
A Survey on Coordination Methodologies for

Simulated Robotic Soccer Teams

Fernando Almeida∗‡, Nuno Lau†‡, Luı́s Paulo Reis§¶

falmeida@di.estv.ipv.pt, lau@det.ua.pt, lpreis@fe.up.pt

∗DI/IPV - Department of Informatics, Polytechnic Institute of Viseu, Viseu, Portugal
†DETI/UA - Electronics, Telecommunications and Informatics Department, University of Aveiro, Aveiro, Portugal

‡IEETA - Institute of Electronics and Telematics Engineering of Aveiro, Aveiro, Portugal
§DEI/FEUP - Department of Informatics Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

¶LIACC - Artificial Intelligence and Computer Science Laboratory, University of Porto, Porto, Portugal

Abstract—Multi-agent systems (MAS) are a research topic
with ever-increasing importance. This is due to their inherently
distributed organization that copes more naturally with real-life
problems whose solution requires people to coordinate efforts.

One of its most prominent challenges consists on the creation
of efficient coordination methodologies to enable the harmonious
operation of teams of agents in adversarial environments. This
challenge has been promoted by the Robot World Cup (RoboCup)
international initiative every year since 1995.

RoboCup provides a pragmatic testbed based on standard-
ized platforms for the systematic evaluation of developed MAS
coordination techniques. This initiative encompasses a simulated
robotic soccer league in which 11 against 11 simulated robots play
a realistic soccer game that is particularly suited for researching
coordination methodologies.

This paper presents a comprehensive overview of the most
relevant coordination techniques proposed up till now in the
simulated robotic soccer domain.

Index Terms—Coordination methodologies, MAS, simulated
robotic soccer, RoboCup.

I. INTRODUCTION

The development of efficient methodologies (e.g. languages,

models) for MAS coordination in adversarial environments

is one of the most interesting scientific challenges promoted

by the RoboCup [33] and is mainly supported by its soccer

simulation leagues. The main goal of coordination mechanisms

in these leagues is to adequately control a team of players and

an optional coach to win matches against adversary teams.

Soccer is an inherently coordinated game in which team

fitness directly relates to how well players can synchronize to

perform tasks (e.g. passing). However, team coordination can

be complex to achieve, mostly due to the multitude of variables

(e.g. players and ball positions) players must consider to make

the best decision at each instant. Moreover, measuring its

success quantitatively is difficult as it doesn’t necessarily relate

to the final match score (e.g. a team might play better than

the opposite but still lose), thus more data must be considered

to perform an accurate assessment (e.g. ball possession).

The rest of the paper is organized as follows. Section II

describes the RoboCup initiative and its physical soccer simu-

lator. Section III presents a general definition of coordination

and its related issues in the robotic soccer domain. Sections IV,

V, VII and VI provide a discussion of developed techniques for

simulated robotic soccer organized in different perspectives.

Section VIII addresses the lessons learned from the survey.

II. ROBOCUP: A TESTBED FOR COORDINATION

RoboCup was designed to meet the requirements of han-

dling real complexities in a restricted world and provides

standard challenges in a common platform to foster Artificial

Intelligence and Intelligent Robotics research [17].

Its most pragmatic goal is to develop a team of fully au-

tonomous humanoid robot soccer players capable of winning

a soccer game against the winner of the World Cup by 2050.

This ambition although difficult to achieve, will surely drive

significant technological breakthroughs while trying [33].

The main focus of RoboCup is Robotic Soccer (RoboCup-

Soccer), although other application domains exist focusing on

different scopes like disaster rescue, robotics education for

young students and human assistance on everyday life tasks.

The RoboCupSoccer domain has 5 leagues [11]: there is a

virtual (Simulation League) and several hardware (Small-Size,

Medium-Size, Standard Platform and Humanoid) leagues.

This paper focuses on the RoboCupSoccer 2D Simula-

tion League (RoboCupSoccer2D) although other simulation

subleagues (3D, 3D Development and Mixed Reality) exist.

