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Jan-Philipp Steghöfer, Hella Seebach

and Wolfgang Reif

Institute for Software and Systems Engineering,

Augsburg University,
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Abstract—In resource-flow systems, e.g. production lines,
agents are processing resources by applying capabilities to them
in a given order. Such systems profit from self-organization as
they become easier to manage and more robust against failures.
This paper proposes a decentralized coordination process that
restores a system’s functionality after a failure by propagating
information about the error through the system until a fitting
agent is found that is able to perform the required function. The
mechanism has been designed by combining a top-down design
approach for self-organizing resource-flow system and a systemic
modeling approach for the design of decentralized, distributed
coordination mechanisms. The systematic conception of the inter-
agent process is demonstrated. Evaluations of convergence as well
as performance are performed by simulations.

I. INTRODUCTION

A key driver in the development of autonomous and auto-

nomic systems is the handling of complexity in large appli-

cations that consist of a great number of interacting entities.

Traditional management and failure-handling approaches are

no longer applicable as they do not scale well with the size

of the systems and the communication required by a central

management becomes prohibitive, even with modern high-

speed networks. Therefore, engineers and computer scientists

turn to self-organization as a means to deal with large complex

systems and to keep up with the growth of such applications.

In this paper, we present a self-organizing process for the

class of self-organizing resource-flow systems. This class can

be applied to a great variety of domains such as production

automation and logistics and systems in it can be modeled

with the Organic Design Pattern (ODP) [1]. The decentralized

process proposed here is analyzed and modeled with the

tools provided by the SodekoVS project [2]. Changes in the

configurations of agents propagate through the system like

a wave until the system in its entirety has restored a stable

state. During reconfiguration, parts of the system that are not

affected by the process or have already been reconfigured are

still able to resume their normal work. Evaluations show the

quick convergence to stable states and the reconfigurations

only affect system partitions.

This paper also shows how to pragmatically combine a top-

down approach for the design of agent-based systems with a

bottom-up approach for the design of inter-agent coordination.

While the exact interplay of the two concepts is not fully

elaborated here, it already becomes clear that both approaches

are not necessarily orthogonal but that it is beneficial to

combine both views.

This paper is structured as follows: in the following section,

the ODP, as a conceptual model for self-organizing resource-

flow systems, is discussed and a prominent application sce-

nario, i.e. production automation, is introduced. In Section

III, a programming model for self-organization is introduced.

Subsequently, the intended coordination dynamics of self-

organizing resource-flow systems are presented (see Section

IV) and the realization of a decentralized role allocation

strategy is discussed and evaluated (Section V). Finally, we

conclude and give prospects for future work.

II. DESIGN OF SELF-ORGANIZING RESOURCE-FLOW

SYSTEMS

In production automation systems, resources are transported

between machines to subject these work peaces to a specific

sequence of work steps. The sequence of machines is typically

static. The machines that process the resources are highly

specialized and only have one particular capability, i.e. an

individual operation, they can apply to the resources. The

transport of resources is fixed as well, e.g. by a static layout of

conveyor belts. This rigid structure simplifies the management

but has far-reaching implications, since reconfigurations are

obstructed. The complete system has to be halted when

internal errors make a single system component inoperable.

Adjustments of the production process have to be carried out

by stopping the system and retooling machines.

A visionary alternative are flexible, agent-based production

lines that enable failure tolerance. Machines can autonomously

reconfigure and transports of resources are carried out by au-

tonomous guided vehicles (AGVs). Such a scenario is depicted

in Fig. 1 where robots process a car body which is transported

between the processing stations by autonomous carts.



Fig. 1. Robots with different capabilities (icons to the right of the robot)
process a car by applying one of their capabilities each (highlighted icon).

There are other domains where similar resource-flows occur,

e.g., logistic scenarios or web service orchestration, we call

this class of systems Self-Organizing Resource-Flow Systems.

