
Preserving Linked Data on the Semantic Web by the
application of Link Integrity techniques from Hypermedia

Rob Vesse, Wendy Hall, Leslie Carr
Intelligence, Agents & Multimedia Group

School of Electronics & Computer Science
University of Southampton

Southampton
SO17 1BJ

{rav08r,wh,lac}@ecs.soton.ac.uk

ABSTRACT
As the Web of Linked Data expands it will become increas-
ingly important to preserve data and links such that the
data remains useful. In this work we present a method for
locating linked data to preserve which functions even when
the URI the user wishes to preserve does not resolve (i.e.
is broken/not RDF) and an application for monitoring and
preserving the data. This work is based upon the principle
of adapting ideas from hypermedia link integrity in order to
apply them to the Semantic Web.

General Terms
Experimentation, Reliability, Design

Keywords
Semantic Web, Linked Data, Link Integrity, Preservation

1. INTRODUCTION
The Web of Linked Data is characterised by the inter-

linking between disparate heterogeneous data sources and
the fact that the links between the data sources are one of
the primary mechanisms for navigating through this data
space. Since links are essential to the Web of Linked Data
we believe that it is important to have mechanisms in place
to maintain link integrity. The aim of link integrity is to
ensure that a link works correctly in that traversing the link
takes you to a resource and that as far as possible the re-
source is the one intended by the provider of the link. On
a larger scale, link integrity deals with the overall integrity
of interlinked datasets such as documents within a Content
Management System (CMS) or the linked data sets available
on the Semantic Web. Therefore link integrity is one way of
ensuring data integrity within the overall system which in
our use case is linked datasets.

Link integrity is an existing and well known problem from
hypermedia where there were two problems to be dealt with
- dangling links and the editing problem. Dangling links
are the most well known problem and are regularly experi-
enced by users on the Web as they find themselves presented
with an HTTP error as the link they followed pointed to a
resource which cannot be retrieved. The editing problem
refers to the situation in which the content at the end of

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

the link is changed so that it is no longer what the creator
of the link intended to link to. Both these issues affect the
Semantic Web since on the Semantic Web everything is in-
terlinked data, therefore data is immediately susceptible to
dangling links. The editing problem becomes much more
problematic on the Semantic Web since anyone can make a
statement about anything so the meaning of things on the
Semantic Web is subject to semantic drift1.

Due to the interlinking between data on the Semantic Web
we show that it is possible to exploit the data model such
that links themselves can be used to recover missing data in
the event of a dangling link being encountered. This pro-
vides for a means to retrieve the data that was/may have
been at a given URI even if that URI is no longer resolvable.
Using this approach for locating data about a URI we are
able to preserve and monitor data about a URI from mul-
tiple sources and to recover data about URIs that are no
longer functioning as described in Section 3.1.

The Semantic Web also introduces two additional prob-
lems in link integrity specific to linked data. The first of
these is URI Identity & Meaning - what does a URI mean
and does this meaning actually matter to the applications
that use it and the data that contains it - which is very much
an open research debate and beyond the scope of our current
work. The second is the co-reference problem which refers
to the situation in which some ‘thing’ we wish to make state-
ments about has multiple URIs that could be used for it. In
this work we utilise existing work in this area of research as
part of our algorithm for preserving linked data.

Section 2 of this paper covers the related work in link
integrity for hypermedia and the Semantic Web which we
use ideas from in Section 3 to design and develop our algo-
rithm and the AAT software. Section 5 outlines our plans
for future research in this area and we conclude in Section 6
by discussing the potential benefits of link integrity for the
Semantic Web.

2. RELATED WORK
Link integrity in hypermedia first received serious atten-

tion in the late 1980s and early 1990s primarily from re-
searchers in the open hypermedia community. Systems like
Microcosm [11] and HyperG [17] were among the first to
consider the issue in depth, Davis’s thesis [9] and Kappe’s

1See the discussion on the W3C Semantic Web Mailing List
for an example of this - http://lists.w3.org/Archives/
Public/semantic-web/2009May/0315.html

http://lists.w3.org/Archives/Public/semantic-web/2009May/0315.html
http://lists.w3.org/Archives/Public/semantic-web/2009May/0315.html


1995 paper [16] provide examples of link integrity in open
hypermedia. The widespread growth of the World Wide
Web [5] in the mid-1990s led to some new research but as
search engines became commonplace towards the end of the
decade research interest dwindled. It was perceived that
users did not care sufficiently to warrant research into the
problem as they could locate missing resources effectively
using search engines, in addition the scale of the Web by
that time was simply too vast for many proposed solutions
to handle. Davis’s survey [10] provides a good overview of
the state of this research as of the end of the 1990s. Another
reason for the decline in research was that the fact that links
could fail was one of the reasons the Web was able to ex-
pand as fast as it did since it didn’t matter if links failed and
produced the familiar HTTP 404 error; users were able to
publish content without worrying about whether their links
to external content were valid.

Ashman’s 2000 paper [4] which discusses link integrity
with particular reference to electronic document archives
provides both a useful survey of existing work and describes
a key motivation for ongoing research. As more document
collections were translated into digital forms and placed onto
intranets people once again started to be concerned about
link integrity. Users wanted assurances that links into the
document archives would work consistently and ideally links
out of the archives would work correctly as well since it may
not be possible to alter the archived documents without in-
validating the integrity of the archive.

In this vein Veiga and Ferreira [24, 25] discuss the possi-
bility of turning the Web into an effective knowledge reposi-
tory by use of replication and versioning. Their work follows
on from earlier work such as Moreau & Gray’s [19] which
proposed limited use of replication and versioning but had
significant reliance on author and user involvement in the
process. In Veiga & Ferreira’s work there is no require-
ment for author involvement in the process, only the end
user need use a browser plugin to indicate the content they
wish to replicate and preserve. Their results showed that
the user could preserve the sections of the Web they were
interested in with no perceivable performance impact - on
average there was only a 12ms increase in retrieval time for
resources. In Section 3 we discuss using an approach of this
kind for the Semantic Web.

