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ABSTRACT

Datasets in the LOD cloud are far from being static in
their nature and how they are exposed. As resources are
added and new links are set, applications consuming the
data should be able to deal with these changes. In this pa-
per we investigate how LOD datasets change and what sen-
sible measures there are to accommodate dataset dynamics.
We compare our findings with traditional, document-centric
studies concerning the “freshness” of the document collec-
tions and propose metrics for LOD datasets.

1. INTRODUCTION

The Linked Open Data (LOD) movement has gained re-
markable momentum over the past years. At the time of
writing, well over one hundred datasets — including UK gov-
ernmental data, the New York Times dataset, and Linked-
GeoData — have been published, providing several billion
RDF triples interlinked by hundreds of millions of RDF
links. Some datasets, such as DBpedia, have been available
from the very beginning of the LOD movement and regu-
larly undergo changes on both the instance level and the
schema level. New resources are added and old resources
are removed; new links are set to other datasets, and old
links are removed as the target has vanished. We should
hence assume that datasets in the LOD cloud are dynamic
in their very nature. Dataset dynamics is a term we re-
cently coined [1], essentially addressing content and inter-
linking changes in Linked Data sources.

Our main contributions herein are: (i) define dataset dy-
namics characteristics and how to measure them, and (ii)
compare the dataset dynamics of the LOD cloud to the tra-
ditional Web (Web of HTML Documents). The motivating
use-case for our study of dataset dynamics is to gain in-
sights into — and hopefully improve — concurrent work on an
efficient system for performing live queries over the Linked
Open Data Web [13]. However, aside from this use-case
having knowledge about dataset dynamics is essential for a
number of tasks:

e web crawling and caching [9];
e distributed query optimisation [13];
e maintaining link integrity [16];

e servicing of continuous queries [22];
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e replication and synchronisation [24].

We begin in Section 2 by reviewing existing work, and con-
tinue in Section 3 by discussing and contrasting document
vs. entity centric perspectives concerning dynamics. There-
after, in Section 4 we present the background of our analy-
sis, in Section 5 we describe our methodology for analysing
dataset dynamics, and in Section 6 we discuss the results of
our analysis. Finally, in Section 7, we conclude and render
future work.

2. RELATED WORK

As motivated above, the study of changes in documents
and data sets is very relevant for a broad range of application
domains. Earlier work discussed analysis of the dynamics of
the Web circa. 2008, leveraging their findings for optimi-
sation of re-indexing techniques [6]. The work of Cho et.
al. provides a comprehensive study regarding the change
frequency of Web documents: earlier work focussed on how
to integrate the knowledge for an incremental crawler [8];
further work provided a detailed discussion for estimators
of the frequency of changes given incomplete history [9].
Other research has focused on, for example, investigating
the dynamics of Wikipedia articles [3] and the evolution of
database schema over time [21].

With respect to the Semantic Web, some research regard-
ing dynamics has been conducted with respect to analysing
the evolution of ontologies in the life science community [15].
In [16] the authors reported on their work concerning DSNo-
tify, a system for detecting and fixing broken links in LOD
datasets.

However — and to the best of our knowledge — we are
not aware of any published studies more generally regarding
the change frequency of resources on the Linked Open Data
Web, and thus deem the work herein to be novel.

3. DOCUMENTS VS. ENTITIES: DIFFER-
ENT PERSPECTIVES ON LINKED DATA

There are various aspects of dataset dynamics which must
be considered in order to achieve a comprehensive overview
of how Linked Open Data changes and evolves on the Web.
Firstly, the change frequency of data on the Web can vary
significantly across datasets, from rather static sources —
such as archives — to high-frequently changing sources — for
example in the micro-blogging domain. Also, the change
volume can range from small-scale updates — in our case,
updates involving a low number of triples — to bulk updates,
which potentially affect many resources. One must also pay



attention to the perspective one takes on resources: that
is, whether we are interested in local changes of particular
datasets, or are interested in global changes with respect to
what is said about a URI in all accessible linked datasets.