Their basic structure can be described with the ODP [3]

which defines the elements that constitute the system and

their relationship as shown in Fig. 2. Task define the required

processing of resources. Processing steps are carried out by

agents. The states of resources are modified by applying

capabilities. Agents have a set of capability available and

exchange resources, based on the shop layout (inputs and

outputs). Which capability an agent applies and with which

agents it exchanges resources is determined by a role1. Roles

have a precondition that describes where the resource is

coming from, which state it has, and which task has to be

performed on it. They also have a postcondition that describes

to which agent the resource has to be given and which state and

task it has after the agent has processed it. Most importantly,

the role defines the capabilitiesToApply, i.e., what an agent is

supposed to do with the resource.

To fulfill the tasks for a resource (i.e., to apply the correct

capabilities in the correct order), a resource-flow is established

by the allocation of roles to agents that determines how the

resource is moved through the system and processed on the

way. This means the combination of the roles of the agents by

their pre- and postconditions respectively, is a connected chain

of agents along which resources in the system are forwarded

and processed. There is usually one such chain or resource-

flow for each task that has to be fulfilled in a system. Each

agent, however, can participate in more than one resource-flow

and thus be involved in several tasks at the same time.

The interactions between the agents to handle resources are

also defined on the abstract system class level and can be

inherited by applications based on the ODP. They describe,

amongst other things, the handover of resources and the

detection of agent failures with a heartbeat mechanism. This

way, both a formal analysis of the system class [3], generalized

mechanisms to deal with problems in the system class such

as deadlocks [4] as well as a generic runtime environment [5]

become feasible.

The ODP also contains an Observer/Controller (O/C). This

element of the system structure is the abstract extension

point for the self-organization or reconfiguration mechanism.

Correct system behavior is defined by invariants that have to

1Please note that some of the terminology used in ODP has a slightly
different semantics than the same terms in agent-oriented software engineering
due to the historic roots of ODP.

Fig. 2. The elements of the ODP for Resource-Flow Systems.

hold during the entire runtime of the system. Whenever the

invariants are violated, the system has to be reconfigured to

fulfill the invariants again (Restore Invariant Approach [3]).

The individual agents are able to monitor local invariants and

thus implement the observation part of the O/C. The controller

part of the O/C is then responsible to calculate a new allocation

of roles that restore the resource-flow and ensure that each

agent has a role that fits its capabilities and its input/output

relationship with other agents. How this calculation is done,

however, is not specified at this point.

III. SYSTEMIC PROGRAMMING OF SELF-ORGANIZATION

In the research project ”Selbstorganisation durch Dezentrale

Koordination in Verteilten Systemen”2 (SodekoVS) [2], a

programming technique is developed that allows to equip

software systems with self-organizing features. The self-

organizing inter-agent process is described by discrete design

elements [6]. This enforces a conceptual separation of the

agent functioning and the coordination, i.e. the correlation of

agent activities.

First, a modeling level for the description of inter-agent

self-organization is provided. This modeling level supplements

agent-oriented software engineering practices with an orthog-

onal description level that concerns the dynamic properties of

agent-based software systems [6]. The driving force of self-

organizing dynamics are distributed feedback loops among

system elements [7]. These result from the mutual influences

among system elements and control how fluctuations in the

system context are disseminated and collectively responded to.

The systemic modeling level addresses the description of these

networks of influences and it has been found that the visual-

ization of the mutual interdependencies of system elements

is useful for the anticipation of the dynamics that software

systems are able to exhibit [8], [6]. Using a graph-based

modeling approach, System Dynamics [9] modeling concepts

are specialized for describing Multi-agent systems (MAS).

