
A Proposal for Publishing Data Streams as Linked Data
- A Position Paper -

Davide F. Barbieri
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. da Vinci 32, 20133 Milano

dbarbieri@elet.polimi.it

Emanuele Della Valle
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza L. da Vinci 32, 20133 Milano

dellavalle@elet.polimi.it

ABSTRACT
Streams are appearing more and more often on the Web
in sites that distribute and present information in real-time
streams. We anticipate a rapidly growing need of mashing
up this streaming information with more static one. While
best practices for linking static data on the Web were pub-
lished and facilitate the mash up of static information pub-
lished on the Web, streams were neglected. In this short
position paper, we propose an approach to publish Data
Streams as Linked Data.

Keywords
Data Streams, Linked Data, Virtual RDF, Stream Reason-
ing

1. INTRODUCTION
A growing number of Web sites are distributing and pre-

senting information in real-time streams. Microblogs such
as Twitter1, weather monitoring site such as AccuWeather2,
traffic monitoring sites such as Waze3 are few representative
examples.

Streams, being unbounded sequences of time-varying data
elements, should not be treated as persistent data to be
stored (forever) and queried on demand, but rather as tran-
sient data to be consumed on the fly by continuous queries.
Continuous queries, after being registered, keep analyzing
such streams, producing answers triggered by the streaming
data and not by explicit invocation. Such a paradigmatic
change have been largely investigated in the last decade
by the database community [15]. Specialized Data Stream
Management Systems (DSMS) have been developed (e.g.,
STREAM [2], Aurora/Borealis [1] and Stream Mill [6]). Sev-
eral startups such as StreamBase4 are commercializing DSMS,
and features of DSMS are becoming supported by major
database products, such as Oracle and DB2.

Motivated by the availability of real-time streams on the
Web and by the lack of Web-based approaches to process
them, we have been working since 2008 on an extension to
SPARQL[20] for continuous querying over streams of RDF
and static RDF graphs (namely C-SPARQL [7, 9]).

1http://twitter.com/
2http://www.accuweather.com/
3http://world.waze.com/
4http://www.streambase.com/

Copyright is held by the author/owner(s).
LDOW2010, April 27, 2010, Raleigh, North Carolina.
.

Listing 1 shows an example of C-SPARQL query that,
given a static description of brokers and a stream of finan-
cial transactions for all brokers, computes the amount of
transactions for Swiss brokers within the last hour.

1 REGISTER STREAM TotalAmountPerBroker COMPUTE EVERY 10m AS

2 PREFIX ex: <http :// example/>

3 CONSTRUCT {? broker ex:hasTotalAmount?total .}

4 FROM <http :// brokerscentral.org/brokers.rdf >

5 FROM STREAM <http :// stockex.org/market.trdf >

6 [RANGE 1h STEP 10m]

7 WHERE {

8 ?broker ex:from ?country .

9 ?broker ex:does ?tx .

10 ?tx ex:with ?amount .

11 FILTER (? country = "CH")

12 }

13 AGGREGATE { (?total , SUM(? amount), ?broker) }

Listing 1: Example of C-SPARQL which allows
dealing with streams of RDF triples as well as static
RDF graphs

At line 1, the REGISTER clause is use to tell the C-SPARQL
engine that it should register a continuous query, i.e. a
query that will continuously compute answers to the query.
In particular, we are registering a query that generates an
RDF stream. The COMPUTE EVERY clause states the frequency
of every new computation, in the example every 10 minutes.
At line 5, the clause FROM STREAM defines the RDF stream of
financial transactions, used within the query. Next, line
6 defines the window of observation of the RDF stream.
Streams, for their very nature, are volatile and for this rea-
son should be consumed on the fly; thus, they are observed
through a window, including the last elements of the stream,
which changes over time. In the example, the window com-
prises RDF triples produced in the last 1 hour, and the win-
dow slides every 10 minutes. The WHERE clause is standard; it
includes a set of matching patterns and FILTER clauses as in
standard SPARQL. Finally, at line 13, the AGGREGATE function
asks the C-SPARQL engine to include in the result set a new
variable ?total which is bound to the sum of the amount of
the transaction of each broker.

