
ELDAMeth: A Methodology For Simulation-based

Prototyping of Distributed Agent Systems

Giancarlo Fortino and Wilma Russo

Department of Electronics, Informatics and Systems (DEIS)

University of Calabria

Via P. Bucci, cubo 41C, I-87036 Rende (CS), Italy

{g.fortino, w.russo}@unical.it

Abstract—In application domains, such as distributed

information retrieval, content management and distribution, e-

Commerce, the agent-based computing paradigm has been

demonstrated to be effective for the analysis, design and

implementation of distributed software systems. In particular,

several agent-oriented methodologies, incorporating suitable

agent models, frameworks and tools, have been to date defined to

support the development lifecycle of distributed agent systems

(DAS). However, few of them provide effective methods for

dynamic validation to analyze design objects at different degrees

of refinement before their actual implementation and

deployment. In this paper, ELDAMeth, a simulation-based

methodology for DAS that enables rapid prototyping based on

visual programming, automatic code generation and dynamic

validation, is presented. ELDAMeth can be used both stand-

alone for the modeling and evaluation of DAS and coupled with

other agent-oriented methodologies for enhancing them with

simulation-based validation. In particular, the proposed

methodology is based on the ELDA (Event-driven Lightweight

Distilled StateCharts-based Agents) agent model, and provides

key programming abstractions (event-driven computation, multi-

coordination, and coarse-grained strong mobility) very suitable

for highly dynamic distributed computing and on a CASE tool-

driven iterative process fully supporting the modeling,

simulation, and implementation phases of DAS. A simple yet

effective case study in the distributed information retrieval

domain is used to illustrate the proposed methodology.

Keywords – agent oriented software engineering; simulation;

CASE tools; mobile agents; multi-coordination; statecharts

I. INTRODUCTION

The ubiquitous diffusion and usage of the Internet have
promoted the development of new kinds of distributed
applications characterized by a huge number of participants,
high decentralization of software components and code
mobility, which are typical of application domains such as
distributed information retrieval, content management and
distribution, and e-Commerce. In these application domains,
the agent-based computing paradigm [19] has been
demonstrated to be effective for the analysis, design and
implementation of distributed software systems. In particular,
in the context of the agent-oriented software engineering
(AOSE), several agent-oriented methodologies based on
suitable agent models, frameworks and tools, have been
defined to support the development lifecycle of distributed

agent systems (DAS). The key elements, identified through an
in-depth analysis of such methodologies, for the provision of
an effective development of distributed agent systems are the
agent model, the development methodology and the supporting

CASE tool.

The agent models aim at providing abstractions for the
modelling of the agent behavior and interactions. Basically
they can be classified in two large groups: (i) models based on
intelligent agent architectures [19, 21] ranging from reactive
agents (e.g. Brook’s subsumption architecture) to deliberative
agents (e.g. BDI agents); (ii) models based on the mobile active
object concept encompassing mobile agent architectures [4].
Models of the first group are mainly oriented to problem-
solving, planning and reasoning systems whereas models of the
second group are more oriented to distributed computation in
open and dynamic environments like the Internet. In the
context of Internet computing, agent models and related
frameworks based on lightweight architectures, asynchronous
messages/events and state-based programming such as JADE
[2], Bond [3], and Actors [1], have demonstrated great
effectiveness for modeling and programming agent-based
distributed applications. In particular, such models define
suitable abstractions for the modelling of reactiveness and
proactiveness of agent behaviors and interactions. However,
they mainly consider messages (and related message-based
protocols and infrastructures) as a means of interaction among
agents and mobility as an auxiliary feature of agents. The
exploitation of coordination models and infrastructures based
not only on messages but also on events, tuples, blackboards
and other coordination abstractions [6] can provide more
effectiveness in designing complex agent interactions and more
efficiency in their actual implementation. Moreover, mobility,
which can provide a powerful means for dynamic organization
of distributed components modeled as mobile agents, also
enables and demands for new non-message-based coordination

models.