Phelps & Wilensky introduced the concept of lexical sig-
natures for Web pages in their Robust Hyperlinks paper [21].
They compute the lexical signature of a page and append
it to all links to that page so that in the event of the link
failing a browser plugin can use the signature to relocate the
page using a search engine. The obvious flaw in their work
was that it required rewriting all the links on the Web but
Harrison & Nelson later showed that these signatures need
only be computed Just-in-Time (JIT) when a link fails [12].
In their Opal system the signatures can be computed JIT
by retrieving cached copies of the pages from a search en-
gine cache, computing the signature and then using search
engines to relocate the page. As discussed in Section 3.1 a
JIT style approach can be effectively used to recover linked
data about a URI.

2.1 Semantic Web Research
Unlike the traditional Web it is not possible for semantic

search engines like Sindice [22] and Falcons [8] to fulfil the
same role as document search engines because the users in
the Semantic Web domain are typically client applications

rather than humans. When a human encounters a dead
link they usually navigate to a search engine and enter an
appropriate search phrase to find alternative sources of in-
formation. For a client application encountering a dead link
they will typically have no concept or how/where to find
alternative sources of information and URIs for linked data
are not always ideal for searching upon compared to textual
search for documents. It should be noted that as with the
existing Web if the Web of Linked Data is to undergo a mas-
sive expansion in the same way things must be allowed to
fail but this does not mean we shouldn’t attempt to mitigate
the problem as far as possible.

In terms of the Semantic Web there has been research
into the versioning and synchronisation of RDF data which
is relevant to aspects of our work such as Tummarello et al’s
RDFSync [23] which is an algorithm for efficiently synchro-
nising changes in RDF between multiple machines. This
shows that change detection in RDF is non-trivial due to
the inherent data isomorphism caused by the use of blank
nodes but also shows that it can be achieved in an efficient
manner. More recent research from Papavassiliou et al [20]
has shown that using information about very basic changes
in the RDF - such as that provided by systems like RDF-
Sync or All About That (see Section 3.2) - can be used to
build applications which provide useful information to end
users. In the case of Papavassiliou’s et al’s paper they built a
system which furnished users with high level descriptions of
how RDFS vocabularies have changed in order to aid users
in working with such vocabularies. In addition there are
systems like the Talis Platform2 which is a Semantic Web
store that implements a versioning mechanism whereby up-
dates can be made via a Changeset protocol [1]. As part of
this protocol they utilise a useful lightweight vocabulary for
publishing changes in RDF data as RDF which as will be
discussed in Section 3.2.3 we reuse in our own system.

Regarding Semantic Web specific link integrity problems
the research has largely focused on the co-reference prob-
lem. Since there are many organisations publishing similar
data semantically (bibliographic databases being a prime ex-
ample) there are frequently many URIs for a single entity
such as an author. Co-reference research aims to develop
ways to efficiently and accurately determine URI equiva-
lences and refactor the data or republish this information
to help other Semantic Web applications. There are several
competing philosophies ranging from the Okkam approach
described by Bouquet et al [7] which advocates universally
agreed URIs for each entity to the Co-reference Resolution
Service (CRS) approach of Jaffri et al [15] which determines
co-referent URIs and republishes the information in dedi-
cated triple stores. The CRS approach taken by the ReSIST
project3 within the RKB Explorer4 application has poten-
tial for use in link integrity as the information provided by
a CRS could be utilised in a JIT fashion as in Harrison &
Nelson’s work and we demonstrate how this can be done in
Sections 3 and 4.

In terms of link maintenance for the Semantic Web there
has been some research in the form of the Silk framework
by Volz et al [28] which is a framework for computing links
between different datasets. Their approach allows users to
stipulate arbitrarily complex matching criteria to do entity
matching between datasets, the links produced from this can

2http://www.talis.com/platform
3http://www.resist-noe.org/
4http://www.rkbexplorer.com

http://www.talis.com/platform
http://www.resist-noe.org/
http://www.rkbexplorer.com


then be published via a CRS style service or added to the
relevant datasets. As proposed in their later paper [27] this
can be used as part of a link maintenance strategy, the pos-
sibility of combining this with our approach is discussed in
Section 5. In a similar vein Haslhofer and Popitsch’s DSNo-
tify system [14] can monitor linked resources and inform
the application when links are no longer valid using feature
based similarity metrics like the Silk framework.

3. METHOD
As we have discussed it is not realistic to maintain link in-

tegrity in a pre-emptive way since such solutions have been
consistently shown not to scale to Web scale in previous
work. Therefore the focus must be on recovery in the event
of failure and preservation to guard against the loss of data
which is considered interesting/useful to end users. As the
amount of data in the Web of Linked Data starts to expand
massively - particularly with linked data being adopted by
an increasing number of major organisations - we expect
that as with the early document web there’ll be an increas-
ing amount of content published by both big companies and
individuals. Just like the document web this explosion of
content will most likely include much content that is poorly
maintained and will lead to increasing numbers of broken
links. We have two connected goals in this work 1) to pro-
vide a means to retrieve resource descriptions in the form
of linked data about a URI even when the the URI is non-
functional and 2) to provide the means for an end user to
preserve and version these descriptions. To attempt to solve
this problem we present an expansion algorithm for retriev-
ing Linked Data about a URI even if that URI itself has
failed in Section 3.1 and a preservation system built using
this algorithm in Section 3.2.

3.1 Expansion Algorithm
Since the goal of this work is to preserve linked data it was

deemed essential that as far as possible we leverage existing
linked data technologies and services in order to effect this
preservation. To this end we designed a relatively simple
algorithm which uses simple crawling techniques which are
directed by a user definable expansion profile (see Definition
1). Our aim with this algorithm is to provide resource de-
scriptions of a URI regardless of whether the URI itself is
dereferenceable.

Even in the case where a URI is used only as an identifier
in the description of another resource and is not itself deref-
erenceable it is likely that we can still retrieve some data
about it. The fact that a URI is minted only as an identifier
and that the person/organisation minting the URI does not
provide the means to dereference the URI does not affect
our ability to find data about it assuming that the identifier
is used elsewhere i.e. it is reused as part of linked data.