Our C-SPARQL Engine [9] treats non-RDF DSMSs as vir-
tual RDF streams and graphs. It allows to register queries
that continuously combine (virtual) RDF streams and RDF
graphs. Under this respect, our C-SPARQL Engine is sim-
ilar to D2RQ [12] that treats non-RDF databases as vir-
tual RDF graphs. In our previous works [7, 8, 9] we de-
velop an engine for registering and continuously executing
C-SPARQL queries. With this position paper, we propose
an extension of our C-SPARQL Engine that publishes data
streams as Linked Data. Such an extension complements the
work done so far and lowers the entry barrier for external

(Semantic) Web application to consume data streams.
The rest of the paper is organized as follows. In Section 2

we describe the design principles that inspire our proposal
for Streaming Linked Data. Section 3 explains how to pub-
lish a single data stream as an RDF stream. In the same
section we also present a vocabulary to describe the time
interval in which the published data are valid. The URI
schema that allows to control the Window behavior is pre-
sented in Section 4. In Section 5, we describe the RESTful
[21] services which allow to control the C-SPARQL query
that continuously computes the published RDF stream. Fi-
nally, Section 6 and 7 present some related work and draw
some conclusions, respectively.

2. DESIGN PRINCIPLE
The design principle that inspires our approach is illus-

trated in Figure 1. Our C-SPARQL engine is able to process
data streams and RDF streams in combination with RDF
graphs. In our previous work, we use in memory connec-
tion between our C-SPARQL engine and local C-SPARQL
clients. However, we anticipate a rapidly growing need of
mashing up results of our C-SPARQL engine with SPARQL-
and RDF-based linked data clients. A Streaming Linked
Data Server is a special local C-SPARQL Client that con-
nects in memory to a C-SPARQL engine and exposes as
Linked Data the results of continuous queries registered in
the C-SPARQL engine.

Figure 1: Architectural solution of our approach to
publish Streaming Linked Data

By using our C-SPARQL engine as a one-to-one mapper
from data streams to RDF streams, we can make available
to Linked Data Clients a raw data stream (see Section 3).
Moreover, we offer an interface to remotely control the be-
havior of the window which the stream is observed through
(see Section 4). Finally, we make available RESTful services
that implement a remote C-SPARQL Client (see Section 5).
Such services provide full control (i.e, beyond window be-
havior) on the C-SPARQL queries whose results are served
as Linked Data by the Streaming Linked Data Server.

3. PUBLISHING A STREAM
A data stream is defined as an ordered sequence of pairs,

where each pair is made of a tuple and its timestamp τ . For
instance, the stream of financial transactions used in the
example in Listing 1 could contain a transaction tr1 done
by broker1 for $ 1000 registered at τi, and two transactions
at τi+1: tr2 done by broker1 for $ 3000 and tr3 done by
broker2 for $ 2000.

(〈Transaction(tr1, broker1, ”$1000”)〉 , τi)
(〈Transaction(tr2, broker1, ”$3000”)〉 , τi+1)
(〈Transaction(tr3, broker2, ”$2000”)〉 , τi+1)

In a similar way, we define an RDF stream [7] as an or-
dered sequence of pairs, where each pair is made of an RDF
triple and its timestamp τ . By mapping the data stream
above in RDF using D2RQ mapping language [10], we ob-
tain the following RDF stream:

(〈broker1 does tr1 .〉 , τi)
(〈tr1 with ”$1000” .〉 , τi)

(〈broker1 does tr2 .〉 , τi+1)
(〈tr2 with ”$3000” .〉 , τi+1)
(〈broker2 does tr3 .〉 , τi+1)
(〈tr3 with ”$2000” .〉 , τi+1)

We propose to represent RDF streams in RDF using named
graphs [13]. We distinguish between two kind of named
graphs: the Stream Graphs (shortly s-graphs) and the In-
stantaneous Graphs (shortly i-graphs). In our proposal, an
RDF Stream can be represented using one s-graph and sev-
eral i-graphs, one for each timestamp.