This league enables a virtual soccer match between 2 teams

of 11 simulated agents each with an optional online coach

using a physical soccer simulation system. Agents have an

environment-aware body and can act autonomously to perform

reactive or pro-active actions in an individual or sociable

manner, although interaction is highly constrained as described

in Section III. The environment is partially observable through

non-symbolic sensors, stochastic, sequential, dynamic and

multi-agent without centralized control [11].

This league presents 3 strategic research challenges for

multi-agent interaction [33]:

• Multi-agent learning of individuals (e.g. ball interception)

and teams (e.g. adapt player positioning to opponents);

• Teamwork to enable to real-time planning, replanning and

execution of tasks in a dynamic adversary environment;

• Agent modelling to reason about others (e.g. intentions).



TABLE I
LIST OF SOCCER SERVER CORE ACTIONS BY CATEGORY

Category Actions

Movement Dash*, Turn, Move
Ball control Kick, Catch, Tackle
Perception control Turn neck, Change view, Attention to
Communication Point to, Say
Match information Score

*Dash impacts players stamina which is continuously assessed through their energy (liveness), effort (movement

efficiency) and recovery (energy renewal rate)

Soccer Server is an open-source client/server physical soc-

cer simulation system [36][7] used in RoboCupSoccer2D. It

uses well defined protocols to enable communication between

clients (players and coaches) and itself to manage connections,

gather world perceptions and control clients actions.

Firstly, all clients connect to the server and sending intro-

ductory initialization data to which the server replies with the

current simulation settings (e.g. player characteristics). These

settings can be tweaked in order to enhance the simulation.

During the match, each team can have an online coach that

receives global error-free information about world objects and

all the messages sent from the players and the referee. All

communication is done exclusively via the server and coach-

to-players communication is highly restricted.

The simulator provides a set of players with distinguished

capabilities (heterogeneous players) from which the coach

must build a team to play a soccer match. During the match

players receive tailored multimodal sensor information (aural,

vision and body) according to their standpoint. This informa-

tion is received through messages (hear, see and sense body)

sent regularly from the simulator, that can be inaccurate (e.g.

vision accuracy varies inversely with objects distance). Based

on these perceptions, players can act upon the world to inflict

changes in it using the core actions depicted in Table I.

Also during the match, a referee (automated or human) can

make rulings that change the play mode (e.g. free-kick) and are

immediately relayed to all clients. The human referee is used

to judge situations driven by player’s intentions (e.g. player

obstruction) which are still difficult to evaluate automatically.

The simulation executes in discrete time steps (cycles).

Throughout each step players can take actions, restricted in

number and by play mode (e.g. one kick per cycle), that will

be applied to objects (players and the ball) at the end of the

step. The next step is simulated by applying only the allowed

actions to the state information (e.g. update objects positions)

and eventually by solving conflicting situations (e.g. several

players might kick the ball simultaneously).

Some of the research developed has shown that robotic

soccer [1] and consequently RoboCup [35][34] can be used

effectively to study MAS and coordination techniques in

particular. In most cases these techniques can be generalized

to other domains [6] (e.g. network routing [53]).

III. COORDINATION PROBLEMS IN SIMULATED

ROBOTIC SOCCER

Robotic Soccer is an instance of Periodic Team Synchro-

nization (PTS) domains [52] in which players have sporadic

opportunities to communicate fully in a safe offline situation

(e.g. in the locker-room) while being able to act autonomously

in real-time with little or no communication.

One of the most important tasks for players is to select

and initiate an appropriate (possibly cooperative) behavior in a

given context, using (or not) knowledge from past experiences

in order to help their team to win. Good coordination method-

ologies can help achieve this goal, although their success is

still highly dependent on players individual abilities (low-level

skills) to execute adequate competitive decisions.

The coordination difficulties enforced by the simulator are:

• Many multimodal information can be sensed at once,

making it difficult to process;

• Environment’s unpredictability makes it difficult to pre-

dict future states;

• Clients can’t rely on message reception due to commu-

nication unreliability;

• Low-bandwidth makes it difficult to convey meaningful

knowledge in messages;

• Uncertainty in perceived world information may lead to

conflicting behaviors between agents [39], due to invalid

state knowledge representations.