Definition 1. An expansion profile is a Vocabulary of In-
terlinked Datasets (VoID) description of a set of datasets
and linksets that should be used to locate linked data about
the URI of interest. The VoID description may be option-
ally annotated with additional properties which affect the
behaviour of the algorithm.

Drawing on ideas described in Alexander et al’s Vocab-
ulary of Interlinked Datasets (VoID) [3] about the way it
can be used to direct crawlers we decided to use VoID as
the primary means of expressing an expansion profile. We

introduce a couple of additional predicates since we require
the means to allow end users to specify some basic character-
istics of how the algorithm should behave and there is a type
of service we need to express which is not contained in the
VoID ontology. VoID has concepts of Datasets and Linksets,
the former represent a set of data which may have SPARQL
endpoint(s) and/or URI lookup endpoint(s) while the latter
represent the types of interlinkings between datasets. What
VoID does not have a means to express is the location of
a service provided by a dataset which allows an application
to retrieve URIs which are considered equivalent to a given
URI - this we term a URI discovery endpoint (see Definition
2). A discovery endpoint differs from a lookup endpoint in
that the latter is expected to return everything the dataset
knows about the given URI as opposed to only returning
equivalent URIs. Examples of existing discovery endpoints
on the Semantic Web include RKBExplorer’s CRSes [15]
and sameAs.org5. Another key difference between a lookup
and discovery endpoint is that links discovered from a dis-
covery endpoint are considered to be on the same level of
the crawl for the purposes of the algorithm i.e. they do not
have increased depth relative to the URI that discovery is
performed upon. By this we mean that the execution of the
algorithm results in performing a breadth-first depth-limited
linked data crawl starting from a given URI - in this tree
structure a discovery endpoint introduces sibling nodes for
a URI while a lookup endpoint introduces child nodes for a
URI.

Our other extensions to VoID allow individual dataset-
s/linksets to be marked as ignored (the algorithm will not
use them) and for the user to define to what depth the algo-
rithm should crawl to (defaults to 1). These extensions are
defined as part of the AAT schema detailed in Section 3.2.1.

Definition 2. A URI discovery endpoint is an endpoint
that when passed a URI returns a Graph containing equiva-
lent URIs of the input URI typically in the form or owl:sameAs
links.

As already stated the actual algorithm is a simple crawler
which uses the input expansion profile as a guide to which
potential sources of linked data it should use to try and find
data about the URI of interest - this procedure is detailed
in Algorithm 1. Note that the algorithm does not terminate
in the event of an error retrieving data from a particular
URI/endpoint and simply continues, by doing this it is still
possible to retrieve some data even if the starting URI does
not return a valid response. The algorithm will continue
and issue queries about the URI to the various endpoints
described in the given expansion profile so unless the URI
refers to a document that had very poor linkages or was not
indexed by the semantic search services used some RDF will
be returned. This approach has similarities to the JIT style
approach of Harrison & Nelson [12] in that there doesn’t
need to be any foreknowledge of the URIs you wish to re-
cover data about when you discover they are broken since by
utilising the caches and lookup services of relevant datasets
it is still possible to recover data about the URI.

The basic behaviour of the algorithm is only to follow
owl:sameAs and rdfs:seeAlso links but the end user can
specify that any predicate be treated as a link to follow by
the specifying an appropriate VoID linkset in their expan-
sion profile.

5http://www.sameas.org

http://www.sameas.org


Algorithm 1 Expansion Algorithm

Require: URI, Expansion Profile
1: ToExpand as a set of pairs of URIs and Depths
2: while ToExpand 6= ∅ do
3: Remove first pair from ToExpand
4: if Graph with URI is already in the Dataset then
5: Continue
6: if Depth >Max Depth then
7: Continue
8: Retrieve the Graph at the URI
9: Add the Graph to the Dataset

10: for all Triples in Graph do
11: if Triple is a Link then
12: Add a new pair to ToExpand
13: for all Datasets in Expansion Profile do
14: if Dataset has a SPARQL Endpoint then
15: Issue a DESCRIBE for the URI against the End-

point
16: Add resulting Graph to the Dataset
17: Process the Graph for additional Links
18: if Dataset has a Lookup Endpoint then
19: Issue a Lookup for the URI against the Endpoint
20: Add resulting Graph to the Dataset
21: Process the Graph for additional Links
22: if Dataset has a Discovery Endpoint then
23: Issue a Discovery for the URI against the End-

point
24: for all Equivalent URIs do
25: Add a new pair to ToExpand
26: return Dataset

There are already some existing systems which work in
a similar way to our algorithm such as the sponger middle
ware using in Virtuoso [2]. The main difference between
our algorithm and algorithms such as those in the Virtuoso
sponger is that our algorithm is only interested in linked
data and it does not infer/create any additional data. Unlike
the Virtuoso sponger it does not attempt to turn non-linked
data into RDF and it does not do any inference over the data
it returns, it is designed only to find and return (in the form
of an RDF dataset) linked data about the URI of interest.
Yet as expansion profiles may reference any datasets and
associated endpoints they wish there is no reason why a
user could not direct our algorithm to utilise a service like
URIBurner6 which uses the Virtuoso sponger in order to get
the benefits of the additional inferred data.

3.1.1 Default Profile
Since the end user of such an algorithm may not always

know where to look for linked data about the URI they are
interested in the algorithm has a default expansion profile
which is used in the case when no profile is specified. This
profile uses 3 data sources which are in our opinion impor-
tant hubs of the Web of Linked Data:

• DBPedia7 - The DBPedia SPARQL endpoint is used
to lookup URIs

• Sindice8 Cache - The Sindice Cache API9 allows the

6http://www.uriburner
7http://dbpedia.org
8http://www.sindice.com
9http://www.sindice.com/developers/cacheapi

retrieval of Sindice’s cached copy of the RDF from a
URI.

