
Lifting File Systems into the Linked Data Cloud with TripFS

Bernhard Schandl
bernhard.schandl@univie.ac.at

Niko Popitsch
niko.popitsch@univie.ac.at

University of Vienna, Department of Distributed and Multimedia Systems
Liebiggasse 4/3-4, 1010 Vienna, Austria

ABSTRACT
A major fraction of digital information is stored in file sys-
tems. File systems organize files usually in labelled directory
trees and provide a minimum support for user-driven file an-
notation, linkage and categorization. Although file systems
play a major role in knowledge organization, both in enter-
prise contexts as well as in the personal information sphere,
they have rarely been considered in Web-based information
integration. To a large extent, this can be contributed to the
limited metadata support of file systems and to the lack of
stable identifiers for file and directories, which makes it hard
to expose these objects in a global Web. We present TripFS,
a lightweight approach for exposing parts of local filesystems
as Linked Data. Serving file system objects via dereference-
able HTTP URIs paves the way to integrate them with the
Web of Data, and enables new possibilities of exploiting file
system data, for example, by linking them with other data
sources or by annotating them using Semantic Web tech-
nologies.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management;
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services

General Terms
Algorithms, Design

Keywords
Linked Data, file systems, file metadata, information repre-
sentation, information integration, event detection

1. INTRODUCTION
File systems store and organize data and documents of

all sorts and of arbitrary complexity, ranging from small
information snippets that can be put into single files, to
large repositories of heterogeneous content that are orga-
nized within deep hierarchical structures. They act as the
storage backbone of many information processing systems
and can be considered as one major fundament of personal
and corporate information management. Since common file

Copyright is held by the author/owner(s).
LDOW2010, April 27, 2010, Raleigh, North Carolina, USA.
.

systems do not impose major restrictions on creating, nam-
ing, and arranging directories and files, they support a user’s
individual preferences for data organization. File systems do
not only store files that were created or modified locally: a
large share of files originates from other sources, like mul-
timedia devices, other desktops, or the Web. In corporate
environments it is common to store data of collective in-
terest on shared file servers that enable a simple form of
collaboration.

Overall, file systems can be considered as one of the pri-
mary information sources both for organizations and indi-
viduals, and it is quite likely that they will remain to be
important in the future. Therefore they are of high interest
for information integration. However, file systems have only
rarely been considered in the field of Web-based data inte-
gration. This stems mostly from their limited possibilities of
data organization1, limited metadata support, and the lack
of stable identifiers for files and directories.

One promising strategy for Web-based information inte-
gration is the Linked Data paradigm. This term denotes a
set of technologies and best practices that facilitate informa-
tion integration and linkage on a global scale. To expose in-
formation as Linked Data means to follow simple principles
[6]: first, identify each resource of interest with a globally
unique, dereferenceable HTTP URI; second, provide useful
information for clients when they access the URI (usually
expressed in RDF and HTML); and third, include links to
other resources so that clients can retrieve more potentially
interesting information.

In this paper, we present TripFS, a lightweight approach
that applies these principles for file systems in order to ex-
pose their contents as Linked Data, and therefore enables
their direct inclusion in Web-based integration scenarios.
It assigns stable, globally valid, dereferenceable URIs to
files and directories, monitors changes in the system, serves
metadata extracted from files as RDF data, and interlinks
files with external data sources. It provides a plug-in ar-
chitecture so that it can easily be extended to support ad-
ditional file types and linking components, it adapts to the
specifics of the underlying file system, and it provides a so-
phisticated file change tracking component that increases
the stability of file identifiers.

Because it is easy to set-up, TripFS also facilitates ad-hoc
sharing of file-based resources using standardized (semantic)

1By now it seems commonly accepted that a single hier-
archical scheme is insufficient for the organization of large
amounts of data as we encounter them on today’s desktop
environments.

Web technologies. Moreover, it overcomes shortcomings of
hierarchical organization mechanisms, because its metadata-
centric approach allows to query for descriptive information
instead of file location, and to establish multiple, orthogonal
views on file system data.

After outlining application scenarios and describing how
users can benefit from exposing file systems as Linked Data
(Section 2), we discuss which steps have to be taken in order
to realize this idea (Section 3). We present details about the
TripFS architecture and implementation (Section 4). After
a discussion of related work (Section 5) we conclude the
paper in Section 6.

2. BENEFITS OF LINKED FILE SYSTEMS
The benefits of exposing data as Linked Data resources

are manifold [9]. In this section we outline three scenarios
that illustrate how the quality of file system usage can be
increased by exposing files as Linked Data.