2Self-Organisation by Decentralized Coordination in Distributed Systems



These models are given as an Agent Causal Behavior Graph

(ACBG) [10]. The nodes in this graph-based modeling level

represent system variables that characterize the macroscopic

state of a MAS. These describe the number of agents that show

a specific behavior, e.g. play a role. In addition, the current

value of an interaction rate can be denoted with a specific

node type. The links among these variables denote mutual

influences and interdependencies. In this respect, influences

denote additive or subtractive contributions to node values,

e.g. when the activity of an agent increases or decreases

the stock of a warehouse. Interdependencies describe causal

relations where the activities of agents are mutually linked,

e.g. the number of hypothetical service requesters in a system

is expected to be positively linked to the number of activations

of service providers. When the number of requesters increases,

the number of activations increases as well and vice versa.

Secondly, a programming model that allows the enactment

of ACBG-based prescriptions of self-organization processes

[11], [10] facilitates application development. The key element

is a distributed architecture for the enactment of decentralized

inter-agent processes (cf. Fig. 3) [11]. This architecture serves

as a reference model for the integration of ACBG-based

processes in MAS. It provides a conceptual framework for

fitting in different self-organization mechanisms and follows

a layered structure. The topmost layer (Application Layer)

contains the realization of an agent-based application. The

contained agents are understood as self-contained providers

of functionalities (Application Functionality). The contained

agents individually control their activities and an underlying

Coordination Layer enables the purposeful affecting of agents

to concert the localized activities and establish collective

behaviors.

The Coordination Layer describes an event-based dis-

tributed system [12], which allows to realize mutual influ-

ences among system elements. These influences correspond

to relations in ACBG-based models of inter-agent processes,

thus the layer is a means to enact the described processes in

MAS. The establishment of inter-agent influences, particularly

for the construction of self-organizing systems, is based on

two types of mechanisms [13], i.e. techniques for the infor-

mation exchange among agents (e.g. reviewed in [14]) and

mechanisms for the (adaptive) adjustments of agents (among

others classified in [15]), due to the perceived information

(see Section VI). The Coordination Layer contains two types

of functional elements for the encapsulation of these aspects.

Coordination Media are conceptual containers of so-related

interaction infrastructures. Specific interaction modes, e.g. the

mediation by an environment [16] or Linda-like tuple spaces,

are encapsulated and reused by a generic interface [11]. Coor-

dination Endpoints interact on behalf of agents via these media

and are able to influence the agent execution. These elements

are used to encapsulate and automate the coordination-related

activities. These activities concern the interactions vie Media,

i.e. the invitation and participation of interactions, as well as

the affectation of modifications in the agent models.

The ACBG-based modeling of dynamics of inter-agent

Fig. 3. The SodekoVS-Architecture for the embedding of decentralized
coordination in MAS [17].

coordination is exemplified in the Sections IV and V. A

configuration language [10] allows to map ACBGs to agent-

based software systems. These mappings describe the realiza-

tion of influences among agents, i.e. the coordination-related

logic that controls the initiation, participation, and reaction to

interactions as well as the media that mediate interactions. The

detailing of these models, as a systematic programming effort,

is not discussed in this article but details on the configuration

of process enactments can be found in [17].

IV. SYSTEMIC MODEL OF ADAPTATION DYNAMICS

In [18], the systematic integration of decentralized coordi-

nation strategies in MAS has been discussed. The conception

of the appropriate coordination is approached by modeling the

problematic, unintended behavior of applications. Based on the

identification of the Problematic Dynamic, a corresponding

Solution Dynamic is derived that supplements the application

behavior with additional interdependencies and inter-element

feedbacks to correct the system behavior and alleviate unin-

tended effects.

The Problem Dynamic of an ODP-based resource-flow

systems is illustrated in Fig. 4 (right). Initially, agents are

running and one or several roles are allocated to them which

are executed in order to process resources. Random errors

make it impossible for the agent to apply one or more of

its roles. The adoption of roles that can not be applied is

controlled by a fluctuating rate (RF interrupt) that is positively

influenced by the availability of running, thus breakable,

agents and the changing number of error events (Error). This

rate describes the resource-flows (RF) that are interrupted, due

to the breaking of agents. These failures within individual

agents limit the number of running agents (negative link), thus

the problematic system behavior is dominated by a negative

feedback loop (α).

