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ABSTRACT
One of the main goals of the Semantic Web is to extend cur-
rent human-readable Web resources with semantic informa-
tion encoded in a machine-processable form. One of its most
successful approaches is the Web of Data which by follow-
ing the principles of Linked Data have made available several
data sources compliant with the Semantic Web technologies,
such as, RDF triple stores, and SPARQL endpoints. On the
other hand, the set of the architectural principles that under-
lie the human-readable Web has been conceptualized as the
Representational State Transfer (REST) architectural style.
In this paper, we distill REST concepts in order to pro-
vide a mechanism for describing REST (i.e. human-readable
Web) resources and transform them into semantic resources.
The strategy allowed us to harvest already existing Web re-
sources without requiring changes on the original sources, or
ad-hoc interfaces. The presented strategy aims to contribute
to the availability of more semantic datasets and become a
further step to lower the entry barrier to semantic resources
publishing.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services, Data sharing

General Terms
Design, Documentation, Languages

Keywords
REST, Web Data, Crawling

1. INTRODUCTION
There is an increasing interest in the relationship of Rep-

resentational State Transfer (REST) [13] , and the Semantic
Web, which has resulted in various approaches varying from
the semantic annotation of Web resources, to middleware
that mediates resource handling. Followed approaches, re-
semble the strategies of more traditional SOAP/WSDL se-
mantic services and neglect basic REST properties. REST
principles are somehow related to Linked Data principles in
the sense that resources have a unique identifier (URI), that
must be dereferenceable through HTTP; resources are inter-
linked, and by following those links new resources can be dis-
covered. However, differences arise when getting deeper into
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the principles and rationale of both fields. For instance, on
the Linked Data side, research projects aim to create large
collections of RDF data by transforming structured data
sources into RDF using specialized mappings, and exposing
the generated RDF dataset as RDF triple stores, often with
SPARQL endpoints. Although this strategy make available
large collections of RDF data, they result also in centralistic
approaches where access is typically mediated through a sin-
gle “endpoint” (e.g. a dump of the whole site, an SPARQL
endpoint, a Tabulator-like interface, etc.) and due to the
heterogeneous nature of the data sources interfaces, they
require sophisticated mechanisms to retrieve, process, and
publish the information [9], which challenges the scalability
and accuracy of the expose data since it can be outdated.

One of the main tenets of REST is the primacy of re-
sources that are uniquely identified by opaque URIs, that
is, in order to avoid coupling between clients and servers,
no assumptions must be made about the structure of the
URI [26]. REST requires a uniform interface, that is, a set of
operations or methods with known semantics that changes
the state of the resources. The interface depends on the
URI scheme, for HTTP, the standard methods are GET, PUT,
POST, DELETE, and OPTIONS. Methods are external to the re-
sources, and are invoked by sending standard messages to
the Web server indicating the URI of the requested resource,
the method, the payload of the message and metadata.

A resource can have multiple “representations” that fol-
low a standardized format or media type (e.g., text/html,
application/xml, etc.) and can be negotiated with the
Web server. Representations convey the state of the client’s
interaction within the application and contain hyperlinks
that allow clients to discover other resources or change the
state of the represented resource. Most importantly, REST
services have no “endpoints”, instead, they consists of a
collection of resource URIs and a set of standard opera-
tions. This approach differs greatly from more traditional
SOAP/WSDL, where a service publish an endpoint that ex-
poses the set of available operations (i.e. URIs, encoding,
parameters). Such operations have particular semantics that
must be known in advance, in order to be properly invoked
by the client (coupling).

REST yield loosely coupled design [26], where architec-
tural concerns are separated among various standardized
components such as routers, Web servers and Web browsers,
resulting in a flexible, extensible and decentralized system
simple to maintain and capable of massive scalability. Un-
like distributed system, that hide distribution, decentralized
systems make it explicit with the eventual goal of architect-



ing a system of systems.
Based on these REST principles, we present the Resource

Linking Language (ReLL), that describes RESTful Web ser-
vices and provides a natural mapping from the graph-oriented
world of RESTful services (resources interlinked by links
found in resource representations) to the graph-based model
of RDF. By means of a ReLL description, a set of REST re-
sources are described and exposed. Three applications were
described and the resources harvested into a triple store.
Section 2 briefly discuss related approaches, and section 3
describes the proposed language.