A) Integrating File Systems into Enterprise Data. A
substantial fraction of enterprise data is available in the form
of file systems. While these data can be accessed in a dis-
tributed context using protocols like CIFS or WebDAV, it
is difficult to integrate them in a global enterprise context
due to the lack of stable identifiers for files and platform-
independent metadata-based file access mechanisms. Linked
Data has been shown to be a viable approach for lightweight
enterprise information integration [16]; therefore, making file
systems part of a global or enterprise-internal Web of Data
enables them to be seamlessly integrated with, and seman-
tically connected to other data sources.

B) Web-based Ad-hoc Data Sharing. Despite the vast
amount of possibilities for digital communication we have at
our disposal, ad-hoc sharing of meaningful information (e.g.,
the exchange of digital documents between participants’ lap-
tops during face-to-face meetings) is still cumbersome. We
can regularly observe that collaborators use e-mail or in-
stant messaging to quickly exchange files. This approach,
however, does not allow more complex data to be shared,
or to exchange files together with metadata that describe
their correct context. Linked Data builds on top of common
Web technologies, thus any Linked Data source can be di-
rectly accessed using a common Web browser. A tool that
allows users to temporarily share selected parts of their local
file systems as Linked Data (which implies not only sharing
plain files, but also extracted metadata, annotations, and
links) facilitates efficient information exchange amongst col-
laborators.

C) Semantic Web-based File Annotations. Semantic an-
notation and interlinking of files is badly supported today:
although modern file systems support the storage, manage-
ment, and retrieval of file annotations (e.g., extended at-
tributes or file forks), these data are not accessible in a
standardized and platform-independent way. This makes
the organization of files into logically connected units diffi-
cult, and reduces the efficiency of file retrieval especially in
distributed environments. If file systems were published as
part of a Web of Data, they could be annotated and inter-
linked using tools like the LEMO annotation framework [13]
or the Silk framework [22], which would lead to an increased

quality of search and retrieval, as well as linkage with other
relevant data sources. In turn, these Linked Data and Web-
based annotations could be propagated back into the work-
ing context of the file system user, e.g., by being considered
by desktop search engines.

3. REPRESENTING FILE SYSTEMS AS
LINKED DATA

Since the characteristics of file systems and Linked Data
differ significantly, a number of steps have to be performed
in order to lift file system data into a Web of Data:

1. Appropriate representations for files and directories
have to be found, which comply to the Linked Data
principles.

2. Vocabularies that convey the characteristics of data
found in file systems have be to be specified and aligned
to already existing relevant vocabularies.

3. Descriptive metadata about files have to be extracted
from the file system and transformed into the RDF
data model.

4. Meaningful links to other, external data sources have
to be detected and established.

5. Consistency between the file system and its correspond-
ing Linked Data representation has to be ensured.

6. Data have to be served according to Linked Data prin-
ciples, i.e., in a form that is usable for both, humans
and machines.

In the following we outline how each of these steps can be
realized.

3.1 File URIs in the Web of Data?
Within the context of a file system, files and directories

can be uniquely identified using their absolute paths, each
of which consists of a sequence of directory names and a file
name. The file: URI scheme [5] is a means to directly
reuse these paths to form URIs, which can in turn be used
to access local file resources in a computer system.

However, file URIs are neither globally unique, since they
describe a local path to a resource on a particular host, nor
stable, since the referenced files and directories may be re-
moved, moved, or renamed. Therefore they are not suitable
for being used in a global Web of Data.

To solve this identifier problem, we chose to use opaque,
randomly generated UUIDs, and assign them to files and
directories. The usage of random UUIDs in a global dis-
tributed context is assumed to be safe since the probabil-
ity of a collision is sufficiently low. Further, since UUIDs
are fully opaque, they do not convey information about
the physical location of files and directories, and are there-
fore stable even when the underlying file system objects are
changed. However, this requires to maintain a mapping be-
tween stable, UUID-based URIs on the one hand, and un-
stable, path-based identifiers on the other hand, to ensure
that modifications in the file system are properly reflected
in the Linked Data representation. In Section 3.6 we outline
our strategy to accomplish this.

1 <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9>

2 a tripfs:File ;

3 rdfs:label "eswc2009-schandl.pdf" ;

4 tripfs:local-name "eswc2009-schandl.pdf"^^xsd:string ;

5 tripfs:path "/Users/bs/Data/work/papers/2009/eswc/eswc2009-schandl.pdf"^^xsd:string ;

6 tripfs:size "425561"^^xsd:long ;

7 tripfs:modified "2009-03-11T02:38:45"^^xsd:dateTime ;

8 tripfs:parent <urn:uuid:35069c61-451e-4688-98f5-080924b261f4> .