If not handled, this dynamic causes the number of agents

that are not running to increase over time. The design of

an appropriate Solution Dynamic concerns the derivation of

agent behaviors that counteract this unintended effect. A very

general structure is given on the left hand side of Fig. 4.

Agents that have roles they can no longer apply are Waiting

for Reconfiguration. The rate of interrupts positively influences

the increase of this variable. The system is equipped with

a reconfiguration mechanism, and for each of the waiting



Fig. 4. The Problem and Solution Dynamic of the ODP.

agents a new configuration is determined. Thus the system

shows a causal relation. In absence of waiting agents, no

reconfigurations take place. Occurrences of waiting agents

enforce subsequent reconfigurations (Reconfigure) to restore a

set of executable roles. The reconfigurations thus increase the

number of Running agents by complementing a counteracting

feedback loop (β).

This Solution Dynamic deliberately omits the concrete

mechanism with which new role allocations are determined.

Also the locally applied techniques to the enactment of recon-

figurations are abstracted. A method to express the problem of

finding a fitting role allocation as a constraint-solving problem

has been presented in [19] and solved with a centralized

approach. Whenever an agent can no longer apply one of

its roles or whenever an agent breaks, the resource-flow is

interrupted. When the interruption is detected, the system

reconfigures in order to restore the flow. During the course of

the reconfiguration process, a new allocation of roles to agents

is calculated and the roles are communicated to the agents

which then apply them again. The next section describes

an alternative reconfiguration mechanisms in which new role

allocations are found in a decentralized fashion by propagating

the demand for local reconfigurations through the system.

V. WAVE-LIKE DECENTRALIZED RECONFIGURATION

A completely decentralized reconfiguration approach is

based on the idea that a wave of role re-allocation runs through

the system in order to re-establish the resource-flow. Assuming

that each agent is capable to exhibit a set of capabilities (see

Section II), a correct resource flow can be (re-)established by

the appropriate swapping of roles. Failing agents adopt actable

roles and in return other agents help out by providing the

unactable roles. The failing agent emits a wave of reallocations

by sending requests for assistance along the resource flow.

Each recipient has to decide locally if it is capable and will

swap roles. Generally, a single swap of roles is not enough to

reestablish the full sequence of activities and transitive changes

of roles are required.

The operating principle is exemplified in Fig. 5 for a simple

scenario that requires a transitive swap of roles. Three Robots

are connected in series (1). For each agent the set of actable

capabilities are listed and the topmost capability is used in

the currently active role, e.g. Robot 1 is currently configured

to play a role that involves Cap. 1 but may also apply Cap.

3. Two types of Cart agents represent the initial provision

(Producer) and the final collection of the processed workpieces

(Consumer). Due to an error Robot1 can no longer apply Cap.

1 and sends a request for assistance (2). This request is routed

along the resource flow till it reaches an agent that is capable

to execute the needed capability, here Robot 2 which replies

to the request (3). The reply is routed to the requesting Robot

as well as the Carts that are connected to the swapping robots.

Consequently, the Robots and Carts reconfigure their local

roles. The robots update their roles and the resource flow

is reestablished by adjusting the ports in the pre- and post-

conditions of the roles of the connected Carts to ensure that

workpieces reach the robots in the intended sequence. In the

best case, the originating and the receiving agents can just

switch their roles, thus restoring the resource-flow.

In Fig. 5, Robot 2 is able to provide capability Cap. 1 but

Robot 1 is not able to replace Robot 2 as it is missing the

currently utilized Cap. 2 (3). Thus after the swap, Robot 1

remains in a problematic state and requests assistance (4).

This request is propagated again till it reaches a robot with

the required capability (Robot 3) and the swap proceeds as

above (5). Since Robot 1 is able to replace the currently active

capability of Robot 3, i.e. Cap. 3, the correct sequence of ca-

pabilities is finally reestablished (6). Here, the reconfiguration

logic has been described for agents that only play on role at a

time and the subsequent simulations concerns this simplified

scenario. In principle, agents can be part of several resource-

flows and in that case, the agents only reconfigure for roles that

include the broken capability and keep processing resources

of other tasks. Consequently, the informed Carts change only

the ports of the affected roles accordingly.