The agent-oriented development methodologies aim at
supporting the development lifecycle of agent-based systems
from analysis to deployment and maintenance. They can be
classified into general-purpose and domain-specific
methodologies. The general-purpose methodologies such as
Gaia [27], PASSI [7], Tropos [5], Ingenias [23] are suitable for
the development of multi-agent systems in different application
domains whereas the domain-specific methodologies can be

more effectively exploited in a given, very specific application
domain. Apart from their context of use, they are all based on a
meta-model of multi-agent system, which loosely or tightly
depends on a reference agent model, and on a phase-based
iterative development process. Agent oriented methodologies
for Internet-based distributed agent systems should incorporate
not only a MAS meta-model and its related agent model
suitable for distributed computation but also effective
prototyping methods able to validate the design models before
their implementation and deployment in a large-scale
distributed testbed. In particular, dynamic validation based on
simulation is emerging as a powerful means for functional and
non functional validation of designed agent systems in a large-
scale controlled environment. To date a few agent-oriented,
simulation-based development methodologies have been
proposed in the literature, such as Electronic Institutions [26],
DynDEVS/James [17], CaseLP [20], GAIA/MASSIMO [12],
PASSIM [8], TuCSon/pi [16], Joint Measure [25],
Ingenias/Repast [24]. They incorporate simulation to support
the design phase of the MAS development lifecycle with the
main focus on the validation and performance evaluation of the
designed MAS model. Moreover, the importance of two
additional features of agent-oriented methodologies, high
degree of integration with other methodologies and availability
of a CASE tool supporting the process phases, has become
relevant in the AOSE community. The former feature would
allow for an easy integration with other methodologies for the
purpose of enriching already existing methodologies or
creating new and more effective ones. The latter would allow
for automating the development process phases and their
transitions so providing more robust development and rapid

prototyping.

In this paper we propose a novel methodology, named
ELDAMeth, which provides all the aforementioned important
features for the development of DAS: effective agent model for
distributed computing systems, simulation-based agent-
oriented methodology, integration with other methodologies,
and CASE tool support. In particular, ELDAMeth relies on the
ELDA (Event-driven Lightweight Distilled Statecharts Agents)
agent model and related frameworks and tools, and on an
iterative development process seamlessly covering the
modeling, simulation and implementation phases of DAS and
supported by a visual CASE tool. ELDAMeth can be used both
stand-alone and in conjunction/integration with other agent-
oriented methodologies which provide support to the analysis,
(high-level) design, and implementation phases. ELDAMeth is
exemplified through a case study concerning distributed

information retrieval based on mobile agents.

The rest of the paper is organized as follows. Section II
presents ELDAMeth, providing an overview of the modeling
abstractions and tools, whereas the simulation phase of
ELDAMeth is detailed in section III. In section IV the case
study is described from modeling to simulation. Finally

conclusions are drawn and future work anticipated.

II. ELDAMETH: A SIMULATION-BASED PROTOTYPING

METHODOLOGY FOR DAS

ELDAMeth is a methodology specifically designed for the

simulation-based prototyping of DAS. It is based on the

ELDA (Event-driven Lightweight Distilled StateCharts Agent)

agent model and related frameworks and tools, and on an

iterative development process covering modeling, simulation

and implementation phases of DAS. ELDAMeth can be used

both stand-alone and in conjunction/integration with other

agent-oriented methodologies which support the analysis and

(high-level) design phases. In Figure 1, the development

process of ELDAMeth is represented which consists of the

following three phases:

- The Modeling phase produces an ELDA-based MAS

design object that is a specification of a MAS fully

compliant with the ELDA MAS meta-model. The design

object can be produced either by (i) the ELDA-based

modeler which uses the ELDA MAS meta-model and the

ELDATool [11, 9], a CASE tool supporting the

development phases of ELDA-based MAS, or by (ii)

translation and refinement of design objects produced by

other agent-oriented methodologies such as PASSI [7, 8],

GAIA [27, 12], MCP [14], and others [23, 5, 19]. In

particular, while the translation process centers on (semi)

automatic model transformations based on the MAS

meta-model of the employed methodology and the ELDA

MAS meta-model, the refinement process is usually

carried out manually by the ELDA-based Modeler by

using the ELDATool. The defined design objects can be

automatically translated, through the ELDATool, into

ELDA-based MAS code objects according to the

ELDAFramework, which is a set of Java classes

formalizing all the modeling abstractions of the ELDA

MAS meta-model. The code objects are then used in the

Simulation phase.

- The Simulation phase produces the Simulation Results in

terms of MAS execution traces and performance indices

that must be carefully evaluated with respect to the

identified functional and non-functional requirements.

Such evaluation can lead to a further iteration step which

starts from a new (re)modeling activity. In particular, the

Simulation Results come from the execution of the

ELDA-based MAS simulation object carried out through

ELDASim, a Java-based event-driven simulation

framework for ELDA agents. The simulation object is

obtained by synthesizing the ELDA-based MAS code

object with the simulation parameters and performance

indices, defined on the basis of the requirements, by

means of ELDASim.

- The Implementation & Deployment phase produces code

for the JADE framework which can be then deployed and

executed on a distributed JADE platform. Starting from

the ELDA-based MAS design object, the code production

is supported by the JADE-based

DistilledStateChartBehaviour framework [15], the JADE

framework and the ELDATool. Of course, the execution

results can be evaluated against the functional and non

functional requirements and, possibly, trigger a new

iteration.

Figure 1. The ELDAMeth iterative development process.

In the following subsection a description of the ELDA-based

modeling abstractions and tools is given (more details can be

found in [13]) and the simulation phase is .

A. Modeling ELDA-based MAS

The modeling of agent-based systems based on the ELDA

model is carried out through the ELDA MAS meta-model

(ELDA MMM) which was specifically defined to provide

design abstractions particularly suitable for DAS and

specifically concerning agent lightweightness, multi-

coordination and mobility. However, as agent-system domains

could require specific design abstractions which haven’t been

originally included within the ELDA MMM, the structure of

the ELDA MMM was designed to be extensible; in fact,

ELDA MMM makes it possible to introduce new design

abstractions (such as new services providers or new

coordination spaces) which characterize a specific execution

environment. In particular, the ELDA MMM is structured

according to the view-based schema reported in Figure 2:

- Agent View, which represents the structure of an ELDA

agent and its relationships with the coordination and

system spaces. ELDA agents are event-driven lightweight

agents that are a single-threaded autonomous entity

interacting through asynchronous events, executing upon

reaction, and capable of migration [13].

- Event View, which represents the structure of events.

Events formalize both self-triggering events (Internal

events) and requests to or notifications from the local

agent server (Management, Coordination and Exception

events). Events are further classified into OUT-events

which are generated by the agent and always target the

local agent server and IN-events which are generated by

the local agent server and delivered to target agents.

- SystemSpace View, which represents the structure of the

system space. The System Space provides system services

for the management of agent lifecycles, timers and

resources (e.g. consoles, databases, files, sensors). Agents

interact with the System Space through Management

events.

- CoordinationSpace View, which represents the hierarchy

of the coordination spaces. The Coordination Space

represents a local or global coordination structure based

on a given coordination model through which agents

interact. Several coordination spaces are currently defined

such as message-based, local tuple space,

publish/subscribe. Agents interact with the Coordination

Space through Coordination events.

- DSC View, which represents the structure of a DSC,

basically a hierarchical state machine with history

pseudostates [13].

- FIPATemplate View, which represents the structure of the

FIPA agent template [10] of the ELDA agent behavior.

Figure 2. The ELDA MMM schema.