Figure 1: A Linked Data representation of a PDF file

1 <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9>

2 a tripfs:File, foaf:Document, nfo:FileDataObject ;

3 tripfs:parent <urn:uuid:35069c61-451e-4688-98f5-080924b261f4> ;

4 nfo:belongsToContainer <urn:uuid:35069c61-451e-4688-98f5-080924b261f4> .

5

6 <urn:uuid:35069c61-451e-4688-98f5-080924b261f4>

7 a tripfs:Directory, dctype:Collection, nfo:FileDataObject, nfo:Folder ;

8 tripfs:child <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9> ;

9 nie:hasPart <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9> .

Figure 2: Interoperability through the usage of multiple overlapping vocabularies

3.2 Files and Directories as Web Resources
The parent-child relationships between files and directo-

ries can be represented as RDF triples with appropriate
predicates. Several triples are added to each file or direc-
tory resource that convey data that are directly retrieved
from the file system: the local name (i.e., the actual file or
directory name without the entire path information), the
file size, and the dates of creation and last modification. An
example of a file’s RDF representation is depicted in Fig-
ure 1. Resources that represent files or directories are inter-
nally identified by UUID-based URNs; for serving them as
Linked Data they are dynamically rewritten to HTTP URIs
(cf. Section 3.7).

3.3 Vocabularies
In order to describe files, directories, their metadata and

their relations as RDF, we have developed a simple OWL vo-
cabulary published at http://purl.org/tripfs/2010/02#.
We have derived our vocabulary from existing semantic vo-
cabularies as much as possible. However, as it is currently
uncommon to expose file resources as Linked Data, we ob-
served a lack of community-accepted vocabularies for this
purpose. To the best of our knowledge, only the NEPO-
MUK File Ontology2 (NFO) has been specifically defined
to model the contents of file systems. It provides terms to
describe files, directories, and their properties. Our vocab-
ulary is aligned with NFO and provides more specialized
terms, according to our system’s requirements.

A number of other vocabularies, however, have a general
notion of the concept of documents, and usually align this
concept to the foaf:Document class. On the other hand,
several vocabularies have a notion of collections, which can
be compared to directories in a file system; for instance,

2http://www.semanticdesktop.org/ontologies/nfo/

OAI-ORE [17] or Dublin Core3. The Dublin Core Type
Vocabulary4, as another example, defines terms for different
resource types as well as collections. Additionally, there
exists a large number of vocabularies that can be used to
identify media types and their specifics; e.g., the MPEG-7
ontology5, the Music Ontology6, or the set of NEPOMUK
ontologies.

To reach a maximum level of interoperability, a data source
should aim to adhere to commonly accepted vocabularies
as much as possible. The RDF semantics allows to arbi-
trarily mix different, unrelated vocabularies; therefore we
propose—in addition to using a custom vocabulary—to mo-
del file system data using the NFO vocabulary, and to add
type information from popular vocabularies like Dublin Core
and FOAF as they fit. By serving data using multiple, even
already aligned vocabularies, we disburden data consumers
from the need to perform additional inference. An example
of such a mixed representation is presented in Figure 2.

3.4 Extracting Semantic File Metadata
Current file systems provide only a limited set of low-

level metadata attributes associated with files such as name,
owner, size, creation and modification date, or permission
attributes. Modern file systems provide additional means
to store higher-level metadata, like extended attributes or
multiple data streams; however these are only useful if they
are actually populated by applications, which is rarely the
case.

3http://dublincore.org/groups/collections/
collection-application-profile/
4http://dublincore.org/documents/
dcmi-type-vocabulary/
5http://metadata.net/mpeg7
6http://musicontology.com

1 <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9>

2 nie:mimeType "application/pdf" ;

3 nie:title "The Sile Model --- A Semantic File System Infrastructure for the Desktop" ;

4 nfo:pageCount 15 .

5

6 <urn:uuid:a998272d-45f0-4814-8f15-be5db5fe811a>

7 nie:mimeType "audio/mpeg" ;

8 nid3:title "Bohemian Rhapsody" ;

9 nid3:leadArtist [nco:fullname "Queen"] ;

10 nid3:length 355106 .

Figure 3: Metadata extracted from a PDF and an MP3 file

1 <urn:uuid:887d728e-bc12-4f28-a497-7d66439086e9>

2 owl:sameAs <http://dblp.l3s.de/d2r/resource/publications/conf/esws/SchandlH09> .