2. RELATED WORK
Semantic Web Services (SWS) for REST are mainly fo-

cused on providing a semantic description of a REST ser-
vice. SA-REST [21] and hREST/MicroWSMO [20] provide
a list of input and output parameters, methods, and URIs
exposed by a REST service by means of property value pairs
or RDFa [1] annotations. The description itself can be trans-
formed to RDF using a GRDDL-based [12] strategy for gen-
erating a domain ontology in RDF, but no information about
the REST resources themselves are retrieved.

The Web Application Description Language (WADL) [16]
describe RESTful services and place resources, identified by
predefined URI patterns, as first-class objects in a descrip-
tion. WADL only supports HTTP methods with request
and response elements. These elements contain representa-
tions with a media type and (possibly) another URI. Rep-
resentations contain typified parameters that in turn con-
tain links to another resources’ URI. Generally speaking,
WADL attempts to completely describe all possible aspects
of a RESTful service, down to predefined URI patterns and
the ways in which query parameters have to be composed
for certain types of requests, introducing a higher level of
coupling for clients using such descriptions.

In the same line, Battle and Benson [6] propose semantic
annotations, similar to SA-REST, and extensions to SPARQL
in order to support an HTTP REST uniform interface. They
also propose extensions to the payload of the HTTP REST
methods (e.g., PUT, DELETE and GET) for maintaining consis-
tency between a REST resource and its semantic equivalent
(a triple) in some triple store.

The main problem of these approaches is that they follow
the WSDL/SOAP service model; they do not align well with
the principles of RESTful service design, since they disre-
gard fundamental properties such as the hypermedia nature
of REST, and the possibility of multiple representations for
the resources. They also introduce coupling in their design
by adhering to URI templates for describing the URIs of re-
sources, input, and output parameters [25], or in the case of
Battle and Benson, they introduce new semantics to the
standard REST interface.

EXPRESS [4] is a SWS model that explicitly avoids the
RPC-orientation of the approaches mentioned so far. It
starts from HTTP’s uniform interface, and then describes
the available resources in an OWL ontology. However, the
model of EXPRESS is a centralized one as well, because it is
assumed that there is a complete description of a Web Ser-
vice’s available resources, and then this description is used
to generate URIs for classes, instances, and properties.

On the Linked data side, the Vocabulary Of Interlinked
Datasets (voiD) [3], describes datasets (sets of RDF triples)
as well as the sets of Linksets, that is, triples where the sub-

ject belong to a dataset different than the object’s dataset.
Directionality of the links can be modeled, and other prop-
erties such as licensing (dcterms:license), the number of
triples available in the dataset (void:statItem), the vocab-
ularies used in the dataset, and a SPARQL endpoint, are
also provided. voiD is accompanied of a Sitemap protocol
extension that indicates the location (URI) of the voiD de-
scription so that (semantic) web crawlers can find it and use
voiD’s information to index the dataset. The Silk-LSL (Link
Specification Language) [30] is an XML-based language that
allows to define the rules (e.g. similarity metrics) and to find
certain types of links (e.g. owl:sameAs) between two data
sources automatically (that is, to discover Linksets in the
terms of voiD).

voiD’s focus is on providing access and discovery for al-
ready existing datasets by publishing metadata, but a more
granular approach (i.e. information about the retrieved re-
sources themselves) is not considered. Silk, allow to better
index large centralized collections of RDF data, and dis-
covering dependencies between these datasets. While these
approaches are central to increasing the amount of linked
data on the Web, they are rather expensive because they
are based on a lot of specialized mapping and publishing
work for just transforming one dataset [9].