Before we continue, however, we must first provide some
preliminaries. Firstly, our notion of a ‘document’ refers to
an atomic Web ‘container’ in which Linked Data is typically
exposed: these include RDF /XML, (X)HTML+RDFa doc-
uments, etc. Secondly, we often refer to an ‘entity’ by which
we intuitively mean anything identified by a URI in Linked
Data, including classes, properties, and the “real-world arte-
facts” described.’ Following from both, we can now distin-
guish the following perspectives in dataset dynamics:

1. A document-centric perspective, which focuses on data-
sets and is motivated by the “traditional” Web as well
as the REST community [12, 2]

2. An entity-centric perspective, which focuses on entities
as described in the Linked Open Data Web [5] — we
further separate the entity-centric perspective into:

(a) An entity-per-document perspective which takes
into account occurrences of an entity with respect
to a specific document

(b) A global entity perspective which takes into ac-
count all appearances of an entity across the Web

In particular, the entity-centric perspectives are more LOD-
specific than the document-centric perspective prevalent in
more traditional views on dataset dynamics. Many applica-
tions operating on the LOD cloud assume an entity-centric
view where entities become the unit of knowledge and data
on such entities are aggregated from multiple documents.
Also, LOD documents may be dynamically served by an
entity-centric index (e.g., a SPARQL endpoint), whereby a
change in one entity may entail changes in many documents.
Thus, we believe the distinction between the document- and
entity-centric perspectives to be important for our purposes
herein.

In fact, the global entity perspective may be infeasible to
monitor as arbitrary new sources can publish data about any
entities. For this reason — and despite formally discussing
2b herein — note that in the present work we will focus on
the analysis of 1 and 2a, and leave approximative techniques
for analysis of 2b as part of our future research (discussed
in Section 7).

Despite the two distinct perspectives, both are somehow
related: there is naturally a relation between entities and
their appearances in different containers. Along these lines,
Figure 1 depicts a typical distribution of entities per doc-
ument in the LOD cloud. As we have already shown else-
where [17], this distribution follows a power law.

In order to formalise what we mean by these different
perspectives, let R = {r1,...,7,} be the set of all resources
as of the Architecture of the World Wide Web [19]: that
is, HT'TP entities and documents. Further, we define D =
{di1,...;dn},D C R as the set of all documents (i.e., derefer-
enceable entities that point to RDF data) and £ = {e1, ...,en},
£ C R as the set of all entities. A document d; can mention

!Note that in this paper, we currently overlook entities
‘identified’ by blank-nodes; concretely, blank-node entities
do not have consistent naming which has adverse conse-
quences on the analysis presented in Section 5.3
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Figure 1: A typical distribution of entities in docu-
ments.

various entities; thus, we denote the set of entities mentioned
in document d as E(d) C £ and likewise the set of all doc-
uments mentioning e as D(e) C D. Further, let ver(d,t)
be the state of document d at time-point t — i.e., the RDF
graph served by d at time t. It is clear, that different use
cases require specific state functions ver(d,t) and equality
measures; e.g. a state function could be the hash value of the
RDF graph, a set of RDF statements or the set of inferable
new statements.

Then, the document change function of document d from
time ¢ to ¢’ (where t < t) is defined as follows:

DEeFINITION 1. Document Change Function

n_ |0 if ver(d,t) = ver(d,t')
Ca(t,t) = { 1 otherwise

Likewise, we define the entity-per-document change function
as follows:

DEFINITION 2. Entity-per-document Change Function

erp oy J O if ver(d,t) Ne =wver(d,t') Ne
Ca(t,t) = { 1 otherwise

where by GNu we denote all triples in graph G mentioning u.
Finally, the entity change function can be defined as follows:

DEeFINITION 3. Entity Change Function
C°(t, ') = mazvaep(e)(Calt, 1))

Please note that we pursue a purely ‘syntactic’ notion of
change, and do not consider more advanced notions relat-
ing to ‘semantic’ change: for example, we would consider
a change in a datatype literal if the syntax of that literal
changes even though the semantic interpretation does not
— this change would then propagate to the respective en-
tity /document despite no real change on the semantic level.
Further, we do not consider any forms of reasoning in the
changes — e.g., we do not propagate changes in a class defi-
nition as changes to it’s member entities. We leave further
discussion and related analysis of ’semantic vs. syntactic
change’ for future work.