3

4 <urn:uuid:a998272d-45f0-4814-8f15-be5db5fe811a>

5 rdfs:seeAlso <http://musicbrainz.org/track/c7faf83f-9cb3-4de4-a39f-1c1f98b8d81a> ,

6 <http://musicbrainz.org/track/95ebc842-9926-4658-8012-12c358247946> ;

7 owl:sameAs <http://musicbrainz.org/track/bbd5a2e7-9814-4988-8f5a-dc38c208eeea> ,

8 <http://musicbrainz.org/track/064c440c-4eba-47a6-83c4-c91a979eeb4b> .

Figure 4: External links to DBLP and MusicBrainz

As it is one of the Linked Data principles to “provide
useful information” about a resource when a client derefer-
ences its URI, it is desirable to extract additional, descrip-
tive metadata from files and directories and expose them
also as Linked Data. Reconsider, for example, Scenario A
described in Section 2, where the value of file-system level
metadata (like file size, file type, or file permissions) is lim-
ited; higher-level descriptive metadata that can be used for
selective retrieval of files respectively their descriptions, e.g.,
via SPARQL, is required. However, the combination of these
metadata enables sophisticated discovery, retrieval and ac-
cess methods based on (i) the parent/child relations of file
system objects, (ii) low-level file system metadata, and (iii)
high-level content-based metadata.

The problem of extracting metadata from file systems has
been studied for a long time. The biggest challenge in this
field is the data diversity found in file systems, which is im-
posed by the multitude of different file types. To illustrate
this, currently more than 51,000 file types are registered at
the popular FILExt service7. Different file types exhibit dif-
ferent internal structures, and consequently different meta-
data can be extracted. It is therefore impractical to provide
metadata extractors for this large amount of different file
types within a single software component. It is instead more
feasible to define a generic metadata extraction framework
that allows specific extraction components for different file
types to be plugged-in. By this, the system can be tailored
to the respective application context.

In our approach, extractors read files and extract an RDF
graph that contains triples representing the extracted meta-
data. Multiple extractors can be cascaded into an extractor
pipeline and are sequentially applied to each object. The
resulting RDF graphs are stored in the triple store and are

7http://filext.com

then served as part of the file’s and directory’s description
via the Linked Data interface. Extractors may extract not
only file metadata (i.e., data about the documents repre-
sented by files), but also entities that are related to files
(e.g., the artist who has performed the music stored in a
MP3 file) and can in turn be linked to external data sources.

As an example, Figure 3 shows the RDF representation of
metadata that have been extracted from two files; the first
resource represents a PDF document containing a scientific
publication, the second represents an MP3 audio file8. The
blank node used to identify the artist in this example (line
9) needs to be dynamically rewritten to a stable, derefer-
enceable URI by the Web server (see Section 3.7).

3.5 Linking Files to External Sources
Once files and directories are represented as RDF resources

it is possible to link them to other related resources on the
Web. Doing so allows clients to retrieve more, potentially
interesting information about the resource. For instance,
files may be classified according to a classification scheme
that uses dereferenceable URIs as identifiers; in this case,
clients are enabled to query for files using these terms.

The task of linking files and directories to external re-
sources can be accomplished by tools that provide this func-
tionality for generic Web resources, which usually apply var-
ious heuristics to detect semantically related resources (e.g.,
shared identifiers or object similarity [22]). These heuristics
depend on the information that is available for a particular
entity; therefore in the context of a file system they depend
on the data provided by metadata extraction components,
as described in the previous section.

8In this example we have used terms from the
OSCAF/NEPOMUK ontologies (http://www.
semanticdesktop.org/ontologies).

Event Reaction

Creation Mint URI, add resource to RDF graph,
perform extraction and linking

Deletion Delete respective resource and associated
metadata from RDF graph

Move/Rename Update local path properties in the RDF graph
Update Re-extract features, re-link, update RDF graph

Table 1: Reactions on file system events detected by
the watcher component

As a consequence, we follow the same strategy as for meta-
data extractors and do not provide an all-in-one solution to
the problem of linking files to external resources, but in-
stead provide a framework that allows specialized linking
components to be plugged in. These linking components
can access not only the raw file data, but also extracted
metadata, and use this information as basis for interlink-
ing. Like extractors, linking components return RDF triples
which are added to the metadata model and served via the
Linked Data interface.

As an example, Figure 4 shows to which external sources a
scientific publication and a music file can be linked, based on
string similarity between the publication title and the com-
bination of track title and artist name, respectively. In this
example the PDF document from Figure 3 has been linked
to the Linked Data variant of the popular DBLP publication
database, and the MP3 file has been linked to resources of
the MusicBrainz service.