More specifically the simulated robotic soccer domain

presents researchers with the following types of challenges:

• Perception: Where, when and how should players use

their vision? To whom should they listen to? How to

estimate information of others?

• Communication: What, when and how should players ex-

change information? How should exchanged information

be used?

• Action: Which action should the player perform that is

best for the team? How to evaluate different types of

actions (e.g. pass vs dribble)? How to execute a given

elementary (e.g. kick) or compound action (e.g. dribble)?

• Coordination: How to structure coordination dependen-

cies between players? With whom should a player co-

ordinate his actions? How should actions be coordinated

with others? How to adapt coordination in real-time? How

can the coach be used to coordinate team players?

The answer to some of these questions and others more

specific will be discussed in the remaining sections.

IV. TECHNOLOGIES FOR COORDINATION

A. Coordination by Communication

Sharing pertinent world information can be useful to achieve

team coordination. In earlier Soccer Server versions communi-

cation constraints were relaxed and allowed the transmission of

long messages. This extremely permissive condition motivated

the development of techniques that relied on sharing lots of

meaningful information about the world’s state knowledge

among teammates to make better informed decisions.

Currently, message size is restricted to a minimum and

poses a new challenge that requires the cautious selection of

pertinent information to convey at each instant. To circum-

vent the previous constraint an Advanced Communications



framework [42] was proposed in which a player maintains

a communicated world state (separated from his perceived

world state) using only information from teammates, without

any prediction or perception information of his own. By

comparing both worlds, a player assesses the interest of items

of his perceived world state to his teammates and selects

the most useful information (e.g. objects positions) to share.

Information utility metrics were based on domain-specific

heuristics but were later extended to accommodate the current

situation and estimated teammate’s knowledge [12].

Other techniques were proposed that use little or no com-

munication by adding knowledge assumptions (e.g. Locker-

Room Agreements discussed in Section VI-A) to reason over

players intentions based on assigned roles [20] (combined

with Coordination Graphs discussed in Section VII-A), offline

learned prediction models [54] and player’s beliefs [38][16] to

adapt to their actions.

The trend in this domain will be towards little or no com-

munication due to the constraints mentioned in Section III and

also because communication introduces an overhead and delay

that can degrade the player performance. The combination of

implicit coordination with beliefs exchange yields better per-

formance with communication loss than explicit coordination

with intentions communication alone [16]. The exchange of

beliefs among teammates allows a more coherent and complete

global belief about the world. This global belief can then be

used to predict players utilities and adapt actions to players

predicted intentions to achieve the best (joint) action. As state

estimation accuracy reaches an acceptable upper bound it will

eventually replace explicit communication.

B. Coordination by Intelligent Perception

The smart usage of player sensors can be an efficient way

to leverage coordination with other players, by collecting the

most valuable information at each instant.

During the match players can assume three types of visual-

izations. These are chonse using a strategic looking mechanism

based on their internal world state information and the current

match situation [42]:

• Ball-centered: look at the ball to react quickly to its

sudden velocity changes (e.g. kick by a player);

• Active: look at the target location of a desired action (e.g.

a pass to perform);

• Strategic: look at a strategic location to improve the

world’s state accuracy (e.g. find an open space for a pass).

The usefulness of the information gathered using the previ-

ous approaches is different and can be classified based on its

intended usage scope, validity over time and motivation for

player behavior in future actions as depicted in Table II.

Ultimately, this information can be combined to enhance the

player’s world state accuracy and empower better decisions.

V. POSITIONING

A. Coordination for General Positioning

The selection of a good position to move into during the

match is a challenging task for players due to the unpredictable

TABLE II
COMPARISON OF DIFFERENT VISUALIZATION APPROACHES

Approach Usage scope
Information
validity period

Target behavior

Ball-centered Individual Short Reactive

Active
Individual or
Collective

Short to Medium
Reactive or De-
liberative

Strategic Collective Medium to Long Deliberative

behavior of other players and the ball. The likelihood of

collaboration in a soccer match is directly related to the

adequacy of a player’s position (e.g. open pass lines for attack).