It may also be interesting to consider more closely the re-
lationship between documents and the entities they contain,
examining separately the change function of entities which



are considered ‘local’ with respect to the document they ap-
pear in. To this end, we introduce the term local entity,
meaning an entity in a document whose pay-level domain
(PLD) is the same as the document’s PLD: here, a PLD is
defined as any domain that requires payment at a [top-level-
domain] (TLD) or country-code TLD registrar [20]. Taking
an example, let PLD(uri) be the PLD extraction function;
then:

PLD(hitp : //Jwww.deri.ie/) = deri.ie
We can now define a local entity as follows:

DEFINITION 4. Local Entity
We define the set of local entities Ejocai(d) of document d as

Eiocar(d) = {e € E(d) | PLD(e) = PLD(d)}

Definition 4 is closely related to a similar notion defined
in 7], which defines locality based on the correspondence of
hostnames. Note that, according to this definition, an entity
may be local to several documents, which may not always
be desirable. Alternatively, one could focus on the authori-
tative relationship between entities and documents whereby
the document an entity redirects to is the authoritative doc-
ument for that entity [18]. In this paper, we currently only
consider the locality relationship between documents and
entities and plan to investigate stronger notions such as au-
thoritativeness in future work.

4. CHANGE DETECTION MECHANISM

So far, we have focused on identifying and formalising
different notions of change — particularly change functions
— as a foundational aspect of dataset dynamics. We now
discuss how such changes can be detected; one can group
change detection mechanisms as follows:

e HTTP-metadata monitoring: analysis of HTTP re-
sponse headers — including datestamp and ETag [11] —
to detect whether something has changed;

e content monitoring: fetching the entire content and
determining locally what has changed;

e notification: active notification by a data source that
something has changed (ideally what has changed) [16].

The Table 1 summarises aspects of the the aforemen-
tioned change detection mechanisms. The aspects — mo-
tivated by [10] — are as follows: (i) awvailability, meaning
if the respective solution is available out-of-the-box in cur-
rently deployed systems on the Web; (ii) reliability, referring
to the ability to correctly capture all changes; (iii) costs, re-
ferring to the resources needed for the approach (in terms of
band-width, storage, etc.); and (iv) scalability with respect
to the number of involved data publishers (in terms of infras-
tructure) and consumers (concerning, for example number
of concurrent “subscribers” in a notification system). Fur-
ther, we have included two Linked Data specific aspects in
Table 1: (v) support for document-centric change detection,
and (vi) support for entity-centric change detection.

Both content and HTTP metadata monitoring mecha-
nisms are well studied and discussion about those is available
elsewhere (cf. [10, 11]). The characteristics of Web-scale
notification mechanisms — especially concerning reliability,
costs, and scalability are subject to research at time of writ-
ing. However, there are some remarkable implementation

| | Content HTTP Notification |
availability + =+ [10 + [16]
reliability + + [10 unknown
costs high low unknown
scalability high high unknown
documents yes yes yes
entities no partially yes

Table 1: Change detection mechanism’s aspect ma-
trix.

and standardisation efforts ongoing, including but not lim-
ited to:

e online services;>

e carlier efforts for a lightweight notification standard:
for instance the Fvent Notification Protocol (ESN) (see
“Requirements for Event Notification Protocol” [23]);

e pubsubhubbub: a simple, open, server-to-server web-
hook-based pubsub (publish/subscribe) protocol as an
extension to Atom and RSS.?