3.6 Maintaining Consistency
As described in Section 3.1, it is required to mint a UUID-

based URI for each file and directory, which can be consid-
ered globally unique from a practical point of view. How-
ever, without further precautions such URIs might be quite
unstable as the mapping between an UUID-based external
URI and a file-based internal URI is invalidated whenever
a referenced file is moved, removed, or renamed. Further,
updating such files may result in inconsistencies between a
file and the metadata that has been previously extracted
and stored. Note that this could lead also to invalid links
between resources if these were automatically created based
on file metadata, as described in Section 3.5.

In order to preserve a stable mapping between these URIs
and the local files and directories they represent, we have to
employ a watcher component that is responsible for detect-
ing file system events that may result in different file URIs or
modified file contents of referenced files. Whenever such an
event is detected, appropriate actions have to be taken, and
the RDF model has to be updated. Note that in this sense,
the mapping between stable UUID-based URIs and instable
file and directory paths acts as a kind of translation ser-
vice between external, globally valid UUID-based URIs and
corresponding local file URIs, comparable to PURL or DOI
services [2]. Table 1 summarizes the reactions that have to
be taken after file system events have been detected.

3.7 Serving File Systems as Web Resources
Once the RDF-based representation of files and directories

has been generated and enriched with extracted metadata

and links to external data sources, the resulting RDF graph
can be served according to Linked Data principles. For
this purpose, internal UUID-based URNs are dynamically
rewritten to HTTP-based URIs with a configurable host
part; e.g., http://example.com:8080/resource/<uuid>. It
is considered good practice [7] to serve at least two variants
of the data, an RDF representation for machines and an
HTML representation for human consumption, and to let
clients choose which representation they prefer using HTTP
content negotiation. In addition to serving resources accord-
ing to Linked Data principles, it is recommended to provide
a SPARQL endpoint [10] to allow clients to search for re-
sources based on their RDF descriptions. Furthermore, the
actual file data itself can be downloaded to the client. In
the special case where the Linked Data resources are re-
trieved locally (i.e., server and client are executed on the
same machine), the Web server can add links to the HTML
interface that allow the user to directly open directories or
launch files from the browser, thus providing a seamless in-
teraction experience. Figure 5 shows a screenshot of such
an HTML-based interface, which provides these options to
the user.

4. IMPLEMENTATION
TripFS has been designed as a modular service framework,

which defines plug-in interfaces that can be used to extend
and adapt the system to the actual needs of the use case,
the file types to be served, and the special characteristics
of the underlying operating system. Such interfaces exist
for RDF storage components, file metadata extractors, file
linkers, and file system crawlers (responsible for crawling
a configured subtree of the file system) and watchers (re-
sponsible for maintaining the consistency of the mapping
between external UUID-based URIs and internal file-based
URIs). The system’s architecture is depicted in Figure 6.

The TripFS core is a standalone server application, which
has been implemented in pure Java, based on the Jena Se-
mantic Web framework9. On startup, it crawls a config-
ured sub-tree of the local file system, applies extractor and
linker components to crawled files, and stores the resulting
RDF triples in a triple store (either in memory or persis-
tent). It initializes the watcher component to monitor the
exposed file system sub-tree, which in turn notifies TripFS
upon changes to files or directories. Subsequently, the RDF
model is updated accordingly, and extractors and linkers are
re-applied to the modified objects.

Metadata Extraction and Linking. We have imple-
mented simple extractors that extract low-level file meta-
data, such as name, file size or a hash sum that could for
example be used to identify and link equal files across dif-
ferent TripFS instances.

Further, we have implemented extractor components based
on the Aperture metadata extraction framework10, which
provides a multitude of extractors for many different file
types, including Office documents and multimedia data. As
a proof of concept, we have also implemented several linker
components: one that links documents, based on their ti-
tles, to resources in the DBLP data set; one that links au-
dio files to MusicBrainz by analyzing track title and artist

9An evaluation version of TripFS can be obtained from
http://www.cs.univie.ac.at/tripfs.

10http://aperture.sourceforge.net

Path-based
navigation

Direct file access

Metadata access

Link-based
navigation

Extracted
metadata

Figure 5: Accessing local files via a Linked Data representation

name, and one that links files to potentially interesting DB-
pedia resources via the DBpedia lookup service. Both, the
set of extractors and linkers are to be understood as proof-
of-concept; by far they do not leverage the full potential of
the presented approach. However, as described before, more
extractors and linkers can be integrated easily according to
the needs of an actual use case.