A detailed ACBG of the outlined reconfiguration algorithm

is illustrated in Fig. 6. This description refines the previously

given Solution Dynamic (cf. Fig. 4) as it illustrates how the

decentralized strategy relates to the dynamics of ODP. In

addition, it indicates the system-level effects of the decentral-

ized reconfiguration that are examined in Section V-A. When

agents are Waiting for Reconfiguration due to error events,

they show two behaviors. First, they are Deficient as one or

more roles, which are required for the processing of resources,

are inoperable. These roles are distinguished by the reason for

deficiency. Agents can be rendered deficient by error events

(By Break) or they deliberately decided to abandon a role in

order to adopt another role on behalf of another agent (By

Change). In the former case, the agents are rendered inefficient

and in the latter case agents assist other agents. Secondly,

these agents are considered to be Non-Active, i.e. they have

the capacity to play another role. Agents can concurrently play

several roles, therefore, the non-activity only denotes that the

agent is underutilized, i.e. is capable to exhibit another role.

This means that in agents that can play several roles, the

Running and Non-Active roles do not exclude each other, but

an agent can be associated to an active role (Running) and

still have the capacities to play additional roles (Non-Active).

Agents are equipped with the ability to autonomously



Fig. 5. Exemplification of the decentralized reconfiguration.

Fig. 6. ACBG for the Solution Dynamic of the wave-like, decentralized
reconfiguration algorithm

change their allocation (Change Role). Deficient robots in-

dicate their shortcoming to other agents (communicate de-

ficiency) via a Coordination Medium (cf. Section III). The

medium controls the sequential reception of the request along

the flow of resources in the production line. Recipients de-

cide locally whether to change their role-allocation or not,

based on their individual abilities. The changing behavior is

distinguished by the receiving agent that adjusts the local

configuration. Non-Active agents Resume the executions since

these become operational. Running agents that adjust their role

Assist the requesting agent. These roles have different effects

on the agent population. All changes remove deficiencies and

the annotation source.targetRole == destination.Role indicates

that only those deficiencies are removed (destination) that

changing agents (source) commit to. Another commonality

is that the adjustment of a role entails the restoring of the

flow of resources among the agents (Restore RF). When

an agent has adjusted its role, those agents that received

resources from it or gave resources to it need to adapt as

well. This activity is separated from the role change as the

agents do not deliberately decide about these changes. These

are reconfigurations within connected agents that are enforced

as they are consequences of the deliberate changes. These

reconfigurations may as well by transmitted via Coordination

Media (see Section III).

Assisting another agent introduces new deficiencies, as the

assisting agent is giving up one role that needs to be played

by another agent (Deficient by Change). Thus the net amount

of Non-Active agents is unaffected. However, these changes

may be necessary in settings where agents can not swap

roles directly and transitive changes of roles are required (as

exemplified in Fig. 5). When Non-Active agents Resume to

adopt a role, the number of Non-Active agents is reduced.

Still, this requires the availability of Non-Active agents.

The changing activities of agents control the overall negative

feedback (β) that increases the number of operational agents

and reduces the number of deficient agents. Three auxiliary

feedbacks influence the exhibited system dynamics (δ,γ,ǫ).

First, agents that assist others create a reinforcing feedback

loop (δ), which originates from the fact that an assisting agent

adds additional deficiencies to the system. If an agent resumes

its activities, deficiencies and non-active agents are removed

instead, thus instituting a balancing feedback (γ). The ability

to resume is limited by the amount of Non-Active agents,

leading to a third balancing feedback (ǫ).