• SameAs.org10 - SameAs.org provides a URI discovery
endpoint (see Section 3.1 and Definition 2) which can
be used to find URIs which are equivalent to a given
URI

The default profile11 has a max expansion depth of 1 which
means it only considers URIs which are immediate neigh-
bours of the starting URI.

In the case where the end user does know which linked
data sources will have useful information about the URI
they can specify their own expansion profile which is used
instead of the default profile. In this case the algorithm will
use the datasets and linksets they define in the profile to
discover linked data about the URI of interest, for example
if attempting to recover data about a person it may be useful
to follow foaf:knows links.

3.2 Preservation
The preservation approach taken is to allow the end user

to monitor and preserve a set of linked data that they are
interested in. The data is preserved not at the data source
but rather at a local level on the users server with the user
able to republish this data as they desire. This is in line with
the ideas of Veiga & Ferreira [25] in that the end user speci-
fies the parts of the Web they want to preserve and then the
software takes care of this. The data must be preserved in
such a way that the original data can be efficiently extracted
from it and sufficient information to provide versioning over
the data is kept.

In the Semantic Web domain the objects of interest are
URIs we propose that a profile of a URI be preserved (see
Definition 3). Since the data being processed is RDF it
is logically divided into triples which can be preserved and
monitored individually. It is deemed necessary to store infor-
mation pertaining to the temporality and provenance of each
triple - when it was first seen, last updated, source URI(s)
and whether it has changed or been retracted/deleted from
the RDF.

Definition 3. A URIs profile is the transformed and anno-
tated form of the linked data retrievable about a given URI
such that the temporality and provenance of the triples con-
tained therein are inferable from the profile

In terms of user interface the system should allow a user
to view a profile both in the stored form and in its original
form. The system must monitor the original data source
over time updating the profiles as necessary such that it can
provide a report of changes in the data to the user. Since a
URI profile will contain versioning information the interface
should allow a user to view a particular version of the profile.

3.2.1 Schema
As the first stage of implementation an RDF Schema for

All About That12 (AAT) is defined which embodies classes
and properties which allow the description and annotation
of triples in such a way that the required information as
discussed in the preceding proposal can be stored for each

10http://www.sameas.org
11http://www.dotnetrdf.org/expander/defaultProfile
12This schema is available at http://www.dotnetrdf.org/
AllAboutThat/

http://www.uriburner
http://dbpedia.org
http://www.sindice.com
http://www.sindice.com/developers/cacheapi
http://www.sameas.org
http://www.dotnetrdf.org/expander/defaultProfile
http://www.dotnetrdf.org/AllAboutThat/
http://www.dotnetrdf.org/AllAboutThat/


triple. The schema defines a class for representing profiles
called aat:Profile and uses the rdf:Statement class to
represent triples. rdf:Statement is used as the basis of
triple storage as it makes it possible for non-AAT aware tools
to extract the original triples from the profile easily. A num-
ber of properties are defined which store meta data about
the profile itself such as created & updated date, source
URI and a locally unique identifier for the profile. Simi-
lar properties are defined for triples which allow the first
and last asserted dates, source URI and change status of a
triple to be indicated. A key distinction in the schema is be-
tween aat:profileSource and aat:source, despite storing
equivalent data two predicates are created since the former
expresses the URI which is the starting point for the pro-
file while the latter expresses all the URIs at which a given
triple is asserted.

While there were alternative schemas and vocabularies
available that could have potentially been used to store
the required data the motivation behind designing our own
schema was to provide a lightweight schema that attached
all data to a single subject for ease of processing. Alterna-
tives such as the Provenance Vocabulary by Hartig & Zhao
[13] are far more expressive but they potentially require in-
troducing multiple intermediate blank nodes which would
significantly complicate the processing needed to implement
many of the core features of AAT. Similarly the Open Prove-
nance Model as described by Moreau et al [18] is highly ex-
pressive but like the Hartig & Zhao’s vocabulary the RDF
serialization is overly complex for use in AAT. As discussed
in Section 5 there is no reason why the data contained in
AAT could not be exposed in other provenance vocabularies
but for AATs processing and storage a lightweight vocabu-
lary is preferable.

The use of reification was chosen over the use of named
graphs primarily due to the need to make annotations at
the level of individual triples rather than at the graph level,
usage is motivated by the fact that the mechanism provides
a clear and obvious schema for encoding a triple and adding
additional annotations to it. While reification may signifi-
cantly increase the size of the data being stored initially over
time this balances out compared to named graphs where it
is necessary to either store many copies of the same graph
or store multiple named graphs which represent a series of
deltas to the original data. The other difficulty inherent in
the named graphs approach is that the annotations typically
would then be held separately in other named graphs which
adds to the complexity of the data processing. Neverthe-
less named graphs are used within AAT since each profile
naturally forms a named graph and AAT generates several
related named graphs about each profile detailing change
history and changesets as described in Section 3.2.3.

3.2.2 Profile Creation & Update
To create a URIs profile linked data about the URI is first

retrieved using the expansion algorithm presented in Section
3.1; then using the AAT schema each triple can be trans-
formed into a set of triples which represent an annotation
of the original triple. For each triple in the original RDF
a blank node is created which is then used as the subject
of a set of triples which represent the required information
about the original triple. Figure 1 shows an example triple
and Figure 2 shows it transformed into the AAT form. A
URIs profile consists of a set of transformed triples where
each profile is a named graph in the underlying store.

Figure 1: Original Triple

Figure 2: Triple transformed to AAT Annotated
Form

Since the user needs to both browse the data they are pre-
serving as well as potentially republish it, a Web based in-
terface was designed as the primary interaction mechanism.
The interface allows users to explore the data by first select-
ing a profile to view and then allowing them to view profile
contents, export, versions and change reports. A user may
also use the interface to add new URIs they wish to monitor
to the system and to initiate updates to profiles (see Def-
inition 4). Following linked data best practices [6] and to
provide the ability for the user to republish their preserved
data multiple dereferenceable URIs for each profile are cre-
ated and accessible through the Web interface. These allow
the retrieval of the profile contents which consists of all the
triples ever retrieved from the profile URI in the transformed
form, the export of the profile (see Definition 5) and various
meta graphs about a profile e.g. change history, changesets.
This means that the profile of a URI has a URI and thus
can itself be profiled if it was desired.