A s-graphs is a metadata graph that describes the current
content of the window over the RDF Stream. The most
important part of an s-graph are the triples that refer to the
i-graphs using rdfs:seeAlso5 and those that describe when
each i-graph was received using the property receivedAt.

Few other metadata complete the description of an s-
graph. The property lastUpdate describes the last time
the graph was updated. The property expires allows to
indicate a Linked Data Client that the information in the
graph will expire in a given moment in future. The proper-
ties sld:windowType and windowSize describe the window
through which the stream is observed (see Section 4 for more
information).

For instance, if the data stream exemplified above was
the current content of a window over the stream of finan-
tial transactions, it can be represented using the s-graph in
Listing 2 and the two i-graphs in Listing 3 and 4.

1 @prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .

2 @prefix sld: <http ://www.streaminglinkeddata.org/schema#> .

3 @prefix : <http :// example/> .

4
5 :sgraph1 sld:lastUpdate "τi+1 "^^ xsd:dataTime ;

6 sld:expires "τi+2 "^^ xsd:dataTime ;

7 sld:windowType sld:logicalTumbling ;

8 sld:windowSize "PT1H "^^xsd:duration .

9
10 :sgraph1 rdfs:seeAlso :igraph1 .

11 :igraph1 sld:receivedAt "τi "^^ xsd:dataTime .

12
13 :sgraph1 rdfs:seeAlso :igraph2 .

14 :igraph2 sld:receivedAt "τi+1 "^^ xsd:dataTime .

Listing 2: Example of Stream Graph linking two
Instantaneous Graphs

1 @prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .

2 @prefix sld: <http ://www.streaminglinkeddata.org/schema#> .

3 @prefix : <http :// example/> .

4
5 :igraph1 sld:receivedAt "τi "^^ xsd:dataTime ;

6 rdfs:seeAlso :sgraph1 .

7
8 :broker1 :does :tr1 .

9 :tr1 :with "$ 1000" .

Listing 3: The Instantaneous Graph timestamped
with τi.

5We choose to link s-graphs to i-graphs using the property
rdfs:seeAlso, because it has been largely adopted to link
named graphs (see for instance the usage of rdfs:seeAlso
in Sindice [19] and in the Semantic Web Client [17])

1 @prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .

2 @prefix sld: <http ://www.streaminglinkeddata.org/schema#> .

3 @prefix : <http :// example/> .

4
5 :igraph2 sld:receivedAt "τi+1 "^^ xsd:dataTime ;

6 rdfs:seeAlso :sgraph1 .

7
8 :broker1 :does :tr2 .

9 :tr2 :with "$ 3000" .

10 :broker2 :does :tr3 .

11 :tr3 :with "$ 2000" .

Listing 4: The Instantaneous Graph timestamped
with τi+1.

Following the guidelines on cool URIs [5], we propose to
give to s-graphs and i-graphs an IRI using the following
schemata:

s-graph: http ://ex.org/%stream -name%

e.g., http :// stockex.org/transactions

i-graph: http ://ex.org/%stream -name%/ URLeconde (% timestamp %)

e.g., http :// stockex.org/transactions /2010 -02 -12 T13%3A34%3A41Z

Moreover, following the best practice on how to publish
Linked Data on the Web [11] in terms of content negoti-
ation, when IRIs, which follow the schemata shown above
are dereferenced, the Streaming Linked Data Server deref-
erences an information resource appropriate for the client
(using HTTP content negotiation):

