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Abstract—Ambient Assisted Living (AAL) systems’ main goal
is to augment live quality of elderly people, by using ICT based
systems. In this paper, we are concerned with the artificial
reproduction of a physical environment (i.e. a house) and an
elder (i.e. the attended) living in such environment. An agent
based social simulation system is used for such purpose. Such
simulator will allow the integration of ubiquitous computing
appliances, services and applications in such environment. A
realistic reproduction of human behaviour in the simulator helps,
in this context, in the validation of silent monitorisation, diagnosis
and action based applications. Proofs are given in the paper
which demonstrate the level of reality reached by comparing the
artificial behaviour with real ones.

Index Terms—Ubiquitous computing, Ambient Assisted Living,
behaviour simulation, user modelling.

I. INTRODUCTION

The main thesis presented in this paper is the following:

agent based social simulation (ABSS) [1] may help in the

engineering of Ambient Intelligence systems. ABSS is a

simulation paradigm in which the focus is put on the definition

of the separate components of the simulation in an isolated

manner. In such simulation runs, the emergence of behaviours

is the main subject under study. And the metaphor of agent is

used for specification of single components and interactions

among them. An ambient intelligence [2] system is a set of

appliances, services and applications which silently surrounds

and interact with the user in an intelligent manner. In such

kind of systems, the user is the central entity of the model.

Starting from the user, services and applications are built.

A main difficulty one may find in the development process

of an AmI system is that of testing and validation. Testing is

the process of executing a program with the intent of finding

errors in the code [3]. Such errors must be debugged [3]. Some

of the errors may be found by using a Unit approach with the

system under test (SUT). Common errors which are found

in this stage are related to common programming mistakes

(e.g. values of variables out of range, shoddy checking of

return values from methods and so on). Thus, robustness of

the program is a must here. But a more elaborated test set may

be defined in order to assess the functionality of the system

(i.e. it behaves as expected). But, if the main issue in AmI

systems is a smooth interaction with the user, an Unit based

approach is no more valid here. It is clear that the user, or

at least a model of the user, should be incorporated in the

development process in order to measure to what extent, the

SUT is behaving as expected when interacting with him. In

this paper, an approach to test and validate AmI systems in a

stage prior to deployment is presented. The main idea behind

this is that the user is modelled with a computational model

and integrated into an ABSS model which incorporates as a

simulated artifact, the environment, the hardware (i.e. mainly

sensors and interfaces with the user) and integrates the real

software (i.e. services and applications). The real software is

precisely the SUT here.

The proposal is articulated by means of a methodological

work. Such a methodology is a set of procedures which

guides the developer in the definition, creation, testing and

validation of the AmI system. It is based on a methodology

previously described by Gilbert et al. [1]. It comprises the

creation of the necessary ABSS models and how they should

be employed to find errors in AmI services. The application

of the methodology is exemplified in a real domain. The

application domain is AAL (Ambient Assisted Living). An

AAL system is an ICT based solution which is devoted to

augment quality of live for elderly people. In this case, the

interest is focused on a system called Necesity [4]. It is

based on a sensor network deployed through the house and

a central processing unit. Sensors include presence, pressure

and open-door. The system is designed to work on single

person environments (e.g. an elderly who lives alone and

independently in his house). It is in charge of monitoring

activity regime of the elderly 24x7 in a manner that when

his activity pattern is anomalous, an emergency response is

started. The rest of the paper will demonstrate that an artificial

reproduction of a house, sensors and the attended, together

integrated with the real software, helps in the fine tuning of

the activity pattern management software.

The rest of the paper is structured as follows. Section II

introduces the methodology used for the engineering of AmI

services. Section III introduces the computational models em-

ployed to artificially reproduce the behaviour of the attended.

Such behaviour is based on a probabilistic and hierarchical

automata which governs the activity and location of the

modeled elderly in each instant of time. In section IV, the

validation approach is presented. It is based on the statistical

contrast of artificial data traces obtained by simulating the

automata just mentioned with similar traces coming from real

users in similar context.

II. AVA, AN AGENT BASED METHODOLOGY FOR THE

VALIDATION OF AMI SYSTEMS

This section explains an agent based methodology for the

validation of AmI systems called AVA. This methodology



Fig. 1. AVA, An Agent based methodology for the Validation of AmI systems
expressed as a flowchart

proposes the development of ABSS in order to validate AmI

applications. AVA is an extension of the methodology pro-

mulgated by Gilbert et al. [1] for the development and use of

general ABSS. The two main innovations with regarding the

classical methodology by Giltber et al. are: (1) the existence

of a step to generate simpler simulations and (2) the con-

sideration of including real elements in the simulation to get

more realistic results. This section will show the advantages

of these innovations for the specific purpose of validating

AmI applications. The AVA methodology is expressed as a

flowchart in figure 11.