LDDR, the Link-based Resource Descriptor Discovery [17]
is a proposal submitted to IETF that focuses on the re-
sources rather than the datasets. It allows resources to
indicate their descriptor’s location by using links in three
modes, the <LINK> element available in markup represen-
tations that support typed-relations such as (X)HTML and
Atom; the HTTP Link Header; and a Link-pattern con-
tained in the resource’s description document located at
{host}/.well-known/ directory. In all three cases, the de-
scriptor itself depends on the resource’s URI, in the form of
{resource uri};about. Unlike the last approach, the for-
mer two would require to modify the resources in order to
include the <LINK> elements either in the resource’s code
or in the server side in order to process the HTTP Header.

As for the descriptor itself, XRD1, the Extensible Re-
source Descriptor defines a small set of elements describing
the resource’s URI (and URI template), an XML signature,
the expiration date, and links to other resources. Links are
also annotated with metadata such as the target resource
URI (and its URI template), mediatype, and the <rel>
property as defined by the HTTP Header Link Relation-
ship Types. This approach, implies that there must exist an
XDR document per resource (since the set of links is often
different for each resource) which introduces high coupling
and may be impractical for a Web-scale application.

If XRD focuses on individual resources, POWDER, the
Protocol for Web Description Resources2 recommended by
W3C aims to facilitate the description of groups of resources
identified by Internationalized Resource Identifiers (IRIs).
An iriset (a set of IRIs, not a set of resources) can be defined
in terms of the properties of such IRIs, that is, the accepted
schemes (e.g. http, https), hosts, paths, and ports defined
via regular expressions. The iriset properties are described
by a descriptorset element that groups restriction attributes
such as certified (indicates if the description certifies an-
other resource) and sha1sum (providing a SHA-1 sum of

1http://docs.oasis-open.org/xri/xrd/v1.0/xrd-1.0.html
2http://www.w3.org/TR/2009/REC-powder-dr/



the described resource); and annotation properties, such as,
displaytext (a descriptive text), displayicon (an image
URI) and seealso, label, comment that provide a related
resource URI, a description and a comment respectively.
Both restriction attributes and annotation properties have
well-defined semantics and can be translated automatically
to OWL, thought, they describe high level attributes. An
additional property, typeof is also translated into rdf:type

and allows to specify a class for all the elements of an iriset.
For instance, we could define the http:\twitter.com iriset
and indicate later that all the elements identified by such
URI belong to the class twitterPublicTimeLine. Prove-
nance information describing author, date and validity pe-
riod (attribution) is also provided.

Unlike XDR, POWDER refers to group of resources iden-
tified by URI patterns (not URI templates) without requir-
ing changes in the resources, furthermore, POWDER makes
possible to assign a class to the group of resources facilitat-
ing later complex operations such as SPARQL queries. On
the negative side, POWDER facilitates the description of
group resources but not it does not provide support for the
resources discovery or an automatic harvesting process.

In the approach described by Futrelle [14], RDF is used
as the “integration layer” in a scenario of heterogeneous data
sources, and the main focus is on harvesting well-known and
cooperating data sources. This approach can be applied to
a variety of data sources, but they have to be cooperating
in the sense that they expose RDF themselves. The har-
vester’s main role is to be notified of new and updated data,
and to pull it in from these sources. While this scenario
uses RDF’s power to unify heterogeneous data sources on
the metamodel level, it is only applicable in closed and co-
operating settings. In our approach, data sources are not re-
quired to publish RDF themselves. As long as access to data
is provided through RESTful services, they can be harvested
and used as RDF. A weakness of the current implementa-
tion is that updating is not supported in a way that allows
efficient incremental updates, but we plan to address this
issue in our future work mentioned in Section 6, where we
describe extensions to our language that represent update
services (and thus the ability to use those for incremental
updates) on the language level.