A. Estimating the Effects of Adaptation Dynamics

The outlined Solution Dynamic (cf. Fig. 4) denotes an inter-

agent process that can be implemented with the systemic pro-

gramming model (see Section III). Prior to the detailed design

and embedding of this process, the effected system behavior

is anticipated. One approach to estimate the dynamics of

self-organizing MAS is their simulation in stochastic process



algebra models [20]. It is important to note that the resulting

stochastic models abstract from the agent implementations and

their internal reasoning. Instead, stochastic terms are used

to describe the dynamics with which specific behaviors are

adopted or left. The number of currently active process terms

resembles the number of agents that show specific behavior,

i.e. the variable-values of an ACBG-based process description.

Fig. 7 illustrates the simulation model used to anticipate

the Solution Dynamic. The model is given in stochastic π-

calculus [21] and simulated with the Stochastic Pi Machine3

(SPIM). Details on the simulation language and graphical

notation can be found in [22]. Agents are modeled as processes

that communicate/interact via channels. The stochastics of

interactions are given by annotating processes with delays

(τ ) and assigning interaction rates to channels [21], [22]. The

notation x denotes the sending of data on the channel x and

x denotes the reception of data via the channel x.

Fig. 7. Simulation Model of the Solution Dynamic in Stochastic π-Calculus.

In the simulation model, the number of agent behaviors that

are exhibited are expressed by the number of active processes.

Processes communicate via two channels. The channel reqb is

used to communicate requests for a role-switch, due to an

internal error, i.e. the internal breaking of the requester. When

roles are requested to be switched in order to assist an agent,

these requests are send via the channel reqc. Operative agents

are denoted by the running process. Internal errors occur with

a fixed rate, as defined by the delay τb. Inoperative robots

are represented the concurrent execution of the deficientb
and non-active processes. Deficient processes end when a

request for re-assignment of the affected role is processed by a

recipient. The non-active processes become resume processes

when they receive any request for re-allocation. The time delay

τrc resembles the time needed to reconfigure. Afterwards, the

agent is in operation, i.e. exhibits the running process. When

running agents receive a request to switch roles, they convert

to the concurrent execution of the assist and deficientc
processes. The assistance transforms back to the running

process, delayed by the time to reconfigure the agent (τrc). The

deficientc processes describe the search for another agent that

is able to play the role that an assisting agent possessed before

3http://research.microsoft.com/en-us/projects/spim/

the assisting adjustment. Deficiency ends when another agent

processes the request for a role change, communicated via the

channel reqc. This simulation model abstracts from the agents

that participate in the system. The time needed to restore the

resource flow (cf. Fig. 6), i.e. the adjustments of the roles of

the directly connected agents to reestablish the correct flow of

resources among machines, is part of the time delay τrc. We

assume that the rerouting of resource transportations is always

possible.

Simulations indicate that, at a high enough level of redun-

dancy, the system reliably recovers due to the decentralized

switching of agent roles. This process describes a structure

formation as the system maintains the operational system

configuration. The fraction of recovering situations is predicted

by this simulation to depend on the redundancy level in a

similar way as is shown in the results section below.

B. Agent-based Realization

After the anticipation of the affected system behavior, this

reconfiguration strategy has been integrated in a MAS by using

systemic programming model (see Section III). The system

implementation (Application Layer, see Figure 3) makes use

of the freely available Jadex4 agent framework. The Robots

and Carts within production lines are represented by Jadex-

agents and the exchanged workpieces are mimicked by objects

that are exchanged via FIPA Agent Communication Language

(ACL) messages. A realization of the Coordination Layer (see

Fig. 3) for this agent platform is utilized [11].

For this application scenario a tailored Medium realization

is utilized that routes request and reply messages along the

resource flow. Conceptually though, agents are aligned in

a circle thus all agents can be reached independent of the

location of the incapacitated agent. Endpoints encapsulate the

logic to coordinate the reconfiguration process and interact

via the Medium. Endpoints observe the agent-operation and

initiate the reconfiguration process by sending a help request

if an agent becomes deficient. The help request is forwarded

through the medium. Each endpoint along the message path

decides whether to adopt the deficient agent’s role or continues

forwarding the help request. If the endpoint decides to adopt

the role, a reply is sent. The reply is sent in both directions

through the medium to inform all agents which are affected

(robots and connected carts) by the reconfiguration process.