Gilbert et al. [1] defines the target of a social simulation as

some “real world” phenomenon which the researcher is inter-

ested in. The AVA methodology is proposed to validate an AmI

application including their interactions with the environment

and users. Thus, AVA starts considering an AmI target (step 1)

which includes an environment, users and an AmI application

which may be finished or at an advanced stage of development.

Typically, the use of ABSS to generate knowledge involves a

necessary familiarization with the domain in the first step. This

is required to generate models of the target in the following

steps of the methodology [1]. The main elements to be studied

in an AmI system are: the environment (step 2), users (step

3) and the AmI application (step 4). Note that while the

environment and the user are inputs, the application system is

a process. In principle, the environment and users are external

and do not support changes. On the other hand, the AmI

application can be modified. This application will be refined

along the iterations of AVA to get a realistic validation. This

1The flowchart uses standard elements of classic flowcharts [5] as flow
of control (represented as arrows), processes (represented as rectangles),
decisions (rhombus), input/output (parallelograms), start and end symbols
(ovals) and predefined processes (rectangles with vertical lines at the sides).

paper discusses the performance of these steps for an AAL

system for elderly people

The development of an AmI system model is performed

in step 5. The model design associates the real system with

a representation of this system (the model) [6]. Here, the

AmI application must be modelled but also the users and

the environment. These models are necessary to validate the

AmI application because they interact with it. Moreover, a

realistic validation of the application needs realistic models

for users and environment. Therefore, models must describe

reality before being as simple as possible [7]. Section III

explains the construction of a user model for an specific AmI

application.

Step 6 deals with the implementation of the AmI system in

a simulation language. The implementation from the concepts

of the model is not a trivial task [6]. A general programming

language or a specific one of the available frameworks for

the development of ABSS can be used for the construction of

the simulation. The second option is much more convenient

because several of the typical tasks in the construction of

ABSS have been included in this kind of software packages

[1]. Examples of these tasks are scheduling agents’ actions

or building basic environments. The web of the Open Agent

Based Modeling Consortium2 nowadays lists 22 of these

frameworks. Section III shows the use of a specific software

package for the implementation of a realistic environment

model: 3D Sweethome.

After building the simulation, this must be executed (step

7). Quick, cheap and numerous experiments can be performed

thanks to the ABSS. These executions produce large amounts

of data regarding the behaviour of users, environment and

application models. Forensic analysis, step 8, is an offline

analysis to be conducted on the data stored from the pre-

vious step. The analysis should consider whether the AmI

application functionality is correct. Furthermore, this step must

validate that the behaviour of users and environment models

is consistent with the observed reality (steps 2 and 3). Without

this validation, the theories generated from simulations have

no relation to reality (as they are based on non-descriptive

models). Therefore, the functionality of the AmI application

model is linked to the users and environment models. Section

IV deals with the validation of the users model for an AAL

system

One of the innovative points in the AVA methodology is the

use of simple simulations as a means to validate descriptive

simulations. Step 9 checks if any elements of the simulation

are too complex. In this case, complexity means that it is

difficult to assess whether the behaviour of an element is the

expected one. For example, some behaviours of users can be

so complex that they need to be evaluated in isolation. An

example of this type of behaviour would be the resolution of

collisions on the motion of a large number of agents. This

behaviour is a problem to be studied itself and its validation

would be much more complicated with additional elements in

2OpenABM Consortium website: http://www.openabm.org/



the simulation (more users’ behaviours, a realistic environment

model, a realistic model of an AmI application, etc). In these

cases, the methodology proposes to consider these complex

elements as an object of study itself (step 10) and repeat the

AVA methodology for them (step 11). The reuse of models

and code in this new iteration will be direct because a more

descriptive simulation is available as result of the previous

steps. Once the complex element is validated in a simpler

simulation, which is the final result of the methodology, the

next step for the overall simulation (step 12) can be performed.

Step 12 checks if the developer has found errors in func-

tionality. If that is the case, the AmI application of step 4 must

be modified in order to correct these errors and the process

repeated. Besides the primary objective (validating the AmI

application), is typical to find bugs of previous steps at this

point in the form of implementation failures or unrealistic

models.