Definition 4. An update of a profile occurs when AAT
using the Expansion algorithm to retrieve RDF about the
given URI. The triples contained are compared with the
triples currently in the profile and the profile updated ac-
cordingly

Definition 5. The export of a profile is the recreation of
the RDF in its original form based upon the current contents
of the profile. An export represents the RDF as it was last
seen by AAT

3.2.3 Change Reporting
A key feature of AAT is the ability to generate change re-

ports about how the RDF at the profiled URI has changed
over time. To do this a number of relatively simple compu-
tations over the annotated triples can be made based pri-
marily on the first and last asserted dates of the triples. In
creating change reports four different types of changes in the
RDF are looked for (see Definitions 6-9). A distinction is
made between missing knowledge and retracted or deleted
knowledge as it may be possible for triples to be perceived to
be temporarily non-present in the RDF. For example in the
event of a transient network issue making some/all of the



relevant URIs unretrievable the updated date for the pro-
file will still be updated leaving all the triples in the profile
to appear missing. The length of time we require Triples
to be missing before we consider them to be deleted is cur-
rently set to 7 days for our monitoring of the BBC dataset
described in Section 4.2.1, this time period is a domain spe-
cific parameter that can be adjusted depending on the data
that is being monitored.

Definition 6. New knowledge is any triple that is new to
the RDF at the profiled URI

Definition 7. Changed knowledge is any triple where the
object of the triple has changed. Only triples where the
predicate has a cardinality of 1 can be considered to change

Definition 8. Missing knowledge is any triple no longer
found in the RDF at the profiled URI but which was recently
seen in the RDF

Definition 9. Retracted or deleted knowledge is any triple
no longer found in the RDF at the profiled URI which has
not been seen for a reasonable length of time

In regards to the concept of changed knowledge consider
some arbitrary predicates ex:one and ex:many which have
cardinalities of 1 and unrestricted respectively. Since ex:one
has a cardinality of 1 it can be said whenever the object
of that triple has changed it is changed knowledge. Yet it
cannot be said for ex:many triples as the predicate has un-
restricted cardinality, therefore each triple using this predi-
cate must be treated as a unique entity i.e. one instance of
a triple using this predicate cannot be considered to replace
another. In the examples the fact that < A > was related
to < C > via the predicate ex:many in Example 1 and now
is instead related to < E > in Example 2 doesn’t mean they
are related to < E > instead of < C >, it just means they no
longer consider themselves related to < C >. The fact that
they are related to < E > is new knowledge while the fact
they related to < C > is missing/deleted knowledge, but if
the value of the ex:one relationship had changed then that
would be considered changed knowledge.

Example 1 Original Graph

<A> ex:one <B> .
<A> ex:many <C> .
<A> ex:many <D> .

Example 2 Modified Graph

<A> ex:one <B> .
<A> ex:many <D> .
<A> ex:many <E> .

When a change report is computed is it itself serialized
into an RDF Graph using the Talis Changeset ontology [1]
which is stored as a named graph in the underlying store
and republished via the web interface. Each Changeset gen-
erated links back to the previous Changeset (if one exists)
such that a end user/client application consuming the data
can follow the history of changes, a special URI which re-
trieves the most recent Changeset is provided such that users

have a starting point for this. Separate to Changesets a
named graph containing a history for each profile is also
stored which links to all the relevant Changesets for a pro-
file.

4. RESULTS

4.1 Expansion
To test the expansion algorithm we took a small sample or

URIs which included the URIs of the authors, places asso-
ciated with the authors and TV programmes from the BBC
(since we use the BBC programmes dataset for our preser-
vation tests as described in Section 4.2). The results shown
in Table 1 show that the amount of linked data that can
be obtained using the default expansion profile described in
Section 3.1.1 varies depending on the URI being profiled.
Expanding the URI of a person potentially produces a large
number of small graphs particularly if that person is a well
published academic since many bibliographic databases are
exposed as linked data and provide small amounts of data
about people. As can be seen URIs for places return vary-
ing amounts of data which depends on the size and relative
importance of the place. Conversely expanding the URIs
of BBC programmes using the default profile produces very
little linked data, we suspect that this is due to the type
of data and the fact the linking it uses it mostly based on
the BBCs ontologies. As outlined in Section 5 we plan to
conduct experiments in the future to asses the efficacy of
the algorithm on various types of data and using domain
specific expansion profiles.

One of the benefits of the algorithm is that as can be seen
in the results in Table 1 the algorithm is trivially parallel.
Increasing the number of threads used to process the discov-
ered URIs shows a significant reduction in the time taken
to retrieve the linked data. Experiments were conducted
with higher number of threads but 8 threads was found to
be optimal since beyond 8 threads erratic behaviour is ob-
served due to two factors: 1. underlying limitations of the
HTTP API used in terms of stable concurrent connections
and 2. high volumes of concurrent access to a single site look
like DoS attacks and lead to temporary bans on accessing
those sites. Differences in the number of triples and graphs
returned for URIs can be attributed to a couple of factors.
In the case of the London URI where the difference is dra-
matic - over 200,000 triples difference - this is because with
a smaller number of threads connections seem more likely
to time out though we are unsure why this is. In the other
cases many of the graphs were from the same domain name
and the API used to retrieve the RDF had a bug regarding
connection management for multiple concurrent connections
to the same domain which caused connections to fail unex-
pectedly which is why a reduction in the amount of data is
observed as the number of threads increased.