During a match, at most one player can carry the ball at

each instant. For this reason, players will spend most of their

time without the ball and trying to figure out where to move.

The first positioning techniques proposed allowed players to

situate themselves in an anticipated useful way for the team

in two different contexts [48]:

• Opponent marking: player moves next to a given oppo-

nent rather than staying at his default home position;

• Ball-dependent: player adjusts his location, within a given

movement range, based on the ball’s current position;

• Strategic Positioning using Attraction and Repulsion [48]

(SPAR): player tries to maximize the distance to all

players and minimize the distance to the opponent goal,

the active teammate and the ball. This algorithm enables

players to anticipate the collaborative needs of their

teammates by positioning themselves to open pass lines

for the teammate with the ball.

The previous techniques are rather reactive and demand fast

responses from players according to the target object behavior.

This leads to quickly wearing out stamina because the current

match situation ins’t adequately considered. To solve these

issues, techniques were proposed that distinguish between

active (e.g. ball possession) and strategic match situations [42]:

• Simple Active Positioning: players always assume an

active and non-strategic position (e.g. ball recovery);

• Active Positioning with Static Formation: extends the

previous so that players can return to their default home

position in the static formation, if there isn’t a good

enough active action to perform;

• Simple Strategic Positioning: uses only one situation and

one dynamic formation;

• Situation Based Strategic Positioning [44] (SBSP): de-

fines team strategy as a set of player roles (defining

their behavior) and a set of tactics composed of several

formations. Each formation is used for a different strate-

gic situation and assigns each player a default spatial

positioning and a role. Contrarily to SPAR, it allows

the team to have completely diverse but suitable shapes

(e.g. compact for defending) for different situations and

teammates to have different positional behaviors;

• Delaunay Triangulation (DT): similar in idea to SBSP, it

divides the soccer field into triangles according to training

data [2] and builds a map from a focal point (e.g. ball

position) to a desirable positioning of each player. It



also allows the use of constraints to fix topological re-

lations between different sets of training data to compose

more flexible team formations, Unsupervised Learning

Methods (e.g. Growing Neural Gas) to cope with large

or noisy datasets and Linear Interpolation methods (e.g.

Goraud Shading) to circumvent unknown inputs. Despite

its simplicity, DT has a good approximation accuracy, is

locally adjustable, fast running, scalable and can repro-

duce results for identical training data. On the other hand

it requires much memory to store all training data and

has a high cost to maintain its consistency.

Another task addressed in a soccer match is the dynamic (or

flexible) positioning of team players that consists on switching

players positions within a formation [48] to improve the team’s

performance (e.g. save player’s energy for quicker responses).

However, if misused it can increase player’s movement (e.g.

player moves across the field to occupy its new position).

The methods proposed to aid players weigh the cost/benefit

ratio for deciding to switch positions are based on:

• Role Exchange: continuously assesses the usefulness of

exchanging positions based on tactical gains [42] (e.g.

distance to a strategic position, adequacy of next versus

current position and coverage of important positions). It

extends previous work that used flexible player roles with

protocols for switching among them [52] to accommo-

date the exchange of players positions and types in the

formation and has been used in conjunction with SBSP;

• Voronoi Cells: distributes players across the field and uses

Attraction Vectors to reflect players’ tendency towards

specific objects based on the current match situation

and players’ roles [8]. It claims to have solved a few

restrictions in SBSP (e.g. obligation to use home positions

and fixed number of players for each role);

• Partial (Approximate) Dominant Regions [31]: divides

the field into regions based on the players time of arrival

(similar to a Voronoi diagram based on the distance of

arrival), each of which shows an area that players can

reach faster than others. It has been used for marked

teammates to find a good run-away position.