S. METHODOLOGY

To the best of our knowledge, this is the first study regard-
ing the dynamics of documents and entities of the Linked
Open Data Web. Hence, the methodologies used in our
evaluation are inspired by legacy related work for Web doc-
uments. Specifically, we applied similar evaluation methods
— and indeed try to answer similar questions — as presented
in [8]. The experiments require a large data set which is
constantly monitored over a long timespan to conclude sig-
nificant findings: we are not aware of any significant, het-
erogeneous and publicly available data-set of Linked Open
Data resources which includes a complete history of changes.
Nevertheless, we have access to such a dataset collected for
an extended period in early 2009; although the dataset was
originally collected for a different purpose — and thus, as we
will see is not as suitable for our analysis as a bespoke corpus
might be — we can derive some illustrative statistics which
give some early insights into the dynamic nature of Linked
Data on the Web.? Next, we describe how this dataset was
monitored and which methods we use for our evaluation.

5.1 Monitoring

To gain first insights about the dynamics of resources of
the Linked Open Data Web we analyse 24 data dumps col-
lected by weekly snapshots of the 7 hop neighborhood of
Tim Berners-Lee’s FOAF file®. The weekly snapshots were
collected using the MultiCrawler framework [14] with the
following steps applied in each crawl cycle:

1. gathering the content of a list of URISs;

2. parsing of RDF /XML content;

2http://www.changedetection.com/
3http://code.google . com/p/pubsubhubbub/

4Notably, this dataset was already studied by Biessmann
et. al. [4] w.r.t. to dependency dynamics between people
described in the data set.

Shttp://www.w3.org/People/Berners-Lee/card



3. extracting of all URIs at the subject and object posi-
tion of a triple;

4. shuffling list of extracted URIs;

5. applying a per-domain limit for the URIs (5000 URIs
per PLD).

Please note that steps 4) and 5) were done for politeness
reasons to prevent too many parallel HT'TP requests to one
server: these steps introduce a non-deterministic element
into our crawl and thus, we did not monitor a fixed list of
URIs every week. Indeed, this passive monitoring makes
change frequency analysis more challenging [9]. We have to
deal with an incomplete history of sources, wherein it is very
likely that many sources appear only once in the snapshot —
thus, we sometimes present statistics which use only a small
subset of the total dataset: the subset derived from sources
that were available in more than 20 of the 24 snapshots.

5.2 Data Corpus

The data collection was performed over 24 weeks starting

from the 2nd of November 2008 and contains 550K RDF /XML

documents with a total of 3.3M unique subjects (~6 enti-
ties appearing in the subject position per source) with 2.8M
locally defined entities per our definition 4.

5.3 Change detection function

The change detection of a document Cy(¢,t) or entity
Cg(t,t) between two snapshots ¢, t is a trivial task as long as

the statements of the resource do not contain blank nodes [24].

For our preliminary evaluation, we used a simple change
detection algorithm — based on a merge-sort scan over the
weekly snapshots — as follows:

1. skolemise blank nodes within a document;

2. sort all relevant statements for the change detection of
an document or entity by their syntactic natural order
(subject-predicate-object-[context]);

3. perform pairwise comparison of the statements by scan-
ning two snapshots in linear time;

4. trigger a detection of change (either w.r.t. a document
or entity) as soon as the order of the statements dif-
fers between two snapshots (e.g. new statements were
added or removed).

5.4 Evaluation

In this subsection, we describe in detail the evaluation we
performed on the data set.

Document-centric evaluation. Firstly — and as a baseline
— we performed a document-centric evaluation which allows
us to compare our results with earlier studies about HTML
documents. For this study, we compute the changes of a
document as defined in Definition 1.

Entity-centric evaluation. Secondly, we studied the change
frequency of entities from an entity-per-document perspec-
tive as defined in Definition 2. In fact, more accurately
we analysed the change frequency from a local-entity-per-
document perspective — a notion which follows intuitively
from Definitions 2 and 4: to detect a change in an entity

Cylocat (t,¢°), we compare only the statements which 1) are
contained in documents whose URIs matches on the PLD
level with the entity URI and 2) in which the entity URI ap-
pears in the statement. Thus, we consider only the changes
from documents in the locality of the entity as defined in
Definition 4.