4.2 Preservation

4.2.1 BBC Programmes
In order to test AAT properly it was used to monitor a

subset of the BBC Programmes13 dataset which is a large
and constantly changing linked data set which allowed for
both the testing of the scalability of AAT and for the ver-
ification that it’s change detection algorithms worked as

13http://www.bbc.co.uk/programmes/developers

http://www.bbc.co.uk/programmes/developers


Table 1: Sample Expansion Algorithm Results
URI Total Graphs Total Triples Retrieval Time (seconds) Thread Used
Rob Vesse 4 115 13.8 1
http://id.ecs.soton.ac.uk/person/11471 4 115 1.8 2

4 115 1.8 4
4 115 2.1 8

Wendy Hall 691 4,068 786.3 1
http://id.ecs.soton.ac.uk/person/1650 692 4,070 383.8 2

692 4,070 375.9 4
692 4,070 359.6 8

Les Carr 368 2,694 438.9 1
http://id.ecs.soton.ac.uk/person/60 279 2,516 109.5 2

238 2,434 75.9 4
204 2,366 64.8 8

Ilkeston 6 444 19.1 1
http://dbpedia.org/resource/Ilkeston 5 393 13.5 2

5 416 9.6 4
5 393 5.3 8

Southampton 24 3,735 57.2 1
http://dbpedia.org/resource/Southampton 23 3,497 43.8 2

23 3,497 27.3 4
23 3,497 55.3 8

Nottingham 17 4,154 41.4 1
http://dbpedia.org/resource/Nottingham 16 4,048 39.5 2

16 4,048 27.4 4
16 4,048 25.9 8

London 13 53,886 142.4 1
http://dbpedia.org/resource/ 13 53,870 211.9 2

13 53,870 149.8 4
14 280,424 385.8 8

Eastenders 2 612 1.8 1
http://www.bbc.co.uk/programmes/b006m86d 2 612 0.7 2

2 612 0.6 4
2 612 0.7 8

Panorama 2 174 1.4 1
http://www.bbc.co.uk/programmes/b006t14n 2 174 0.9 2

2 174 0.7 4
2 174 0.6 8

Table 2: BBC Programmes preserved dataset size over 1 week
Date and Time Number of Changed Profiles Average Changes per Profile Max. Changes Min. Changes

12/2/2010 163 43 311 1
13/2/2010 105 2 25 1
14/2/2010 90 2 25 1
15/2/2010 87 2 25 1
16/2/2010 90 2 25 1
17/2/2010 87 2 25 1
18/2/2010 86 2 25 1



Figure 3: BBC Programmes Demonstration Appli-
cation built on top of data from AAT

intended. The subset used was all the brands (i.e. pro-
grammes) associated with the service BBC1 (the BBCs main
TV channel) since this includes many brands which change
regularly such as soaps and news broadcasts. Table 2 demon-
strates the average number of changes detected over just a
short period.

As can be seen in Table 2 you can see that the BBC up-
date their dataset on a daily basis, the initial high number
of changes is due to starting from a base dataset that was
a couple of months old due to architectural changes made
to AAT to support the use of the expansion algorithm and
improve the efficiency of the system. The average number
of changes being 2 is due to the fact that the typical up-
date we see the BBC make to their data is that they add a
triple describing a newly broadcast episode of a programme
and update the value of the dc:modified triple. The appar-
ently high number of 25 for the maximum changes is due to
one of the program URIs failing to resolve resulting in the
contents of that profile being considered to missing so the
change report for each day reports those triples as removed.
The relatively high number of profiles changing each day
is due to the fact that as already stated many of the pro-
grammes associated with BBC 1 are broadcast daily such
as soaps and news bulletins and that the BBC publish data
about programmes several days before the programmes are
actually broadcast.

To demonstrate the reuse of the data being harvested we
created a demonstration application which is a simple web
based faceted browser which lets users browse through in-
formation about recently shown BBC shows. Facets can be
used to filter by Genre and Channel and the user can view
detailed information about both programmes and the indi-
vidual episodes. This application was presented as part of an
earlier prototype of AAT described in [26] and shown in Fig-
ure 3. Like previous work by Papavassiliou et al [20] it shows
that simple information about basic triple level changes in
RDF (additions, deletions etc) can be reprocessed into use-
ful applications for end users.

4.2.2 Architecture & Scalability

Figure 4: All About That Architecture

AATs architecture is constructed as shown in Figure 4,
and as can be seen it is decomposed into several compo-
nents which then rely on some external standalone compo-
nents: an RDF API and the expansion algorithm. AAT
is theoretically agnostic of its underlying storage though in
practise differences in implementation between triple stores
mean only certain stores are currently viable for use as the
backing store. In the early prototyping stage a RDBMS
based store was used which was sufficient for initial proto-
typing but not scalable for real world testing so then the us-
age of production grade triple stores was adopted. Initially
it was intended to use the open source release of Virtuoso14

as the backing store but it was found that Virtuoso didn’t
correctly preserve boolean typed literals which created is-
sues in the internal processing of data within AAT. 4store15

was then used briefly but it was found that it was unable to
handle the heavy volume of parallel read/writes which AAT
uses during its data processing due to 4store’s concurrency
model. Currently AAT runs again AllegroGraph16 since it
has demonstrated in testing the ability to handle the high
volumes of read/writes necessary for using AAT on the large
dataset described in the preceding section.

In terms of general scalability the majority of algorithms
in AAT need to run on a single thread for each profile but
it is trivial to process multiple profiles in parallel and this
is the approach taken currently. Since work can be divided
over multiple threads it will also be possible to significantly
increase the scalability by dividing the work over a cluster
of machines which would allow much larger datasets to be
monitored efficiently.

14http://www.openlinksw.com/virtuoso
15http://4store.org
16http://www.franz.com/agraph/allegrograph/

http://www.openlinksw.com/virtuoso
http://4store.org
http://www.franz.com/agraph/allegrograph/


5. FUTURE WORK
There are a number of things that could be done to im-

prove the expansion algorithm outlined in Section 3.1 with
regards to both making it more intelligent in how it retrieves
linked data and in conducting a detailed analyses of the data
returned. Manual inspection of the data shows that it does
appear to be relevant to the URI of interest but it is pro-
posed that a full IR analysis of this is conducted in order to
statistically confirm this initial assessment. Additionally as
was seen in Table 1 some types of URIs produced very little
linked data using the default expansion profile, a broader
analysis using domain specific profiles is necessary to as-
certain whether those URIs have low levels of interlinking
or if the interlinkings just use domain specific links rather
than the generic owl:sameAs and rdfs:seeAlso links that
are followed by default.