Models designed through the ELDA MMM can be coded

through the ELDAFramework that is an object-oriented

framework enabling developers to implement an ELDA-based

application as it offers the implementation abstractions

representing the modeling concepts offered by the ELDA

MMM.

To facilitate the use of ELDAMeth, an integrated development

environment, named ELDATool [9, 11], is offered. It aims to

support developers during the modelling, simulation, and

implementation phases. In particular, ELDATool provides in

an integrated fashion:

- a visual editor which allows to model behavior,

interaction and mobility aspects of an agent-system

according to the ELDA model;

- an automatic translator which implements the translation

rules from ELDA meta-model to ELDAFramework;

- a visual editor to configure simulation parameters used to

generate a simulation program based on ELDASim

framework (see next sub section);

- an automatic translator which implements the translation

rules from hybrid JADE and ELDA meta-models to the

JADE DistilledStateChartsBehaviour.

The graphical design models are serialized into XML-like

files. The tool also offers the functionality of automatic code

generation by translating the XML-like files produced after

the Modelling phase into Java code based on the

ELDAFramework for simulation purposes or on the JADE

framework for real execution.

Finally, to support the Simulation phase ELDATool offers a

visual editor to configure simulation parameters which are

used to generate the simulation program according to the

ELDASim framework (see next subsection).

Currently, the ELDATool is implemented in Java as a

collection of Eclipse plug-in to exploit several frameworks

which fully support the development of visual editors;

moreover, the high diffusion of Eclipse in the research

community makes the tool immediately available to the

Eclipse users and the learning process of the tool is therefore

quicker.

B. Simulation of ELDA-based MAS

The development process of ELDAMeth includes a simulation

phase (Figure 3) which consists of the following three

activities:

1. Performance Indices Definition, which, on the basis of

functional and non functional requirements, produces the

definition of the performance indices which will be

evaluated during the simulation;

2. Simulation Implementation, which aims at the realization

of a simulation program which takes into account the

previously identified indices, the definition of the

controlled environment and the ELDAFramework-based

DAS implementation. In particular, such program uses

abstractions provided by the ELDASim (see below) to

define:

- the controlled execution environment (both features

characterizing the computational nodes and the

network) which mirrors the real execution

environment;

- the initial DAS configuration (agents and related

locations);

3. Simulation Execution, which consists of the DAS

execution within the controlled execution environment and

of the collection of the defined performance indices which

allow the analysis and the validation of the DAS under-

development.

The simulation phase can be iteratively executed to modify,

according to obtained simulation results, the modelling

choices taken in former iterations. Simulation execution is

supported by the ELDA simulation environment (ELDASim)

which is a Java-based execution environment for ELDA

agents that aims to validate and evaluate through simulation an

ELDA model based solutions with respect to efficacy and

efficiency aspects. To accomplish this, ELDASim is equipped

with:

- The basics mechanisms of the distributed architectures

supporting ELDA agents. In particular, agent servers, the

network interconnecting agent servers, and several kinds

of coordination infrastructures (asynchronous message-

based, publish/subscribe, and tuple spaces) for fully

supporting the distinctive multi-coordination feature of

the ELDA model.

- The simulation of accomplishment time of time-

consuming operations such as agent actions, agent

management operations, coordination acts, and agent

migrations.

- The capture of the traces of interactions (among agents

and between agents and agent servers) in terms of

exchanged events, filtered in an application-specific

fashion.

Figure 3. Schema of the Simulation phase.

III. A CASE STUDY: MOBILE AGENT-BASED DISTRIBUTED

INFORMATION RETRIEVAL

In this section, a simple yet effective case study concerning
with a distributed information retrieval task in a distributed
computing system is proposed to exemplify ELDAMeth. In
particular, the task consists in searching for specific
information located exactly in one location within a network of
federated information locations. The defined high-level
solution is based on a coordinated set (or task force) of mobile
agents which carry out the information searching task. A user
(represented by an owner agent) starts searching by creating
and launching a task force of mobile agents (called searcher
agents) onto different random locations. As soon as the task
force finds the desired information, the owner agent is notified

with the found information. A high-level design of such
prototypical solution, which is to be properly translated and
refined, is provided by the Multi-Coordination Process (MCP)
[14]. In the following subsections the case study is described
starting from the high-level modeling provided by MCP and
then proceeding with the modeling, simulation and

implementation phases.