SOFIE [29] focuses on information extraction from Web
resources, and ANGIE [27] on using both extracted infor-
mation and Web services endpoints, for building a more in-
teractive system that does not require an exhaustive crawl
of data, but retrieves information on demand. SOFIE thus
falls into the category of approaches that start from resource
representations, and use information retrieval methods to
extract RDF from them. The current implementation of
ANGIE focus on the dynamics of query processing in the
RDF data managed by the system, and uses a hardwired
set of Web services as the back-end. Similar to SA-REST,
it uses a set of lowering/lifting transformations to translate
the results of function calls from and to RDF. ANGIE fo-
cuses on SPARQL processing (the framework is able to use
Web services while processing SPARQL queries), and less on
the ability to easily accommodate a large variety of RESTful
services.

Deimos [5] is another system that starts with information
found on Web pages or through Web forms, and then uses
semantic analysis to map the syntax of these representations
to semantically richer information. Instead of relying on the

richness of links discovered in known resources, though, the
approach taken in Deimos uses tagging services to discover
new resources.

Finally, another attempt to provide a bridge between REST
and the semantic Web is the W3C work in progress of an
RDF vocabulary representing the HTTP protocol 3. The ap-
proach captures properties such as the message exchanged
(including the HTTP headers), the request (including the
method and URI) and the response (including the HTTP
status code number) with the goal of facilitating relevant
tasks such as content negotiation, as well as additional HTTP
headers registered by the Internet Assigned Numbers Au-
thority (IANA).

3. RESOURCE LINKING LANGUAGE
Considering the related work, we derived a set of require-

ments for a REST resource description language that con-
sider REST constraints. For instance, in order to avoid cou-
pling URIs must be opaque, they must support multiple
representations, and must consider linking among resources
as a fundamental property. In order to consider current
installed infrastructure, it must require minimal or no in-
tervention for existing Web resources; in order to scale it
must support a partial description of the resources that can
be later completed and/or modified, it must describe both
single resources and groups of resources as well as the rela-
tionships among them, and finally it must be simple in order
to lower the entry barrier for future developers and foster
its adoption.

The main constraints for designing RESTful services are
resource identification, linking, and a uniform interface through
which linked resources can be accessed. By linking we re-
fer to one of the core aspects of RESTful services, that is
the use of hypermedia as the engine of application state (HA-
TEOAS), which means that service interactions that in non-
REST approaches result in server state, are actually imple-
mented as clients following links to resources representing
that state. This results in services that are resource- and
link-centric, and thus a description language for RESTful
services should focus on these two aspects.

The other two main constraints of REST, self-describing
messages and stateless interactions, are more a question of
how resource representations are retrieved, and how state
is handled when interacting with services. For the purpose
of designing RESTful services, all of these design issues are
relevant. For the purpose of describing a RESTful service
interface, the most important aspects are the resources rep-
resentations that can be retrieved, the ways in which these
can link to other resources, and the protocol interactions
that may be required to access those resources. The service
semantics also require an understanding of the semantics
of the representations involved in the interactions with the
service, but for the mere description of a service’s interface,
these semantics are not required.

Figure 1 shows the schema of ReLL. Elements are shown
as rectangles and attributes as dashed rectangles. Sequences
are depicted as a circle with the character “S”. A service
exposes a set of one or more resources that have a unique
identifier (xml:id), names and descriptions (human-readable
labels) and optionally a URI pattern which describes the
constraints for the identifiers expected to be used for spe-

3http://www.w3.org/TR/HTTP-in-RDF10/
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Figure 1: ReLL Description Schema

cific resources (match). A resource may have representa-
tions, which are the serialization of the resource in some
syntax. This design naturally supports multiple represen-
tations for resources, but it does not support, per se, the
common practice of some Web services that use different
URIs for different representations of the same resource (such
as two URIs with .xml and .json suffixes, if these are two
supported representation formats).4 We discuss this issue
further down, when we are discussing link types.