The final decision, step 13, checks if actual elements of

the AmI system can be connected to the simulator. The AVA

methodology proposes to inject or connect real elements in

the simulation progressively in order to make more realistic

validations3. This process is called “reality injection” and the

basic idea is that real elements can coexist with simulated

elements. After connecting real elements, the methodology

must be repeated from step 4 to improve the application and

the models. The result is an exhaustive validation which is

as realistic as possible. The obvious question is why models

and simulations are necessary if real elements (as real users)

can be injected. The answer is that a model, by definition,

is somewhat easier to study than the modelled reality. The

purpose of including real elements in simulations is to improve

the realism of the models. Then, in subsequent iterations, the

real elements will not be included because the pure simulations

allow faster and cheaper tests.

Finally, if models are descriptive enough, the bugs found in

the functionality of the AmI application model will correspond

to failures of functionality in the real AmI application. These

failures should have been corrected in each iteration of the

AVA methodology. Therefore, the result of the methodology

(step 14) is that the AmI target is exhaustively validated.

III. REALISTIC BEHAVIOUR MODELLING

In this section, the particular models used, in the application

of the AVA methodology in the AAL domain, are introduced.

In section III.A, it is presented how the physical environment

(i.e. the house and furniture) and sensors were defined. Section

III.B refers to the production of realistic computational models

for elders living in such environment and making sensors to

react on their presence. Having such models (i.e. the house,

sensors and persons) within a simulation, and its integration

with the ubiquitous computing software, such software can be

tested.

3Notice that this not involves necessarily a Participatory Multiagent Simula-
tion. The real elements do not have to be humans playing the role of simulation
components. These elements can be software applications, hardware or even
parts of the environment.

Fig. 2. A plane model in Ubik’s editor and its 3D representation

A. Environment Modelling

For Multi-Agent Based Simulation (MABS), it is available

Ubiksim4, a simulator developed by University of Murcia

that works over MASON5. It has integrated an environment

modeling tool based on SweetHome3D6, an application con-

veniently adapted for modelling attended people and their

environment. It is possible to create houses over a 2D plane,

also it offers a 3D navigable view (figure 2). This view is used

for simulation’s visualization at real time.

In the physical environment generated by using the Ubik

editor, a simple house (see figure 2) with a kitchen, a bath-

room, a bedroom and a living room is modelled. Presence

sensors are included in every room of the house. And a sensor

for open door (it is necessary for knowing when the elder

leaves the home) is also included in the outdoor. When a

simulation is run, the person moves in the house and stimulates

sensors when he is detected by them. Such sensors, through

the ubiquitous computing software, generate events. And these

events generate log entries. Such simulated log entries are used

afterwards to check if the virtual elder behaves in a realistic

manner (see section IV).

Notice that log entries (both in the simulator and the

real setting) are generated by the same monitoring service

which continuously checks if the elder may be suffering some

problem, by using a pattern recognition approach (more details

on this may be found in [4]) on the events coming from

sensors. In the first case, the person is virtual, in the second

it is real. But the monitoring service is the same.

B. Behaviour Modelling

The target of the modelling activity is a typical aged person,

who lives independently and alone in his own house. As

he lives alone, the following situation may occur: he may

suffer some health problem and stay immobilised in the

floor for too much time before anybody comes and notices

4UbikSim: http://ubiksim.sourceforge.net, last access: 20 May 2010
5MASON Toolkit: http://cs.gmu.edu/∼eclab/projects/mason/, last access: 20

May 2010
6Sweet Home 3D: http://www.sweethome3d.eu/es/index.jsp, last access: 20

May 2010



that something is wrong. But it is possible to develop an

ubiquitous computing system which detects it and generates

some emergency response process [4]. By following the AVA

methodology, we may use a simulated elder within a simulated

environment to test such system before it is deployed in a real

environment for pilot testing. Such simulated elder should be

necessarily simulated along the 24 hours of the day, repeatedly

for a determined number of weeks. For this, it is assumed

that the day is divided into time slots (i.e. morning, noon,

afternoon and night). In each time slot, it is also assumed that

the simulated person behaves specifically for such slot.