1) MCP-based high-level modeling
The Multi-Coordination based Process (MCP) [14] is iterative
and consists of the two phases (Modeling and Evaluation). The
Modeling phase, on the basis of a coordination statement (CS)
which derives from a preliminary analysis and includes a
description of the agents along with their interactions
(coordination requirements - CRs), and a set of coordination
properties (CPs), provides alternative coordination solutions
which fulfill the CS. In the Evaluation phase, a specific
solution is chosen among such alternative coordination
solutions which are evaluated through simulation and then
compared on the basis of ad-hoc defined performance indices

(e.g. time and resource consumption).

With reference to the case study, the proposed solutions for
the coordination of the task force during its information
retrieval task is based on the following CRs:

- CR1: every time a searcher agent visits a location not
yet searched by other agents of the same task force, it notifies
the other agents that such location has already been searched so

avoiding unnecessary and resource-consuming duplicate
searches;

- CR2: as soon as a searcher agent finds the desired
information on a given location, it reports the found
information to the owner agent;

- CR3: when a searcher agent finds the desired
information on a given location, it signals such event to all the
other searcher agents to stop them;

and on the following CPs:
- CPa: the task force is constituted by at least two

searcher agents;
- CPb: the agents of the task force may or may not know

each other whereas they know the identity of the owner agent
and vice-versa;

- CPc: the interactions among all the agents (searcher
and owner) are always asynchronous.
- CPd: the interactions required by CR1 may be local or

remote, that required by CR2 and CR3 are remote.

The defined solutions are reported in Figure 4. For each
solution, the three coordination requirements are addressed by
suitable interaction patterns (IPs) and related coordination
models (CMs).

(A) (B)

(C) (D)

Figure 4. The result of the high-level MCP-based modeling: solutions A, B, C, D.

The IPs are selected from a repository containing some of
the most used agent-oriented interaction patterns and
specifically characterized (through the tuple [number of
participants, participant identity, locus, temporality]) according
to the coordination requirements and properties. In particular,
the characterized IPs are:
- Location-based notification (LBN), which involves agents

passing through a given location to be notified about

events occurring/occurred in such location.

- Report to owner (R2O), which involves a child agent

reporting to its owner agent when its task is completed.

- Group-based notification (GBN), which involves an agent

notifying all agents of its group when a given event occurs.

The CMs used to implement the IPs are:

- Local Linda-like tuple space (LTS), which supports a high
number of participants, allows temporal decoupling but

only offers local interaction [22].

- Topic-based publish/subscribe (TPS), which supports a
high number of participants, allows for distributed

interactions and does not require temporal coupling

between participants [18].

- Queue–based unicast asynchronous message passing
(QAMP), which supports a variable number of
participants, allows for both local and remote interactions,
does not require temporal coupling, but requires spatial

coupling among participants [28].

2) ELDA-based Modeling

The four solutions have been modeled according to the

ELDA MMM and integrated into an ELDASim-based

simulator program. In Figure 5 the SearcherAgent behavior of

the solution A (see Fig.4A) is shown; such solution is

representative of the message-based solution, whereas the

fully multi-coordinated solution can be found in [13].