Representations can be associated with schemas for pos-
sible validation (if schemas exist). Representations can also
be defined as part of the service directly, in which case they
are abstract, which means that they are not associated with
any concrete resources. The most important use cases for
abstract representations are conventions for media or data
formats that should be described, so that they can be reused
as a foundation for describing concrete resource representa-
tions. A real-world use case for this scenario is an abstract
representation describing the media type application/xml,
that serves as the basis for the abstract representation de-
scribing the application/atom+xml media type for feeds ac-
cording to Atom [24], which in turn serves as the basis for
the abstract representation describing the paged feeds media
type (i.e., feeds implementing feed paging [22]). Eventually,
a concrete service providing a resource may use paged feeds
and thus the resource types its representation with the ab-
stract “paged feed” representation. The rationale behind
this design is that various representations in this chain of
representations define different linking mechanisms (paged

4Such variations in the representation’s URIs could easily
be covered by a URI pattern for the resource ending with
.(xml|json), but the variation of the suffix alone would not
imply that it does not actually refer to a different resource,
but only to a different representation.

feeds extend Atom with new link relationships), and the
effective set of link types that can appear in a concrete re-
source using the paged feed representation thus is the union
of these different link types. Representations can be based
on other representations, but only on abstract representa-
tions. The other use case of abstract representations is
representations that are derived from concrete representa-
tions, such as a collection of representations that is available
through a paging mechanism in representation formats.

Each representation can contain any number of links. A
link is retrieved from the representation by using selectors.
Selectors depend on the representation format, and thus
their definition and interpretation may depend on a lan-
guage (selector type) that is appropriated for a certain repre-
sentation. For instance, for XML representations, the most
popular example for a selector mechanism is the XML Path
Language (XPath) [11, 7], which allows structured selections
within XML document trees. A link defines a possible asso-
ciation leading from the resource’s representation containing
the link to another resource as determine by the target. In-
stead a resource URI, the target contains a valid resource
id in order to avoid coupling with the resources’ naming
scheme.

A link has a link type which represents the semantics of
the link, but ReLL does not make any attempt to formalize
the semantics; link types have a name and a description and
thus can be documented in a service description, but their
semantics are outside of the scope of the description lan-
guage. Links can also contain protocol descriptions which
for each link specify the rules that govern the interaction
with the linked resource. This is important because links in
RESTful services not only have application-specific seman-
tics, following the links also may require different ways of
using the uniform interface provided by a certain protocol.
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Figure 2: Generating RDF triples from ReLL descriptions

Thus, it is possible for each link to specify how this link
has to be traversed using a specific protocol. Practically
speaking, this means that after a link’s URI has been deter-
mined (for example by extracting the URI using a selector),
the protocol is determined by inspecting the URI’s scheme,
and then the protocol description might give additional hints
about how to use methods or compose entities for invoking
the uniform interface. Thus protocol descriptions are just
one (the interface-specific) part of describing link semantics.

4. FROM RELL TO RDF
ReLL main elements such as resource, representation, and

link serve as the core elements for a RDF/OWL minimal
vocabulary shown in Figure 2 under the “rell” namespace.
Resource, and representation are concepts while link, and
represents are predicates. Since ReLL describes a REST
application, it is used to generate a domain ontology for the
application. The resource id annotated in ReLL is used as
the resource’s type and the link type as the predicate that
relates two resources. Domain specific resources are also
subclasses of the rell:resource entity, and currently form
a domain-specific vocabulary by using the ReLL service’s
attribute base.

We are maintaining the actual REST resources’ URIs to
identify them in the realm of the Semantic Web, however
they are considered instances of the domain-specific classes
discussed before. REST resources are linked together with
a link id instead of a link type. REST resources’ themselves
can be transformed to RDF following a GRDDL approach.
For instance, in Figure 2, a resource is annotated with prop-
erties defined in the vCard vocabulary, including simple (lit-
erals) and complex attributes (e.g. the EMAIL is generated
as an internal blank node). Naturally, the proper vocabu-
laries depend on the resources.

With this approach, it is possible to retrieve a graph of
triples describing a REST resource (URI and attributes)
and its relation to another REST resource, as shown by
the dashed rectangle in Figure 2. The resulting graph [10]

is named with an ID or timestamp (e.g., base:r123456789)
that refers to the source or representation from where the
graph information was collected. The representation is an
instance of the representation type defined in the ReLL de-
scription for the retrieved REST resource.

