning agent always learned

to manage the first company of the six involved in the

simulations. However, the behavior of each company depends

on their initial states and of historical data (periods -1, -

2, etc). Therefore, learning performance may vary from one

company to other. To evaluate this issue, we repeat the learning

process for the best learning configurations, for each of the six

companies. Each experiment consists of 10 simulations with

20 rounds and we obtain the mean value and the standard

deviation for the result of the exercise during the 20 periods.

The results shown in Figure 2 demonstrate that the Extended

VQQL agent and Adaptative KNN agent obtain similar results,

and both obtain better results than the hand-coded agent.

Fig. 2. Mean value and Standard deviation for the result of the exercise.

Now, we compare the behavior of the best RL agent with

the behavior of the best Adaptative KNN agent obtained in

previous experiments. In this experiment, all the companies

have the same initial state and historical data, so the result

is independent of the company managed. This experiment

consists of 10 simulations with 20 rounds and we obtain the

mean value and the standard deviation for the result of the

exercise during the 20 periods. Figure 3 shows the mean value

and the standard deviation for each kind of agent.

For the Adaptive KNN agent, the average value grows from

the first period, and raises up to 16 millions of euros. However,

Fig. 3. RL Agents vs. Adaptive KNN Agents

TABLE VIII
RESULTS FOR INCREMENTAL DECISION STRATEGY (IN MILLIONS OF

EUROS)

Simulation 10% 20%

Agent

Extended VQQL 64-32 7,27 7,28

Adaptive KNN K=15 1,58 1,58

Human Expert 0,56 -0,18

we see that standard deviation is very high, so the behavior of

the agent managing different companies is very different. The

result for the Extended VQQL agent have two behaviours well

differentiated: before period 8, and after period 8. In the first

part, the result of the exercise always grows up, and dominates

the result of the Adaptive KNN agent. However, from period

8, the result of the exercise for the Extended VQQL agent

stabilizes to a value of around 10 millions, and it is dominated

by the other agent from period 10. Interestingly, we have

revised all the simulations performed, and this behavior always

appears. We believe that the RL agent is affected by the CPI

and the evolution of the market and, with time, the actions

obtained by the VQ algorithm becomes old-fashioned (note

that 8 periods are equivalent to two years). Therefore, if we

focus in the early periods, typically the RL agents behave

better than the KNN ones.

B. RL and KNN Agents vs. Human Experts

In this section, we present experiments where software

agents play against a human expert during 8 periods. The

human expert actually is an associate full time professor in

Strategic and Business Organization at Universidad Autónoma

de Madrid (UAM), where he is Director of Master of Business

Administration (Executive) and Director of Doctorate Program

of Financial Economics.

In all the experiments, we use the best RL and Adaptive

KNN agents obtained in the previous section. In the first

experiment, the human expert uses the incremental decision

strategy, described in section II. The results are shown in

table VIII.

In this case, the Extended VQQL agent obtains the best

results. Furthermore, given that only 8 episodes are run, the

RL agent performs much better than the Adaptive KNN agent.



TABLE IX
AGENTS VS. HUMAN EXPERT (IN MILLIONS OF EUROS)

Simulation 1 2

Agent

Extended VQQL 64-32 5,36 6,09

Adaptive KNN K=15 3,47 2,53

Human Expert -0,32 -1,30

The human expert obtains the worst results (independently of

the increment used).

In the second experiment, two different simulations with 8

rounds each are performed. The human expert combines the

use of the different business strategies described in section II.

The results are shown in table IX.

In all the experiments, the software agents obtain better

results than the human expert. From a qualitative point of

view, the virtual agents usually compete in the same market

scope. They are very effective and efficient, been almost

impossible to beat them under the parameter setting used in

these simulations. The best strategies usually make decisions

in different market scopes, using high or low strategies (for

instance, low cost or differentiation and specialization). It

means that using more competitive strategies, the gap between

the performance of the virtual agents and the human experts

could be reduced.