The behaviour of simulated people are modelled proba-

bilistically. In this approach, behaviours are defined as sit-

uations the agent should play in each moment. Transitions

between behaviours are probabilistic. The underlying model

is a hierarchical automaton (i.e. in a higher level there is a

number of complex behaviours that the agent may play and

once it is in a concrete state, within the state there is another

automaton with more simple behaviours). So, the modelling

of each behaviour is treated separately and the modeller is

abstracted of unnecessary details. So, in the lowest level (basic

actions), each state is atomic. An agent never conducts two

behaviours of the same level simultaneously.

The behaviours used for modelling elders are of three types:

• Monotonous behaviours: the kind of behaviour the elder

manifest always approximately in the same time slot, and

on a daily basis (e.g. sleeping, having meal, medication

and so on).

• Non monotonous behaviours: the kind of behaviour the

elder usually manifest, not bounded to a concrete time

slot, and repeated within a non constant period (e.g. going

to the toilet, having a shower, cleaning the house and so

on).

• Any time behaviours: such behaviours will sometimes

interrupt others the elder is already doing, and will be

generated regardless they were already generated in a

temporal proximity (e.g. in his spare time).

A probabilistic automaton [8] is defined as the quintuple

(Q, V, P (0), F, M) where Q is a finite set of states, V is a

finite set of input symbols, P (0) is an initial state vector,

F is a set of final states and M is a matrix that represents

probabilities of transition for every state. In this definition,

transition’s probabilities depend on time. According to differ-

ent daily time slots, the agent’s behaviour acts on a different

pattern. There are time slots for eating, sleeping and taking

medication (Monotonous behaviours).

Notice that, when the elder is at any state, the necessity

of changing to another state may arise. But this is not done

immediately. Moreover, a number of different changes (i.e.

transitions) may be pending simultaneously. Thus, a list of

pending tasks (i.e. or events) is maintained. Such tasks are

ordered by a static priority (e.g. going to the toilet goes before

cleaning).

For generating transitions in real time, probability dis-

tribution functions are used according to the type of the

behaviour and its features. These distributions are member

Q = {a0 = NormalT ime, a1 = MedicationTime,
a2 = MealT ime, a3 = SleepT ime, a4 = Anomalous}

(a)

Q = {a00 = SpareT ime, a10 = MedicationTime,
a20 = MealT ime, a30 = SleepT ime, ax1 = ToiletT ime,

a02 = ShowerTime, a03 = CleanTime}

(b)

Q = {a200 = GoingToFridge, a201 = GoingToCooker,
a202 = Cooking, a203 = GoingToTable, a204 = Eating}

(c)

Fig. 3. (a) Level 0 automaton, (b) Level 1 automata, (c) Level 2 automaton
for state a20

of the exponential family [9], [10]. Section IV defines all

distribution functions used.

Notice that monotonous behaviours must be activated at

specific time hours or within specific time intervals. For

example, in the case of MedicationTime, a new necessity of

changing to such state will be generated exactly at the time to

take medicines. In the case of MealTime and SleepTime, the

necessity is generated within a time interval. The distribution

that models these transitions is bounded in this time slot. It

must be assured that agent eats and sleeps every day, because

of that, if not transition is generated into the time slot, a

transition is generated at the end time.

To provide more realism, an automata hierarchy is intro-

duced representing each state by lower level automata which

define more specialized behaviours.

As shown in figure 3(a), in level 0 the initial state



is a0 =NormalTime. For every one of the other states

{a1 =MedicationTime,a2 =MealTime,a3 =SleepTime} exist

a list of times generated by a probability function. When a

time counter arrives to one of these times, a transition to state

owner of the list is added to pending tasks list. When the action

is finished, the automaton returns to initial state if there is not

another pending task. The final state is a4 =Anomalous, if it

is reached, the execution will be stopped.

In level 1 (figure 3(b)) non monotonous behaviours are

represented. There is an initial state in every refinement where

the person does the main task of the upper level (eating,

sleeping or taking medication). The state ax1 =ToiletTime is

considered in every refinement of level 0. However, the states

a02 =ShowerTime and a03 =CleanTime only may be activated

in normal state of level 0.

In the lowest level (level 2), the new automata define some

specialized actions refining every state of level 1. These new

states do not give relevant information, but the agent gains

more realistic behaviours.

With the sequence of actions in figure 3(c) the person cooks

before eating. It refines state a20 of level 1, the agent is not

going to be static in the kitchen, because it must be going to

different places and spends some time in every state.

In figure 4 a base implementation for agent’s behaviour is

presented. First of all, all possible automata’s states are iterated

for initializing lists which contain time instants (lines 13-24).