5.5 Change Process - A Poisson Process

Finally, for the purposes of comparison, we use an es-
tablished model for changes of Web documents. Previously
published studies [8] report that changes in Web documents
can be modeled as a Poisson process (Equation 1). Poisson
processes are used — for example — to model arrival times of
customers, the times of radioactive emissions or the number
of sharks appearing on a beach in a given year. The model
allows to calculate the probability of a number of events oc-
curring in a fixed period of time given that (i) the events are
independent of the time elapsed since the last event and (ii)
the events occur with a known average frequency rate A\. The
parameter A is the expected ‘events’ or ‘arrivals’ that occur
per the required unit-of-time (in our case, a week). Further,
let N(¢t + 7) — N(¢) be the number of changes in an interval
(t,t + 7] with 7 given as the number of weeks — to take an
example in our scenario, if an entity e changed five times in
a window of the last 10 weeks, then Ne(14+410) —N.(14) = 5.
Finally, let k be the number of occurrences of a document or
entity in the total monitoring time (24 weeks in our case).
Then, according to the Poisson process, the probability of
an event occurring within a given interval (¢,¢ + 7] is given
as:

A7)k
k!

—

PN(t+71)—N(t) =k] = exp(—A7) for k =1,2... (1)

6. FINDINGS

In this section we present several early findings about the
change frequency of resources on the Linked Data Web.

Firstly, we examine the usage of Etag and Last-Modified
HTTP header fields, followed by an analysis of the various
dynamic aspects which are aligned to the studies of the tra-
ditional Web in [8].

6.1 Usage of Etag and Last-Modified

One way to detect changes is to use the information con-
tained in HTTP response headers as discussed in Table 1.
The HTTP protocol offers two header fields to indicate a
change of a document, viz: the Etag and Last-Modified
fields. Using such methods of change detection is more eco-
nomical in that it avoids the need for content sniffing.

We verified the usage (or lack thereof) of these two fields
for all the documents in our corpus; Table 2 summarises the
findings:

| Header field [ Fraction ‘
only Etag 7.12%
only Last-Modified 8.18%
Both 16.75%
None 67.95%

Table 2: Usage of Etag and Last-Modified HTTP
header fields.



Similarly to studies about the usage of these two fields
for HTML documents [10], we found that 67.95% of the
550K documents did not report either of these two fields.
Both fields were available by 16.75% of all the documents.
Thus, we have to rely on actively monitoring of documents
to detect their changes.

6.2 Access and lifespan distribution

We move now to analysis involving the content of data in
our corpus. Firstly, we are interested in characterising the
distribution of the number of accesses (i.e., appearances)
and the lifespan (i.e., the time interval between the first
and last appearance) of documents and entities respectively.
This is a slightly different computation from [8], where, for
example, the authors estimated the lifespan of a document
by doubling the time the document was seen in the moni-
toring window if the document occurred at the beginning of
the experiment but not at the end. Figure 2 contains the
plots of the frequency and lifespan distribution for the doc-
uments (crosses) and entities (circles); we observe that the
distributions follow approximately an “80-20" law.

From this figure, we can also conclude that only a fraction
of the documents appeared frequently in the different snap-
shots — considering the importance of having as much infor-
mation as possible to apply and verify our change frequency
model (Section 5.5) — and thus to gain a good overview
about their dynamics — going forward, we will give special
consideration to the subset of our corpus derived from docu-
ments that appear in at least 20 weekly snapshots and ignore
missing observations when considering changes. Again, this
is necessitated by the non-deterministic factor in our inci-
dentally crawled snapshots.
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Figure 2: Access and lifespan distribution of entities
and documents (y-axis logscale).