Figure 5. SearcherAgent behavior of solution A

Every time a Searcher Agent (SA) visits a new location, it

checks for the presence of a marker agent by using the

whitepage service made available by the agent server (action

ac0) and behaves as follows:

1. If no marker agent is present, the SA creates the marker

agent (action ac1), submits the query to the servant agent

(action ac2), and waits for the query result to analyze it

(action ac3). If no info is found the SA moves to a new

location (if available); otherwise the SA goes into a

pseudo-termination state (BLOCKING). If the info is

found, the SA notifies the user agent and the other

members of the task force through asynchronous

messages (action ac4); then, it goes into the BLOCKING

state. The user agent will thus receive a Report event

whereas the taskforce members the

StopSearchNotification event. Upon reception of a

StopSearchNotification event, a SA stops its activity and

goes into the BLOCKING state if it has previously

created marker agents; otherwise, it terminates. In both

cases, such SA will notify the other taskforce members of

its state change (actions ac8 and ac9). Going into the

BLOCKING state, the SA notifies its state change to the

other taskforce members (action 6) so that each member

knows the active agents in the taskforce. The notification

is based on the BlockedSearcherNotification event that,

once received, allows updating the list of active agents

(action ac10). Moving from BLOCKING to

TERMINATED the SA requests to cease its activity and

also sends to all the marker agents it has previously

created a termination request (action ac7).

2. If the marker agent is present and other locations are

available, the SA migrates to a new location (action ac5).

3. If the marker agent is present and no other locations are

available but the SA has created at least one marker agent

in previously visited locations, it goes into the

BLOCKING state (action ac6) to enforce the termination

of such marker agents (see point 1 for the management of

marker agent termination).

4. If a marker agent is present, no other locations are

available and no marker agents have been previously

created by the SA, the SA terminates (action ac8).

3) Simulation and performance evaluation

To evaluate the four solutions shown in Figure 4, in the

Performance Indices Definition activity, the performance

indices reported in Table 1 have been defined. The Simulation

Execution activity relies on two simulation parameters (the

number of locations and the number of searcher agents) and

on the following settings of the network topology and

information distribution:

- Locations are connected through a fully connected logical

network composed of FIFO channels. In particular,

channels are characterized by the same delay and

bandwidth parameters modeled as uniform random

variables.

- The information to be found is contained exactly at one

location and the locations keep references (randomly

generated) to other locations at information level to be all

reachable.

Simulation runs are carried out with the number of locations

equals to 100 and the number of searcher agents in the range

[2..20]. Moreover, for each simulation run, all four solutions

are executed on the same network topology and information

distribution. In Figures 6-10 the simulation results are

reported; the obtained values of the performance indices are

averaged over 50 simulation runs.

TABLE I. PERFORMANCE INDICES

The TTC performance index, which measures the speed with

which the information search task is carried out, decreases as

the number of searcher agents increases (see Figure 6). In fact,

the use of more searcher agents augments the degree of

parallelism which, consequently, increases the probability to

find the searched information with a smaller number of

migrations which are time-consuming. The performances of

all the solutions are almost the same.

Figure 6: The Task Completion Time

The NM parameter (see Figure 7), which measures the

network load, is significantly better in the A and C solutions

thus saving network resources with respect to the other

solutions. In fact, as CR1 is modeled according to the LBL

interaction patterns in solutions A and C whereas the GBN

interaction pattern is used in solutions B and D the number of

coordination messages increases due to the GBN interaction

pattern is adopted by B and D. The TN performance index

measures how fast all the searcher agents are notified after

finding the information: the shorter TN, the fewer are the

resources consumed throughout the agent platform. The A and

C solutions outperform the other solutions (see Figure 8) as

the network load is lighter than the ones of the B and D

solutions. The NV and NS parameters are measures of the

consumption of resources after the information is found. The

values of such parameters should be kept as low as possible.

As shown in Figures 9 and 10, the A and C solutions

outperform the other solutions also for such indices. In

particular, although the TTC values of the A and C solutions

are similar to the solutions B and D, the other performance

indices values are significantly better. It is worth noting that

solution A not only is less straightforward than solution D but

also requires the cloning of a marker agent for each visited

location but such operation may not be allowed according to

security policies of the locations..