These time instants are generated by a probability distribution

function, and they represent when a transition to its associated

state is going to be launched. After of that, the automaton

begins to run. At every time instant, if actual time is equal

than first item of a time list, a transition is added to pending

tasks list (lines 57-60). When there is one state with higher

priority than actual state in pending tasks list, a transition is

also generated. Then, if actual state is unfinished, it is stored

as a pending task and a new state is reached (lines 46-50).

When this new state is finished, leaved state may be resumed.

The configuration parameters for the whole simulation in-

volve:

• Temporal limit in every room before entering in anoma-

lous state (tmax)
• The probability distribution parameters according to the

kind of behaviour

• Time slots of routinary temporal behaviours, like eating

or sleeping (inis, ends, s ∈ MealT ime, SleepT ime)

IV. VALIDATION OF THE APPROACH

From section II, it is clear that user modelling is a means for

testing AmI services and applications without a real environ-

ment. This task is performed in the third step of the AVA

methodology. Regarding to the validation, other important

steps within AVA are the steps from 5 to 8. Model validation

is needed in order to show that models are able to describe

the users’ behaviours. The rest of the section shows how the

model validation has been approached. But basically, activity

data from real users is compared (in statistical form) with the

same type of data produced by the artificial models.

1 Let pt be a list of pending tasks ordered by priority

2 Let states be a list with all posible automata’s states

3 Let times be a list of time instants when transitions

4 are going to be generated

5 Distribution Functions to model the ocurrence

6 of monotonous behaviours:

7 Let mb be the function to model monotonous behaviours

8 Let nb be the function to model non monotonous behaviours

9 Let ab be the function to model anytime behaviours

10

11 //Instants of time initialization

12

13 for all s in states do

14 if isAnytime(s) then

15 times(s)<-ab()

16 else if isMonotonous(s) then

17 //Initial and final instants of bounded time slot

18 i <- ini(s)

19 e <- end(s)

20 times(s)<-mb(i, e)

21 else if isNonMonotonous(s) then

22 times(s)<-nb()

23 endif

24 endfor

25

26 actualTime <- 0

27 //actual state is defined by 3 numbers, one per level

28 level0 <- 0

29 level1 <- 0

30 level2 <- 0

31 actualState<-newState(level0,level1,level2)

32

33 //Once initialized the times, the automata begin to move

34

35 //If an anomalous state is reached, the execution stops

36 while(level0(actualState)<>4)

37 //If actual task ends, initial state is activated

38 if timeLeft(actualState)=0 then

39 actualState <- newState(0,0,0)

40 endif

41 //If next state has higher priority than actual state,

42 //actual state becomes a pending task and it is stored

43 //in pt

44 if (size(pt))>0

45 nextState <- first(pt)

46 if priority(nextState)>priority(actualState) then

47 add(pt,actualState)

48 actualState<-nextState

49 remove(pt,nextState)

50 endif

51 endif

52 for all s in states do

53 time <- first(times(s))

54 //If actual time matches first time instant in

55 //times, the task associated with this time instant

56 //is added to pending tasks

57 if actualTime=time then

58 remove(times(s),time)

59 add(pt,s,priority(s))

60 endif

61 endfor

62 actualTime <- actualTime + 1

63 //Decrement remaining time for finishing actual task

64 time <- timeLeft(ActualState) - 1

65 setTimeLeft(actualState, time)

66 endwhile

Fig. 4. Realistic behaviour implementation

A. Data Preprocessing

Activity data from real users were obtained within a pilot

project devoted to the validation of the Necesity system.

Around 25 users, all elderly people living independently, were

used in such Pilot project. In this paper, data coming from

three users, under monitorisation during two months, were

used. Data is in the form of a Necesity log. The logs offer the



possibility to represent where the user is, at any moment, at

the house (including also if he leaves the house or he is seated

or sleeping). Thus, three different data sets, with log entries

corresponding to sensor events are available. These data sets

need further processing.

Validating the artificial models is assuring that the right

probability distribution function is used to reproduce the

transition between the different states (i.e. behaviours). Thus,

data series are obtained from log data as they were a random

number series generated by the corresponding probability

distribution. Such series are used afterwards in a goodness of

fit test. For example, in case of the non monotonous behaviours

and anytime behaviours, preprocessing the log data involves

the extraction of the time series of the moments in which each

event is produced. These time series only include values within

the typical awake period of the corresponding user. Obviously,

while the user are sleeping, his daytime routines change.