• Linked Data Clients are redirected to

http ://ex.org/trdf/%stream -name%

http ://ex.org/trdf/%stream -name%/ URLeconde (% timestamp %)

• HTML Clients are redirected to

http ://ex.org/page/%stream -name%

http ://ex.org/page/%stream -name%/ URLeconde (% timestamp %)

4. CONTROLLING THE WINDOW
As we have explained in the previous section, streams are

intrinsically infinite. In C-SPARQL, we introduce the notion
of windows over streams. In Section 3, we focus on the
general approach to publish a data stream rather than on
the notion of window. However, we foresee the need for a
consumer of Streaming Linked Data to be able to control
the behavior of the window through which the stream is
observed.

Types and characteristics of windows in C-SPARQL are
inspired by those of the windows defined in continuous query
languages for relational streaming data, such as CQL[3].
Windows are expressed in C-SPARQL within the FROM STREAM

clause, whose syntax is as follows:

FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI

‘[RANGE’ Window ‘]’
Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘ms’ | ‘s’ | ‘m’ | ‘h’ | ‘d’
WindowOverlap → ‘STEP’ Number TimeUnit | ‘TUMBLING’
PhysicalWindow → ‘TRIPLES’ Number

A window extracts from the stream the last data stream
elements, which are considered by the query. Such extrac-
tion can be physical (a given number of triples) or logical
(all the triples which occur during a given time interval, the
number of which is variable over time).

Logical windows are sliding [16] when they are progres-
sively advanced of a given STEP (i.e. a time interval that
is shorter than the window’s time interval); they are non-
overlapping (or TUMBLING) when they are advanced of exactly

their time interval at each iteration. With tumbling win-
dows every triple of the stream is included exactly into one
window, whereas with sliding windows some triples can be
included into several windows.

We believe that consumers of Streaming Linked Data would
largely benefit from controlling the window of a running C-
SPARQL query. Therefore we propose the following IRI
schemata:

• physical windows can be controlled replacing %size%

with the number of triples (e.g., the last 1000 triples)

Schema: http ://ex.org/%stream -URI%/ physical /%size%

Example: http :// stockex.org/transactions/physical /1000

• logical windows can be controlled replacing %size%

with the a time interval6 (e.g., PT1H meaning 1 hour)
and replacing %step% either with the keyword tumbling

or with a time interval (e.g., PT10M meaning 10 min-
utes).

Schema: http ://ex.org/%stream -URI%/ logical /%size %/% step%

Example: http :// stockex.org/transactions/logical/PT1H/PT10M

Notably, each of these IRIs are translated to an equiva-
lent C-SPARQL query that processes the data stream. For
instance, the example above is equivalent to the following
C-SPARQL query.

REGISTER STREAM transactions COMPUTE EVERY 10m AS

PREFIX : <http :// example/>

CONSTRUCT *

FROM STREAM <http :// stockex.org/market.trdf >

[RANGE 1h STEP 10m]

WHERE { ?s ?p ?o . }

5. CONTROLLING C-SPARQL QUERIES
In this Section, we describe the RESTful [21] services

which allow one to control each C-SPARQL query that con-
tinuously computes each RDF stream published with our
approach.

As we explained above, C-SPARQL queries have to be
registered in the C-SPARQL Engine. As soon as a query is
registered, the C-SPARQL engine starts to compute it. An
explicit stop command is required to stop the processing of
a registered query. Similarly an unregister command allows
for deleting a C-SPARQL query.

We desinged a RESTful interface that uses the HTTP
methods to controll the C-SPARQL queries:

• PUT, with a C-SPARQL query as parameter, allows to
register a query that generates a certain RDF stream,

• POST, with start or stop command as parameters, is
used to start or stop a registered query, and

• DELETE can be used to unregister a query.