Figure 7: The Number of coordination messages

Figure 8: The Notification Time

Figure 9: The Number of visits after finding information

Figure 10: The Number of searches after finding information

IV. CONCLUSION

This paper has proposed ELDAMeth, a novel agent-
oriented methodology supported by a CASE tool for the
simulation-based prototyping of Internet-based distributed
agents systems (DAS). In particular, the distinctive
characteristics of ELDAMeth are: effective agent model for
distributed computing systems, simulation-based agent-
oriented methodology for design validation before
implementation and deployment, integration with other
methodologies to exploit their well-defined method fragments,
and CASE tool support for supporting all development phases
from modeling to simulation and implementation. Such
distinctive characteristics make ELDAMeth very effective for

prototyping Internet-oriented DAS. ELDAMeth has been
applied to prototype several kinds of DAS such as mobile e-
Marketplaces, content delivery infrastructures, and information
retrieval systems. In this paper we have shown a case study in
the information retrieval domain which has demonstrated the
suitability and great effectiveness of ELDAMeth for the rapid
prototyping of Internet-based DAS. As future work we aim at
providing full support to multi-coordination in the
implementation phase: this would allow to translate multi-
coordinated ELDA specifications into a real target platform
represented by JADE and coordination infrastructures such as
TucSon for tuple spaces and Elvin for publish/subscribe

systems.

ACKNOWLEDGMENT

Authors wish to thank A. Garro, S. Mascillaro, G.
Mazzitelli, and F. Rango for useful ideas, discussions and

implementation efforts supporting the ELDAMeth project.

REFERENCES

[1] Astley, M., and Agha, G. A., Customization and Composition of

Distributed Objects: Middleware Abstractions for Policy Management,
ACM SIGSOFT 6th International Symposium on Foundations of

Software Engineering (FSE), 1998.

[2] Bellifemine, F., Poggi, and A., Rimassa, G. 2001. Developing multi

agent systems with a FIPA-compliant agent framework. Software
Practice And Experience 31, 103-128.

[3] Boloni, L., and Marinescu, D. C., A multi-plane state machine agent

model, Fourth International Conference on Autonomous Agents,
Barcelona, Spain, pp. 80-81, ACM Press, 2000.

[4] Braun, P. and Rossak, W., Mobile Agents: basic concepts, mobility

models, & the tracy toolkit, Heildelberg, Germany, Morgan Kaufmann
Publisher, 2005.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.

Tropos: An Agent- Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi- Agent Systems. Kluwer

Academic Publishers Volume 8, Issue 3, Pages 203 - 236, May 2004.

[6] Cabri, G., Leonardi, L.., and Zambonelli, F., Mobile-agent coordination
models for internet applications, IEEE Computer, 33, 2, pp 82-89, 2000.

[7] Cossentino, M., From Requirements to Code with the PASSI

Methodology, Agent-Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini (eds). Idea Group Inc., Hershey, PA, USA, 2005.

[8] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S. and Russo, W.
2008. PASSIM: a simulation-based process for the development of

multi-agent systems. Int. J. Agent-Oriented Software Engineering 2(2),
132-170.

[9] ELDATool documentation and software,

http://lisdip.deis.unical.it/software/eldatool.

[10] FIPA Agent Management Specification, Management for agents on
FIPA agent platforms,

http://www.fipa.org/specs/fipa00023/SC00023K.html.

[11] Fortino, G., Garro A., Mascillaro S., and Russo W. 2007. ELDATool: A
Statecharts-based Tool for Prototyping Multi-Agent Systems. In

Proceedings of Workshop on Objects and Agents (WOA'07, Genova, IT,
Sept. 24-25, 2007), pp. 14-19.

[12] Fortino, G., Garro, A., and Russo, W. 2005. An Integrated Approach for

the Development and Validation of Multi Agent Systems. Computer
Systems Science & Engineering 20, 4, 94-107.