Representations are subclasses of a concrete media type
that can be derived from abstract representations or ab-
stract media types as annotated in the ReLL descriptions.
Abstract representations are supported as classes that serve
as the basis for other abstract or concrete representations.
For representations, the upper ontology contains all stan-
dardized media types from the IANA registry as classes.

The representation is then part of the provenance infor-
mation obtained when retrieved the REST resources (see
dashed elements in Figure 2). Other information such as
the ETag property served by the Web server when retriev-
ing the REST resource is also collected if available; the date
when the information was retrieved (and hence the named
graph was created) is also annotated. Other information as
indicated by [18] could also be included in future develop-
ments.

5. IMPLEMENTATION
As a proof of concept, we have implemented RESTler [2],

a crawler that follows the rules defined by ReLL descriptions
in order to harvest REST resources. A complementary com-
ponent (a Translator) transforms the retrieved resources into
RDF. Figure 3 describes the principal components of the
approach. Rectangles represent software components, UML
note figures are used to represent files, straight lines repre-
sent information flow required in the configuration phase of
the process (static), while dashed lines represent informa-
tion flow that take place while the crawling process is being
executed (dynamic).

RESTler, is a crawler that parses and uses ReLL descrip-
tions as instructions for retrieving REST services’ resources.
The crawler takes as input an XML document which is a
ReLL description, and a set of seed URIs (Figure 3), and
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produces as output a typed graph of the crawled resources
and the links connecting them. The crawler also takes as
input authentication information, only basic authentication
is supported (username and password sent in the HTTP
request) currently, but we plan to extend the crawler in or-
der to support other authentication schemes (e.g., OAuth,
AuthSub).

The crawler parses the description file, dereferences the
initial URI (seeds), and retrieves the resource representation
considering the protocol, request method, and resource me-
dia type provided. Currently we support HTTP (an HTTP
client), and HTML, XHTML, Atom, JSON, RSS, and XML
as media types, and only the GET method. But the crawler
can be extended to support other media types, protocols
and request methods.

The resource URI is matched against a regular expres-
sion that defines the resource type or id. From the retrieved
representation, the crawler obtains the list of embedded
links to other representations by applying an XPath ex-
pression (selector). The link’s target indicates the ex-
pected resource type and requires additional information
such as the protocol, and request method to follow and
the expected media type. If the target is not present in the
link element, a “nofollow” condition is implied, since it is
not possible to crawl the linked resource (i.e., there is no in-
formation about the media type, protocol, request method
or expected resource type).

It is possible as well to support computed links, that
is, links that are calculated.5 The crawler also evaluates
whether the resource fulfills certain restrictions such as the
type of the linked resources (target attribute), and the car-
dinality of the retrieved links (minOccurs and maxOccurs

attributes for the selector element). These restrictions are
optional and allow the crawler to determine whether the re-
source is well-formed and satisfies the preconditions given in
the service description.

For each graph retrieved, a Translator is invoked for gener-
ating RDF triples based on the ReLL description, that is, the
subjects (resources’ URIs), properties (rdf:type, base:link
id) and objects (linked resources’ URIs or values), as well

5Based on the ongoing work on the URI Template [15] lan-
guage, it might in the future be possible to define additional
ways in which a URI can be composed based on input values
obtained from the current representation.

as provenance information (base:timestamp). Additional
information is obtained trough XSLT files transforming re-
sources into RDF sentences, as indicated for the correspond-
ing mapping file. Each ReLL document is transformed into
RDF with a generic XSLT generating an ontology specific
to each application domain. Generated named graphs are
stored in a triple store. We use Sesame 2.0 as triple store
and the system is implemented in Java. Sesame supports
named graphs as quads, and we use the fourth component
for storing provenance information.

Finally, for each retrieved resource, the crawler recursively
repeats the whole process.

5.1 School/Twitter/Flickr and User Matching
We applied RESTler to four scenarios: a subset of the

Web site of the Information School at UC Berkeley, and two
well known REST-based applications, Twitter and Flickr.
The fourth service provide mappings among the users in
each of these domains so that we can establish useful equiv-
alences by means of an owl:sameAs property. ReLL descrip-
tions where created for each scenario and we retrieved 11,353
resources, 22,309 links among them which generated 55,548
triples.