VI. BACKGROUND

Business gaming usage has grown globally and has a long

and varied history [4]. The first modern business simulation

game can be dated back to 1932 in Europe and 1955 in

North America. In 1932, Mary Birshstein, while teaching at

the Leningrad Institute, got the idea to adapt the concept of

war games to the business environment. In North America

the first business simulator dates back to 1955, when RAND

Corporation developed a simulation exercise that focused on

the U.S. Air Force logistics system [9]. However, the first

known use of a business simulator for pedagogical purposes

in an university course, was at the University of Washington

in a business policy course in 1957 [21].

From this point, the number of business simulation games in

use grew rapidly. A 2004 e-mail survey of university business

school professors in North America reported that 30.6% of

1,085 survey respondents were current business simulation

users, while another 17.1% of the respondents were former

business game users [5].

Over the years Artificial Intelligence (AI) and simulation

have grown closer together. AI is used increasingly in complex

simulation, and simulation is contributing to the development

of AI [24]. The need for increased level of reality and fidelity

in domain-specific games calls for the use of methods that

bring realism and intelligence to actors and scenarios (also in

business simulators). Intelligent software agents, called “au-

tonomous” avatars or virtual players, are now being embodied

in business games. Software agents can interact with each

other and their environment producing new states, business

information and events. In addition, these agents not only

provide information but also may affect the environment and

direction of the simulation [19].

Machine learning techniques (decision trees, reinforcement

learning,. . .) have been used widely to develop software

agents [18]. In [19] for example, the software agents uses

decision trees to learn different behaviors. In this case, virtual

players could take on the role of an executive or sales-

person from a supplier firm, a union leader, or any other

role relevant to the simulation exercise. In [10] the learning

agents uses a typical genetic-based learning classifier system,

XCS (eXtended learning Classifier System). In that work, RL

techniques are used, allowing decision-making agents to learn

from the reward obtained from executed actions and, in this

way, to find an optimal behavior policy. In stochastic business

games, the players take actions in order to maximize their

benefits. While the game evolves, the players learn more about

the best strategy to follow. With this, RL can be used to

improve the behavior of the players in a stochastic business

game [13]. However, in all these cases, the business simulator

games used did not involve the huge state and action spaces

that SIMBA involves.

In complex domains with large state and action spaces

is necessary to apply generalization techniques such as VQ

or CMAC. VQ has been used successfully in many other

domains [6]. In addition, CMAC [17] are extensively used

to generalize the state space, but the research on problems

where the actions are chosen from a continuous space is

much more limited. KNN has also been used in the scope

of Business Intelligence. In [16], the authors investigates the

relationship among corporate strategies, environmental forces,

and the Balanced Scorecard (BSC) performance measures

using KNN. In this case, the authors used all time the same

initial set of experience and they did not try to adapt it, using

the new experience generated during the game.

An important issue that make SIMBA different from other

classical RL domains (like Keepaway [17]) is that it is not

defined a priori as a cooperative or competitive domain. In

SIMBA, the number of adversaries is very high, and the

number of variables involved in the state and action space,

too. In addition, in SIMBA software agents can play against

humans. It is hard to find all these issues in other classical

domains. So the learning process in SIMBA represent a real

challenge.

VII. CONCLUSION

This paper introduces SIMBA as a business simulator which

architecture enables different players, including both software

agents and human players, to manage companies in different

markets. The simulator generates a competitive environment,

where the different agents try to maximize their companies’

profits. SIMBA represents a complex domain with large state

and action spaces. Therefore, the learning approaches applied

to generate the virtual agents must handle that handicap. We

have demonstrated that the proposals presented, based on Lazy

Learning and RL, achieve the goal of being very competitive



when compared with previous hand-coded strategies. Further-

more, we demonstrate that when competing with a human

expert, which follows classical management strategies, the

learning agents are able to outperform the behavior of the

human.

In the case of RL, the choice of the generalization method

have a strong effect on the results that we obtain. For this

reason, the state and action space representation is chosen with

great care, and we have proposed two new methods: Extended-

VQQL and CMAC-VQQL. This is the first time that VQ

is used to discretize the action space, and some preliminary

results have shown that it is also useful in other domains,

like autonomous helicopter control. The challenging results

obtained by the learning approaches to generate virtual agents

in SIMBA offers promising results for Autonomous Decision

Making.
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