6. RELATED WORK
Two previous works [14, 22] address the need for publish-

ing data streams as Linked Data.
In [14], Corcho introduce the concept of Linked Stream

Data, a way in which the Linked Data principles can be

6The lexical space of such an interval is the same as
xsd:duration, i.e., the format PnYnMnDTnHnMnS defined by
ISO 8601 [18]

applied to stream data and be part of the Web of Linked
Data. At a first glance, his proposal could appear similar
to our one. Both his and our proposal use named graphs
and define IRI schemata. However, his approach does not
take into account the nature of streams, that, being un-
bounded sequences of time-varying data elements, should
not be treated as persistent data to be stored (forever) and
queried on demand, but rather as transient data to be con-
sumed on the fly by continuous queries. His proposal allows
for opening a window starting from and ending into any mo-
ment in time (see listing below). This is incompatible with
the principle to keep a window open on the latest data that
has to be consumed on the fly. It requires the Linked Stream
Data server to store the stream for an indefinite time period.

http ://www.domain.org/sensor/name/%start time%,%end time%

In [22], Rodŕıguez et al. introduce the notion of Time-
Annotated RDF (TA-RDF) that allows for representing time-
series data, especially streaming data, using the Seman-
tic Web approach. (TA-RDF) is an extension of the RDF
model where resources are optionally annotated with a time
value, i.e, a time-annotated resource is a pair of the form
resource[time] (see listing below for an example).

<urn:OHARE > <urn:hasRainSensor > <urn:sensor1 > .

<urn:sensor1 >["2009 -01 -01Z -06:00"^^ xsd:date] <urn:hasReading > "0" .

<urn:sensor1 >["2009 -01 -01Z -06:05"^^ xsd:date] <urn:hasReading > "5" .

...

<urn:sensor1 >["2009 -01 -31Z -10:00"^^ xsd:date] <urn:hasReading > "15" .

A TA-RDF graph can be represented as a set of RDF
graphs using two special properties: belongsTo, which indi-
cates a data element in a stream, and hasTimestamp, which
points toward the timestamp of the data element.

As for the previous related work, TA-RDF proposal looks
very similar to our one, but still it lacks the paradigmatic
change from persistent data to transient data. In TA-RDF
streams are supposed to be stored indefinitely.

Finally, the two proposal do not consider the rich types
of windows proposed in DSMS. They do not propose a vo-
cabulary to describe the window type (i.e., lsd:physical vs.
lsd:logical) and the size of the window (i.e., the equivalent
of our property windowSize). The properties lastUpdate

and expires, which in our vocabulary allows to indicate a
Linked Data Client when the graph was updated and when
it will expire, are not present.

7. CONCLUSION
Distributing and presenting information in real-time streams

is becoming a best practice on the Web. The nature of
streams requires a paradigmatic change from persistent data
to be stored, and queried on demand, to transient data, to
be consumed on the fly by continuous queries.

In our previous work we investigated C-SPARQL as an
approach to treat non-RDF DSMSs as virtual RDF streams
and graphs. With this position paper, we propose an exten-
sion of our C-SPARQL Engine that publishes data streams
as Linked Data. In this paper, we described the princi-
ple that inspires our approach and we explain how to pub-
lish RDF streams continuously generated by C-SPARQL
queries. Such a best practice introduces the concepts of
Stream Graph (or s-graph) and Instantaneous Graph (or i-
graph) as well as a small vocabulary that allows to describe
which part of the stream has been published and when the
information will expire. A RESTful service to control the

C-SPARQL queries that generates the RDF streams is also
detailed.

We believe that our proposal can lower the entry barrier
for external (Semantic) Web application to consume data
streams. Our next step is to complete the prototypical im-
plementation of our Streaming Linked Data Server and eval-
uate it against several use cases. We are currently consider-
ing the synthetic Linear Road Benchmark [4], a well estab-
lished benchmark for Data Stream Management Systems,
and several real source of streams that we are already ex-
perimenting with (see for instance, the social media streams
in [8] or the Milan traffic streams in [9]).

8. ACKNOWLEDGMENTS
The work described in this paper has been partially sup-

ported by the European project LarKC (FP7-215535).

9. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In Proc. Intl. Conf. on Innovative
Data Systems Research (CIDR 2005), 2005.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom. STREAM:
The Stanford Stream Data Manager (Demonstration
Description). In Proc. ACM Intl. Conf. on
Management of Data (SIGMOD 2003), page 665,
2003.

[3] A. Arasu, S. Babu, and J. Widom. The CQL
Continuous Query Language: Semantic Foundations
and Query Execution. The VLDB Journal,
15(2):121–142, 2006.

[4] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier,
A. Maskey, E. Ryvkina, M. Stonebraker, and
R. Tibbetts. Linear road: A stream data management
benchmark. In M. A. Nascimento, M. T. Özsu,
D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, editors, VLDB, pages 480–491. Morgan
Kaufmann, 2004.

[5] D. Ayers and M. Vlkel. Cool uris for the semantic
web. World Wide Web Consortium, Note
NOTE-cooluris-20081203, December 2008. Available
on line at: http://www.w3.org/TR/2008/NOTE-
cooluris-20081203/.

[6] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A Data Stream Language and System Designed for
Power and Extensibility. In Proc. Intl. Conf. on
Information and Knowledge Management (CIKM
2006), pages 337–346, 2006.

[7] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. C-SPARQL: SPARQL for
Continuous Querying. In Proc. Intl. Conf. on World
Wide Web (WWW), pages 1061–1062, 2009.

[8] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. Continuous queries and real-time
analysis of social semantic data with c-sparql. In
Proceedings of Social Data on the Web Workshop at
the 8th International Semantic Web Conference, 10
2009.

[9] D. F. Barbieri, D. Braga, S. Ceri, and
M. Grossniklaus. An Execution Environment for
C-SPARQL Queries. In Proc. Intl. Conf. on Extending
Database Technology (EDBT), 2010.

[10] C. Bizer. D2R MAP - A Database to RDF Mapping
Language. In WWW (Posters), 2003.

[11] C. Bizer, R. Cyganiak, and T. Heath. How to publish
linked data on the web. Web page, 2007. Revised
2008. Accessed 07/08/2009.

[12] C. Bizer and A. Seaborne. D2RQ - Treating Non-RDF
Databases as Virtual RDF Graphs. In ISWC2004
(posters), November 2004.

[13] J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler.
Named graphs, provenance and trust. In A. Ellis and
T. Hagino, editors, WWW, pages 613–622. ACM,
2005.

[14] O. Corcho. Linked stream data: A position paper. In
The 2nd International Workshop on Semantic Sensor
Networks 2009, 2009.

[15] M. Garofalakis, J. Gehrke, and R. Rastogi. Data
Stream Management: Processing High-Speed Data
Streams (Data-Centric Systems and Applications).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

[16] L. Golab and M. T. Özsu. Processing Sliding Window
Multi-Joins in Continuous Queries over Data Streams.
In Proc. Intl. Conf. on Very Large Data Bases (VLDB
2006), pages 500–511, 2003.

[17] O. Hartig, C. Bizer, and J. C. Freytag. Executing
sparql queries over the web of linked data. In
A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum,
D. Maynard, E. Motta, and K. Thirunarayan, editors,
International Semantic Web Conference, volume 5823
of Lecture Notes in Computer Science, pages 293–309.
Springer, 2009.

[18] International Organization for Standardization. Data
elements and interchange formats — information
interchange — representation of dates and times. ISO
8601, December 2004. Available on line at:
http://xml.coverpages.org/ISO-FDIS-8601.pdf.

[19] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
IJMSO, 3(1):37–52, 2008.

[20] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[21] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly, Beijing, 2007.

[22] A. Rodriguez, R. McGrath, Y. Liu, and J. Myers.
Semantic Management of Streaming Data. In Proc.
Intl. Workshop on Semantic Sensor Networks (SSN),
2009.