Figure 4 presents the ontology that was generated af-
ter transforming ReLL descriptions into RDF through a
generic XSLT definition. The image was generated using
OntoViz6 and was later refined for readability. The upper
left corner presents the representation classes and their
corresponding iana media-types (e.g. iana-app:xhtml+xml,
iana-app:atom+xml, iana-app:xml, iana-txt:html and im-
ages media types). The right-hand side presents the classes
that model the UC Berkeley school domain’s resources (e.g.
school:person, school:course, etc) and the relationships
among resources (e.g. school:person-course).

The left-hand side shows the classes corresponding to the
Flickr domain (e.g. flickr:photostream, flickr:photo,
etc) and their relationships (e.g. flickr:photo-sizes). At
the bottom of the figure, a subgraph describes the classes
that model the Twitter domain (e.g. twitter:follower,
twitter:user, etc) and the hyperlinks or relationships among
them (e.g. twitter:status-reply). At the center of the fig-
ure the minimal ontology described in Figure 2 is highlighted
in bold and italics.

6A Protege plugin that generates .dot files
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Figure 4: Resulting ontologies generated from ReLL descriptions



 <http://www.ischool.berkeley.edu/people/faculty/erikwilde> a school:person ;
vCard:FN "Erik Wilde" ;
vCard:ADR _:node14m5kienpx1603 ;
vCard:TITLE "Adjunct Professor" ;
vCard:ORG _:node14m5kienpx1604 ;
vCard:EMAIL _:node14m5kienpx1606 ;
vCard:TEL _:node14m5kienpx1607 ;
vCard:URL <http://dret.net/netdret/> ;
vCard:PHOTO <http://www.ischool.berkeley.edu/files/imagecache/profile-pic/DSC_0176.JPG> ;
school:person-website <http://dret.net/netdret/> ;
school:person-course <http://www.ischool.berkeley.edu/programs/courses/242> ,

      <http://www.ischool.berkeley.edu/programs/courses/152> , 
      <http://www.ischool.berkeley.edu/programs/courses/190-waim> , 
      <http://www.ischool.berkeley.edu/programs/courses/290-wa> .

Figure 5: Describing an instance of a school:person resource using N3 notation

Collections of resources can be also identified. For in-
stance, at the bottom of the figure, the arcs between two re-
sources are depicted, the twitter:user-timeline, and the
twitter:paged-user-timeline described a pagination rela-
tionships, that is, 13 pages of the twitter:user-timeline

were collected and the pagination scheme is describe as links
that lead to a numbered page (e.g. twitter:timeline-page2,
twitter:timeline-page3, etc). For the case of Flickr and
the Information School the pagination scheme considers links
such as the first, last, next and previous page.

The fourth RESTful service, the Usermap is show as a
single class near the center of the figure. This is because the
ReLL file contains only one class of resource (the usermap),
that is, an XML list mapping the users’ URIs between the
other three applications.

The REST resources themselves are transformed to RDF
following a GRDDL approach. Figure 5 shows the attributes
obtained for individuals of type school:person. Notice
that it is possible to annotate the relationships between the
REST resource (erikwilde) and its attributes. In the fig-
ure these relationships are annotated with vCard, but other
information models can be used.

6. CONCLUSIONS
The REST community is still discussing whether RESTful

services even should be described, and how such a descrip-
tion language could increase the coupling between a service
provider and a service consumer, so that REST’s goal of
loosely coupled services could be compromised. We are tak-
ing a pragmatic position and claim that it is important to
keep in mind that any kind of contract will introduce some
coupling, that even loosely coupled services need a shared
set of assumptions, and that a more formal way of describ-
ing those assumptions will help service providers and con-
sumers in service documentation and consumption. A recent
upswing of discoverable links between Web resources (such
as an uptake of microformats [19]) has led to the idea of a
central registry for link relationships in the realm of Web
linking [23], but this activity is still under active develop-
ment.