Maintaining Consistency. We have used DSNotify [19]
as an implementation for the watcher component. DSNo-
tify is a change detection add-on for datasources, supporting
them in maintaining link integrity in their data. At its core,
DSNotify extracts feature vectors from considered data en-
tities that are used in heuristic comparisons to determine
whether items that are no longer found at their original lo-
cations were in fact removed or moved to another location.
DSNotify can easily be extended by implementing custom
crawlers, feature extractors, and comparison heuristics.

We have implemented a generic file-feature extractor for
DSNotify that extracts low-level features from local files (cf.
Table 2)11. Further, we have developed a simple heuris-
tic that calculates the plausibility that a file (described by
the feature vector X) was moved to another location (the
file there being described by the feature vector Y). This
heuristic consists of two parts: first, plausibility checks are
performed. For example, if the last modification date of file
Y is before the one of file X, it cannot be a successor of X.
Another example is that a file cannot become a directory
or vice versa (checked by the isDirectory feature). Second,
a similarity metric between the remaining features is calcu-
lated by using the strategies listed in Table 2. The resulting

11The set of extracted features used by DSNotify is over-
lapping but not equal to the set of metadata attributes
extracted and exposed by the TripFS. In the current im-
plementation, these latter metadata are stored in the RDF
graph while DSNotify stores features in its own indices.

Feature Datatype Similarity Weight

Last access Date Plausibility
Last modification Date Plausibility
IsDirectory Bool Plausibility
Checksum Integer Plausibility
Name String Levensthein 3.0
Extension String Major MIME 1.0

type equality
Path String Levensthein 0.5
Size Long Equality 0.1
Permissions Bitstring Equality 0.1

Table 2: Extracted features, their data type and
the strategy used to calculate a similarity between
them. Features that are used only in plausibility
checks have a value Plausibility here.

similarities are weighted12 (e.g., the name similarity is con-
sidered more important than equal file sizes), summed up,
and normalized. These similarities are then used by DSNo-
tify to detect move, remove and create events. Furthermore,
DSNotify reports update events based on changes in the ex-
tracted feature vectors (cf. [19]).

DSNotify periodically monitors the file subtree that is ex-
posed by TripFS, extracts feature vectors based on the file
attributes described before, and stores these vectors in an
index. DSNotify uses a native C++ component for effi-
ciently monitoring the local filesystem that makes use of the
Windows API FindNextChangeNotification() method. We

12The selection of features as well as their weight was our
own subjective choice based on several test-runs with the
system. We consider an extensive evaluation of DSNotify as
a tool for detecting file system events as future work.

TripFS

Watcher

Extractors

RDF

Linkers

Crawler

HTTP

HTTP

FILE/CIFS/SMB/NFS/...

Local Filesystem

/
Linked Data InterfaceSPARQL

Figure 6: TripFS architecture

have also implemented a generic, yet less efficient Java-based
monitor component that should work on all common plat-
forms. This allows us to re-crawl the respective subdirectory
tree only if there were actual changes reported by the op-
erating system. The detected events are then forwarded to
TripFS; the file’s path is updated in the RDF model, and
extractors and linkers are re-applied.

Linked Data Interface. TripFS includes an embed-
ded Jetty Web server, which serves data from the triple
store, as described in Section 3.7. It dynamically rewrites
the internally used UUIDs and blank nodes to dereference-
able HTTP URIS, and provides XHTML+RDFa and pure
RDF representations of file and directory resources, as well
as a SPARQL endpoint. It further allows clients to directly
download file contents and, in the case of local requests, to
directly launch these files.

Neither component of TripFS makes any changes to the
exposed file system; i.e., no special files or directories (like
needed e.g., for SVN) are created. Currently, TripFS also
does not provide means to modify file systems via the Linked
Data interface.

5. RELATED WORK
Although modern file systems support the creation, stor-

age, management, and retrieval of file-related metadata (e.g.,
using extended attributes or file forks), they remain mostly
isolated from Web-based information integration and ex-
change contexts. Even file systems that provide sophisti-
cated support for file annotations or links (e.g., LiFS [1]
or AttrFS [23]) do not consider a global Web context but
restrict their features often to objects within the local sys-
tem. On the other hand, Web-based file systems usually
focus on performance (e.g., [12]) or security (e.g., [4]), but
not on semantically rich file descriptions or metadata in-
teroperability. In this respect, TripFS can be seen as com-
plementary to metadata-rich or highly scalable file systems
in order to bridge the gap between file systems and Web
environments. In combination with other works that repre-
sent Web resources as virtual file systems (e.g., [21]), local
file systems and remote Web resources can be seamlessly
integrated, providing unified programming interfaces and a
consistent user experience.