Again, each endpoint receiving the reply decides to change the

agent configuration. The reply is sent backward through the

medium until all affected agents are informed. If an endpoint

receives multiple coordination messages these messages are

queued and processed in the order of their arrival.

C. Implementation Test Results

The example system illustrated in Fig. 5 has been imple-

mented and tested for measuring the handling of breaking

capabilities. When the robot is rendered incapacitated by such

an event, the associated endpoint notices this and initiates

4http://jadex-agents.informatik.uni-hamburg.de/



an interaction via the Coordination Medium that triggers the

swapping of roles. The first swap involves the incapacitated

agent that is Deficient by Break. In this system configuration,

a second swap is required that resolves a transient Deficient

by Change agent behavior.

In addition, we examine the relation of the redundancy

within agents with the effectiveness of the reconfigurations.

The effectiveness of the reconfiguration procedure is in-

fluenced by the number of alternative capabilities that are

available to the individual agents. This level of redundancy

is measured by the ratio of the number of individual ca-

pabilities (Ci), to the absolute number of capabilities (C)

that are required for the processing of a workpiece (Ci

C
).

In the following, we assume a homogeneous setting, where

the robots are equipped with an equal number of redundant

capabilities. The composition of these capabilities is normally

distributed. In Fig. 8, measuring results for a simple scenario

with 10 different capabilities and agents are shown. Each

single run processes of a fixed number of workpieces while,

at two fixed instances of time, a randomly selected agent

is incapacitated. A first estimate of the effectiveness of the

reconfigurations is the number of exchanged messages (see

Fig. 8). The number of messages increases quickly when the

number of redundancies decreases. This measurement can be

analytically fitted with (c1∗(1−x))2+c2.5. A complementary

measurement is the number of hops that requests for assistance

travel before a swapping agents is found. This describes the

logical distance between the swapping agents. The results for

this measurement have shown the same characteristics like the

message count and can be fitted with the same function (but

different constants). Thus the decentralized reconfiguration

strategy is particularly suited for production lines where the

capability types are often available.

Fig. 8. Measurement results. The averaged number of messages are plotted
over the redundancy of capabilities.

VI. RELATED WORK

Ant Colony Optimization has been used for decentralised

control in production systems. [23] uses the mechanism to

control autonomous vehicles, similar to our carts. The distri-

bution of jobs to production machines has not been a concern

there. The more complex problem of scheduling jobs to run

on certain machines has, e.g., been tackled in [24] and [25].

5
c1, c2 are application dependent constants. In this case, these are 10 and

12 respectively.

However, these papers from operations research focus on

optimization of a shop floor and do not take into account

robustness and reconfiguration that happens at run-time. Also,

only partial problems are investigated, either focusing on the

routing of carts or the scheduling of production machines.

The work presented here concerns the run-time reconfig-

uration by self-organization. The maintained structure is a

correct sequence of agents that are perturbed by individual

failures that incapacitate agents. Prominent alternatives to the

process presented here are centralized/distributed constraint

solving techniques and market-based mechanisms. The correct

configuration is described with constraints and an approach

to use centralized constraint solving to restore functionality

after a failure has already been published [19]. Consequently,

distributed constraint solving techniques [26] can be used as

well, e.g. as studied in [27]. An example for market-based

mechanisms is given in [28]. A manufacturing line is provided

with a flexible transport mechanism and work pieces and

machine agents negotiate for the execution of working steps.

In a way, the algorithm proposed in this paper is an optimistic

and minimalistic version of a distributed constraint solver. By

exchanging roles, the agents collectively restore the invariants

of the system. The strategy is minimalistic since the number

of required messages and the amount of shared information is

reduced. It is optimistic because the assisting role changed are

carried out before the complete solution is calculated. Its main

advantage over traditional distributed constraint solvers is the

minimal amount of calculation that is involved at the agents.