6.3 How often do the resources change?

Next, we will analyse the average change frequency of a
resource. For the purposes of this analysis, we only consider
the subset of the corpus which features resources that ap-
pear in more than 20 snapshots. Let us assume a document d
changed 12 times during our monitoring interval of 24 weeks.
In this case we can estimate the average change frequency
of d to be 24 weeks/12 = 2 weeks. Following this example,
the results for average change frequency of documents and

entities are summarised in Figure 3. The left side of the
diagram shows the percentage of all resources that were not
observed to change (static resources). The right side of the
diagram shows the percentage of non-static resources that
were observed to have an average change frequency within
the given interval. An interesting finding is that 62% of the
total documents did not change at all, along with 68% of the
entities. Further, we see that the fraction of documents is
increasing with bigger change intervals, whereas for entities
it is quite the opposite: by inspecting the data closer, we fig-
ured out that 51% of the entities with a change frequency of
less than 1 week appear in more than one ‘local’ document.
Thus, for example, one document may change the descrip-
tion of many local entities: along these lines, Figure 4 shows
the distribution of the number of frequency of entities ap-
pearing in a given number of documents, where again, we
can observe a power law distribution.
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68.88% ! . . EEEEE cntities

70%

| 59%
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static <1 week >1 week >1 month >3 month
<1month <3 month <6 month

average change frequency

Figure 3: Fraction of documents with given average
change frequency.
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Figure 4: Distribution of reuse of entities among
documents (log/log scale).

6.4 What fraction of the Web changed?

Continuing, we now study how quickly and what fraction
of the documents and entities changes over time. Along



these lines, we count how many documents — and respec-
tively entities — changed after a certain time period. Fig-
ure 5 presents the cumulative change function for documents
(circles) and entities (squares). The graph cumulatively
shows how many documents and entities had changed after
X weeks. The plot contains the cumulative change function
for all resources (appearing at least once), and for resources
that appeared in at least 20 snapshots. Again, the plot cor-
relates with Figure 3 in that for the subset of the corpus with
more than 20 observations, we can also see a large amount
of entities changing after the first week, with a more grad-
ual increase in observed document changes. An interesting
observation is that the entities with more than 20 observa-
tions show a higher propensity to change; one could assume
that such entities are better linked (and thus appear more
often in our crawl) and so are reused in more documents (cf.
Figure 4).
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Figure 5: Cumulative change function.

6.5 Change process - A mathematical model?

Next, we analyse whether we can apply the Poisson model
presented in Section 5.5 to the changes of documents and en-
tities detected in our analysis. Therefore, we must compute
the average change rate A for each document d and entity e.
We group the documents and entities with the same change
rate and plot their distribution of successive change inter-
vals; e.g., a document which changed in week 2 and 6 has
a successive change interval of 4. If the changes can be
modeled as a Poisson process, the resulting graph should be
distributed exponentially.

For illustration, we selectively present the graph for doc-
uments with an average change frequency of 4 weeks (Fig-
ure 6) and the graph for entities with an average change
frequency of 4 weeks (Figure 7). We performed a Pois-
son regression ( log-linear regression) and use the maximum
likelihood method to estimate the parameters. The predi-
cated poisson process is plotted in the graphs as the line and
describes the observed data quite well, despite some small
variations. Similar effects are observed for around half of
the other plots. However, we also spotted several graphs
for documents and entities in which the Poisson model does
not well describe the observed data points: The main reason
for this observation is that there are not enough available
sample points. As a conclusion of the findings: we currently

cannot accept or reject the described change model with sta-
tistical significancy. Further studies with more data samples
are required.
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Figure 6: Documents with an average change fre-
quency of 4 weeks (#occ >20 weeks, y-axis logscale).
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Figure 7: Entities with an average change frequency
of 4 weeks (#occ >20 weeks, y-axis logscale).

6.6 Discussion of the results

We found that in 90% of all documents less than 10% of
the entities changed, as depicted in Figure 8, which shows
the distribution of the average fraction of entities that changed
per document. It is hence safe to assume that — in the con-
text of Linked Data — the finer-grained entity-centric per-
spective for changes is superior, compared to the more tra-
ditional document-centric point of view.