The data preprocessing for the monotonous behaviours is

slightly different. This kind of behaviour is usually produced

in a bounded time slots. For example, having dinner, having

lunch or sleeping are behaviour which occur during specific

time periods of the day. So, the preprocessing involves the

extraction of the behaviours events inside the time slots. The

time slots can be slightly different for each person, but it is

possible to define an approximation of them which will be

valid for all (see in section III the configuration parameters).

Finally, in each slot time, the time intervals between each

ocurred event are measured. The extracted time series are

composed of these time intervals.

B. Model Diagnosis

Validation is one of the most important issues in a sim-

ulation system. Validation consists in the determination that

the simulated model is an acceptable representation of the

real system, for the particular objectives of the model [11].

There are many techniques for validating simulations [11],

[12], and specially, for validating agents based on simulated

models [13].

The models which describe social processes, as the model

proposed here, are generally hard to validate. In this approach,

the behaviour is probabilistically modelled. However, some

statistic tests should be done to assume that a probabilistic

model is reasonable to explain the data. This process is called

model diagnosis. And this section is devoted to make the

diagnosis of the models presented above. The most serious

problem that one usually faces in this kind of validation is the

lack of real data [14]. However, in this work the data from the

Necesity project is available and can be used.

From these preprocessed data, some histograms for different

behaviours and people are shown in Fig. 5. The sample

density is shown with a black line. The dashed line shows

the probability density function of the theoretical distribution

that models that behaviour.

Graphs 5 (a) and (b) show two monotonous behaviours,

sleeping and having dinner (having lunch is similar). In these

kinds of behaviours the event that raises the behaviour occurs

(a)

(b)

(c)

(d)

Fig. 5. (a) Minutes between 21:00 hours and the instant the attended C goes
to bed, (b) Time between dinners for attended B, (c) Time between uses of
the toilet for attended A, (d) Time between spare time for attended A



during a time interval. The interval is usually the same for

each attended person, i.e., a person usually goes to sleep or

to have dinner at the same hours. Because of this, the curve

of the behaviour can be fitted to a gamma distribution. The

gamma distribution is usually employed as a probability model

for waiting times, in this case, the waiting time until the next

event of the behaviour. So, a gamma distribution is suitable

for modelling monotonous behaviours.

A kind of non monotonous behaviour, i.e. going to the toilet,

is shown in Fig. 5 (c). In this case, the behaviour is fitted with

an exponential distribution. Non monotonous behaviours are

also waiting time models, but they are defined in wake periods.

This is a special case of the gamma distribution which can be

modelled with an exponential distribution.

Finally, the group of anytime behaviours are behaviours

which will be often interrupted for the other behaviours.

Because of this, size of intervals in an anytime behaviour

are small due the interruptions. This causes the characteristic

curved heavy-tailed distribution, specifically, the Pareto II

distribution, also known as Lomax distribution.

Gamma, exponential and Lomax distributions are members

of the exponential family of probability distributions. Actually,

they are special cases of the beta prime distribution (also

known as beta distribution of the second kind, Beta II). The

Beta II distribution nests many important distributions as the

gamma, the exponential or the Lomax distribution. The gamma

and the Lomax distributions are special cases of Beta II. On the

other hand, the exponential distribution is a special case of the

gamma distribution Γ(α, β) when α = 1, and a special case

of the Lomax distribution with some restrictions [15], [16].

So, the Beta II distribution can be used here as a generalized

distribution for all group of behaviours: monotonous, non

monotonous and anytime behaviours. Then, each behaviour

can be specified according to its features in order to obtain a

better fitting.

Now, in the rest of the section, empirical evidences

which support using gamma, exponential and Lomax for

monotonous, non monotonous and anytime behaviours are

given.

Notice that it is possible to estimate the distance between

time series generated, as explained above, from real log

data and time series generated by simulation of theoretical

distributions. Such estimation is done by using some statistical

test, like the Kolmogorov-Smirnov (K-S) test [17]. The K-S

test is a nonparametric and distribution-free goodness-of-fit

test. This means that they do not rely on parameter estimation

or precise distributional assumptions [18]. The proposed model

in this work does not assume any concrete distribution and

does not require parameter estimation. This way, the K-S

properties are suitable for the hypothesis test.

The K-S test and the chi-square test are the most commonly

used and for large size sample both tests have the same power.