They can therefore be very small with only minimal CPU

power and RAM, making them cheap and easily replaceable.

Here, these design alternatives are qualitatively character-

ized by a subset of criteria from [29]. Their quantitative com-

parison is left for future work. A first aspect is the necessary

communication. The presented process minimizes the message

content and only the information that immediately necessary

to resolve a local failure is communicated. The number of

messages ranges from a single role swap (best case) to the

successive swapping of roles by all agents (worst case). The

dependence of this measure on structural properties is shown

in Figure 8. The communications are only carried out when

failures are present. Alternatives involve that coordination-

related messages have to be exchanged during the normal

system operation, e.g. as workpieces constantly negotiate their

further processing [28]. Also the amount of computations and

the considered/exchanged knowledge about the system state

is minimized. The participation in the process involves only

the local consideration whether an agent is capable to play a

required role. Now further information about the global system

state is processed. Centralized constraint solvers require the

full knowledge about the system and decentralized solvers

require the information from neighboring agents. In addition,

the adaptations are carried out concurrently to the system

operation. Unaffected partitions of the production line continue

to work. Finally, the accuracy of the quality of the found

solution, i.e. stable configuration, varies. The process follows

the heuristic that role swaps of nearby agents are favored over



the swaps of (logically) distant agents. The explicitly treatment

of the underlying constraint problem allows in principle to

prepare the optimization of the found solutions.

VII. CONCLUSIONS

In this paper, we have described a decentralized recon-

figuration process to restore valid system configurations in

self-organizing resource-flow systems. The reconfiguration al-

gorithm works by exchanging roles with neighboring agents

and by propagating change requests in a wave-like manner

until all of them could be satisfied. The mechanism has

been developed by combining a top-down process for the

description of resource-flow systems and a bottom-up process

for the design of agent coordination. Its performance has been

demonstrated with a number of simulations.

The most interesting feature of the decentralized process

proposed here is that reconfigurations are organized locally in

the production line, i.e. the rest of the system is not impaired

by a failure. Thus, parts of the system that are not involved into

a local reconfiguration can continue to run normally. The way

the reconfiguration propagates also ensures that only a small

amount of agents is in a state of non-processing resources

at an instance of time. This feature will be prominent also

when using the wave-like algorithm in non-linear production

situations, which is a straight-forward generalization instance.

Local heuristics taking into account exchange–success rates

could be predefined or evolved using learning algorithms.

Future work includes a more detailed study on the combination

of bottom-up design of coordination methods as proposed in

SodekoVS and of top-down design methodologies as promoted

with the ODP. This will also include a comparison of their

respective advantages and problems that occur when both

worlds are combined.
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[25] C. Gagné, M. Gravel, and W. L. Price, “Solving real car sequencing

problems with ant colony optimization,” European Journal of Opera-

tional Research, vol. 174, no. 3, pp. 1427 – 1448, 2006.
[26] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara, “The distributed

constraint satisfaction problem: Formalization and algorithms,” IEEE

Transactions on Knowledge and Data Engineering, vol. 10, no. 5, pp.
673–685, 1998.

[27] G. Clair, E. Kaddoum, M.-P. Gleizes, and G. Picard, “Self-regulation in
self-organising multi-agent systems for adaptive and intelligent manu-
facturing control,” in SASO ’08: Proc. of the 2008 Sec. IEEE Int. Conf.

on Self-Adaptive and Self-Organizing Systems, 2008, pp. 107–116.
[28] N. R. Jennings and S. Bussmann, “Agent-based control systems,” IEEE

Control Systems, vol. 23, no. 3, pp. 61–74, 2003.
[29] E. Kaddoum, M.-P. Gleizes, J.-P. Georgé, and G. Picard, “Characterizing
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