Our model is yet a static description of RESTful services
that does not cover the cases in which new resources or
identification and access schemes are introduced. However,
such a description allows to describe the status quo and the
cases which a client should expect, and therefore they also

allow to reliably discover cases in which these constraints are
not satisfied anymore, for example when new representations
or new identification and access schemes are used.

Furthermore, this kind of RESTful service description can
also include the set of preconditions that must be satisfied
by a client to be able to consume a service. Should these
preconditions change (because the service changes), then an
analysis of the description of the preconditions used by the
client allows the client to detect the change (for example,
a new representation format has been introduced), and to
react in an appropriate way (for example, alerting the client
manager, attempting a fallback, or abort). By supporting
the description of a set of preconditions, the description lan-
guage can achieve loose coupling [26] and still allow clients
to detect when they encounter something that they have
not been designed for. As for future work, we are planning
on considering more complex data models that support also
methods such as PUT, DELETE and POST allowing us to
model resources that can be modified, and its relation with
the SPARQL proposals for supporting such operations [31].

Our minting process consist of selecting the appropriated
name for the namespace (base), resource IDs, link IDs, link
types, and representation IDs. In the example presented in
Figure5, the resource instance’s namespace and predicates
chosen for this description correspond to the vCard, but
other properties (e.g. foaf) could be also used. We believe
that the selection of such properties must be responsibility
of the ReLL designer. Furthermore, the properties used in
the ReLL description itself (e.g. school:person) could be
also described using Linked Data vocabularies. By following
this approach the results of RESTler (e.g. triples datasets)
could be better integrated with other Linked Data sources
and the Linked Open Data cloud

By considering the URIs corresponding to REST resources,
a natural content negotiation with the Web server will be
possible in order to retrieve an RDF-friendly media type
(e.g. application/rdf+xml) or the human-readable Web
version of the same resource. As for limitations, we require
to prepare a ReLL document for each REST service. This
approach has been successfully followed by others such as
Virtuoso’s Sponger, that prepares Sponges or Cartridges
tailored for an application interface such as REST APIs,
known metadata such as MS Office, or known Web sites
such as YouTube. RDB2RDF7 is also an ad-hoc approach

7http://www.w3.org/2005/Incubator/rdb2rdf/



that transforms RDBMS to RDF representations.
We believe that by choosing Web technologies such as

XPATH, XSLT and XML as a the basis for ReLL docu-
ments, we are lowering the entry barrier to the semantic
resources publishing, since most Web developers have the
knowledge and tools required to create their own ReLL de-
scription. This approach also allows developers to control
the information they are collecting. Our next challenge is
to further facilitate the creation of ReLL documents by sup-
porting the dynamic and automatic generation of ReLL de-
scriptions. One of the challenges of this goal is the fact that
we need to design an specific XSLT for each resource type
in order to harvest specific information. A fully automatic
approach would require information retrieval, text mining
and probably machine learning techniques which greatly in-
creases the costs of the transformation an rises the entry
barrier for technology adopters.

Having a document such as ReLL may serve as an in-
termediate layer that automatic agents can use also as a
contract describing the capacities of a REST service and
translating them into RDF triples, by following the seman-
tics (types) made explicit in the document. Our approach
can be seen as a complement to proposals such as voiD, since
voiD describes the resulting datasets but does not support
the triples harvesting process. Our approach will allow any
Web content provider to publish ReLL descriptions for oth-
ers to crawl their Web sites, or third-parties to develop a
Web site’s description that accommodates their needs. The
crawler’s result is a dataset that can be then described using
voiD. Silk, can be also used for the definition of additional
link patterns such as the user mapping that we created man-
ually in this version; and LDDR’s linking techniques can be
also applied, since it may allow resources to link to their
descriptions.

We have placed strong emphasis in a decoupled approach,
where the components of the architecture maintain certain
degree of independence, and require knowledge and tools
already available and familiar to most Web developers, and
provide a simple model that may result familiar again to
Web developers. Our final goal is to contribute in making
available more semantic information while keeping a lower
entry barrier for developers.
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