However, the chi-square test requires a sufficient sample size

in order to obtain a valid chi-square approximation [19], [20].

The K-S is a goodness-of-fit test to indicate whether it is

reasonable or not to assume that a random sample comes from

a specific distribution. It is a form of hypothesis testing where

the null hypothesis says that sample data follows the stated

distribution. The hypothesis regarding the distributional form

is rejected if the test statistic, Dn, is greater than the critical

value obtained from a table, or, which is the same, if the p-

value is lower than the significance level. The significance

level is fixed in this work at 0.05, which it is the value usually

referred in statistical literature.

Table I shows the p-values obtained from the K-S test for

each validated behaviour with the adequate distribution. The

null hypothesis is that the behaviour sample data come from

the stated distribution and it is rejected if p-value is lower than

the significance level.

Behaviour

Person Sleep Dinner Eat Toilet Spare time

A 0.404 0.311 0.361 0.111 0.086

B 0.488 0.467 0.542 0.079 0.108

C 0.337 0.489 0.575 0.137 0.103

TABLE I
P-VALUES

From these results, none of the stated null hypothesis can

be rejected. Therefore behaviour of the attended people could

be fitted by the specified distribution, as it is described above.

V. RELATED WORKS

Various approaches have been proposed to create au-

tonomous characters. For example, in [21] every character is

provided with a small KBS (Knowledge-Based System). Such

method is very flexible, but defining the knowledge base is a

complex and time-consuming task. A reasoning system is also

used in [22].

The approach to behavioural autonomy presented in section

III is based in [23], in that approach the idea is to develop

agents that act and choose in the way actual humans do. The

agents are represented using parametrized decision algorithms,

and choose and calibrate these algorithms so that the agents’

behaviour matches real human behaviour observed in the same

decision context. For this purpose, they uses a parametrized

learning automaton with a vector of actions associated that can

be weighted to choose actions along the time the way humans

would.

The decision of representing the automaton’s transitions

with probabilities instead of using a vector of strengths is

based in [24], where the behaviour sequences are modelled

through probabilistic automata (Probabilistic Finite-State Ma-

chine, PFSMs). Probabilistic personality influence implies that

one cannot fully predict how a character will react to a

stimulus.

In [25] and [26], the behavioural models described use

a hierarchical structure of finite state automata similar as

model described in section III. Each behaviour of a behaviour

sequence is called a behaviour cell. At the top of the structure

there is a behaviour entity with a finite state automaton com-

posed of at least one behaviour cell. An elementary behaviour



is situated at the bottom of the hierarchical decomposition and

encapsulates a specialized behaviour which directly controls

one or more actions. The list of prioritized events is based in

[27], where human agents have a pending task list. Priorities

give more realism to human behaviours.

VI. CONCLUSION

In this work, a general behaviour model for different people

is proposed. Adjusting the model to specific persons would

imply using the suitable configuration parameters for the

corresponding probability distributions governing transitions

between states of the probabilistic automata. This process is

part of a more general task which is testing AmI services

and applications. For such purpose, the AVA methodology

was presented. It has been applied for the validation of an

AAL system called Necesity. More specifically, this paper is

focused in producing models of humans (i.e. step 3 of AVA)

and validation of the models (steps form 5 to 8).

Such an approach requires, as a means to validate the

artificial behaviours, for all the artificial models, a method to

check if gamma, exponential and Lomax distributions are well

suited. Using the K-S test is possible to quantify the distance

between the empirical distribution functions of two samples.

Then the K-S test is used to validate the behaviours of the

artificial models, by using real data of real elders. A high

level of the p-value (higher that the significance level) means

that the behaviours are drawn from the same distribution (the

null hypothesis is not rejected). Notice that, in most cases, the

obtained p-values are higher than the significance level and

the null hypothesis is not rejected. But, it is also necessary to

remark that a good fitting of the configuration parameters will

always be required. And this is due to inevitable heterogeneity

in behaviour of people (including elders). As a conclusion, it

can be said that the proposed model is suitable for modeling

probabilistically the behaviour of simulated people, as the

work states.

Future works include a deep study of source data in order

to generate a taxonomy of elders in terms of their behaviour

within their houses, depending on mobility and habits. Such a

taxonomy would be useful for an automatic parameter tuning

of the models of elders. The user of the simulator, instead of

configuring parameters by hand, would simply choose between

a catalogue of elderly people patterns of behaviour.
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