B. Defensive Coordination

The main goal of a defending team, without ball possession,

is to stop the opponent’s team attack and create conditions

to launch their own. In general, defensive behaviors (e.g.

marking) involve positioning decisions (e.g. move to intercept

the ball). Defensive positioning is an essential aspect of the

game, as players without the ball will spend most of their time

moving somewhere rather than trying to intercept it.

Collaborative defensive positioning has been described as

a multi-criteria assignment problem where n defenders are

assigned to m attackers, each defender must mark at most one

attacker and each attacker must be marked by no more than

one defender [23]. The Pareto Optimality principle was used to

improve the usefulness of the assignments by simultaneously

minimizing the required time to execute an action and the

threat prevented by taking care of an attacker [24]. Threats

are considered preemptive over time and are prevented using

a heuristic-criterion that considers:

• Angular size of own goal from the opponent’s location;

• Distance from the opponent’s location to own goal;

• Distance between the ball and opponent’s location.

This technique can achieve good performances while bal-

ancing gracefully the costs and rewards involved in defensive

positioning, but it doesn’t seem to deal adequately with uneven

defensive situations:

• Outnumbered defenders shouldn’t mark specific attackers

but rather position themselves in a way that difficults their

progression towards to the goal’s center;

• Outnumbered attackers: more than one defender should

mark an attacker (e.g. ball owner) pursuing a strategy to

quickly intercept the ball or compel the opponent to make

a bad decision and lose the ball.

Marking consists on guarding an opponent to prevent him

from advancing the ball towards the goal, making a pass or

getting the ball. Its goal is to seize the ball and start an attack.

The opponent to mark can be chosen by the player (e.g.

closest opponent), by the team captain following a preset

algorithm (e.g. as part of the Locker-Room Agreement [48]

discussed in Section VI-A), using matching algorithms [47]

or Fuzzy Logic [46]. Choosing the opponent to mark based

only on its proximity isn’t suitable as it disregards relevant

information (e.g. teammates nearby) and will lead to poor

decisions. Also, the use of a fixed centralized mediator (e.g.

coach) to assign opponents to teammates although faster to

compute has a negative impact in players autonomy. With the

exception of PTS periods, this approach isn’t robust enough

due to the communication constraints mentioned in Section III

and because it provides a single point of failure.

A Neural Network trained with a back-propagation algo-

rithm that uses a linear transfer function was proposed to

decide the type of marking to perform based on the distance

from the player to ball, the number of opponents and team-

mates within the player’s field of view (FoV) and the distance

from the player to his own goal [46]. The output accuracy of

this method could be improved by considering other relevant

information that lies outside the player’s FoV (e.g. nearby

opponents behind the player).

Aggressive marking behavior can also be learned using a

NeuroHassle policy [14] based on a neural network trained

with a back-propagation variant of the Resilient Propagation

(RPROP) reinforcement learning technique.

C. Offensive Coordination

To improve position selection during offensive situations

(e.g. the team owns the ball) players should find the best

reachable position to receive a pass or score a goal.

The Pareto Optimality Principle was applied to enable

systematic decision-making regarding offensive positioning

[25] based on the following set of partially conflicting criteria

for simultaneous optimization [41]:

• Players must preserve formation and open spaces;



• Attackers must be open for a direct pass, keep an open

path to the opponent’s goal and stay near the opponent’s

offside line to be able to penetrate the defense;

• Non-attackers should create chances to launch the attack.

A Simultaneous Perturbation Stochastic Approximation

(SPSA) combined with a RPROP learning technique (RSPSA)

was proposed to Overcome the Opponent’s Offside Trap

(OOOT) by coordinated passing and player movements [13].

The receiver of the OOOT pass should start running into the

correct direction at the right point in time, preferably being

positioned right before the offside line while running at its

maximal velocity when the pass is executed.

VI. TEAM COORDINATION

A. Coordination for Strategic Actions

In real soccer, team strategies are rehearsed during mundane

training of team players and applied during a match. The same

strategies are often used in matches, but for some opponents

they must be swapped to adapt to their unexpected behavior.