Drawing towards a conclusion to our analysis, we now
discuss the observed changes for the documents over time.
Therefore, we defined the following three main change cate-
gories:

e Update (U) — that is, between two snapshots of a doc-
ument, the entities described were the same but the in-
formation about the entities changed: new statements
were added and/or removed;



e Add (A) — that is, between two snapshots of a docu-
ment, new entities were added;

e Del (D) — that is, between two snapshots of a docu-
ment, entities were deleted;

e Combination of the three categories mentioned above:
UA, UD, AD; UAD.

Table 3 lists the fraction of documents which encountered
such a change (or combination thereof) for each of the seven
categories. We can see that 76% of the documents have
only entity updates as changes, whereas in 9.46% of the
documents new entities were added.

[ ] U | Al D | (UAJUDIAD) | total |
U | 76.88% [ 9.46% [ 7.08% 3.87% | 97.29%
A | 9.46% | 0.19% | 2.29% 3.87% | 15.81%
D | 7.08% | 2.29% | 0.23% 3.87% || 13.5%

Table 3: Results of document change categories.
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Figure 8: Average fraction of entity changes per doc-
ument (y-axis logscale).

7. CONCLUSION

We motivated this work by highlighting the importance
of a fundamental understanding of dataset dynamics with
respect to Linked Open Data sources; we further claim that
such knowledge can be leveraged to optimise existing sys-
tems and algorithms, such as making incremental index up-
dates techniques more efficient. Further, we discussed in
detail the differences between document-centric and entity-
centric dynamics together with possible approaches for change
detection: content-monitoring, HTTP header monitoring,
and active notifications.

The findings we gained from weekly snapshots of the neigh-
borhood graph of Tim Berners-Lee FOAF file are the follow-

ing:
e less than 35% of the monitored documents contained

Etag and Last-Modified HTTP header fields in the
response;

e a surprisingly small amount (~ 35%) of the monitored
resources changed over the time interval of 24 weeks;

e half of the documents that changed had a change fre-
quency of more than 3 months — in contrary, on a
entity-centric level, half of the entities had a change
frequency of less than a week applying our definition
of local entities (based on PLD correspondences be-
tween document and entity);

e comparing our results to previous published studies we
cannot verify that the change frequency of the docu-
ments and entities follow entirely the change model of
a Poisson process.

We should perhaps look at these early findings with a
critical eye in that we did not actively monitor a fixed set
of sources. This work is very much an early attempt in this
field, and needs further exploration and research to fully
understand and exploit the change frequency of resources in
the Linked Data Web.

7.1 Future Work

Large scale experiment To verify our early findings and
derive statistical significant results, we plan to expend and
run our evaluation for a larger dataset which is monitored
over a longer time period. Further, we plan to study in more
detail the dynamics on a entity-centric level; e.g. studying
the dynamics of only authoritative entities as defined in [18]
or the dynamics of the global entities as defined in Section 3.

Active monitoring. A major drawback of the current study
is the monitoring method used for our data set. To overcome
the problem of an incomplete change history, we will actively
survey a selected set of documents over a long time period,
thus creating a tailored corpus for our analysis. In addition
to active monitoring, we plan to study how we can dynam-
ically adapt the monitoring interval based on the estimated
change frequency of a resource.

Fine-grained analysis of changes on a entity-centric level
Finally, the findings of this work will be integrated into an
existing system which aims to execute live queries over the
LOD Web, which uses efficient data summary approaches [13].
Thus, using our analytics, we would hope to discern docu-
ments which are highly dynamic and those which are more
static: highly dynamic documents would thus be better
suited to direct-lookup approaches, whereas static data would
be more suited to index summaries (or indeed, full-blown
data warehousing approaches) for query-answering. Simi-
larly, we could also investigate what kinds of statements for
an entity in a document changes; e.g. a rdf:type statement
should be rather very static, whereas a statement describing
the values of sensor data is rather very dynamic.
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