As described before, file system contents are highly diverse
and heterogeneous, and contain information that is valuable
in many scenarios. TripFS presents a generic framework to

expose these contents as Linked Data, but does not by itself
extract higher-level metadata from files. For this, it relies on
additional components, of which a wide variety exists. The
Aperture metadata extraction framework was already men-
tioned before; it is based on the Gnowsis adapter framework
[20] and is capable of extracting RDF descriptions from a
wide range of files and other data sources. For most file types
there exist extractors that return RDF descriptions of the
file content, ranging from BibTeX files over calendar data
to JPEG images; a list of these extractors is maintained at
the W3C ESW Wiki13. Such conversion or extraction com-
ponents exist also for Web sources, e.g., PiggyBank [15] or
Virtuoso Sponger technology14, which create RDF descrip-
tions from a multitude of Web sources on the fly.

TripFS is in line with a number of other generic frame-
works that allow one to expose Linked Data based on a dif-
ferent underlying data representation. Frameworks in this
area include D2R [8] and Triplify [3] for relational data
bases, SparqPlug [11] for DOM-based sources, OAI2LOD
[14] for OAI-PMH repositories, and XLWrap [18] for spread-
sheet data. With TripFS, file system contents can likewise
be made “first-class citizens” of the Web of Data and can
be seamlessly integrated with all these other data sources.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented and discussed TripFS, a

service that exposes local file systems according to Linked
Data principles. This approach potentially brings benefit to
a range of application scenarios (cf. Section 2). In an en-
terprise information integration scenario (Scenario A), files
are assigned stable, globally unique URIs and can therefore
be referenced from external systems. Metadata that are ex-
tracted from files can be indexed by Semantic Web search
engines, and links to other (enterprise-internal or external)
data sources can increase the quality of information organi-
zation and data retrieval.

A lightweight component like TripFS can also be used in
ad-hoc file sharing situations (Scenario B): participants in a
face-to-face meeting can easily set up and start the sharing
server, which exposes a certain sub-tree of their file system
as Linked Data. This enables collaborators in the same net-
work to access and retrieve these files, based not only on low-
level characteristics like file name, but also using extracted
semantic metadata and links. Using additional components,
more intuitive approaches like faceted navigation can be per-
formed on top of extracted data, and more experienced users
are enabled to issue complex SPARQL queries over the file
system.

A Linked Data representation of file systems also facili-
tates the application of Web-based annotation services (Sce-
nario C), which overcomes the limitations of the hierarchical
directory metaphor for file organization. Such annotations
can refer to single files or even parts thereof, and can range
from simple text-based comments to complex descriptions
that may refer to external entities and concepts. TripFS
makes file systems a part of a global, uniform Web of Data
and therefore allows one to apply Web-based annotation
techniques immediately to file system objects.

In future work, we plan an extensive evaluation of TripFS,

13http://esw.w3.org/topic/ConverterToRdf
14http://docs.openlinksw.com/virtuoso/
virtuososponger.html

in particular regarding the performance and scalability of
our approach. For this purpose, we aim to apply TripFS in
a concrete enterprise information integration setting, and we
plan to develop a simple user interface that allows end users
to more easily share their files using Linked Data technolo-
gies. Further, we plan to improve and evaluate the accuracy
of the DSNotify component for detecting file system events.

Additionally, we plan to introduce a more fine-grained
model for selecting what file system objects are exposed via
TripFS (currently one can select only a single subtree of the
file system) and implement a secure HTTPS version that
takes privacy considerations into account.

Acknowledgements
Parts of this work have been funded by FIT-IT grants 812513
and 815133 from Austrian Federal Ministry of Transport,
Innovation, and Technology.

7. REFERENCES
[1] Sasha Ames, Nikhil Bobb, Kevin M. Greenan,

Owen S. Hofmann, Mark W. Storer, Carlos Maltzahn,
Ethan L. Miller, and Scott A. Brandt. LiFS: An
Attribute-Rich File System for Storage Class
Memories. In Proceedings of the 23rd IEEE / 14th
NASA Goddard Conference on Mass Storage Systems
and Technologies, 2006.

[2] William Y. Arms. Uniform Resource Names: Handles,
PURLs, and Digital Object Identifiers. Commun.
ACM, 44(5):68, 2001.

[3] Sören Auer, Sebastian Dietzold, Jens Lehmann,
Sebastian Hellmann, and David Aumueller. Triplify:
Light-weight Linked Data Publication from Relational
Databases. In WWW ’09: Proceedings of the 18th
international conference on World wide web, pages
621–630, New York, NY, USA, 2009. ACM.