Strategies typically consist on a set of tactics composed by

formations that map a strategic position and a distinguished

role to each player to guide his behavior.

To deal with the challenges of PTS domains a Locker

Room Agreement (LRA), based in the definition of a flexible

team structure (consisting of roles, formations and set-plays),

can be used for players to consent on globally accessible

environmental cues as triggers for changes in strategy [48].

Team strategies are communicated with a timestamp for play-

ers to recognize changes and always keep the most recent

ones to disseminate to others. The team’s formation can be

either static or change dynamically during the match on team

synchronization opportunities (e.g. kick-in) or via triggered-

communication where one teammate (e.g. team captain) makes

a decision and broadcasts it to his teammates.

Set-plays are predefined plans for structuring a team’s

behavior depending on the situation. A high-level generic

and flexible framework that defines a language for set-play

definition, management and execution was proposed in [29]. A

set-play involves players’ references (individual or role based)

and steps (states of execution) that can have conditions to be

carried out. Each step is lead by the ball carrying player (in

charge of making the most important decisions) and can have

several transitions (possibly with conditions) for subsequent

steps. The main transition of a step defines a list of directives

consisting of actions that should (or not) be performed. The

execution of a set-play requires a tight synchronization be-

tween all participants to enable a successful cooperation. To

cope with the simulator communication restrictions, only the

lead player is allowed to send messages. This technique could

be improved to achieve implicit coordination through a kind of

belief state exchange, because the player that owns ball decides

when to start the set-play and informs the involved parties.

From that moment on and while the set-play follows its default

path, communication among players could be dropped until a

deviation is decided by the ball owner because all involved

parties know the steps.

Another method proposed for high-level coordination and

description of team strategies is Hierachical Task Network

(HTN) planning [37] which is to be embedded in each player.

It combines high level plans (making use of previous domain

knowledge to speed up the planning process) with reactive

basic operators, so that players can pursue a global strategy

while staying reactive to changes in the environment. This

method separates the expert knowledge specified as team

strategies from the player implementation making it easier to

maintain. The objective of HTN is to perform tasks which can

be either complex or primitive. Complex tasks are expanded

into subtasks until they become primitive.

B. Hierarchical Coordination

In real life soccer, natural hierarchical relations exist among

different team members and imply a leadership connotation

(e.g. a coach instructs strategy to players).

A coach and trainer are privileged agents used to advise

players during online games and offline work out (training)

situations respectively. The need of communication from coach

to players motivated the definition of coaching languages.

CLang [7] is the standard coaching language used in

RoboCup since 2001 to promote a new RoboCup competition

focused only on coaching techniques, but it lacks the ability

to specify a team’s complete behavior with sufficient detail.

Coach Unilang [43] was proposed to enable the com-

munication of behavioral changes to players during games

using different kinds of strategic information (e.g. instructions,

statistics, opponent’s information and definitions) based on

real soccer concepts. Players can ignore received messages,

interpret them as orders (must be used and will replace

knowledge) or as advices (can be used with a given trust level).

Strategy Formalization Language [32] extends CLang by

representing team behavior in a human-readable format easily

modifiable in real-time by abstracting low-level concepts.

The main coaching techniques developed make use of:

• Neural Networks (previously trained with adequate data)

to recognize opponent’s team formation and provide

appropriate counter formation to players [55];

• Matching Algorithms that continuously builds a table that

assigns a preliminary opponent to mark to each teammate

and briefs all players periodically [47].

The ability to recognize tactics and formations used by

opponent teams reveals part of their strategy and can be used

to implement counter strategies. To address this opportunity

training techniques make use of:

• Sequential Pattern Data Mining using Unsupervised Sym-

bolic Learning of Prediction Rules for situations and

behavior during matches [26];

• Triangular Planar Graphs to build topological structures

for discovering tactical behavior patterns [40].

VII. LOCAL COORDINATION

A. Coordination for Action Selection

Deciding what the player should do at a given moment

in a soccer game is critical. Player’s individual decision



should depend on the actions performed (or expected) of other

players and balance their risks and rewards. However, these

dependencies can change rapidly in dynamic environment as

a result of the continuously changing state, thus efficient and

scalable methods must be developed to solve this issue.