[13] G. Fortino, A. Garro, S. Mascillaro, W. Russo, “Using Event-driven

Lightweight DSC-based Agents for MAS Modeling,” in the special issue
“Best of From Agent Theory to Agent Implementation 6 (AT2AI-6)”,

International Journal on Agent Oriented Software Engineering
(Inderscience publisher), 4(2), 2010.

[14] G. Fortino, A. Garro, S. Mascillaro, W. Russo, “A Multi-Coordination

based Process for the Design of Mobile Agent Interactions,” In
Proceedings of IEEE Symposium on Intelligent Agents (IEEE

Symposium Series on Computational Intelligence), Nashville (TN),
USA, March 30-April 2, 2009.

[15] G. Fortino, F. Rango, W. Russo, “Statecharts-based JADE agents and
tools for engineering Multi-Agent Systems”, in Proc of 14th

International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES2010), Cardiff, 2010.

[16] L. Gardelli, M. Viroli, M. Casadei, A. Omicini, “Designing Self-

Organising Environments with Agents and Artifacts: A Simulation-
Driven Approach”, International Journal of Agent-Oriented Software

Engineering (IJAOSE). Volume 2(2). Page 171--195. 2008.

[17] Himmelspach J, Röhl M & Uhrmacher AM (2008): Component based
models and simulation experiments for multi-agent systems in James II.

In the Proc. of the 6th Int'l Workshop "From Agent Theory to Agent
Implementation" (AT2AI) jointly held with AAMAS", Estoril, Portugal,

13 May, 2008.

[18] Loke, S. W., Padovitz, A., Zaslavsky, A., and Tosic, M., Agent
Communication Using Publish-Subscribe Genre: Architecture, Mobility,

Scalability and Applications, Annals of Mathematics, Computing &
Teleinformatics, 1, 2, pp 35-50, 2004.

[19] Luck, M., McBurney, P., and Preist, C. 2004. A manifesto for agent

technology: towards next generation computing. Autonomous Agents
and Multi-Agent Systems 9, 3, 2004, 203-252.

[20] Martelli M., Mascardi, V. and Zini, F., Specification and Simulation of

Multi-Agent Systems in CaseLP, Appia-Gulp-Prode Joint Conf. on
Declarative Programming, L'Aquila, Italy. pp. 13-28, 1999.

[21] Nwana, H.S., Software Agents: an overview, Knowledge Engineering
Review, 11, 3, pp 205–244, 1996.

[22] A. Omicini, F. Zambonelli, “Tuple Centres for the Coordination of

Internet Agents,” ACM Symposium on Applied Computing (SAC'99),
28 February - 2 March 1999.

[23] Pavón, J., Gómez-Sanz, J.J. and Fuentes, R. (2005) 'The INGENIAS

methodology and tools', in B. Henderson-Sellers and P. Giorgini (Eds.)
Agent-Oriented Methodologies, Idea Group Publishing, pp. 236-276.

[24] Pavon, J., Sansores, C., and Gomez-Sanz, J. J. 2008. Modelling and

simulation of social systems with INGENIAS. Int. J. Agent-Oriented
Softw. Eng. 2, 2 (Feb. 2008), 196-221.

[25] Sarjoughian, H.S., Zeigler, B.P. and Hall. S.B., A Layered Modeling and

Simulation Architecture for Agent-based System Development, IEEE,
89, 2, pp. 201-213, 2001.

[26] Sierra, C., Rodríguez-Aguilar, J. A., Noriega, P., Esteva, M. and Arcos,

J.L., Engineering Multi-agent Systems as Electronic Institutions,
Novática, 170, 2004.

[27] Wooldridge, M., Jennings, N. R., and Kinny, D., The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents

and Multi-Agent Systems, 3, 3, pp 285–312, 2000.

[28] Zhou, X.Y., Arnason, N., and Ehikioya, S.A., A proxy-based
communication protocol for mobile agents: protocols and performance,

IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp 53-
58, 1-3, Dec. 2004.