[4] Arati Baliga, Joe Kilian, and Liviu Iftode. A
Web-based Covert File System. In Proceedings of the
11th Workshop on Hot Topics in Operating Systems,
2007.

[5] T. Berners-Lee, L. Masinter, and M. McCahill.
Uniform Resource Locators (URL) (RFC 1738).
Network Working Group, 1994.

[6] Tim Berners-Lee. Linked Data. World Wide Web
Consortium, 2006. Available at
http://www.w3.org/DesignIssues/LinkedData.html,
retrieved 08-Aug-2008.

[7] Chris Bizer, Richard Cyganiak, and Tom Heath. How
to Publish Linked Data on the Web, 2007. Available at
http://www4.wiwiss.fu-berlin.de/bizer/pub/

LinkedDataTutorial/, retrieved 02-Dec-2008.

[8] Chris Bizer and Andy Seaborne. D2RQ - Treating
Non-RDF Databases as Virtual RDF Graphs. In
Poster at the 3rd International Semantic Web
Conference (ISWC2004), 2004.

[9] Christian Bizer, Tom Heath, and Tim Berners-Lee.
Linked Data — The Story So Far. International
Journal on Semantic Web and Information Systems,
5(3), 2009.

[10] Kendall Grant Clark, Lee Feigenbaum, and Elias
Torres. SPARQL Protocol for RDF (W3C
Recommendation 15 January 2008). World Wide Web
Consortium, 2008.

[11] Peter Coetzee, Tom Heath, and Enrico Motta.
SparqPlug: Generationg Linked Data from Legacy
HTML, SPARQL and the DOM. In Proceedings of the
First International Workshop on Linked Data on the
Web (LDOW), 2008.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In 19th ACM
Symposium on Operating Systems Principles, 2003.

[13] Bernhard Haslhofer, Wolfgang Jochum, Ross King,
Christian Sadilek, and Karin Schellner. The LEMO
Annotation Framework: Weaving Multimedia
Annotations with the Web. International Journal on
Digital Libraries, 10(1), 2009.

[14] Bernhard Haslhofer and Bernhard Schandl. The
OAI2LOD Server: Exposing OAI-PMH Metadata as
Linked Data. In International Workshop on Linked
Data on the Web (LDOW2008), 2008.

[15] David Huynh, Stefano Mazzocchi, and David R.
Karger. Piggy Bank: Experience the Semantic Web
Inside Your Web Browser. In International Semantic
Web Conference, volume 3729 of Lecture Notes in
Computer Science, pages 413–430. Springer, 2005.

[16] Georgi Kobilarov, Tom Scott, Yves Raimond, Silver
Oliver, Chris Sizemore, Michael Smethurst, Christian
Bizer, and Robert Lee. Media Meets Semantic Web —
How the BBC Uses DBpedia and Linked Data to
Make Connections. In Proceedings of the 6th European
Semantic Web Conference, pages 723–737, Berlin,
Heidelberg, 2009. Springer-Verlag.

[17] Carl Lagoze and Herbert Van de Sompel. ORE
Specification — Abstract Data Model. Open Archives
Initiative, 2008. Available at
http://www.openarchives.org/ore/1.0/datamodel.

[18] Andreas Langegger and Wolfram Wöß. XLWrap -
Querying and Integrating Arbitrary Spreadsheets with
SPARQL. In International Semantic Web Conference.
Springer, 2009.

[19] Niko Popitsch and Bernhard Haslhofer. DSNotify:
Handling Broken Links in the Web of Data. In 19th
International WWW Conference (WWW2010),
Raleigh, NC, USA, 2 2010. ACM. to be published.

[20] Leo Sauermann and Sven Schwarz. Gnowsis Adapter
Framework: Treating Structured Data Sources as
Virtual RDF Graphs. In Proceedings of the 4th
International Semantic Web Conference (ISWC
2005), pages 1016–1028. Springer-Verlag GmbH, 2005.

[21] Bernhard Schandl. Representing Linked Data as
Virtual File Systems. In Proceedings of the 2nd
International Workshop on Linked Data on the Web
(LDOW), Madrid, Spain, 2009.

[22] Julius Volz, Christian Bizer, Martin Gaedke, and
Georgi Kobilarov. Discovering and Maintaining Links
on the Web of Data. In Proceedings of the 8th
International Semantic Web Conference (ISWC
2009), 2009.

[23] C.E. Wills, D. Giampaolo, and M.S. Mackovitch.
Experience with an Interactive Attribute-based User
Information Environment. In Computers and
Communications, 1995. Conference Proceedings of the
1995 IEEE Fourteenth Annual International Phoenix
Conference on, pages 359–365, Mar 1995.