The action selection mechanisms proposed make use of:

• An idealized world model combined with observed

player’s state information to predict the best action [50];

• An option-evaluation architecture for different actions

with comparable probabilistic scores [49];

• Player roles and a measurement opponents interference in

the current situation using a multi-layer perceptron [18];

• Coordination Graphs (CGs) [19] where each node rep-

resents a player and its edges (possibly directed) define

dependencies between nodes that have to coordinate their

actions. This approach is based on the assumption that

in most situations only a few players (typically nearby)

need to coordinate their actions, while the remaining

are capable of acting individually. To solve coordination

dependencies in CGs algorithms like Variable Elimination

(VE) [17], Max-Plus (MP) [21] and Simulated Annealing

(SA) [9] were proposed. VE requires communication to

always find an optimal solution but only upon termination

and with a high computational cost (due to its action

enumeration behavior for neighbors). MP solves VE high

computational cost and makes the solution available at

anytime, but it can only find near optimal solutions

(except for tree-structured CGs) and restricts coordination

to pairs of players. SA improves MP being able to work

without communication and not restricting coordination

between pairs, but it can only find approximate solutions

with an associated confidence;

• Fuzzy logic and bidirectional neural networks to deter-

mine the odds and priorities of action selection based on

human knowledge [57];

• Case-Based Reasoning to explicitly distinguish between

controllable and uncontrollable indexing features, corre-

sponding to players positions [45].

B. Coordination for Behavior Acquisition

Teams often use flexible (to some extent) predefined strate-

gies set on the LRA. However they can prove fruitless, when

playing against opponents that exhibit incompatible behaviors.

Modelling the opponent’s behavior thus becomes a necessity

to allow convenient adaptation. However, as most players’ are

unseen for quite some time this task becomes a challenge.

With adequate models of players behavior, a player can

improve his world model accuracy and consequently make

better decisions by anticipating collaborative needs of team-

mates (e.g. open a line of pass).

Machine learning techniques have been proposed to address

the issue of player adaptation to unforeseen situations [3][1].

Layered learning [48] has been proposed to enable learning

low-level skills and ultimately use them to train higher-level

skills that can involve coordination. The highest layer of the

previous approach uses a Team-Partitioned Opaque-Transition

Reinforcement Learning (TPOT-RL) technique to allow team

players to learn effective policies and thus cooperate to achieve

a specific goal. This technique divides the learning task among

teammates, using coarse action-dependent features and gathers

rewards directly from environmental observations. It is particu-

larly suitable for this domain which presents huge state spaces

(most of them hidden) and limited training opportunities.

Policy gradient RL was proposed to coordinate decision

making between a kicker and a receiver in free-kicks [30][15].

Two other important subtasks of a soccer game, Keepaway

and Breakaway, have been used to study specific behavioral

coordination issues. Keepaway is a game situation where one

team (the keepers), tries to maintain ball possession within a

limited region, while the opposing team (the takers) attempt to

gain possession. Breakaway is another game situation with the

purpose of the attackers trying to score goals against defenders.

RL techniques have proven its their usefulness to improve

decision-making in these tasks [28][51]. The recognition of

the potential for RL techniques, lead to the proposal of the

following methods to accelerate them:

• Preference Knowledge-Based Kernel Regression (KBKR)

to give advice about preferred actions [28];

• Heuristic Accelerated Reinforcement Learning (HARL):

using predefined heuristic information based on

Minimax-Q [4] and Q-Learning [6];

• Case Based-HARL: heuristics are derived from a case

base using Q-Learning [5].

C. Ball Passing Coordination

Passing is a crucial skill in soccer and it reflects the

cooperative nature of the game. Without sophisticated passing

skills, it will be difficult for a team to win a match. The number

of passing possibilities for the ball carrying player can be

overwhelming and thus efficient methods must be employed

for real-time decision-making.