In terms of improving the intelligence of the algorithm at
the moment it submits every URI to every SPARQL, lookup
and discovery endpoint described in the expansion profile, it
would improve the speed of the algorithm if it could use some
decision making as to which endpoints a given URI should
be submitted. Conversely though there is the possibility
that this would impact the effectiveness of the algorithm so
it would be necessary to conduct experiments to determine
whether there is a trade off between speed and accuracy. It is
also worth considering that searching on URIs is not the only
viable mechanism for finding additional linked data about
a URI of interest. Using terms extracted from the RDF
such as the objects of rdfs:label or dc:title triples would
provide a way to augment URI based lookup with term/text
based search results from semantic search engines. There are
already frameworks like Silk [28] which can be used to do
this and it would be useful to integrate the Silk framework
with the expansion algorithm.

One limitation inherent in AAT is that currently is does
not do any kind of special handling of blank nodes which
means that if data contains blank nodes AAT will contin-
uously think it has encountered new knowledge when most
likely it has not. For the data we have worked with so far
this is generally not an issue since the linked data commu-
nity tends to avoid blank nodes but if we are to provide for
preserving all kinds of RDF effectively then we need to han-
dle blank nodes properly. Solving this problem may involve
doing some sub-graph matching and isomorphism to see if
the sections of the graph that contain blank nodes can be
mapped to the previously seen sections of the graph as in
Tummarello et al’s RDFSync [23]. The blank nodes them-
selves could either be left as-is or they could be translated
to URIs as done by systems like the Talis17 platform.

Given that this work was inspired by traditional link in-
tegrity techniques from hypermedia it is interesting to note
that it has the potential to be applied back to the docu-
ment web since there is increasing cross-over between the
document and data web primarily due to the increasing up-
take of RDFa. As increasing numbers of documents embed
structured data using RDFa it will become possible to pre-
serve and monitor the structured information embedded in
ordinary web pages in the same way as can be done with
linked data now, therefore we envisage this as having appli-
cations in automated monitoring and maintenance of docu-
ment based websites.

As mentioned in Section 3.2.1 a lightweight schema is used

17http://www.talis.com/platform

by AAT to annotate and store the data but there are alter-
native vocabularies that could have been used such as the
provenance ontology [13] and the open provenance model
[18]. It would be a fairly easy and potentially useful en-
hancement to map the AAT schema to these vocabularies
such that the data could be retrieved in the desired form by
users/client applications designed to work with those for-
mats.

6. CONCLUSION
In this work we have introduced a simple but powerful

expansion algorithm which can be used to retrieve linked
data about a URI even when that URI is not resolvable.
This provides an important tool for preserving data in the
Semantic Web and recovering from data loss and shows that
in the Semantic Web links themselves can be exploited as
a means to recover from broken links. As we have outlined
in Sections 4.1 and 5 there is a need to conduct a detailed
analysis of the algorithm to asses it’s efficacy for a wider
variety of URIs and using domain specific expansion profiles.
Depending on the results of this analysis the algorithm may
need to be further refined to improve both it’s speed and
accuracy.

We have also presented the All About That (AAT) sys-
tem which allows users to monitor and preserve linked data
they are interested in using the expansion algorithm as the
primary retrieval method for deciding which linked data to
preserve based on a starting URI. As we demonstrated in
Section 4.2.1 we envisage the usage of such a system as a
base on which to build rich Semantic Web applications that
can take and present the changing data in interesting and
useful ways to end users. It also fulfils a role in the overall
goal of our research which is to provide a suite of algorithms
and systems which can be used to manage both data and
link integrity on the Semantic Web.

As has been discussed in Section 5 there are some limita-
tions in the current versions of our algorithm and the AAT
system which we intend to investigate and address in the
future. It is clear that there is still a significant amount
of work to be done to create a comprehensive set of tools
such that they can be applied to as wide a variety of data
on the Semantic Web as is possible and experiences of past
research in link integrity for the document Web tells us that
there will be no perfect solution.

Despite this it is our belief that as the Semantic Web
grows data and link integrity will be increasingly important
issues to users as their applications come to rely upon linked
data. There is a need to have systems in place such that data
can be preserved and accessed even if the original sources
are gone or unavailable. This has already been seen with
the release of services like the Sindice Cache API18 which is
used as one of the data sources in the default expansion pro-
file (see Section 3.1.1). Additionally with rising adoption of
RDFa embedded inside documents on the web systems like
this become applicable for the preservation of the structured
data embedded in the document based Web as discussed in
Section 5.

7. REFERENCES
[1] Changeset protocol, 2007.

http://n2.talis.comn/wiki/Changeset_Protocol.

18http://www.sindice.com/developers/cacheapi

http://www.talis.com/platform
http://n2.talis.comn/wiki/Changeset_Protocol
http://www.sindice.com/developers/cacheapi


[2] Virtuoso sponger. Technical report, OpenLink
Software, 2009. http://virtuoso.openlinksw.com/
Whitepapers/html/VirtSpongerWhitePaper.html.

[3] K. Alexander, R. Cyganiak, M. Hausenblas, and
J. Zhao. Describing linked datasets: On the design
and usage of void, the ‘vocabularly of interlinked
datasets’. In Proceedings of the Linked Data on the
Web Workshop (LDOW2009), Madrid, Spain, April
2009. http:
//ceur-ws.org/Vol-538/ldow2009_paper20.pdf.

[4] H. Ashman. Electronic document addressing: dealing
with change. ACM Comput. Surv., 32(3):201–212,
2000.

[5] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F.
Nielsen, and A. Secret. The world-wide web.
Commun. ACM, 37(8):76–82, 1994.

[6] C. Bizer, R. Cyganiak, and T. Heath. How to publish
linked data on the web, 2007. http://sites.wiwiss.
fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial.

[7] P. Bouquet, H. Stoermer, and B. Bazzanella. An
entity name system (ens) for the semantic web. In 5th
European Semantic Web Conference, ESWC 2008,
volume 5021, page 258. Springer, 2008.