The main criteria used to decide where to pass the ball are:

• Tactical value of the pass destination;

• Chance of opponent intercepting the pass;

• Confidence on the receiver’s position and interception;

• Location and orientation upon ball reception;

• Situations originated if the ball is intercepted;

• Passing travel distance;

• Initial and final player congestion on pass execution;

• Chance of providing a shoot opportunity.

Instead of relying on the previous predefined criteria that

embeds the passing strategy, this strategy can be learned using

Q-Learning [27].

To balance the implicit risks and gains of the previous

criteria with the costs and real-time constraints of adequate

decision-making developed techniques apply a weighted sum

based on the player’s type [42], Fuzzy logic [46] and the Pareto

Optimality Principle [22].

To improve the efficiency of the previous position searching

methods, a Rational Passing Decision based on Regions [56]

classification (e.g. tactical, dominant, passable and falling)

was proposed. Each region captures qualitative knowledge of



passing in a natural and efficient way. This technique has a

low computational complexity, allows the player to decide

rationally without precise information and balances success

and reward of passing. However, these pros depend highly on

the regions characteristics, specifically their dimension.

Voronoi Diagrams [10] were proposed to limit the number

of possible meaningful passes, but are unable to find (or learn)

the selection of an optimal pass.

VIII. CONCLUSION

Since the start of the RoboCup initiative, several coor-

dination techniques were proposed that tackle core MAS

coordination issues in simulated robotic soccer.

The majority of these techniques has dealt with the problem

of adequate player positioning, due to its impact on the

successful execution of other actions (e.g. passing) during a

match. Also many of presented techniques are interdependent

(e.g. CG and VE) and rely heavily on coordination technolo-

gies. In general, positioning techniques have evolved from

reactive to more deliberative approaches, meaning that players

now put the team’s goals in front of his own because it

is the only way for successful coordination to be achieved.

Due to its complexity, this problem as been studied in more

narrower scopes (e.g. defensive and offensive situations like

opponent marking and ball passing respectively) with good

results. However, situations where the number of teammates

and opponents is uneven still don’t seem to be adequately

addressed by any of these.

Besides positioning, other techniques were proposed to cope

with the remaining player’s actions (e.g. marking).

Coordination technologies have evolved a lot since the

start of RoboCup mostly due to added functionalities and

constraints in the latest simulator releases. Although the use of

communication and intelligent perception can assist team co-

ordination through the sharing of pertinent world information

and enhance the player’s world state accuracy respectively, the

simulator constraints discourage relying solely on them.

Team strategies are usually very complex and are typically

embedded into players knowledge prior to a game (e.g. using

LRA). The strategic approaches have also evolve from fixed

policies to more flexible and dynamic policies that are based

on real-time match information and previous opponent knowl-

edge. Coaching was used to tweak team strategy mostly by

giving advices to players and allow a quicker adaptation to

opponent’s behavior. Training methods have been used as a

foundation to build into team members effective knowledge

that can accelerate team coordination during real-time match

situations (e.g. learning opponent behavior).

Action selection and behavior acquisition must rely on a

good understanding of what can be achieved by intelligent

perception and communication techniques.

Machine learning techniques (e.g. Q-Learning) were suc-

cessfully used for behavior acquisition and adaptive coordi-

nation when faced with unpredicted constraints or situations.

Due to their high computational cost and thus unfeasibility

for real-time decision making, acceleration techniques must

be used to increase their efficiency and make them adequate

for online usage (e.g. HARL, KBKR). It can be argued that

machine learning techniques can be more accurate than hand-

coding rule-based (possibly conditional) techniques.

In order to succeed, a good coordination methodology

should always consider the following aspects:

• Incorporate past knowledge (e.g. using LRA) to acceler-

ate initial decisions for usual situations, driven from direct

human expertise or by offline learned prediction models.

This knowledge can be tailored for specific opponents;

• Knowledge should be adaptable according to opponent

behavior in real-time;

• Use alternative techniques to complement and replace

technologies based on communication and perception.
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