[8] G. Cheng, W. Ge, and Y. Qu. Falcons: searching and
browsing entities on the semantic web. In WWW ’08:
Proceeding of the 17th international conference on
World Wide Web, pages 1101–1102, New York, NY,
USA, 2008. ACM.

[9] H. Davis. Data Integrity Problems in an Open
Hypermedia Link Service. PhD thesis, University of
Southampton, November 1995.
http://eprints.ecs.soton.ac.uk/6597/.

[10] H. C. Davis. Hypertext link integrity. ACM Comput.
Surv., page 28, 1999.

[11] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis.
Microcosm: an open model for hypermedia with
dynamic linking. In Hypertext: concepts, systems and
applications, pages 298–311, New York, NY, USA,
1992. Cambridge University Press.

[12] T. L. Harrison and M. L. Nelson. Just-in-time
recovery of missing web pages. In HYPERTEXT ’06:
Proceedings of the seventeenth conference on Hypertext
and hypermedia, pages 145–156, New York, NY, USA,
2006. ACM.

[13] O. Hartif and J. Zhao. Guide to the provenance
vocabularly, 2009.
http://sourceforge.net/apps/mediawiki/trdf/
index.php?title=Provenance_Vocabulary.

[14] B. Haslhofer and N. Popitsch. DSNotify–Detecting
and Fixing Broken Links in Linked Data Sets. In
Proceedings of 8th International Workshop on Web
Semantics, 2009.

[15] A. Jaffri, H. Glaser, and I. Millard. Managing uri
synonymity to enable consistent reference on the
semantic web. In IRSW2008 - Identity and Reference
on the Semantic Web 2008, 2008.

[16] F. Kappe. A scalable architecture for maintaining
referential integrity in distributed information
systems. Journal of Universal Computer Science,
1(2):84–104, 1995. http://www.jucs.org/jucs_1_2/
a_scalable_architecture_for.

[17] F. Kappe, K. Andrews, J. Faschingbauer,
M. Gaisbauer, M. Pichler, and J. Schipflinger.

Hyper-G: A new tool for distributed hypermedia.
Institutes for Information Processing Graz, 1994.

[18] L. Moreau, J. Freire, J. Futrelle, R. McGrath,
J. Myers, and P. Paulson. The open provenance
model. December 2007.
http://eprints.ecs.soton.ac.uk/14979/.

[19] L. Moreau and N. Gray. A Community of Agents
Maintaining Links in the World Wide Web
(Preliminary Report). In The Third International
Conference and Exhibition on The Practical
Application of Intelligent Agents and Multi-Agents,
pages 221–235, London, UK, Mar. 1998. http:
//www.ecs.soton.ac.uk/~lavm/papers/gcWWW.ps.gz.

[20] V. Papavassiliou, G. Flouris, I. Fundulaki,
D. Kotzinos, and V. Christophides. On Detecting
High-Level Changes in RDF/S KBs. In The Semantic
Web: 9th International Semantic Web Conference
(ISWC2009), pages 473–488. Springer, 2009.

[21] T. A. Phelps and R. Wilensky. Robust hyperlinks:
Cheap, everywhere, now. In Digital Documents:
Systems and Principles, pages 514–549. Springer,
2004.

[22] G. Tummarello, R. Delbru, and E. Oren. Sindice. com:
Weaving the Open Linked Data. In The Semantic
Web: 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference, ISWC, pages
552–565. Springer, 2008.

[23] G. Tummarello, C. Morbidoni, R. Bachmann-Gm
”ur, and O. Erling. RDFSync: efficient remote
synchronization of RDF models. In The Semantic
Web: 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference, ISWC 2007+
ASWC 2007, Busan, Korea, November 11-15, 2007,
Proceedings, pages 537–551. Springer, 2007.

[24] L. Veiga and P. Ferreira. Repweb: replicated web with
referential integrity. In SAC ’03: Proceedings of the
2003 ACM symposium on Applied computing, pages
1206–1211, New York, NY, USA, 2003. ACM.

[25] L. Veiga and P. Ferreira. Turning the web into an
effective knowledge repository. ICEIS 2004: Software
Agents and Internet Computing, 14(17), 2004.

[26] R. Vesse, W. Hall, and L. Carr. All about that - a uri
profiling tool for monitoring and preserving linked
data. In ISWC 2009, August 2009.
http://eprints.ecs.soton.ac.uk/17815.

[27] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov.
Discovering and maintaining links on the web of data.
In A. Bernstein, D. R. Karger, T. Heath,
L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, The Semantic Web - ISWC
2009, volume 5823 of Lecture Notes in Computer
Science, pages 650–665. Springer, 2009.

[28] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov.
Silk–a link discovery framework for the web of data.
In 2nd Linked Data on the Web Workshop
(LDOW2009), 2009.

http://virtuoso.openlinksw.com/Whitepapers/html/VirtSpongerWhitePaper.html
http://virtuoso.openlinksw.com/Whitepapers/html/VirtSpongerWhitePaper.html
http://ceur-ws.org/Vol-538/ldow2009_paper20.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper20.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial
http://eprints.ecs.soton.ac.uk/6597/
http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Provenance_Vocabulary
http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Provenance_Vocabulary
http://www.jucs.org/jucs_1_2/a_scalable_architecture_for
http://www.jucs.org/jucs_1_2/a_scalable_architecture_for
http://eprints.ecs.soton.ac.uk/14979/
http://www.ecs.soton.ac.uk/~lavm/papers/gcWWW.ps.gz
http://www.ecs.soton.ac.uk/~lavm/papers/gcWWW.ps.gz
http://eprints.ecs.soton.ac.uk/17815

	Introduction
	Related Work
	Semantic Web Research

	Method
	Expansion Algorithm
	Default Profile

	Preservation
	Schema
	Profile Creation & Update
	Change Reporting


	Results
	Expansion
	Preservation
	BBC Programmes
	Architecture & Scalability


	Future Work
	Conclusion
	REFERENCES -9pt 

